Home | History | Annotate | Download | only in math
      1 // Copyright 2010 The Go Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 package math
      6 
      7 /*
      8 	Floating-point error function and complementary error function.
      9 */
     10 
     11 // The original C code and the long comment below are
     12 // from FreeBSD's /usr/src/lib/msun/src/s_erf.c and
     13 // came with this notice.  The go code is a simplified
     14 // version of the original C.
     15 //
     16 // ====================================================
     17 // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
     18 //
     19 // Developed at SunPro, a Sun Microsystems, Inc. business.
     20 // Permission to use, copy, modify, and distribute this
     21 // software is freely granted, provided that this notice
     22 // is preserved.
     23 // ====================================================
     24 //
     25 //
     26 // double erf(double x)
     27 // double erfc(double x)
     28 //                           x
     29 //                    2      |\
     30 //     erf(x)  =  ---------  | exp(-t*t)dt
     31 //                 sqrt(pi) \|
     32 //                           0
     33 //
     34 //     erfc(x) =  1-erf(x)
     35 //  Note that
     36 //              erf(-x) = -erf(x)
     37 //              erfc(-x) = 2 - erfc(x)
     38 //
     39 // Method:
     40 //      1. For |x| in [0, 0.84375]
     41 //          erf(x)  = x + x*R(x**2)
     42 //          erfc(x) = 1 - erf(x)           if x in [-.84375,0.25]
     43 //                  = 0.5 + ((0.5-x)-x*R)  if x in [0.25,0.84375]
     44 //         where R = P/Q where P is an odd poly of degree 8 and
     45 //         Q is an odd poly of degree 10.
     46 //                                               -57.90
     47 //                      | R - (erf(x)-x)/x | <= 2
     48 //
     49 //
     50 //         Remark. The formula is derived by noting
     51 //          erf(x) = (2/sqrt(pi))*(x - x**3/3 + x**5/10 - x**7/42 + ....)
     52 //         and that
     53 //          2/sqrt(pi) = 1.128379167095512573896158903121545171688
     54 //         is close to one. The interval is chosen because the fix
     55 //         point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
     56 //         near 0.6174), and by some experiment, 0.84375 is chosen to
     57 //         guarantee the error is less than one ulp for erf.
     58 //
     59 //      2. For |x| in [0.84375,1.25], let s = |x| - 1, and
     60 //         c = 0.84506291151 rounded to single (24 bits)
     61 //              erf(x)  = sign(x) * (c  + P1(s)/Q1(s))
     62 //              erfc(x) = (1-c)  - P1(s)/Q1(s) if x > 0
     63 //                        1+(c+P1(s)/Q1(s))    if x < 0
     64 //              |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
     65 //         Remark: here we use the taylor series expansion at x=1.
     66 //              erf(1+s) = erf(1) + s*Poly(s)
     67 //                       = 0.845.. + P1(s)/Q1(s)
     68 //         That is, we use rational approximation to approximate
     69 //                      erf(1+s) - (c = (single)0.84506291151)
     70 //         Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
     71 //         where
     72 //              P1(s) = degree 6 poly in s
     73 //              Q1(s) = degree 6 poly in s
     74 //
     75 //      3. For x in [1.25,1/0.35(~2.857143)],
     76 //              erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
     77 //              erf(x)  = 1 - erfc(x)
     78 //         where
     79 //              R1(z) = degree 7 poly in z, (z=1/x**2)
     80 //              S1(z) = degree 8 poly in z
     81 //
     82 //      4. For x in [1/0.35,28]
     83 //              erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
     84 //                      = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
     85 //                      = 2.0 - tiny            (if x <= -6)
     86 //              erf(x)  = sign(x)*(1.0 - erfc(x)) if x < 6, else
     87 //              erf(x)  = sign(x)*(1.0 - tiny)
     88 //         where
