Home | History | Annotate | Download | only in flate
      1 // Copyright 2009 The Go Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 //go:generate go run gen.go -output fixedhuff.go
      6 
      7 // Package flate implements the DEFLATE compressed data format, described in
      8 // RFC 1951.  The gzip and zlib packages implement access to DEFLATE-based file
      9 // formats.
     10 package flate
     11 
     12 import (
     13 	"bufio"
     14 	"io"
     15 	"strconv"
     16 )
     17 
     18 const (
     19 	maxCodeLen = 16    // max length of Huffman code
     20 	maxHist    = 32768 // max history required
     21 	// The next three numbers come from the RFC section 3.2.7, with the
     22 	// additional proviso in section 3.2.5 which implies that distance codes
     23 	// 30 and 31 should never occur in compressed data.
     24 	maxNumLit  = 286
     25 	maxNumDist = 30
     26 	numCodes   = 19 // number of codes in Huffman meta-code
     27 )
     28 
     29 // A CorruptInputError reports the presence of corrupt input at a given offset.
     30 type CorruptInputError int64
     31 
     32 func (e CorruptInputError) Error() string {
     33 	return "flate: corrupt input before offset " + strconv.FormatInt(int64(e), 10)
     34 }
     35 
     36 // An InternalError reports an error in the flate code itself.
     37 type InternalError string
     38 
     39 func (e InternalError) Error() string { return "flate: internal error: " + string(e) }
     40 
     41 // A ReadError reports an error encountered while reading input.
     42 type ReadError struct {
     43 	Offset int64 // byte offset where error occurred
     44 	Err    error // error returned by underlying Read
     45 }
     46 
     47 func (e *ReadError) Error() string {
     48 	return "flate: read error at offset " + strconv.FormatInt(e.Offset, 10) + ": " + e.Err.Error()
     49 }
     50 
     51 // A WriteError reports an error encountered while writing output.
     52 type WriteError struct {
     53 	Offset int64 // byte offset where error occurred
     54 	Err    error // error returned by underlying Write
     55 }
     56 
     57 func (e *WriteError) Error() string {
     58 	return "flate: write error at offset " + strconv.FormatInt(e.Offset, 10) + ": " + e.Err.Error()
     59 }
     60 
     61 // Resetter resets a ReadCloser returned by NewReader or NewReaderDict to
     62 // to switch to a new underlying Reader. This permits reusing a ReadCloser
     63 // instead of allocating a new one.
     64 type Resetter interface {
     65 	// Reset discards any buffered data and resets the Resetter as if it was
     66 	// newly initialized with the given reader.
     67 	Reset(r io.Reader, dict []byte) error
     68 }
     69 
     70 // Note that much of the implementation of huffmanDecoder is also copied
     71 // into gen.go (in package main) for the purpose of precomputing the
     72 // fixed huffman tables so they can be included statically.
     73 
     74 // The data structure for decoding Huffman tables is based on that of
     75 // zlib. There is a lookup table of a fixed bit width (huffmanChunkBits),
     76 // For codes smaller than the table width, there are multiple entries
     77 // (each combination of trailing bits has the same value). For codes
     78 // larger than the table width, the table contains a link to an overflow
     79 // table. The width of each entry in the link table is the maximum code
     80 // size minus the chunk width.
     81 
     82 // Note that you can do a lookup in the table even without all bits
     83 // filled. Since the extra bits are zero, and the DEFLATE Huffman codes
     84 // have the property that shorter codes come before longer ones, the
     85 // bit length estimate in the result is a lower bound on the actual
     86 // number of bits.
     87 
     88 // chunk & 15 is number of bits
     89 // chunk >> 4 is value, including table link
     90 
     91 const (
     92 	huffmanChunkBits  = 9
     93 	huffmanNumChunks  = 1 << huffmanChunkBits
     94 	huffmanCountMask  = 15
     95 	huffmanValueShift = 4
     96 )
     97 
     98 type huffmanDecoder struct {
     99 	min      int                      // the minimum code length
    100 	chunks   [huffmanNumChunks]uint32 // chunks as described above
    101 	links    [][]uint32               // overflow links
    102 	linkMask uint32                   // mask the width of the link table
    103 }
    104 
    105 // Initialize Huffman decoding tables from array of code lengths.
