Home | History | Annotate | Download | only in jpeg
      1 // Copyright 2012 The Go Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 package jpeg
      6 
      7 import (
      8 	"image"
      9 )
     10 
     11 // makeImg allocates and initializes the destination image.
     12 func (d *decoder) makeImg(mxx, myy int) {
     13 	if d.nComp == 1 {
     14 		m := image.NewGray(image.Rect(0, 0, 8*mxx, 8*myy))
     15 		d.img1 = m.SubImage(image.Rect(0, 0, d.width, d.height)).(*image.Gray)
     16 		return
     17 	}
     18 
     19 	h0 := d.comp[0].h
     20 	v0 := d.comp[0].v
     21 	hRatio := h0 / d.comp[1].h
     22 	vRatio := v0 / d.comp[1].v
     23 	var subsampleRatio image.YCbCrSubsampleRatio
     24 	switch hRatio<<4 | vRatio {
     25 	case 0x11:
     26 		subsampleRatio = image.YCbCrSubsampleRatio444
     27 	case 0x12:
     28 		subsampleRatio = image.YCbCrSubsampleRatio440
     29 	case 0x21:
     30 		subsampleRatio = image.YCbCrSubsampleRatio422
     31 	case 0x22:
     32 		subsampleRatio = image.YCbCrSubsampleRatio420
     33 	case 0x41:
     34 		subsampleRatio = image.YCbCrSubsampleRatio411
     35 	case 0x42:
     36 		subsampleRatio = image.YCbCrSubsampleRatio410
     37 	default:
     38 		panic("unreachable")
     39 	}
     40 	m := image.NewYCbCr(image.Rect(0, 0, 8*h0*mxx, 8*v0*myy), subsampleRatio)
     41 	d.img3 = m.SubImage(image.Rect(0, 0, d.width, d.height)).(*image.YCbCr)
     42 
     43 	if d.nComp == 4 {
     44 		h3, v3 := d.comp[3].h, d.comp[3].v
     45 		d.blackPix = make([]byte, 8*h3*mxx*8*v3*myy)
     46 		d.blackStride = 8 * h3 * mxx
     47 	}
     48 }
     49 
     50 // Specified in section B.2.3.
     51 func (d *decoder) processSOS(n int) error {
     52 	if d.nComp == 0 {
     53 		return FormatError("missing SOF marker")
     54 	}
     55 	if n < 6 || 4+2*d.nComp < n || n%2 != 0 {
     56 		return FormatError("SOS has wrong length")
     57 	}
     58 	if err := d.readFull(d.tmp[:n]); err != nil {
     59 		return err
     60 	}
     61 	nComp := int(d.tmp[0])
     62 	if n != 4+2*nComp {
     63 		return FormatError("SOS length inconsistent with number of components")
     64 	}
     65 	var scan [maxComponents]struct {
     66 		compIndex uint8
     67 		td        uint8 // DC table selector.
     68 		ta        uint8 // AC table selector.
     69 	}
     70 	totalHV := 0
     71 	for i := 0; i < nComp; i++ {
     72 		cs := d.tmp[1+2*i] // Component selector.
     73 		compIndex := -1
     74 		for j, comp := range d.comp[:d.nComp] {
     75 			if cs == comp.c {
     76 				compIndex = j
     77 			}
     78 		}
     79 		if compIndex < 0 {
     80 			return FormatError("unknown component selector")
     81 		}
     82 		scan[i].compIndex = uint8(compIndex)
     83 		// Section B.2.3 states that "the value of Cs_j shall be different from
     84 		// the values of Cs_1 through Cs_(j-1)". Since we have previously
     85 		// verified that a frame's component identifiers (C_i values in section
     86 		// B.2.2) are unique, it suffices to check that the implicit indexes
     87 		// into d.comp are unique.
     88 		for j := 0; j < i; j++ {
     89 			if scan[i].compIndex == scan[j].compIndex {
     90 				return FormatError("repeated component selector")
     91 			}
     92 		}
     93 		totalHV += d.comp[compIndex].h * d.comp[compIndex].v
     94 
     95 		scan[i].td = d.tmp[2+2*i] >> 4
     96 		if scan[i].td > maxTh {
     97 			return FormatError("bad Td value")
     98 		}
     99 		scan[i].ta = d.tmp[2+2*i] & 0x0f
    100 		if scan[i].ta > maxTh {
    101 			return FormatError("bad Ta value")
    102 		}
    103 	}
    104 	// Section B.2.3 states that if there is more than one component then the
    105 	// total H*V values in a scan must be <= 10.
    106 	if d.nComp > 1 && totalHV > 10 {
    107 		return FormatError("total sampling factors too large")
    108 	}
    109 
    110 	// zigStart and zigEnd are the spectral selection bounds.
    111 	// ah and al are the successive approximation high and low values.
