1 // Copyright 2011 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Package ecdsa implements the Elliptic Curve Digital Signature Algorithm, as 6 // defined in FIPS 186-3. 7 // 8 // This implementation derives the nonce from an AES-CTR CSPRNG keyed by 9 // ChopMD(256, SHA2-512(priv.D || entropy || hash)). The CSPRNG key is IRO by 10 // a result of Coron; the AES-CTR stream is IRO under standard assumptions. 11 package ecdsa 12 13 // References: 14 // [NSA]: Suite B implementer's guide to FIPS 186-3, 15 // http://www.nsa.gov/ia/_files/ecdsa.pdf 16 // [SECG]: SECG, SEC1 17 // http://www.secg.org/sec1-v2.pdf 18 19 import ( 20 "crypto" 21 "crypto/aes" 22 "crypto/cipher" 23 "crypto/elliptic" 24 "crypto/sha512" 25 "encoding/asn1" 26 "io" 27 "math/big" 28 ) 29 30 const ( 31 aesIV = "IV for ECDSA CTR" 32 ) 33 34 // PublicKey represents an ECDSA public key. 35 type PublicKey struct { 36 elliptic.Curve 37 X, Y *big.Int 38 } 39 40 // PrivateKey represents a ECDSA private key. 41 type PrivateKey struct { 42 PublicKey 43 D *big.Int 44 } 45 46 type ecdsaSignature struct { 47 R, S *big.Int 48 } 49 50 // Public returns the public key corresponding to priv. 51 func (priv *PrivateKey) Public() crypto.PublicKey { 52 return &priv.PublicKey 53 } 54 55 // Sign signs msg with priv, reading randomness from rand. This method is 56 // intended to support keys where the private part is kept in, for example, a 57 // hardware module. Common uses should use the Sign function in this package 58 // directly. 59 func (priv *PrivateKey) Sign(rand io.Reader, msg []byte, opts crypto.SignerOpts) ([]byte, error) { 60 r, s, err := Sign(rand, priv, msg) 61 if err != nil { 62 return nil, err 63 } 64 65 return asn1.Marshal(ecdsaSignature{r, s}) 66 } 67 68 var one = new(big.Int).SetInt64(1) 69 70 // randFieldElement returns a random element of the field underlying the given 71 // curve using the procedure given in [NSA] A.2.1. 72 func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error) { 73 params := c.Params() 74 b := make([]byte, params.BitSize/8+8) 75 _, err = io.ReadFull(rand, b) 76 if err != nil { 77 return 78 } 79 80 k = new(big.Int).SetBytes(b) 81 n := new(big.Int).Sub(params.N, one) 82 k.Mod(k, n) 83 k.Add(k, one) 84 return 85 } 86 87 // GenerateKey generates a public and private key pair. 88 func GenerateKey(c elliptic.Curve, rand io.Reader) (priv *PrivateKey, err error) { 89 k, err := randFieldElement(c, rand) 90 if err != nil { 91 return 92 } 93 94 priv = new(PrivateKey) 95 priv.PublicKey.Curve = c 96 priv.D = k 97 priv.PublicKey.X, priv.PublicKey.Y = c.ScalarBaseMult(k.Bytes()) 98 return 99 } 100 101 // hashToInt converts a hash value to an integer. There is some disagreement 102 // about how this is done. [NSA] suggests that this is done in the obvious 103 // manner, but [SECG] truncates the hash to the bit-length of the curve order 104 // first. We follow [SECG] because that's what OpenSSL does. Additionally, 105 // OpenSSL right shifts excess bits from the number if the hash is too large 106 // and we mirror that too. 107 func hashToInt(hash []byte, c elliptic.Curve) *big.Int { 108 orderBits := c.Params().N.BitLen() 109 orderBytes := (orderBits + 7) / 8 110 if len(hash) > orderBytes { 111 hash = hash[:orderBytes] 112 } 113 114 ret := new(big.Int).SetBytes(hash) 115 excess := len(hash)*8 - orderBits 116 if excess > 0 { 117 ret.Rsh(ret, uint(excess)) 118 } 119 return ret 120 } 121 122 // fermatInverse calculates the inverse of k in GF(P) using Fermat's method. 