    106 // Following this function, h is guaranteed to be initialized into a complete
    107 // tree (i.e., neither over-subscribed nor under-subscribed). The exception is a
    108 // degenerate case where the tree has only a single symbol with length 1. Empty
    109 // trees are permitted.
    110 func (h *huffmanDecoder) init(bits []int) bool {
    111 	// Sanity enables additional runtime tests during Huffman
    112 	// table construction.  It's intended to be used during
    113 	// development to supplement the currently ad-hoc unit tests.
    114 	const sanity = false
    115 
    116 	if h.min != 0 {
    117 		*h = huffmanDecoder{}
    118 	}
    119 
    120 	// Count number of codes of each length,
    121 	// compute min and max length.
    122 	var count [maxCodeLen]int
    123 	var min, max int
    124 	for _, n := range bits {
    125 		if n == 0 {
    126 			continue
    127 		}
    128 		if min == 0 || n < min {
    129 			min = n
    130 		}
    131 		if n > max {
    132 			max = n
    133 		}
    134 		count[n]++
    135 	}
    136 
    137 	// Empty tree. The decompressor.huffSym function will fail later if the tree
    138 	// is used. Technically, an empty tree is only valid for the HDIST tree and
    139 	// not the HCLEN and HLIT tree. However, a stream with an empty HCLEN tree
    140 	// is guaranteed to fail since it will attempt to use the tree to decode the
    141 	// codes for the HLIT and HDIST trees. Similarly, an empty HLIT tree is
    142 	// guaranteed to fail later since the compressed data section must be
    143 	// composed of at least one symbol (the end-of-block marker).
    144 	if max == 0 {
    145 		return true
    146 	}
    147 
    148 	code := 0
    149 	var nextcode [maxCodeLen]int
    150 	for i := min; i <= max; i++ {
    151 		code <<= 1
    152 		nextcode[i] = code
    153 		code += count[i]
    154 	}
    155 
    156 	// Check that the coding is complete (i.e., that we've
    157 	// assigned all 2-to-the-max possible bit sequences).
    158 	// Exception: To be compatible with zlib, we also need to
    159 	// accept degenerate single-code codings.  See also
    160 	// TestDegenerateHuffmanCoding.
    161 	if code != 1<<uint(max) && !(code == 1 && max == 1) {
    162 		return false
    163 	}
    164 
    165 	h.min = min
    166 	if max > huffmanChunkBits {
    167 		numLinks := 1 << (uint(max) - huffmanChunkBits)
    168 		h.linkMask = uint32(numLinks - 1)
    169 
    170 		// create link tables
    171 		link := nextcode[huffmanChunkBits+1] >> 1
    172 		h.links = make([][]uint32, huffmanNumChunks-link)
    173 		for j := uint(link); j < huffmanNumChunks; j++ {
    174 			reverse := int(reverseByte[j>>8]) | int(reverseByte[j&0xff])<<8
    175 			reverse >>= uint(16 - huffmanChunkBits)
    176 			off := j - uint(link)
    177 			if sanity && h.chunks[reverse] != 0 {
    178 				panic("impossible: overwriting existing chunk")
    179 			}
    180 			h.chunks[reverse] = uint32(off<<huffmanValueShift | (huffmanChunkBits + 1))
    181 			h.links[off] = make([]uint32, numLinks)
    182 		}
    183 	}
    184 
    185 	for i, n := range bits {
    186 		if n == 0 {
    187 			continue
    188 		}
    189 		code := nextcode[n]
    190 		nextcode[n]++
    191 		chunk := uint32(i<<huffmanValueShift | n)
    192 		reverse := int(reverseByte[code>>8]) | int(reverseByte[code&0xff])<<8
    193 		reverse >>= uint(16 - n)
    194 		if n <= huffmanChunkBits {
    195 			for off := reverse; off < len(h.chunks); off += 1 << uint(n) {
    196 				// We should never need to overwrite
    197 				// an existing chunk.  Also, 0 is
    198 				// never a valid chunk, because the
    199 				// lower 4 "count" bits should be
    200 				// between 1 and 15.