    112 	// The spec calls these values Ss, Se, Ah and Al.
    113 	//
    114 	// For progressive JPEGs, these are the two more-or-less independent
    115 	// aspects of progression. Spectral selection progression is when not
    116 	// all of a block's 64 DCT coefficients are transmitted in one pass.
    117 	// For example, three passes could transmit coefficient 0 (the DC
    118 	// component), coefficients 1-5, and coefficients 6-63, in zig-zag
    119 	// order. Successive approximation is when not all of the bits of a
    120 	// band of coefficients are transmitted in one pass. For example,
    121 	// three passes could transmit the 6 most significant bits, followed
    122 	// by the second-least significant bit, followed by the least
    123 	// significant bit.
    124 	//
    125 	// For baseline JPEGs, these parameters are hard-coded to 0/63/0/0.
    126 	zigStart, zigEnd, ah, al := int32(0), int32(blockSize-1), uint32(0), uint32(0)
    127 	if d.progressive {
    128 		zigStart = int32(d.tmp[1+2*nComp])
    129 		zigEnd = int32(d.tmp[2+2*nComp])
    130 		ah = uint32(d.tmp[3+2*nComp] >> 4)
    131 		al = uint32(d.tmp[3+2*nComp] & 0x0f)
    132 		if (zigStart == 0 && zigEnd != 0) || zigStart > zigEnd || blockSize <= zigEnd {
    133 			return FormatError("bad spectral selection bounds")
    134 		}
    135 		if zigStart != 0 && nComp != 1 {
    136 			return FormatError("progressive AC coefficients for more than one component")
    137 		}
    138 		if ah != 0 && ah != al+1 {
    139 			return FormatError("bad successive approximation values")
    140 		}
    141 	}
    142 
    143 	// mxx and myy are the number of MCUs (Minimum Coded Units) in the image.
    144 	h0, v0 := d.comp[0].h, d.comp[0].v // The h and v values from the Y components.
    145 	mxx := (d.width + 8*h0 - 1) / (8 * h0)
    146 	myy := (d.height + 8*v0 - 1) / (8 * v0)
    147 	if d.img1 == nil && d.img3 == nil {
    148 		d.makeImg(mxx, myy)
    149 	}
    150 	if d.progressive {
    151 		for i := 0; i < nComp; i++ {
    152 			compIndex := scan[i].compIndex
    153 			if d.progCoeffs[compIndex] == nil {
    154 				d.progCoeffs[compIndex] = make([]block, mxx*myy*d.comp[compIndex].h*d.comp[compIndex].v)
    155 			}
    156 		}
    157 	}
    158 
    159 	d.bits = bits{}
    160 	mcu, expectedRST := 0, uint8(rst0Marker)
    161 	var (
    162 		// b is the decoded coefficients, in natural (not zig-zag) order.
    163 		b  block
    164 		dc [maxComponents]int32
    165 		// bx and by are the location of the current block, in units of 8x8
    166 		// blocks: the third block in the first row has (bx, by) = (2, 0).
    167 		bx, by     int
    168 		blockCount int
    169 	)
    170 	for my := 0; my < myy; my++ {
    171 		for mx := 0; mx < mxx; mx++ {
    172 			for i := 0; i < nComp; i++ {
    173 				compIndex := scan[i].compIndex
    174 				hi := d.comp[compIndex].h
    175 				vi := d.comp[compIndex].v
    176 				qt := &d.quant[d.comp[compIndex].tq]
    177 				for j := 0; j < hi*vi; j++ {
    178 					// The blocks are traversed one MCU at a time. For 4:2:0 chroma
    179 					// subsampling, there are four Y 8x8 blocks in every 16x16 MCU.
    180 					//
    181 					// For a baseline 32x16 pixel image, the Y blocks visiting order is:
    182 					//	0 1 4 5
    183 					//	2 3 6 7
    184 					//
    185 					// For progressive images, the interleaved scans (those with nComp > 1)
    186 					// are traversed as above, but non-interleaved scans are traversed left
    187 					// to right, top to bottom:
    188 					//	0 1 2 3
    189 					//	4 5 6 7
    190 					// Only DC scans (zigStart == 0) can be interleaved. AC scans must have
    191 					// only one component.
    192 					//
    193 					// To further complicate matters, for non-interleaved scans, there is no
    194 					// data for any blocks that are inside the image at the MCU level but
    195 					// outside the image at the pixel level. For example, a 24x16 pixel 4:2:0
    196 					// progressive image consists of two 16x16 MCUs. The interleaved scans
    197 					// will process 8 Y blocks:
    198 					//	0 1 4 5
    199 					//	2 3 6 7
    200 					// The non-interleaved scans will process only 6 Y blocks:
    201 					//	0 1 2
    202 					//	3 4 5
    203 					if nComp != 1 {
    204 						bx = hi*mx + j%hi
    205 						by = vi*my + j/hi
    206 					} else {
    207 						q := mxx * hi
    208 						bx = blockCount % q
    209 						by = blockCount / q
    210 						blockCount++
    211 						if bx*8 >= d.width || by*8 >= d.height {
    212 							continue
    213 						}
    214 					}
    215 
    216 					// Load the previous partially decoded coefficients, if applicable.
