1 // Copyright 2013 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package elliptic 6 7 // This file contains a constant-time, 32-bit implementation of P256. 8 9 import ( 10 "math/big" 11 ) 12 13 type p256Curve struct { 14 *CurveParams 15 } 16 17 var ( 18 p256 p256Curve 19 // RInverse contains 1/R mod p - the inverse of the Montgomery constant 20 // (2**257). 21 p256RInverse *big.Int 22 ) 23 24 func initP256() { 25 // See FIPS 186-3, section D.2.3 26 p256.CurveParams = &CurveParams{Name: "P-256"} 27 p256.P, _ = new(big.Int).SetString("115792089210356248762697446949407573530086143415290314195533631308867097853951", 10) 28 p256.N, _ = new(big.Int).SetString("115792089210356248762697446949407573529996955224135760342422259061068512044369", 10) 29 p256.B, _ = new(big.Int).SetString("5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b", 16) 30 p256.Gx, _ = new(big.Int).SetString("6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296", 16) 31 p256.Gy, _ = new(big.Int).SetString("4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5", 16) 32 p256.BitSize = 256 33 34 p256RInverse, _ = new(big.Int).SetString("7fffffff00000001fffffffe8000000100000000ffffffff0000000180000000", 16) 35 } 36 37 func (curve p256Curve) Params() *CurveParams { 38 return curve.CurveParams 39 } 40 41 // p256GetScalar endian-swaps the big-endian scalar value from in and writes it 42 // to out. If the scalar is equal or greater than the order of the group, it's 43 // reduced modulo that order. 44 func p256GetScalar(out *[32]byte, in []byte) { 45 n := new(big.Int).SetBytes(in) 46 var scalarBytes []byte 47 48 if n.Cmp(p256.N) >= 0 { 49 n.Mod(n, p256.N) 50 scalarBytes = n.Bytes() 51 } else { 52 scalarBytes = in 53 } 54 55 for i, v := range scalarBytes { 56 out[len(scalarBytes)-(1+i)] = v 57 } 58 } 59 60 func (p256Curve) ScalarBaseMult(scalar []byte) (x, y *big.Int) { 61 var scalarReversed [32]byte 62 p256GetScalar(&scalarReversed, scalar) 63 64 var x1, y1, z1 [p256Limbs]uint32 65 p256ScalarBaseMult(&x1, &y1, &z1, &scalarReversed) 66 return p256ToAffine(&x1, &y1, &z1) 67 } 68 69 func (p256Curve) ScalarMult(bigX, bigY *big.Int, scalar []byte) (x, y *big.Int) { 70 var scalarReversed [32]byte 71 p256GetScalar(&scalarReversed, scalar) 72 73 var px, py, x1, y1, z1 [p256Limbs]uint32 74 p256FromBig(&px, bigX) 75 p256FromBig(&py, bigY) 76 p256ScalarMult(&x1, &y1, &z1, &px, &py, &scalarReversed) 77 return p256ToAffine(&x1, &y1, &z1) 78 } 79 80 // Field elements are represented as nine, unsigned 32-bit words. 81 // 82 // The value of an field element is: 83 // x[0] + (x[1] * 2**29) + (x[2] * 2**57) + ... + (x[8] * 2**228) 84 // 85 // That is, each limb is alternately 29 or 28-bits wide in little-endian 86 // order. 87 // 88 // This means that a field element hits 2**257, rather than 2**256 as we would 89 // like. A 28, 29, ... pattern would cause us to hit 2**256, but that causes 90 // problems when multiplying as terms end up one bit short of a limb which 91 // would require much bit-shifting to correct. 92 // 93 // Finally, the values stored in a field element are in Montgomery form. So the 94 // value |y| is stored as (y*R) mod p, where p is the P-256 prime and R is 95 // 2**257. 96 97 const ( 98 p256Limbs = 9 99 bottom29Bits = 0x1fffffff 100 ) 101 102 var ( 103 // p256One is the number 1 as a field element. 104 p256One = [p256Limbs]uint32{2, 0, 0, 0xffff800, 0x1fffffff, 0xfffffff, 0x1fbfffff, 0x1ffffff, 0} 105 p256Zero = [p256Limbs]uint32{0, 0, 0, 0, 0, 0, 0, 0, 0} 106 // p256P is the prime modulus as a field element. 107 p256P = [p256Limbs]uint32{0x1fffffff, 0xfffffff, 0x1fffffff, 0x3ff, 0, 0, 0x200000, 0xf000000, 0xfffffff} 108 // p2562P is the twice prime modulus as a field element. 109 p2562P = [p256Limbs]uint32{0x1ffffffe, 0xfffffff, 0x1fffffff, 0x7ff, 0, 0, 0x400000, 0xe000000, 0x1fffffff} 110 ) 111 112 // p256Precomputed contains precomputed values to aid the calculation of scalar 113 // multiples of the base point, G. It's actually two, equal length, tables 114 // concatenated. 115 // 116 // The first table contains (x,y) field element pairs for 16 multiples of the 117 // base point, G. 118 // 119 // Index | Index (binary) | Value 120 // 0 | 0000 | 0G (all zeros, omitted) 121 // 1 | 0001 | G 122 // 2 | 0010 | 2**64G 123 // 3 | 0011 | 2**64G + G 124 // 4 | 0100 | 2**128G 125 // 5 | 0101 | 2**128G + G 126 // 6 | 0110 | 2**128G + 2**64G 127 // 7 | 0111 | 2**128G + 2**64G + G 128 // 8 | 1000 | 2**192G 129 // 9 | 1001 | 2**192G + G 130 // 10 | 1010 | 2**192G + 2**64G 131 // 11 | 1011 | 2**192G + 2**64G + G 132 // 12 | 1100 | 2**192G + 2**128G 133 // 13 | 1101 | 2**192G + 2**128G + G 134 // 14 | 1110 | 2**192G + 2**128G + 2**64G 135 // 15 | 1111 | 2**192G + 2**128G + 2**64G + G 136 // 137 // The second table follows the same style, but the terms are 2**32G, 138 // 2**96G, 2**160G, 2**224G. 139 // 140 // This is ~2KB of data. 141 var p256Precomputed = [p256Limbs * 2 * 15 * 2]uint32{ 142 0x11522878, 0xe730d41, 0xdb60179, 0x4afe2ff, 0x12883add, 0xcaddd88, 0x119e7edc, 0xd4a6eab, 0x3120bee, 143 0x1d2aac15, 0xf25357c, 0x19e45cdd, 0x5c721d0, 0x1992c5a5, 0xa237487, 0x154ba21, 0x14b10bb, 0xae3fe3, 144 0xd41a576, 0x922fc51, 0x234994f, 0x60b60d3, 0x164586ae, 0xce95f18, 0x1fe49073, 0x3fa36cc, 0x5ebcd2c, 145 0xb402f2f, 0x15c70bf, 0x1561925c, 0x5a26704, 0xda91e90, 0xcdc1c7f, 0x1ea12446, 