    201 				if sanity && h.chunks[off] != 0 {
    202 					panic("impossible: overwriting existing chunk")
    203 				}
    204 				h.chunks[off] = chunk
    205 			}
    206 		} else {
    207 			j := reverse & (huffmanNumChunks - 1)
    208 			if sanity && h.chunks[j]&huffmanCountMask != huffmanChunkBits+1 {
    209 				// Longer codes should have been
    210 				// associated with a link table above.
    211 				panic("impossible: not an indirect chunk")
    212 			}
    213 			value := h.chunks[j] >> huffmanValueShift
    214 			linktab := h.links[value]
    215 			reverse >>= huffmanChunkBits
    216 			for off := reverse; off < len(linktab); off += 1 << uint(n-huffmanChunkBits) {
    217 				if sanity && linktab[off] != 0 {
    218 					panic("impossible: overwriting existing chunk")
    219 				}
    220 				linktab[off] = chunk
    221 			}
    222 		}
    223 	}
    224 
    225 	if sanity {
    226 		// Above we've sanity checked that we never overwrote
    227 		// an existing entry.  Here we additionally check that
    228 		// we filled the tables completely.
    229 		for i, chunk := range h.chunks {
    230 			if chunk == 0 {
    231 				// As an exception, in the degenerate
    232 				// single-code case, we allow odd
    233 				// chunks to be missing.
    234 				if code == 1 && i%2 == 1 {
    235 					continue
    236 				}
    237 				panic("impossible: missing chunk")
    238 			}
    239 		}
    240 		for _, linktab := range h.links {
    241 			for _, chunk := range linktab {
    242 				if chunk == 0 {
    243 					panic("impossible: missing chunk")
    244 				}
    245 			}
    246 		}
    247 	}
    248 
    249 	return true
    250 }
    251 
    252 // The actual read interface needed by NewReader.
    253 // If the passed in io.Reader does not also have ReadByte,
    254 // the NewReader will introduce its own buffering.
    255 type Reader interface {
    256 	io.Reader
    257 	io.ByteReader
    258 }
    259 
    260 // Decompress state.
    261 type decompressor struct {
    262 	// Input source.
    263 	r       Reader
    264 	roffset int64
    265 	woffset int64
    266 
    267 	// Input bits, in top of b.
    268 	b  uint32
    269 	nb uint
    270 
    271 	// Huffman decoders for literal/length, distance.
    272 	h1, h2 huffmanDecoder
    273 
    274 	// Length arrays used to define Huffman codes.
    275 	bits     *[maxNumLit + maxNumDist]int
    276 	codebits *[numCodes]int
    277 
    278 	// Output history, buffer.
    279 	hist  *[maxHist]byte
    280 	hp    int  // current output position in buffer
    281 	hw    int  // have written hist[0:hw] already
    282 	hfull bool // buffer has filled at least once
    283 
    284 	// Temporary buffer (avoids repeated allocation).
    285 	buf [4]byte
    286 
    287 	// Next step in the decompression,
    288 	// and decompression state.
    289 	step     func(*decompressor)
    290 	final    bool
    291 	err      error
    292 	toRead   []byte
    293 	hl, hd   *huffmanDecoder
    294 	copyLen  int
    295 	copyDist int
    296 }
    297 
    298 func (f *decompressor) nextBlock() {
    299 	if f.final {
    300 		if f.hw != f.hp {
    301 			f.flush((*decompressor).nextBlock)
    302 			return
    303 		}
    304 		f.err = io.EOF
    305 		return
    306 	}
    307 	for f.nb < 1+2 {
    308 		if f.err = f.moreBits(); f.err != nil {
    309 			return
    310 		}
    311 	}
    312 	f.final = f.b&1 == 1
    313 	f.b >>= 1
    314 	typ := f.b & 3
    315 	f.b >>= 2
    316 	f.nb -= 1 + 2
    317 	switch typ {
    318 	case 0:
    319 		f.dataBlock()
    320 	case 1:
    321 		// compressed, fixed Huffman tables
    322 		f.hl = &fixedHuffmanDecoder
    323 		f.hd = nil
    324 		f.huffmanBlock()
    325 	case 2:
    326 		// compressed, dynamic Huffman tables
    327 		if f.err = f.readHuffman(); f.err != nil {
    328 			break
    329 		}
    330 		f.hl = &f.h1
    331 		f.hd = &f.h2
    332 		f.huffmanBlock()
    333 	default:
    334 		// 3 is reserved.