123 // This has better constant-time properties than Euclid's method (implemented 124 // in math/big.Int.ModInverse) although math/big itself isn't strictly 125 // constant-time so it's not perfect. 126 func fermatInverse(k, N *big.Int) *big.Int { 127 two := big.NewInt(2) 128 nMinus2 := new(big.Int).Sub(N, two) 129 return new(big.Int).Exp(k, nMinus2, N) 130 } 131 132 // Sign signs an arbitrary length hash (which should be the result of hashing a 133 // larger message) using the private key, priv. It returns the signature as a 134 // pair of integers. The security of the private key depends on the entropy of 135 // rand. 136 func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err error) { 137 // Get max(log2(q) / 2, 256) bits of entropy from rand. 138 entropylen := (priv.Curve.Params().BitSize + 7) / 16 139 if entropylen > 32 { 140 entropylen = 32 141 } 142 entropy := make([]byte, entropylen) 143 _, err = io.ReadFull(rand, entropy) 144 if err != nil { 145 return 146 } 147 148 // Initialize an SHA-512 hash context; digest ... 149 md := sha512.New() 150 md.Write(priv.D.Bytes()) // the private key, 151 md.Write(entropy) // the entropy, 152 md.Write(hash) // and the input hash; 153 key := md.Sum(nil)[:32] // and compute ChopMD-256(SHA-512), 154 // which is an indifferentiable MAC. 155 156 // Create an AES-CTR instance to use as a CSPRNG. 157 block, err := aes.NewCipher(key) 158 if err != nil { 159 return nil, nil, err 160 } 161 162 // Create a CSPRNG that xors a stream of zeros with 163 // the output of the AES-CTR instance. 164 csprng := cipher.StreamReader{ 165 R: zeroReader, 166 S: cipher.NewCTR(block, []byte(aesIV)), 167 } 168 169 // See [NSA] 3.4.1 170 c := priv.PublicKey.Curve 171 N := c.Params().N 172 173 var k, kInv *big.Int 174 for { 175 for { 176 k, err = randFieldElement(c, csprng) 177 if err != nil { 178 r = nil 179 return 180 } 181 182 kInv = fermatInverse(k, N) 183 r, _ = priv.Curve.ScalarBaseMult(k.Bytes()) 184 r.Mod(r, N) 185 if r.Sign() != 0 { 186 break 187 } 188 } 189 190 e := hashToInt(hash, c) 191 s = new(big.Int).Mul(priv.D, r) 192 s.Add(s, e) 193 s.Mul(s, kInv) 194 s.Mod(s, N) 195 if s.Sign() != 0 { 196 break 197 } 198 } 199 200 return 201 } 202 203 // Verify verifies the signature in r, s of hash using the public key, pub. Its 204 // return value records whether the signature is valid. 205 func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool { 206 // See [NSA] 3.4.2 207 c := pub.Curve 208 N := c.Params().N 209 210 if r.Sign() == 0 || s.Sign() == 0 { 211 return false 212 } 213 if r.Cmp(N) >= 0 || s.Cmp(N) >= 0 { 214 return false 215 } 216 e := hashToInt(hash, c) 217 w := new(big.Int).ModInverse(s, N) 218 219 u1 := e.Mul(e, w) 220 u1.Mod(u1, N) 221 u2 := w.Mul(r, w) 222 u2.Mod(u2, N) 223 224 x1, y1 := c.ScalarBaseMult(u1.Bytes()) 225 x2, y2 := c.ScalarMult(pub.X, pub.Y, u2.Bytes()) 226 x, y := c.Add(x1, y1, x2, y2) 227 if x.Sign() == 0 && y.Sign() == 0 { 228 return false 229 } 230 x.Mod(x, N) 231 return x.Cmp(r) == 0 232 } 233 234 type zr struct { 235 io.Reader 236 } 237 238 // Read replaces the contents of dst with zeros. 239 func (z *zr) Read(dst []byte) (n int, err error) { 240 for i := range dst { 241 dst[i] = 0 242 } 243 return len(dst), nil 244 } 245 246 var zeroReader = &zr{} 247