0xe1ade1e, 0xec91f22, 146 0x26f7778, 0x566847e, 0xa0bec9e, 0x234f453, 0x1a31f21a, 0xd85e75c, 0x56c7109, 0xa267a00, 0xb57c050, 147 0x98fb57, 0xaa837cc, 0x60c0792, 0xcfa5e19, 0x61bab9e, 0x589e39b, 0xa324c5, 0x7d6dee7, 0x2976e4b, 148 0x1fc4124a, 0xa8c244b, 0x1ce86762, 0xcd61c7e, 0x1831c8e0, 0x75774e1, 0x1d96a5a9, 0x843a649, 0xc3ab0fa, 149 0x6e2e7d5, 0x7673a2a, 0x178b65e8, 0x4003e9b, 0x1a1f11c2, 0x7816ea, 0xf643e11, 0x58c43df, 0xf423fc2, 150 0x19633ffa, 0x891f2b2, 0x123c231c, 0x46add8c, 0x54700dd, 0x59e2b17, 0x172db40f, 0x83e277d, 0xb0dd609, 151 0xfd1da12, 0x35c6e52, 0x19ede20c, 0xd19e0c0, 0x97d0f40, 0xb015b19, 0x449e3f5, 0xe10c9e, 0x33ab581, 152 0x56a67ab, 0x577734d, 0x1dddc062, 0xc57b10d, 0x149b39d, 0x26a9e7b, 0xc35df9f, 0x48764cd, 0x76dbcca, 153 0xca4b366, 0xe9303ab, 0x1a7480e7, 0x57e9e81, 0x1e13eb50, 0xf466cf3, 0x6f16b20, 0x4ba3173, 0xc168c33, 154 0x15cb5439, 0x6a38e11, 0x73658bd, 0xb29564f, 0x3f6dc5b, 0x53b97e, 0x1322c4c0, 0x65dd7ff, 0x3a1e4f6, 155 0x14e614aa, 0x9246317, 0x1bc83aca, 0xad97eed, 0xd38ce4a, 0xf82b006, 0x341f077, 0xa6add89, 0x4894acd, 156 0x9f162d5, 0xf8410ef, 0x1b266a56, 0xd7f223, 0x3e0cb92, 0xe39b672, 0x6a2901a, 0x69a8556, 0x7e7c0, 157 0x9b7d8d3, 0x309a80, 0x1ad05f7f, 0xc2fb5dd, 0xcbfd41d, 0x9ceb638, 0x1051825c, 0xda0cf5b, 0x812e881, 158 0x6f35669, 0x6a56f2c, 0x1df8d184, 0x345820, 0x1477d477, 0x1645db1, 0xbe80c51, 0xc22be3e, 0xe35e65a, 159 0x1aeb7aa0, 0xc375315, 0xf67bc99, 0x7fdd7b9, 0x191fc1be, 0x61235d, 0x2c184e9, 0x1c5a839, 0x47a1e26, 160 0xb7cb456, 0x93e225d, 0x14f3c6ed, 0xccc1ac9, 0x17fe37f3, 0x4988989, 0x1a90c502, 0x2f32042, 0xa17769b, 161 0xafd8c7c, 0x8191c6e, 0x1dcdb237, 0x16200c0, 0x107b32a1, 0x66c08db, 0x10d06a02, 0x3fc93, 0x5620023, 162 0x16722b27, 0x68b5c59, 0x270fcfc, 0xfad0ecc, 0xe5de1c2, 0xeab466b, 0x2fc513c, 0x407f75c, 0xbaab133, 163 0x9705fe9, 0xb88b8e7, 0x734c993, 0x1e1ff8f, 0x19156970, 0xabd0f00, 0x10469ea7, 0x3293ac0, 0xcdc98aa, 164 0x1d843fd, 0xe14bfe8, 0x15be825f, 0x8b5212, 0xeb3fb67, 0x81cbd29, 0xbc62f16, 0x2b6fcc7, 0xf5a4e29, 165 0x13560b66, 0xc0b6ac2, 0x51ae690, 0xd41e271, 0xf3e9bd4, 0x1d70aab, 0x1029f72, 0x73e1c35, 0xee70fbc, 166 0xad81baf, 0x9ecc49a, 0x86c741e, 0xfe6be30, 0x176752e7, 0x23d416, 0x1f83de85, 0x27de188, 0x66f70b8, 167 0x181cd51f, 0x96b6e4c, 0x188f2335, 0xa5df759, 0x17a77eb6, 0xfeb0e73, 0x154ae914, 0x2f3ec51, 0x3826b59, 168 0xb91f17d, 0x1c72949, 0x1362bf0a, 0xe23fddf, 0xa5614b0, 0xf7d8f, 0x79061, 0x823d9d2, 0x8213f39, 169 0x1128ae0b, 0xd095d05, 0xb85c0c2, 0x1ecb2ef, 0x24ddc84, 0xe35e901, 0x18411a4a, 0xf5ddc3d, 0x3786689, 170 0x52260e8, 0x5ae3564, 0x542b10d, 0x8d93a45, 0x19952aa4, 0x996cc41, 0x1051a729, 0x4be3499, 0x52b23aa, 171 0x109f307e, 0x6f5b6bb, 0x1f84e1e7, 0x77a0cfa, 0x10c4df3f, 0x25a02ea, 0xb048035, 0xe31de66, 0xc6ecaa3, 172 0x28ea335, 0x2886024, 0x1372f020, 0xf55d35, 0x15e4684c, 0xf2a9e17, 0x1a4a7529, 0xcb7beb1, 0xb2a78a1, 173 0x1ab21f1f, 0x6361ccf, 0x6c9179d, 0xb135627, 0x1267b974, 0x4408bad, 0x1cbff658, 0xe3d6511, 0xc7d76f, 174 0x1cc7a69, 0xe7ee31b, 0x54fab4f, 0x2b914f, 0x1ad27a30, 0xcd3579e, 0xc50124c, 0x50daa90, 0xb13f72, 175 0xb06aa75, 0x70f5cc6, 0x1649e5aa, 0x84a5312, 0x329043c, 0x41c4011, 0x13d32411, 0xb04a838, 0xd760d2d, 176 0x1713b532, 0xbaa0c03, 0x84022ab, 0x6bcf5c1, 0x2f45379, 0x18ae070, 0x18c9e11e, 0x20bca9a, 0x66f496b, 177 0x3eef294, 0x67500d2, 0xd7f613c, 0x2dbbeb, 0xb741038, 0xe04133f, 0x1582968d, 0xbe985f7, 0x1acbc1a, 178 0x1a6a939f, 0x33e50f6, 0xd665ed4, 0xb4b7bd6, 0x1e5a3799, 0x6b33847, 0x17fa56ff, 0x65ef930, 0x21dc4a, 179 0x2b37659, 0x450fe17, 0xb357b65, 0xdf5efac, 0x15397bef, 0x9d35a7f, 0x112ac15f, 0x624e62e, 0xa90ae2f, 180 0x107eecd2, 0x1f69bbe, 0x77d6bce, 0x5741394, 0x13c684fc, 0x950c910, 0x725522b, 0xdc78583, 0x40eeabb, 181 0x1fde328a, 0xbd61d96, 0xd28c387, 0x9e77d89, 0x12550c40, 0x759cb7d, 0x367ef34, 0xae2a960, 0x91b8bdc, 182 0x93462a9, 0xf469ef, 0xb2e9aef, 0xd2ca771, 0x54e1f42, 0x7aaa49, 0x6316abb, 0x2413c8e, 0x5425bf9, 183 0x1bed3e3a, 0xf272274, 0x1f5e7326, 0x6416517, 0xea27072, 0x9cedea7, 0x6e7633, 0x7c91952, 0xd806dce, 184 0x8e2a7e1, 0xe421e1a, 0x418c9e1, 0x1dbc890, 0x1b395c36, 0xa1dc175, 0x1dc4ef73, 0x8956f34, 0xe4b5cf2, 185 0x1b0d3a18, 0x3194a36, 0x6c2641f, 0xe44124c, 0xa2f4eaa, 0xa8c25ba, 0xf927ed7, 0x627b614, 0x7371cca, 186 0xba16694, 0x417bc03, 0x7c0a7e3, 0x9c35c19, 0x1168a205, 0x8b6b00d, 0x10e3edc9, 0x9c19bf2, 0x5882229, 187 0x1b2b4162, 0xa5cef1a, 0x1543622b, 0x9bd433e, 0x364e04d, 0x7480792, 0x5c9b5b3, 0xe85ff25, 0x408ef57, 188 0x1814cfa4, 0x121b41b, 0xd248a0f, 0x3b05222, 0x39bb16a, 0xc75966d, 0xa038113, 0xa4a1769, 0x11fbc6c, 189 0x917e50e, 0xeec3da8, 0x169d6eac, 0x10c1699, 0xa416153, 0xf724912, 0x15cd60b7, 0x4acbad9, 0x5efc5fa, 190 0xf150ed7, 0x122b51, 0x1104b40a, 0xcb7f442, 0xfbb28ff, 0x6ac53ca, 0x196142cc, 0x7bf0fa9, 0x957651, 191 0x4e0f215, 0xed439f8, 0x3f46bd5, 0x5ace82f, 0x110916b6, 0x6db078, 0xffd7d57, 0xf2ecaac, 0xca86dec, 192 0x15d6b2da, 0x965ecc9, 0x1c92b4c2, 0x1f3811, 0x1cb080f5, 0x2d8b804, 0x19d1c12d, 0xf20bd46, 0x1951fa7, 193 0xa3656c3, 0x523a425, 0xfcd0692, 0xd44ddc8, 0x131f0f5b, 0xaf80e4a, 0xcd9fc74, 0x99bb618, 0x2db944c, 194 0xa673090, 0x1c210e1, 0x178c8d23, 0x1474383, 0x10b8743d, 0x985a55b, 0x2e74779, 0x576138, 0x9587927, 195 0x133130fa, 0xbe05516, 0x9f4d619, 0xbb62570, 0x99ec591, 0xd9468fe, 0x1d07782d, 0xfc72e0b, 0x701b298, 196 0x1863863b, 0x85954b8, 0x121a0c36, 0x9e7fedf, 0xf64b429, 0x9b9d71e, 0x14e2f5d8, 0xf858d3a, 0x942eea8, 197 0xda5b765, 0x6edafff, 0xa9d18cc, 0xc65e4ba, 0x1c747e86, 0xe4ea915, 0x1981d7a1, 0x8395659, 0x52ed4e2, 198 0x87d43b7, 0x37ab11b, 0x19d292ce, 0xf8d4692, 0x18c3053f, 0x8863e13, 0x4c146c0, 0x6bdf55a, 0x4e4457d, 199 0x16152289, 0xac78ec2, 0x1a59c5a2, 0x2028b97, 0x71c2d01, 0x295851f, 0x404747b, 0x878558d, 0x7d29aa4, 200 0x13d8341f, 0x8daefd7, 0x139c972d, 0x6b7ea75, 0xd4a9dde, 0xff163d8, 0x81d55d7, 0xa5bef68, 0xb7b30d8, 201 0xbe73d6f, 0xaa88141, 0xd976c81, 0x7e7a9cc, 0x18beb771, 0xd773cbd, 0x13f51951, 0x9d0c177, 0x1c49a78, 202 } 203 204 // Field element operations: 205 206 // nonZeroToAllOnes returns: 207 // 0xffffffff for 0 < x <= 2**31 208 // 0 for x == 0 or x > 2**31. 