    335 		f.err = CorruptInputError(f.roffset)
    336 	}
    337 }
    338 
    339 func (f *decompressor) Read(b []byte) (int, error) {
    340 	for {
    341 		if len(f.toRead) > 0 {
    342 			n := copy(b, f.toRead)
    343 			f.toRead = f.toRead[n:]
    344 			return n, nil
    345 		}
    346 		if f.err != nil {
    347 			return 0, f.err
    348 		}
    349 		f.step(f)
    350 	}
    351 }
    352 
    353 func (f *decompressor) Close() error {
    354 	if f.err == io.EOF {
    355 		return nil
    356 	}
    357 	return f.err
    358 }
    359 
    360 // RFC 1951 section 3.2.7.
    361 // Compression with dynamic Huffman codes
    362 
    363 var codeOrder = [...]int{16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}
    364 
    365 func (f *decompressor) readHuffman() error {
    366 	// HLIT[5], HDIST[5], HCLEN[4].
    367 	for f.nb < 5+5+4 {
    368 		if err := f.moreBits(); err != nil {
    369 			return err
    370 		}
    371 	}
    372 	nlit := int(f.b&0x1F) + 257
    373 	if nlit > maxNumLit {
    374 		return CorruptInputError(f.roffset)
    375 	}
    376 	f.b >>= 5
    377 	ndist := int(f.b&0x1F) + 1
    378 	if ndist > maxNumDist {
    379 		return CorruptInputError(f.roffset)
    380 	}
    381 	f.b >>= 5
    382 	nclen := int(f.b&0xF) + 4
    383 	// numCodes is 19, so nclen is always valid.
    384 	f.b >>= 4
    385 	f.nb -= 5 + 5 + 4
    386 
    387 	// (HCLEN+4)*3 bits: code lengths in the magic codeOrder order.
    388 	for i := 0; i < nclen; i++ {
    389 		for f.nb < 3 {
    390 			if err := f.moreBits(); err != nil {
    391 				return err
    392 			}
    393 		}
    394 		f.codebits[codeOrder[i]] = int(f.b & 0x7)
    395 		f.b >>= 3
    396 		f.nb -= 3
    397 	}
    398 	for i := nclen; i < len(codeOrder); i++ {
    399 		f.codebits[codeOrder[i]] = 0
    400 	}
    401 	if !f.h1.init(f.codebits[0:]) {
    402 		return CorruptInputError(f.roffset)
    403 	}
    404 
    405 	// HLIT + 257 code lengths, HDIST + 1 code lengths,
    406 	// using the code length Huffman code.
    407 	for i, n := 0, nlit+ndist; i < n; {
    408 		x, err := f.huffSym(&f.h1)
    409 		if err != nil {
    410 			return err
    411 		}
    412 		if x < 16 {
    413 			// Actual length.
    414 			f.bits[i] = x
    415 			i++
    416 			continue
    417 		}
    418 		// Repeat previous length or zero.
    419 		var rep int
    420 		var nb uint
    421 		var b int
    422 		switch x {
    423 		default:
    424 			return InternalError("unexpected length code")
    425 		case 16:
    426 			rep = 3
    427 			nb = 2
    428 			if i == 0 {
    429 				return CorruptInputError(f.roffset)
    430 			}
    431 			b = f.bits[i-1]
    432 		case 17:
    433 			rep = 3
    434 			nb = 3
    435 			b = 0
    436 		case 18:
    437 			rep = 11
    438 			nb = 7
    439 			b = 0
    440 		}
    441 		for f.nb < nb {
    442 			if err := f.moreBits(); err != nil {
    443 				return err
    444 			}
    445 		}
    446 		rep += int(f.b & uint32(1<<nb-1))
    447 		f.b >>= nb
    448 		f.nb -= nb
    449 		if i+rep > n {
    450 			return CorruptInputError(f.roffset)
    451 		}
    452 		for j := 0; j < rep; j++ {
    453 			f.bits[i] = b
    454 			i++
    455 		}
    456 	}
    457 
    458 	if !f.h1.init(f.bits[0:nlit]) || !f.h2.init(f.bits[nlit:nlit+ndist]) {
    459 		return CorruptInputError(f.roffset)
    460 	}
    461 
    462 	return nil
    463 }
    464 
    465 // Decode a single Huffman block from f.