    217 					if d.progressive {
    218 						b = d.progCoeffs[compIndex][by*mxx*hi+bx]
    219 					} else {
    220 						b = block{}
    221 					}
    222 
    223 					if ah != 0 {
    224 						if err := d.refine(&b, &d.huff[acTable][scan[i].ta], zigStart, zigEnd, 1<<al); err != nil {
    225 							return err
    226 						}
    227 					} else {
    228 						zig := zigStart
    229 						if zig == 0 {
    230 							zig++
    231 							// Decode the DC coefficient, as specified in section F.2.2.1.
    232 							value, err := d.decodeHuffman(&d.huff[dcTable][scan[i].td])
    233 							if err != nil {
    234 								return err
    235 							}
    236 							if value > 16 {
    237 								return UnsupportedError("excessive DC component")
    238 							}
    239 							dcDelta, err := d.receiveExtend(value)
    240 							if err != nil {
    241 								return err
    242 							}
    243 							dc[compIndex] += dcDelta
    244 							b[0] = dc[compIndex] << al
    245 						}
    246 
    247 						if zig <= zigEnd && d.eobRun > 0 {
    248 							d.eobRun--
    249 						} else {
    250 							// Decode the AC coefficients, as specified in section F.2.2.2.
    251 							huff := &d.huff[acTable][scan[i].ta]
    252 							for ; zig <= zigEnd; zig++ {
    253 								value, err := d.decodeHuffman(huff)
    254 								if err != nil {
    255 									return err
    256 								}
    257 								val0 := value >> 4
    258 								val1 := value & 0x0f
    259 								if val1 != 0 {
    260 									zig += int32(val0)
    261 									if zig > zigEnd {
    262 										break
    263 									}
    264 									ac, err := d.receiveExtend(val1)
    265 									if err != nil {
    266 										return err
    267 									}
    268 									b[unzig[zig]] = ac << al
    269 								} else {
    270 									if val0 != 0x0f {
    271 										d.eobRun = uint16(1 << val0)
    272 										if val0 != 0 {
    273 											bits, err := d.decodeBits(int32(val0))
    274 											if err != nil {
    275 												return err
    276 											}
    277 											d.eobRun |= uint16(bits)
    278 										}
    279 										d.eobRun--
    280 										break
    281 									}
    282 									zig += 0x0f
    283 								}
    284 							}
    285 						}
    286 					}
    287 
    288 					if d.progressive {
    289 						if zigEnd != blockSize-1 || al != 0 {
    290 							// We haven't completely decoded this 8x8 block. Save the coefficients.
    291 							d.progCoeffs[compIndex][by*mxx*hi+bx] = b
    292 							// At this point, we could execute the rest of the loop body to dequantize and
    293 							// perform the inverse DCT, to save early stages of a progressive image to the
    294 							// *image.YCbCr buffers (the whole point of progressive encoding), but in Go,
    295 							// the jpeg.Decode function does not return until the entire image is decoded,
    296 							// so we "continue" here to avoid wasted computation.
    297 							continue
    298 						}
    299 					}
    300 
    301 					// Dequantize, perform the inverse DCT and store the block to the image.
    302 					for zig := 0; zig < blockSize; zig++ {
    303 						b[unzig[zig]] *= qt[zig]
    304 					}
    305 					idct(&b)
    306 					dst, stride := []byte(nil), 0
    307 					if d.nComp == 1 {
    308 						dst, stride = d.img1.Pix[8*(by*d.img1.Stride+bx):], d.img1.Stride
    309 					} else {
    310 						switch compIndex {
    311 						case 0:
    312 							dst, stride = d.img3.Y[8*(by*d.img3.YStride+bx):], d.img3.YStride
    313 						case 1:
    314 							dst, stride = d.img3.Cb[8*(by*d.img3.CStride+bx):], d.img3.CStride
    315 						case 2:
    316 							dst, stride = d.img3.Cr[8*(by*d.img3.CStride+bx):], d.img3.CStride
    317 						case 3:
    318 							dst, stride = d.blackPix[8*(by*d.blackStride+bx):], d.blackStride
    319 						default:
    320 							return UnsupportedError("too many components")
    321 						}
    322 					}
    323 					// Level shift by +128, clip to [0, 255], and write to dst.