209 func nonZeroToAllOnes(x uint32) uint32 { 210 return ((x - 1) >> 31) - 1 211 } 212 213 // p256ReduceCarry adds a multiple of p in order to cancel |carry|, 214 // which is a term at 2**257. 215 // 216 // On entry: carry < 2**3, inout[0,2,...] < 2**29, inout[1,3,...] < 2**28. 217 // On exit: inout[0,2,..] < 2**30, inout[1,3,...] < 2**29. 218 func p256ReduceCarry(inout *[p256Limbs]uint32, carry uint32) { 219 carry_mask := nonZeroToAllOnes(carry) 220 221 inout[0] += carry << 1 222 inout[3] += 0x10000000 & carry_mask 223 // carry < 2**3 thus (carry << 11) < 2**14 and we added 2**28 in the 224 // previous line therefore this doesn't underflow. 225 inout[3] -= carry << 11 226 inout[4] += (0x20000000 - 1) & carry_mask 227 inout[5] += (0x10000000 - 1) & carry_mask 228 inout[6] += (0x20000000 - 1) & carry_mask 229 inout[6] -= carry << 22 230 // This may underflow if carry is non-zero but, if so, we'll fix it in the 231 // next line. 232 inout[7] -= 1 & carry_mask 233 inout[7] += carry << 25 234 } 235 236 // p256Sum sets out = in+in2. 237 // 238 // On entry, in[i]+in2[i] must not overflow a 32-bit word. 239 // On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29 240 func p256Sum(out, in, in2 *[p256Limbs]uint32) { 241 carry := uint32(0) 242 for i := 0; ; i++ { 243 out[i] = in[i] + in2[i] 244 out[i] += carry 245 carry = out[i] >> 29 246 out[i] &= bottom29Bits 247 248 i++ 249 if i == p256Limbs { 250 break 251 } 252 253 out[i] = in[i] + in2[i] 254 out[i] += carry 255 carry = out[i] >> 28 256 out[i] &= bottom28Bits 257 } 258 259 p256ReduceCarry(out, carry) 260 } 261 262 const ( 263 two30m2 = 1<<30 - 1<<2 264 two30p13m2 = 1<<30 + 1<<13 - 1<<2 265 two31m2 = 1<<31 - 1<<2 266 two31p24m2 = 1<<31 + 1<<24 - 1<<2 267 two30m27m2 = 1<<30 - 1<<27 - 1<<2 268 ) 269 270 // p256Zero31 is 0 mod p. 271 var p256Zero31 = [p256Limbs]uint32{two31m3, two30m2, two31m2, two30p13m2, two31m2, two30m2, two31p24m2, two30m27m2, two31m2} 272 273 // p256Diff sets out = in-in2. 274 // 275 // On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29 and 276 // in2[0,2,...] < 2**30, in2[1,3,...] < 2**29. 277 // On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. 278 func p256Diff(out, in, in2 *[p256Limbs]uint32) { 279 var carry uint32 280 281 for i := 0; ; i++ { 282 out[i] = in[i] - in2[i] 283 out[i] += p256Zero31[i] 284 out[i] += carry 285 carry = out[i] >> 29 286 out[i] &= bottom29Bits 287 288 i++ 289 if i == p256Limbs { 290 break 291 } 292 293 out[i] = in[i] - in2[i] 294 out[i] += p256Zero31[i] 295 out[i] += carry 296 carry = out[i] >> 28 297 out[i] &= bottom28Bits 298 } 299 300 p256ReduceCarry(out, carry) 301 } 302 303 // p256ReduceDegree sets out = tmp/R mod p where tmp contains 64-bit words with 304 // the same 29,28,... bit positions as an field element. 305 // 306 // The values in field elements are in Montgomery form: x*R mod p where R = 307 // 2**257. Since we just multiplied two Montgomery values together, the result 308 // is x*y*R*R mod p. We wish to divide by R in order for the result also to be 309 // in Montgomery form. 310 // 311 // On entry: tmp[i] < 2**64 312 // On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29 313 func p256ReduceDegree(out *[p256Limbs]uint32, tmp [17]uint64) { 314 // The following table may be helpful when reading this code: 315 // 316 // Limb number: 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10... 317 // Width (bits): 29| 28| 29| 28| 29| 28| 29| 28| 29| 28| 29 318 // Start bit: 0 | 29| 57| 86|114|143|171|200|228|257|285 319 // (odd phase): 0 | 28| 57| 85|114|142|171|199|228|256|285 320 var tmp2 [18]uint32 321 var carry, x, xMask uint32 322 323 // tmp contains 64-bit words with the same 29,28,29-bit positions as an 324 // field element. So the top of an element of tmp might overlap with 325 // another element two positions down. The following loop eliminates 326 // this overlap. 327 tmp2[0] = uint32(tmp[0]) & bottom29Bits 328 329 tmp2[1] = uint32(tmp[0]) >> 29 330 tmp2[1] |= (uint32(tmp[0]>>32) << 3) & bottom28Bits 331 tmp2[1] += uint32(tmp[1]) & bottom28Bits 332 carry = tmp2[1] >> 28 333 tmp2[1] &= bottom28Bits 334 335 for i := 2; i < 17; i++ { 336 tmp2[i] = (uint32(tmp[i-2] >> 32)) >> 25 337 tmp2[i] += (uint32(tmp[i-1])) >> 28 338 tmp2[i] += (uint32(tmp[i-1]>>32) << 4) & bottom29Bits 339 tmp2[i] += uint32(tmp[i]) & bottom29Bits 340 tmp2[i] += carry 341 carry = tmp2[i] >> 29 342 tmp2[i] &= bottom29Bits 343 344 i++ 345 if i == 17 { 346 break 347 } 348 tmp2[i] = uint32(tmp[i-2]>>32) >> 25 349 tmp2[i] += uint32(tmp[i-1]) >> 29 350 tmp2[i] += ((uint32(tmp[i-1] >> 32)) << 3) & bottom28Bits 351 tmp2[i] += uint32(tmp[i]) & bottom28Bits 352 tmp2[i] += carry 353 carry = tmp2[i] >> 28 354 tmp2[i] &= bottom28Bits 355 } 356 357 tmp2[17] = uint32(tmp[15]>>32) >> 25 358 tmp2[17] += uint32(tmp[16]) >> 29 359 tmp2[17] += uint32(tmp[16]>>32) << 3 360 tmp2[17] += carry 361 362 // Montgomery elimination of terms: 363 // 364 // Since R is 2**257, we can divide by R with a bitwise shift if we can 365 // ensure that the right-most 257 bits are all zero. We can make that true 366 // by adding multiplies of p without affecting the value. 