    466 // hl and hd are the Huffman states for the lit/length values
    467 // and the distance values, respectively.  If hd == nil, using the
    468 // fixed distance encoding associated with fixed Huffman blocks.
    469 func (f *decompressor) huffmanBlock() {
    470 	for {
    471 		v, err := f.huffSym(f.hl)
    472 		if err != nil {
    473 			f.err = err
    474 			return
    475 		}
    476 		var n uint // number of bits extra
    477 		var length int
    478 		switch {
    479 		case v < 256:
    480 			f.hist[f.hp] = byte(v)
    481 			f.hp++
    482 			if f.hp == len(f.hist) {
    483 				// After the flush, continue this loop.
    484 				f.flush((*decompressor).huffmanBlock)
    485 				return
    486 			}
    487 			continue
    488 		case v == 256:
    489 			// Done with huffman block; read next block.
    490 			f.step = (*decompressor).nextBlock
    491 			return
    492 		// otherwise, reference to older data
    493 		case v < 265:
    494 			length = v - (257 - 3)
    495 			n = 0
    496 		case v < 269:
    497 			length = v*2 - (265*2 - 11)
    498 			n = 1
    499 		case v < 273:
    500 			length = v*4 - (269*4 - 19)
    501 			n = 2
    502 		case v < 277:
    503 			length = v*8 - (273*8 - 35)
    504 			n = 3
    505 		case v < 281:
    506 			length = v*16 - (277*16 - 67)
    507 			n = 4
    508 		case v < 285:
    509 			length = v*32 - (281*32 - 131)
    510 			n = 5
    511 		case v < maxNumLit:
    512 			length = 258
    513 			n = 0
    514 		default:
    515 			f.err = CorruptInputError(f.roffset)
    516 			return
    517 		}
    518 		if n > 0 {
    519 			for f.nb < n {
    520 				if err = f.moreBits(); err != nil {
    521 					f.err = err
    522 					return
    523 				}
    524 			}
    525 			length += int(f.b & uint32(1<<n-1))
    526 			f.b >>= n
    527 			f.nb -= n
    528 		}
    529 
    530 		var dist int
    531 		if f.hd == nil {
    532 			for f.nb < 5 {
    533 				if err = f.moreBits(); err != nil {
    534 					f.err = err
    535 					return
    536 				}
    537 			}
    538 			dist = int(reverseByte[(f.b&0x1F)<<3])
    539 			f.b >>= 5
    540 			f.nb -= 5
    541 		} else {
    542 			if dist, err = f.huffSym(f.hd); err != nil {
    543 				f.err = err
    544 				return
    545 			}
    546 		}
    547 
    548 		switch {
    549 		case dist < 4:
    550 			dist++
    551 		case dist < maxNumDist:
    552 			nb := uint(dist-2) >> 1
    553 			// have 1 bit in bottom of dist, need nb more.
    554 			extra := (dist & 1) << nb
    555 			for f.nb < nb {
    556 				if err = f.moreBits(); err != nil {
    557 					f.err = err
    558 					return
    559 				}
    560 			}
    561 			extra |= int(f.b & uint32(1<<nb-1))
    562 			f.b >>= nb
    563 			f.nb -= nb
    564 			dist = 1<<(nb+1) + 1 + extra
    565 		default:
    566 			f.err = CorruptInputError(f.roffset)
    567 			return
    568 		}
    569 
    570 		// Copy history[-dist:-dist+length] into output.
    571 		if dist > len(f.hist) {
    572 			f.err = InternalError("bad history distance")
    573 			return
    574 		}
    575 
    576 		// No check on length; encoding can be prescient.