    324 					for y := 0; y < 8; y++ {
    325 						y8 := y * 8
    326 						yStride := y * stride
    327 						for x := 0; x < 8; x++ {
    328 							c := b[y8+x]
    329 							if c < -128 {
    330 								c = 0
    331 							} else if c > 127 {
    332 								c = 255
    333 							} else {
    334 								c += 128
    335 							}
    336 							dst[yStride+x] = uint8(c)
    337 						}
    338 					}
    339 				} // for j
    340 			} // for i
    341 			mcu++
    342 			if d.ri > 0 && mcu%d.ri == 0 && mcu < mxx*myy {
    343 				// A more sophisticated decoder could use RST[0-7] markers to resynchronize from corrupt input,
    344 				// but this one assumes well-formed input, and hence the restart marker follows immediately.
    345 				if err := d.readFull(d.tmp[:2]); err != nil {
    346 					return err
    347 				}
    348 				if d.tmp[0] != 0xff || d.tmp[1] != expectedRST {
    349 					return FormatError("bad RST marker")
    350 				}
    351 				expectedRST++
    352 				if expectedRST == rst7Marker+1 {
    353 					expectedRST = rst0Marker
    354 				}
    355 				// Reset the Huffman decoder.
    356 				d.bits = bits{}
    357 				// Reset the DC components, as per section F.2.1.3.1.
    358 				dc = [maxComponents]int32{}
    359 				// Reset the progressive decoder state, as per section G.1.2.2.
    360 				d.eobRun = 0
    361 			}
    362 		} // for mx
    363 	} // for my
    364 
    365 	return nil
    366 }
    367 
    368 // refine decodes a successive approximation refinement block, as specified in
    369 // section G.1.2.
    370 func (d *decoder) refine(b *block, h *huffman, zigStart, zigEnd, delta int32) error {
    371 	// Refining a DC component is trivial.
    372 	if zigStart == 0 {
    373 		if zigEnd != 0 {
    374 			panic("unreachable")
    375 		}
    376 		bit, err := d.decodeBit()
    377 		if err != nil {
    378 			return err
    379 		}
    380 		if bit {
    381 			b[0] |= delta
    382 		}
    383 		return nil
    384 	}
    385 
    386 	// Refining AC components is more complicated; see sections G.1.2.2 and G.1.2.3.
    387 	zig := zigStart
    388 	if d.eobRun == 0 {
    389 	loop:
    390 		for ; zig <= zigEnd; zig++ {
    391 			z := int32(0)
    392 			value, err := d.decodeHuffman(h)
    393 			if err != nil {
    394 				return err
    395 			}
    396 			val0 := value >> 4
    397 			val1 := value & 0x0f
    398 
    399 			switch val1 {
    400 			case 0:
    401 				if val0 != 0x0f {
    402 					d.eobRun = uint16(1 << val0)
    403 					if val0 != 0 {
    404 						bits, err := d.decodeBits(int32(val0))
    405 						if err != nil {
    406 							return err
    407 						}
    408 						d.eobRun |= uint16(bits)
    409 					}
    410 					break loop
    411 				}
    412 			case 1:
    413 				z = delta
    414 				bit, err := d.decodeBit()
    415 				if err != nil {
    416 					return err
    417 				}
    418 				if !bit {
    419 					z = -z
    420 				}
    421 			default:
    422 				return FormatError("unexpected Huffman code")
    423 			}
    424 
    425 			zig, err = d.refineNonZeroes(b, zig, zigEnd, int32(val0), delta)
    426 			if err != nil {
    427 				return err
    428 			}
    429 			if zig > zigEnd {
    430 				return FormatError("too many coefficients")
    431 			}
    432 			if z != 0 {
    433 				b[unzig[zig]] = z
    434 			}
    435 		}
    436 	}
    437 	if d.eobRun > 0 {
    438 		d.eobRun--
    439 		if _, err := d.refineNonZeroes(b, zig, zigEnd, -1, delta); err != nil {
    440 			return err
    441 		}
    442 	}
    443 	return nil
    444 }
    445 
    446 // refineNonZeroes refines non-zero entries of b in zig-zag order. If nz >= 0,
    447 // the first nz zero entries are skipped over.
    448 func (d *decoder) refineNonZeroes(b *block, zig, zigEnd, nz, delta int32) (int32, error) {
    449 	for ; zig <= zigEnd; zig++ {
    450 		u := unzig[zig]
    451 		if b[u] == 0 {
    452 			if nz == 0 {
    453 				break
    454 			}
    455 			nz--
    456 			continue
    457 		}
    458 		bit, err := d.decodeBit()
    459 		if err != nil {
    460 			return 0, err
    461 		}
    462 		if !bit {
    463 			continue
    464 		}
    465 		if b[u] >= 0 {
    466 			b[u] += delta
    467 		} else {
    468 			b[u] -= delta
    469 		}
    470 	}
    471 	return zig, nil
    472 }
    473