367 // 368 // So we eliminate limbs from right to left. Since the bottom 29 bits of p 369 // are all ones, then by adding tmp2[0]*p to tmp2 we'll make tmp2[0] == 0. 370 // We can do that for 8 further limbs and then right shift to eliminate the 371 // extra factor of R. 372 for i := 0; ; i += 2 { 373 tmp2[i+1] += tmp2[i] >> 29 374 x = tmp2[i] & bottom29Bits 375 xMask = nonZeroToAllOnes(x) 376 tmp2[i] = 0 377 378 // The bounds calculations for this loop are tricky. Each iteration of 379 // the loop eliminates two words by adding values to words to their 380 // right. 381 // 382 // The following table contains the amounts added to each word (as an 383 // offset from the value of i at the top of the loop). The amounts are 384 // accounted for from the first and second half of the loop separately 385 // and are written as, for example, 28 to mean a value <2**28. 386 // 387 // Word: 3 4 5 6 7 8 9 10 388 // Added in top half: 28 11 29 21 29 28 389 // 28 29 390 // 29 391 // Added in bottom half: 29 10 28 21 28 28 392 // 29 393 // 394 // The value that is currently offset 7 will be offset 5 for the next 395 // iteration and then offset 3 for the iteration after that. Therefore 396 // the total value added will be the values added at 7, 5 and 3. 397 // 398 // The following table accumulates these values. The sums at the bottom 399 // are written as, for example, 29+28, to mean a value < 2**29+2**28. 400 // 401 // Word: 3 4 5 6 7 8 9 10 11 12 13 402 // 28 11 10 29 21 29 28 28 28 28 28 403 // 29 28 11 28 29 28 29 28 29 28 404 // 29 28 21 21 29 21 29 21 405 // 10 29 28 21 28 21 28 406 // 28 29 28 29 28 29 28 407 // 11 10 29 10 29 10 408 // 29 28 11 28 11 409 // 29 29 410 // -------------------------------------------- 411 // 30+ 31+ 30+ 31+ 30+ 412 // 28+ 29+ 28+ 29+ 21+ 413 // 21+ 28+ 21+ 28+ 10 414 // 10 21+ 10 21+ 415 // 11 11 416 // 417 // So the greatest amount is added to tmp2[10] and tmp2[12]. If 418 // tmp2[10/12] has an initial value of <2**29, then the maximum value 419 // will be < 2**31 + 2**30 + 2**28 + 2**21 + 2**11, which is < 2**32, 420 // as required. 421 tmp2[i+3] += (x << 10) & bottom28Bits 422 tmp2[i+4] += (x >> 18) 423 424 tmp2[i+6] += (x << 21) & bottom29Bits 425 tmp2[i+7] += x >> 8 426 427 // At position 200, which is the starting bit position for word 7, we 428 // have a factor of 0xf000000 = 2**28 - 2**24. 429 tmp2[i+7] += 0x10000000 & xMask 430 tmp2[i+8] += (x - 1) & xMask 431 tmp2[i+7] -= (x << 24) & bottom28Bits 432 tmp2[i+8] -= x >> 4 433 434 tmp2[i+8] += 0x20000000 & xMask 435 tmp2[i+8] -= x 436 tmp2[i+8] += (x << 28) & bottom29Bits 437 tmp2[i+9] += ((x >> 1) - 1) & xMask 438 439 if i+1 == p256Limbs { 440 break 441 } 442 tmp2[i+2] += tmp2[i+1] >> 28 443 x = tmp2[i+1] & bottom28Bits 444 xMask = nonZeroToAllOnes(x) 445 tmp2[i+1] = 0 446 447 tmp2[i+4] += (x << 11) & bottom29Bits 448 tmp2[i+5] += (x >> 18) 449 450 tmp2[i+7] += (x << 21) & bottom28Bits 451 tmp2[i+8] += x >> 7 452 453 // At position 199, which is the starting bit of the 8th word when 454 // dealing with a context starting on an odd word, we have a factor of 455 // 0x1e000000 = 2**29 - 2**25. Since we have not updated i, the 8th 456 // word from i+1 is i+8. 457 tmp2[i+8] += 0x20000000 & xMask 458 tmp2[i+9] += (x - 1) & xMask 459 tmp2[i+8] -= (x << 25) & bottom29Bits 460 tmp2[i+9] -= x >> 4 461 462 tmp2[i+9] += 0x10000000 & xMask 463 tmp2[i+9] -= x 464 tmp2[i+10] += (x - 1) & xMask 465 } 466 467 // We merge the right shift with a carry chain. The words above 2**257 have 468 // widths of 28,29,... which we need to correct when copying them down. 469 carry = 0 470 for i := 0; i < 8; i++ { 471 // The maximum value of tmp2[i + 9] occurs on the first iteration and 472 // is < 2**30+2**29+2**28. Adding 2**29 (from tmp2[i + 10]) is 473 // therefore safe. 474 out[i] = tmp2[i+9] 475 out[i] += carry 476 out[i] += (tmp2[i+10] << 28) & bottom29Bits 477 carry = out[i] >> 29 478 out[i] &= bottom29Bits 479 480 i++ 481 out[i] = tmp2[i+9] >> 1 482 out[i] += carry 483 carry = out[i] >> 28 484 out[i] &= bottom28Bits 485 } 486 487 out[8] = tmp2[17] 488 out[8] += carry 489 carry = out[8] >> 29 490 out[8] &= bottom29Bits 491 492 p256ReduceCarry(out, carry) 493 } 494 495 // p256Square sets out=in*in. 496 // 497 // On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29. 498 // On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. 499 func p256Square(out, in *[p256Limbs]uint32) { 500 var tmp [17]uint64 501 502 tmp[0] = uint64(in[0]) * uint64(in[0]) 503 tmp[1] = uint64(in[0]) * (uint64(in[1]) << 1) 504 tmp[2] = uint64(in[0])*(uint64(in[2])<<1) + 505 uint64(in[1])*(uint64(in[1])<<1) 506 tmp[3] = uint64(in[0])*(uint64(in[3])<<1) + 507 uint64(in[1])*(uint64(in[2])<<1) 508 tmp[4] = uint64(in[0])*(uint64(in[4])<<1) + 509 uint64(in[1])*(uint64(in[3])<<2) + 510 uint64(in[2])*uint64(in[2]) 511 tmp[5] = uint64(in[0])*(uint64(in[5])<<1) + 512 uint64(in[1])*(uint64(in[4])<<1) + 513 uint64(in[2])*(uint64(in[3])<<1) 514 tmp[6] = uint64(in[0])*(uint64(in[6])<<1) + 515 uint64(in[1])*(uint64(in[5])<<2) + 516 uint64(in[2])*(uint64(in[4])<<1) + 517 uint64(in[3])*(uint64(in[3])<<1) 518 tmp[7] = uint64(in[0])*(uint64(in[7])<<1) + 519 uint64(in[1])*(uint64(in[6])<<1) + 520 uint64(in[2])*(uint64(in[5])<<1) + 521 uint64(in[3])*(uint64(in[4])<<1) 522 // tmp[8] has the greatest value of 2**61 + 2**60 + 2**61 + 2**60 + 2**60, 523 // which is < 2**64 as required. 