    577 		if !f.hfull && dist > f.hp {
    578 			f.err = CorruptInputError(f.roffset)
    579 			return
    580 		}
    581 
    582 		f.copyLen, f.copyDist = length, dist
    583 		if f.copyHist() {
    584 			return
    585 		}
    586 	}
    587 }
    588 
    589 // copyHist copies f.copyLen bytes from f.hist (f.copyDist bytes ago) to itself.
    590 // It reports whether the f.hist buffer is full.
    591 func (f *decompressor) copyHist() bool {
    592 	p := f.hp - f.copyDist
    593 	if p < 0 {
    594 		p += len(f.hist)
    595 	}
    596 	for f.copyLen > 0 {
    597 		n := f.copyLen
    598 		if x := len(f.hist) - f.hp; n > x {
    599 			n = x
    600 		}
    601 		if x := len(f.hist) - p; n > x {
    602 			n = x
    603 		}
    604 		forwardCopy(f.hist[:], f.hp, p, n)
    605 		p += n
    606 		f.hp += n
    607 		f.copyLen -= n
    608 		if f.hp == len(f.hist) {
    609 			// After flush continue copying out of history.
    610 			f.flush((*decompressor).copyHuff)
    611 			return true
    612 		}
    613 		if p == len(f.hist) {
    614 			p = 0
    615 		}
    616 	}
    617 	return false
    618 }
    619 
    620 func (f *decompressor) copyHuff() {
    621 	if f.copyHist() {
    622 		return
    623 	}
    624 	f.huffmanBlock()
    625 }
    626 
    627 // Copy a single uncompressed data block from input to output.
    628 func (f *decompressor) dataBlock() {
    629 	// Uncompressed.
    630 	// Discard current half-byte.
    631 	f.nb = 0
    632 	f.b = 0
    633 
    634 	// Length then ones-complement of length.
    635 	nr, err := io.ReadFull(f.r, f.buf[0:4])
    636 	f.roffset += int64(nr)
    637 	if err != nil {
    638 		f.err = &ReadError{f.roffset, err}
    639 		return
    640 	}
    641 	n := int(f.buf[0]) | int(f.buf[1])<<8
    642 	nn := int(f.buf[2]) | int(f.buf[3])<<8
    643 	if uint16(nn) != uint16(^n) {
    644 		f.err = CorruptInputError(f.roffset)
    645 		return
    646 	}
    647 
    648 	if n == 0 {
    649 		// 0-length block means sync
    650 		f.flush((*decompressor).nextBlock)
    651 		return
    652 	}
    653 
    654 	f.copyLen = n
    655 	f.copyData()
    656 }
    657 
    658 // copyData copies f.copyLen bytes from the underlying reader into f.hist.
    659 // It pauses for reads when f.hist is full.
    660 func (f *decompressor) copyData() {
    661 	n := f.copyLen
    662 	for n > 0 {
    663 		m := len(f.hist) - f.hp
    664 		if m > n {
    665 			m = n
    666 		}
    667 		m, err := io.ReadFull(f.r, f.hist[f.hp:f.hp+m])
    668 		f.roffset += int64(m)
    669 		if err != nil {
    670 			f.err = &ReadError{f.roffset, err}
    671 			return
    672 		}
    673 		n -= m
    674 		f.hp += m
    675 		if f.hp == len(f.hist) {
    676 			f.copyLen = n
    677 			f.flush((*decompressor).copyData)
    678 			return
    679 		}
    680 	}
    681 	f.step = (*decompressor).nextBlock
    682 }
    683 
    684 func (f *decompressor) setDict(dict []byte) {
    685 	if len(dict) > len(f.hist) {
    686 		// Will only remember the tail.
    687 		dict = dict[len(dict)-len(f.hist):]
    688 	}
    689 
    690 	f.hp = copy(f.hist[:], dict)
    691 	if f.hp == len(f.hist) {
    692 		f.hp = 0
    693 		f.hfull = true
    694 	}
    695 	f.hw = f.hp
    696 }
    697 
    698 func (f *decompressor) moreBits() error {
    699 	c, err := f.r.ReadByte()
    700 	if err != nil {
    701 		if err == io.EOF {
    702 			err = io.ErrUnexpectedEOF
    703 		}
    704 		return err
    705 	}
    706 	f.roffset++
    707 	f.b |= uint32(c) << f.nb
    708 	f.nb += 8
    709 	return nil
    710 }
    711 
    712 // Read the next Huffman-encoded symbol from f according to h.