524 tmp[8] = uint64(in[0])*(uint64(in[8])<<1) + 525 uint64(in[1])*(uint64(in[7])<<2) + 526 uint64(in[2])*(uint64(in[6])<<1) + 527 uint64(in[3])*(uint64(in[5])<<2) + 528 uint64(in[4])*uint64(in[4]) 529 tmp[9] = uint64(in[1])*(uint64(in[8])<<1) + 530 uint64(in[2])*(uint64(in[7])<<1) + 531 uint64(in[3])*(uint64(in[6])<<1) + 532 uint64(in[4])*(uint64(in[5])<<1) 533 tmp[10] = uint64(in[2])*(uint64(in[8])<<1) + 534 uint64(in[3])*(uint64(in[7])<<2) + 535 uint64(in[4])*(uint64(in[6])<<1) + 536 uint64(in[5])*(uint64(in[5])<<1) 537 tmp[11] = uint64(in[3])*(uint64(in[8])<<1) + 538 uint64(in[4])*(uint64(in[7])<<1) + 539 uint64(in[5])*(uint64(in[6])<<1) 540 tmp[12] = uint64(in[4])*(uint64(in[8])<<1) + 541 uint64(in[5])*(uint64(in[7])<<2) + 542 uint64(in[6])*uint64(in[6]) 543 tmp[13] = uint64(in[5])*(uint64(in[8])<<1) + 544 uint64(in[6])*(uint64(in[7])<<1) 545 tmp[14] = uint64(in[6])*(uint64(in[8])<<1) + 546 uint64(in[7])*(uint64(in[7])<<1) 547 tmp[15] = uint64(in[7]) * (uint64(in[8]) << 1) 548 tmp[16] = uint64(in[8]) * uint64(in[8]) 549 550 p256ReduceDegree(out, tmp) 551 } 552 553 // p256Mul sets out=in*in2. 554 // 555 // On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29 and 556 // in2[0,2,...] < 2**30, in2[1,3,...] < 2**29. 557 // On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. 558 func p256Mul(out, in, in2 *[p256Limbs]uint32) { 559 var tmp [17]uint64 560 561 tmp[0] = uint64(in[0]) * uint64(in2[0]) 562 tmp[1] = uint64(in[0])*(uint64(in2[1])<<0) + 563 uint64(in[1])*(uint64(in2[0])<<0) 564 tmp[2] = uint64(in[0])*(uint64(in2[2])<<0) + 565 uint64(in[1])*(uint64(in2[1])<<1) + 566 uint64(in[2])*(uint64(in2[0])<<0) 567 tmp[3] = uint64(in[0])*(uint64(in2[3])<<0) + 568 uint64(in[1])*(uint64(in2[2])<<0) + 569 uint64(in[2])*(uint64(in2[1])<<0) + 570 uint64(in[3])*(uint64(in2[0])<<0) 571 tmp[4] = uint64(in[0])*(uint64(in2[4])<<0) + 572 uint64(in[1])*(uint64(in2[3])<<1) + 573 uint64(in[2])*(uint64(in2[2])<<0) + 574 uint64(in[3])*(uint64(in2[1])<<1) + 575 uint64(in[4])*(uint64(in2[0])<<0) 576 tmp[5] = uint64(in[0])*(uint64(in2[5])<<0) + 577 uint64(in[1])*(uint64(in2[4])<<0) + 578 uint64(in[2])*(uint64(in2[3])<<0) + 579 uint64(in[3])*(uint64(in2[2])<<0) + 580 uint64(in[4])*(uint64(in2[1])<<0) + 581 uint64(in[5])*(uint64(in2[0])<<0) 582 tmp[6] = uint64(in[0])*(uint64(in2[6])<<0) + 583 uint64(in[1])*(uint64(in2[5])<<1) + 584 uint64(in[2])*(uint64(in2[4])<<0) + 585 uint64(in[3])*(uint64(in2[3])<<1) + 586 uint64(in[4])*(uint64(in2[2])<<0) + 587 uint64(in[5])*(uint64(in2[1])<<1) + 588 uint64(in[6])*(uint64(in2[0])<<0) 589 tmp[7] = uint64(in[0])*(uint64(in2[7])<<0) + 590 uint64(in[1])*(uint64(in2[6])<<0) + 591 uint64(in[2])*(uint64(in2[5])<<0) + 592 uint64(in[3])*(uint64(in2[4])<<0) + 593 uint64(in[4])*(uint64(in2[3])<<0) + 594 uint64(in[5])*(uint64(in2[2])<<0) + 595 uint64(in[6])*(uint64(in2[1])<<0) + 596 uint64(in[7])*(uint64(in2[0])<<0) 597 // tmp[8] has the greatest value but doesn't overflow. See logic in 598 // p256Square. 599 tmp[8] = uint64(in[0])*(uint64(in2[8])<<0) + 600 uint64(in[1])*(uint64(in2[7])<<1) + 601 uint64(in[2])*(uint64(in2[6])<<0) + 602 uint64(in[3])*(uint64(in2[5])<<1) + 603 uint64(in[4])*(uint64(in2[4])<<0) + 604 uint64(in[5])*(uint64(in2[3])<<1) + 605 uint64(in[6])*(uint64(in2[2])<<0) + 606 uint64(in[7])*(uint64(in2[1])<<1) + 607 uint64(in[8])*(uint64(in2[0])<<0) 608 tmp[9] = uint64(in[1])*(uint64(in2[8])<<0) + 609 uint64(in[2])*(uint64(in2[7])<<0) + 610 uint64(in[3])*(uint64(in2[6])<<0) + 611 uint64(in[4])*(uint64(in2[5])<<0) + 612 uint64(in[5])*(uint64(in2[4])<<0) + 613 uint64(in[6])*(uint64(in2[3])<<0) + 614 uint64(in[7])*(uint64(in2[2])<<0) + 615 uint64(in[8])*(uint64(in2[1])<<0) 616 tmp[10] = uint64(in[2])*(uint64(in2[8])<<0) + 617 uint64(in[3])*(uint64(in2[7])<<1) + 618 uint64(in[4])*(uint64(in2[6])<<0) + 619 uint64(in[5])*(uint64(in2[5])<<1) + 620 uint64(in[6])*(uint64(in2[4])<<0) + 621 uint64(in[7])*(uint64(in2[3])<<1) + 622 uint64(in[8])*(uint64(in2[2])<<0) 623 tmp[11] = uint64(in[3])*(uint64(in2[8])<<0) + 624 uint64(in[4])*(uint64(in2[7])<<0) + 625 uint64(in[5])*(uint64(in2[6])<<0) + 626 uint64(in[6])*(uint64(in2[5])<<0) + 627 uint64(in[7])*(uint64(in2[4])<<0) + 628 uint64(in[8])*(uint64(in2[3])<<0) 629 tmp[12] = uint64(in[4])*(uint64(in2[8])<<0) + 630 uint64(in[5])*(uint64(in2[7])<<1) + 631 uint64(in[6])*(uint64(in2[6])<<0) + 632 uint64(in[7])*(uint64(in2[5])<<1) + 633 uint64(in[8])*(uint64(in2[4])<<0) 634 tmp[13] = uint64(in[5])*(uint64(in2[8])<<0) + 635 uint64(in[6])*(uint64(in2[7])<<0) + 636 uint64(in[7])*(uint64(in2[6])<<0) + 637 uint64(in[8])*(uint64(in2[5])<<0) 638 tmp[14] = uint64(in[6])*(uint64(in2[8])<<0) + 639 uint64(in[7])*(uint64(in2[7])<<1) + 640 uint64(in[8])*(uint64(in2[6])<<0) 641 tmp[15] = uint64(in[7])*(uint64(in2[8])<<0) + 642 uint64(in[8])*(uint64(in2[7])<<0) 643 tmp[16] = uint64(in[8]) * (uint64(in2[8]) << 0) 644 645 p256ReduceDegree(out, tmp) 646 } 647 648 func p256Assign(out, in *[p256Limbs]uint32) { 649 *out = *in 650 } 651 652 // p256Invert calculates |out| = |in|^{-1} 653 // 654 // Based on Fermat's Little Theorem: 655 // a^p = a (mod p) 656 // a^{p-1} = 1 (mod p) 657 // a^{p-2} = a^{-1} (mod p) 658 func p256Invert(out, in *[p256Limbs]uint32) { 659 var ftmp, ftmp2 [p256Limbs]uint32 660 661 // each e_I will hold |in|^{2^I - 1} 662 var e2, e4, e8, e16, e32, e64 [p256Limbs]uint32 663 664 p256Square(&ftmp, in) // 2^1 665 p256Mul(&ftmp, in, &ftmp) // 2^2 - 2^0 666 p256Assign(&e2, &ftmp) 667 p256Square(&ftmp, &ftmp) // 2^3 - 2^1 668 p256Square(&ftmp, &ftmp) // 2^4 - 2^2 669 p256Mul(&ftmp, &ftmp, &e2) // 2^4 - 2^0 670 p256Assign(&e4, &ftmp) 671 p256Square(&ftmp, &ftmp) // 2^5 - 2^1 672 p256Square(&ftmp, &ftmp) // 2^6 - 2^2 673 p256Square(&ftmp, &ftmp) // 2^7 - 2^3 674 p256Square(&ftmp, &ftmp) // 2^8 - 2^4 675 p256Mul(&ftmp, &ftmp, &e4) // 2^8 - 2^0 676 p256Assign(&e8, &ftmp) 677 for i := 0; i < 8; i++ { 678 p256Square(&ftmp, &ftmp) 679 } // 2^16 - 2^8 680 p256Mul(&ftmp, &ftmp, &e8) // 2^16 - 2^0 681 p256Assign(&e16, &ftmp) 682 for i := 0; i < 16; i++ { 683 p256Square(&ftmp, &ftmp) 684 } // 2^32 - 2^16 685 p256Mul(&ftmp, &ftmp, &e16) // 2^32 - 2^0 686 p256Assign(&e32, &ftmp) 687 for i := 0; i < 32; i++ { 688 p256Square(&ftmp, &ftmp) 689 } // 2^64 - 2^32 690 p256Assign(&e64, &ftmp) 691 p256Mul(&ftmp, &ftmp, in) // 2^64 - 2^32 + 2^0 692 for i := 0; i < 192; i++ { 693 p256Square(&ftmp, &ftmp) 694 } // 2^256 - 2^224 + 2^192 695 696 p256Mul(&ftmp2, &e64, &e32) // 2^64 - 2^0 697 for i := 0; i < 16; i++ { 698 p256Square(&ftmp2, &ftmp2) 699 } // 2^80 - 2^16 700 p256Mul(&ftmp2, &ftmp2, &e16) // 2^80 - 2^0 701 for i := 0; i < 8; i++ { 702 p256Square(&ftmp2, &ftmp2) 703 } // 2^88 - 2^8 704 p256Mul(&ftmp2, &ftmp2, &e8) // 2^88 - 2^0 705 for i := 0; i < 4; i++ { 706 p256Square(&ftmp2, &ftmp2) 707 } // 2^92 - 2^4 708 p256Mul(&ftmp2, &ftmp2, &e4) // 2^92 - 2^0 709 p256Square(&ftmp2, &ftmp2) // 2^93 - 2^1 710 p256Square(&ftmp2, &ftmp2) // 2^94 - 2^2 711 p256Mul(&ftmp2, &ftmp2, &e2) // 2^94 - 2^0 712 p256Square(&ftmp2, &ftmp2) // 2^95 - 2^1 713 p256Square(&ftmp2, &ftmp2) // 2^96 - 2^2 714 p256Mul(&ftmp2, &ftmp2, in) // 2^96 - 3 715 716 p256Mul(out, &ftmp2, &ftmp) // 2^256 - 2^224 + 2^192 + 2^96 - 3 717 } 718 719 // p256Scalar3 sets out=3*out. 720 // 721 // On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29. 722 // On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. 723 func p256Scalar3(out *[p256Limbs]uint32) { 724 var carry uint32 725 726 for i := 0; ; i++ { 727 out[i] *= 3 728 out[i] += carry 729 carry = out[i] >> 29 730 out[i] &= bottom29Bits 731 732 i++ 733 if i == p256Limbs { 734 break 735 } 736 737 out[i] *= 3 738 out[i] += carry 739 carry = out[i] >> 28 740 out[i] &= bottom28Bits 741 } 742 743 p256ReduceCarry(out, carry) 744 } 745 746 // p256Scalar4 sets out=4*out. 747 // 748 // On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29. 749 // On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. 750 func p256Scalar4(out *[p256Limbs]uint32) { 751 var carry, nextCarry uint32 752 753 for i := 0; ; i++ { 754 nextCarry = out[i] >> 27 755 out[i] <<= 2 756 out[i] &= bottom29Bits 757 out[i] += carry 758 carry = nextCarry + (out[i] >> 29) 759 out[i] &= bottom29Bits 760 761 i++ 762 if i == p256Limbs { 763 break 764 } 765 nextCarry = out[i] >> 26 766 out[i] <<= 2 767 out[i] &= bottom28Bits 768 out[i] += carry 769 carry = nextCarry + (out[i] >> 28) 770 out[i] &= bottom28Bits 771 } 772 773 p256ReduceCarry(out, carry) 774 } 775 776 // p256Scalar8 sets out=8*out. 777 // 778 // On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29. 779 // On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. 780 func p256Scalar8(out *[p256Limbs]uint32) { 781 var carry, nextCarry uint32 782 783 for i := 0; ; i++ { 784 nextCarry = out[i] >> 26 785 out[i] <<= 3 786 out[i] &= bottom29Bits 787 out[i] += carry 788 carry = nextCarry + (out[i] >> 29) 789 out[i] &= bottom29Bits 790 791 i++ 792 if i == p256Limbs { 793 break 794 } 795 nextCarry = out[i] >> 25 796 out[i] <<= 3 797 out[i] &= bottom28Bits 798 out[i] += carry 799 carry = nextCarry + (out[i] >> 28) 800 out[i] &= bottom28Bits 801 } 802 803 p256ReduceCarry(out, carry) 804 } 805 806 // Group operations: 807 // 808 // Elements of the elliptic curve group are represented in Jacobian 809 // coordinates: (x, y, z). An affine point (x', y') is x'=x/z**2, y'=y/z**3 in 810 // Jacobian form. 811 812 // p256PointDouble sets {xOut,yOut,zOut} = 2*{x,y,z}. 813 // 814 // See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l 815 func p256PointDouble(xOut, yOut, zOut, x, y, z *[p256Limbs]uint32) { 816 var delta, gamma, alpha, beta, tmp, tmp2 [p256Limbs]uint32 817 818 p256Square(&delta, z) 819 p256Square(&gamma, y) 820 p256Mul(&beta, x, &gamma) 821 822 p256Sum(&tmp, x, &delta) 823 p256Diff(&tmp2, x, &delta) 824 p256Mul(&alpha, &tmp, &tmp2) 825 p256Scalar3(&alpha) 826 827 p256Sum(&tmp, y, z) 828 p256Square(&tmp, &tmp) 829 p256Diff(&tmp, &tmp, &gamma) 830 p256Diff(zOut, &tmp, &delta) 831 832 p256Scalar4(&beta) 833 p256Square(xOut, &alpha) 834 p256Diff(xOut, xOut, &beta) 835 p256Diff(xOut, xOut, &beta) 836 837 p256Diff(&tmp, &beta, xOut) 838 p256Mul(&tmp, &alpha, &tmp) 839 p256Square(&tmp2, &gamma) 840 p256Scalar8(&tmp2) 841 p256Diff(yOut, &tmp, &tmp2) 842 } 843 844 // p256PointAddMixed sets {xOut,yOut,zOut} = {x1,y1,z1} + {x2,y2,1}. 