    713 func (f *decompressor) huffSym(h *huffmanDecoder) (int, error) {
    714 	// Since a huffmanDecoder can be empty or be composed of a degenerate tree
    715 	// with single element, huffSym must error on these two edge cases. In both
    716 	// cases, the chunks slice will be 0 for the invalid sequence, leading it
    717 	// satisfy the n == 0 check below.
    718 	n := uint(h.min)
    719 	for {
    720 		for f.nb < n {
    721 			if err := f.moreBits(); err != nil {
    722 				return 0, err
    723 			}
    724 		}
    725 		chunk := h.chunks[f.b&(huffmanNumChunks-1)]
    726 		n = uint(chunk & huffmanCountMask)
    727 		if n > huffmanChunkBits {
    728 			chunk = h.links[chunk>>huffmanValueShift][(f.b>>huffmanChunkBits)&h.linkMask]
    729 			n = uint(chunk & huffmanCountMask)
    730 		}
    731 		if n <= f.nb {
    732 			if n == 0 {
    733 				f.err = CorruptInputError(f.roffset)
    734 				return 0, f.err
    735 			}
    736 			f.b >>= n
    737 			f.nb -= n
    738 			return int(chunk >> huffmanValueShift), nil
    739 		}
    740 	}
    741 }
    742 
    743 // Flush any buffered output to the underlying writer.
    744 func (f *decompressor) flush(step func(*decompressor)) {
    745 	f.toRead = f.hist[f.hw:f.hp]
    746 	f.woffset += int64(f.hp - f.hw)
    747 	f.hw = f.hp
    748 	if f.hp == len(f.hist) {
    749 		f.hp = 0
    750 		f.hw = 0
    751 		f.hfull = true
    752 	}
    753 	f.step = step
    754 }
    755 
    756 func makeReader(r io.Reader) Reader {
    757 	if rr, ok := r.(Reader); ok {
    758 		return rr
    759 	}
    760 	return bufio.NewReader(r)
    761 }
    762 
    763 func (f *decompressor) Reset(r io.Reader, dict []byte) error {
    764 	*f = decompressor{
    765 		r:        makeReader(r),
    766 		bits:     f.bits,
    767 		codebits: f.codebits,
    768 		hist:     f.hist,
    769 		step:     (*decompressor).nextBlock,
    770 	}
    771 	if dict != nil {
    772 		f.setDict(dict)
    773 	}
    774 	return nil
    775 }
    776 
    777 // NewReader returns a new ReadCloser that can be used
    778 // to read the uncompressed version of r.
    779 // If r does not also implement io.ByteReader,
    780 // the decompressor may read more data than necessary from r.
    781 // It is the caller's responsibility to call Close on the ReadCloser
    782 // when finished reading.
    783 //
    784 // The ReadCloser returned by NewReader also implements Resetter.
    785 func NewReader(r io.Reader) io.ReadCloser {
    786 	var f decompressor
    787 	f.bits = new([maxNumLit + maxNumDist]int)
    788 	f.codebits = new([numCodes]int)
    789 	f.r = makeReader(r)
    790 	f.hist = new([maxHist]byte)
    791 	f.step = (*decompressor).nextBlock
    792 	return &f
    793 }
    794 
    795 // NewReaderDict is like NewReader but initializes the reader
    796 // with a preset dictionary.  The returned Reader behaves as if
    797 // the uncompressed data stream started with the given dictionary,
    798 // which has already been read.  NewReaderDict is typically used
    799 // to read data compressed by NewWriterDict.
    800 //
    801 // The ReadCloser returned by NewReader also implements Resetter.
    802 func NewReaderDict(r io.Reader, dict []byte) io.ReadCloser {
    803 	var f decompressor
    804 	f.r = makeReader(r)
    805 	f.hist = new([maxHist]byte)
    806 	f.bits = new([maxNumLit + maxNumDist]int)
    807 	f.codebits = new([numCodes]int)
    808 	f.step = (*decompressor).nextBlock
    809 	f.setDict(dict)
    810 	return &f
    811 }
    812