845 // (i.e. the second point is affine.) 846 // 847 // See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl 848 // 849 // Note that this function does not handle P+P, infinity+P nor P+infinity 850 // correctly. 851 func p256PointAddMixed(xOut, yOut, zOut, x1, y1, z1, x2, y2 *[p256Limbs]uint32) { 852 var z1z1, z1z1z1, s2, u2, h, i, j, r, rr, v, tmp [p256Limbs]uint32 853 854 p256Square(&z1z1, z1) 855 p256Sum(&tmp, z1, z1) 856 857 p256Mul(&u2, x2, &z1z1) 858 p256Mul(&z1z1z1, z1, &z1z1) 859 p256Mul(&s2, y2, &z1z1z1) 860 p256Diff(&h, &u2, x1) 861 p256Sum(&i, &h, &h) 862 p256Square(&i, &i) 863 p256Mul(&j, &h, &i) 864 p256Diff(&r, &s2, y1) 865 p256Sum(&r, &r, &r) 866 p256Mul(&v, x1, &i) 867 868 p256Mul(zOut, &tmp, &h) 869 p256Square(&rr, &r) 870 p256Diff(xOut, &rr, &j) 871 p256Diff(xOut, xOut, &v) 872 p256Diff(xOut, xOut, &v) 873 874 p256Diff(&tmp, &v, xOut) 875 p256Mul(yOut, &tmp, &r) 876 p256Mul(&tmp, y1, &j) 877 p256Diff(yOut, yOut, &tmp) 878 p256Diff(yOut, yOut, &tmp) 879 } 880 881 // p256PointAdd sets {xOut,yOut,zOut} = {x1,y1,z1} + {x2,y2,z2}. 882 // 883 // See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl 884 // 885 // Note that this function does not handle P+P, infinity+P nor P+infinity 886 // correctly. 887 func p256PointAdd(xOut, yOut, zOut, x1, y1, z1, x2, y2, z2 *[p256Limbs]uint32) { 888 var z1z1, z1z1z1, z2z2, z2z2z2, s1, s2, u1, u2, h, i, j, r, rr, v, tmp [p256Limbs]uint32 889 890 p256Square(&z1z1, z1) 891 p256Square(&z2z2, z2) 892 p256Mul(&u1, x1, &z2z2) 893 894 p256Sum(&tmp, z1, z2) 895 p256Square(&tmp, &tmp) 896 p256Diff(&tmp, &tmp, &z1z1) 897 p256Diff(&tmp, &tmp, &z2z2) 898 899 p256Mul(&z2z2z2, z2, &z2z2) 900 p256Mul(&s1, y1, &z2z2z2) 901 902 p256Mul(&u2, x2, &z1z1) 903 p256Mul(&z1z1z1, z1, &z1z1) 904 p256Mul(&s2, y2, &z1z1z1) 905 p256Diff(&h, &u2, &u1) 906 p256Sum(&i, &h, &h) 907 p256Square(&i, &i) 908 p256Mul(&j, &h, &i) 909 p256Diff(&r, &s2, &s1) 910 p256Sum(&r, &r, &r) 911 p256Mul(&v, &u1, &i) 912 913 p256Mul(zOut, &tmp, &h) 914 p256Square(&rr, &r) 915 p256Diff(xOut, &rr, &j) 916 p256Diff(xOut, xOut, &v) 917 p256Diff(xOut, xOut, &v) 918 919 p256Diff(&tmp, &v, xOut) 920 p256Mul(yOut, &tmp, &r) 921 p256Mul(&tmp, &s1, &j) 922 p256Diff(yOut, yOut, &tmp) 923 p256Diff(yOut, yOut, &tmp) 924 } 925 926 // p256CopyConditional sets out=in if mask = 0xffffffff in constant time. 927 // 928 // On entry: mask is either 0 or 0xffffffff. 929 func p256CopyConditional(out, in *[p256Limbs]uint32, mask uint32) { 930 for i := 0; i < p256Limbs; i++ { 931 tmp := mask & (in[i] ^ out[i]) 932 out[i] ^= tmp 933 } 934 } 935 936 // p256SelectAffinePoint sets {out_x,out_y} to the index'th entry of table. 937 // On entry: index < 16, table[0] must be zero. 938 func p256SelectAffinePoint(xOut, yOut *[p256Limbs]uint32, table []uint32, index uint32) { 939 for i := range xOut { 940 xOut[i] = 0 941 } 942 for i := range yOut { 943 yOut[i] = 0 944 } 945 946 for i := uint32(1); i < 16; i++ { 947 mask := i ^ index 948 mask |= mask >> 2 949 mask |= mask >> 1 950 mask &= 1 951 mask-- 952 for j := range xOut { 953 xOut[j] |= table[0] & mask 954 table = table[1:] 955 } 956 for j := range yOut { 957 yOut[j] |= table[0] & mask 958 table = table[1:] 959 } 960 } 961 } 962 963 // p256SelectJacobianPoint sets {out_x,out_y,out_z} to the index'th entry of 964 // table. 965 // On entry: index < 16, table[0] must be zero. 966 func p256SelectJacobianPoint(xOut, yOut, zOut *[p256Limbs]uint32, table *[16][3][p256Limbs]uint32, index uint32) { 967 for i := range xOut { 968 xOut[i] = 0 969 } 970 for i := range yOut { 971 yOut[i] = 0 972 } 973 for i := range zOut { 974 zOut[i] = 0 975 } 976 977 // The implicit value at index 0 is all zero. We don't need to perform that 978 // iteration of the loop because we already set out_* to zero. 979 for i := uint32(1); i < 16; i++ { 980 mask := i ^ index 981 mask |= mask >> 2 982 mask |= mask >> 1 983 mask &= 1 984 mask-- 985 for j := range xOut { 986 xOut[j] |= table[i][0][j] & mask 987 } 988 for j := range yOut { 989 yOut[j] |= table[i][1][j] & mask 990 } 991 for j := range zOut { 992 zOut[j] |= table[i][2][j] & mask 993 } 994 } 995 } 996 997 // p256GetBit returns the bit'th bit of scalar. 998 func p256GetBit(scalar *[32]uint8, bit uint) uint32 { 999 return uint32(((scalar[bit>>3]) >> (bit & 7)) & 1) 1000 } 1001 1002 // p256ScalarBaseMult sets {xOut,yOut,zOut} = scalar*G where scalar is a 1003 // little-endian number. Note that the value of scalar must be less than the 1004 // order of the group. 1005 func p256ScalarBaseMult(xOut, yOut, zOut *[p256Limbs]uint32, scalar *[32]uint8) { 1006 nIsInfinityMask := ^uint32(0) 1007 var pIsNoninfiniteMask, mask, tableOffset uint32 1008 var px, py, tx, ty, tz [p256Limbs]uint32 1009 1010 for i := range xOut { 1011 xOut[i] = 0 1012 } 1013 for i := range yOut { 1014 yOut[i] = 0 1015 } 1016 for i := range zOut { 1017 zOut[i] = 0 1018 } 1019 1020 // The loop adds bits at positions 0, 64, 128 and 192, followed by 1021 // positions 32,96,160 and 224 and does this 32 times. 1022 for i := uint(0); i < 32; i++ { 1023 if i != 0 { 1024 p256PointDouble(xOut, yOut, zOut, xOut, yOut, zOut) 1025 } 1026 tableOffset = 0 1027 for j := uint(0); j <= 32; j += 32 { 1028 bit0 := p256GetBit(scalar, 31-i+j) 1029 bit1 := p256GetBit(scalar, 95-i+j) 1030 bit2 := p256GetBit(scalar, 159-i+j) 1031 bit3 := p256GetBit(scalar, 223-i+j) 1032 index := bit0 | (bit1 << 1) | (bit2 << 2) | (bit3 << 3) 1033 1034 p256SelectAffinePoint(&px, &py, p256Precomputed[tableOffset:], index) 1035 tableOffset += 30 * p256Limbs 1036 1037 // Since scalar is less than the order of the group, we know that 1038 // {xOut,yOut,zOut} != {px,py,1}, unless both are zero, which we handle 1039 // below. 1040 p256PointAddMixed(&tx, &ty, &tz, xOut, yOut, zOut, &px, &py) 1041 // The result of pointAddMixed is incorrect if {xOut,yOut,zOut} is zero 1042 // (a.k.a. the point at infinity). We handle that situation by 1043 // copying the point from the table. 1044 p256CopyConditional(xOut, &px, nIsInfinityMask) 1045 p256CopyConditional(yOut, &py, nIsInfinityMask) 1046 p256CopyConditional(zOut, &p256One, nIsInfinityMask) 1047 1048 // Equally, the result is also wrong if the point from the table is 1049 // zero, which happens when the index is zero. We handle that by 1050 // only copying from {tx,ty,tz} to {xOut,yOut,zOut} if index != 0. 1051 pIsNoninfiniteMask = nonZeroToAllOnes(index) 1052 mask = pIsNoninfiniteMask & ^nIsInfinityMask 1053 p256CopyConditional(xOut, &tx, mask) 1054 p256CopyConditional(yOut, &ty, mask) 1055 p256CopyConditional(zOut, &tz, mask) 1056 // If p was not zero, then n is now non-zero. 1057 nIsInfinityMask &= ^pIsNoninfiniteMask 1058 } 1059 } 1060 } 1061 1062 // p256PointToAffine converts a Jacobian point to an affine point. If the input 1063 // is the point at infinity then it returns (0, 0) in constant time. 1064 func p256PointToAffine(xOut, yOut, x, y, z *[p256Limbs]uint32) { 1065 var zInv, zInvSq [p256Limbs]uint32 1066 1067 p256Invert(&zInv, z) 1068 p256Square(&zInvSq, &zInv) 1069 p256Mul(xOut, x, &zInvSq) 1070 p256Mul(&zInv, &zInv, &zInvSq) 1071 p256Mul(yOut, y, &zInv) 1072 } 1073 1074 // p256ToAffine returns a pair of *big.Int containing the affine representation 1075 // of {x,y,z}. 1076 func p256ToAffine(x, y, z *[p256Limbs]uint32) (xOut, yOut *big.Int) { 1077 var xx, yy [p256Limbs]uint32 1078 p256PointToAffine(&xx, &yy, x, y, z) 1079 return p256ToBig(&xx), p256ToBig(&yy) 1080 } 1081 1082 // p256ScalarMult sets {xOut,yOut,zOut} = scalar*{x,y}. 1083 func p256ScalarMult(xOut, yOut, zOut, x, y *[p256Limbs]uint32, scalar *[32]uint8) { 1084 var px, py, pz, tx, ty, tz [p256Limbs]uint32 1085 var precomp [16][3][p256Limbs]uint32 1086 var nIsInfinityMask, index, pIsNoninfiniteMask, mask uint32 1087 1088 // We precompute 0,1,2,... times {x,y}. 1089 precomp[1][0] = *x 1090 precomp[1][1] = *y 1091 precomp[1][2] = p256One 1092 1093 for i := 2; i < 16; i += 2 { 1094 p256PointDouble(&precomp[i][0], &precomp[i][1], &precomp[i][2], &precomp[i/2][0], &precomp[i/2][1], &precomp[i/2][2]) 1095 p256PointAddMixed(&precomp[i+1][0], &precomp[i+1][1], &precomp[i+1][2], &precomp[i][0], &precomp[i][1], &precomp[i][2], x, y) 1096 } 1097 1098 for i := range xOut { 1099 xOut[i] = 0 1100 } 1101 for i := range yOut { 1102 yOut[i] = 0 1103 } 1104 for i := range zOut { 1105 zOut[i] = 0 1106 } 1107 nIsInfinityMask = ^uint32(0) 1108 1109 // We add in a window of four bits each iteration and do this 64 times. 1110 for i := 0; i < 64; i++ { 1111 if i != 0 { 1112 p256PointDouble(xOut, yOut, zOut, xOut, yOut, zOut) 1113 p256PointDouble(xOut, yOut, zOut, xOut, yOut, zOut) 1114 p256PointDouble(xOut, yOut, zOut, xOut, yOut, zOut) 1115 p256PointDouble(xOut, yOut, zOut, xOut, yOut, zOut) 1116 } 1117 1118 index = uint32(scalar[31-i/2]) 1119 if (i & 1) == 1 { 1120 index &= 15 1121 } else { 1122 index >>= 4 1123 } 1124 1125 // See the comments in scalarBaseMult about handling infinities. 1126 p256SelectJacobianPoint(&px, &py, &pz, &precomp, index) 1127 p256PointAdd(&tx, &ty, &tz, xOut, yOut, zOut, &px, &py, &pz) 1128 p256CopyConditional(xOut, &px, nIsInfinityMask) 1129 p256CopyConditional(yOut, &py, nIsInfinityMask) 1130 p256CopyConditional(zOut, &pz, nIsInfinityMask) 1131 1132 pIsNoninfiniteMask = nonZeroToAllOnes(index) 1133 mask = pIsNoninfiniteMask & ^nIsInfinityMask 1134 p256CopyConditional(xOut, &tx, mask) 1135 p256CopyConditional(yOut, &ty, mask) 1136 p256CopyConditional(zOut, &tz, mask) 1137 nIsInfinityMask &= ^pIsNoninfiniteMask 1138 } 1139 } 1140 1141 // p256FromBig sets out = R*in. 1142 func p256FromBig(out *[p256Limbs]uint32, in *big.Int) { 1143 tmp := new(big.Int).Lsh(in, 257) 1144 tmp.Mod(tmp, p256.P) 1145 1146 for i := 0; i < p256Limbs; i++ { 1147 if bits := tmp.Bits(); len(bits) > 0 { 1148 out[i] = uint32(bits[0]) & bottom29Bits 1149 } else { 1150 out[i] = 0 1151 } 1152 tmp.Rsh(tmp, 29) 1153 1154 i++ 1155 if i == p256Limbs { 1156 break 1157 } 1158 1159 if bits := tmp.Bits(); len(bits) > 0 { 1160 out[i] = uint32(bits[0]) & bottom28Bits 1161 } else { 1162 out[i] = 0 1163 } 1164 tmp.Rsh(tmp, 28) 1165 } 1166 } 1167 1168 // p256ToBig returns a *big.Int containing the value of in. 1169 func p256ToBig(in *[p256Limbs]uint32) *big.Int { 1170 result, tmp := new(big.Int), new(big.Int) 1171 1172 result.SetInt64(int64(in[p256Limbs-1])) 1173 for i := p256Limbs - 2; i >= 0; i-- { 1174 if (i & 1) == 0 { 1175 result.Lsh(result, 29) 1176 } else { 1177 result.Lsh(result, 28) 1178 } 1179 tmp.SetInt64(int64(in[i])) 1180 result.Add(result, tmp) 1181 } 1182 1183 result.Mul(result, p256RInverse) 1184 result.Mod(result, p256.P) 1185 return result 1186 } 1187