     89 //              R2(z) = degree 6 poly in z, (z=1/x**2)
     90 //              S2(z) = degree 7 poly in z
     91 //
     92 //      Note1:
     93 //         To compute exp(-x*x-0.5625+R/S), let s be a single
     94 //         precision number and s := x; then
     95 //              -x*x = -s*s + (s-x)*(s+x)
     96 //              exp(-x*x-0.5626+R/S) =
     97 //                      exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
     98 //      Note2:
     99 //         Here 4 and 5 make use of the asymptotic series
    100 //                        exp(-x*x)
    101 //              erfc(x) ~ ---------- * ( 1 + Poly(1/x**2) )
    102 //                        x*sqrt(pi)
    103 //         We use rational approximation to approximate
    104 //              g(s)=f(1/x**2) = log(erfc(x)*x) - x*x + 0.5625
    105 //         Here is the error bound for R1/S1 and R2/S2
    106 //              |R1/S1 - f(x)|  < 2**(-62.57)
    107 //              |R2/S2 - f(x)|  < 2**(-61.52)
    108 //
    109 //      5. For inf > x >= 28
    110 //              erf(x)  = sign(x) *(1 - tiny)  (raise inexact)
    111 //              erfc(x) = tiny*tiny (raise underflow) if x > 0
    112 //                      = 2 - tiny if x<0
    113 //
    114 //      7. Special case:
    115 //              erf(0)  = 0, erf(inf)  = 1, erf(-inf) = -1,
    116 //              erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
    117 //              erfc/erf(NaN) is NaN
    118 
    119 const (
    120 	erx = 8.45062911510467529297e-01 // 0x3FEB0AC160000000
    121 	// Coefficients for approximation to  erf in [0, 0.84375]
    122 	efx  = 1.28379167095512586316e-01  // 0x3FC06EBA8214DB69
    123 	efx8 = 1.02703333676410069053e+00  // 0x3FF06EBA8214DB69
    124 	pp0  = 1.28379167095512558561e-01  // 0x3FC06EBA8214DB68
    125 	pp1  = -3.25042107247001499370e-01 // 0xBFD4CD7D691CB913
    126 	pp2  = -2.84817495755985104766e-02 // 0xBF9D2A51DBD7194F
    127 	pp3  = -5.77027029648944159157e-03 // 0xBF77A291236668E4
    128 	pp4  = -2.37630166566501626084e-05 // 0xBEF8EAD6120016AC
    129 	qq1  = 3.97917223959155352819e-01  // 0x3FD97779CDDADC09
    130 	qq2  = 6.50222499887672944485e-02  // 0x3FB0A54C5536CEBA
    131 	qq3  = 5.08130628187576562776e-03  // 0x3F74D022C4D36B0F
    132 	qq4  = 1.32494738004321644526e-04  // 0x3F215DC9221C1A10
    133 	qq5  = -3.96022827877536812320e-06 // 0xBED09C4342A26120
    134 	// Coefficients for approximation to  erf  in [0.84375, 1.25]
    135 	pa0 = -2.36211856075265944077e-03 // 0xBF6359B8BEF77538
    136 	pa1 = 4.14856118683748331666e-01  // 0x3FDA8D00AD92B34D
    137 	pa2 = -3.72207876035701323847e-01 // 0xBFD7D240FBB8C3F1
    138 	pa3 = 3.18346619901161753674e-01  // 0x3FD45FCA805120E4
    139 	pa4 = -1.10894694282396677476e-01 // 0xBFBC63983D3E28EC
    140 	pa5 = 3.54783043256182359371e-02  // 0x3FA22A36599795EB
    141 	pa6 = -2.16637559486879084300e-03 // 0xBF61BF380A96073F
    142 	qa1 = 1.06420880400844228286e-01  // 0x3FBB3E6618EEE323
    143 	qa2 = 5.40397917702171048937e-01  // 0x3FE14AF092EB6F33
    144 	qa3 = 7.18286544141962662868e-02  // 0x3FB2635CD99FE9A7
    145 	qa4 = 1.26171219808761642112e-01  // 0x3FC02660E763351F
    146 	qa5 = 1.36370839120290507362e-02  // 0x3F8BEDC26B51DD1C
    147 	qa6 = 1.19844998467991074170e-02  // 0x3F888B545735151D
    148 	// Coefficients for approximation to  erfc in [1.25, 1/0.35]
    149 	ra0 = -9.86494403484714822705e-03 // 0xBF843412600D6435
    150 	ra1 = -6.93858572707181764372e-01 // 0xBFE63416E4BA7360
    151 	ra2 = -1.05586262253232909814e+01 // 0xC0251E0441B0E726
    152 	ra3 = -6.23753324503260060396e+01 // 0xC04F300AE4CBA38D
    153 	ra4 = -1.62396669462573470355e+02 // 0xC0644CB184282266
    154 	ra5 = -1.84605092906711035994e+02 // 0xC067135CEBCCABB2
    155 	ra6 = -8.12874355063065934246e+01 // 0xC054526557E4D2F2
    156 	ra7 = -9.81432934416914548592e+00 // 0xC023A0EFC69AC25C
    157 	sa1 = 1.96512716674392571292e+01  // 0x4033A6B9BD707687
    158 	sa2 = 1.37657754143519042600e+02  // 0x4061350C526AE721
    159 	sa3 = 4.34565877475229228821e+02  // 0x407B290DD58A1A71
    160 	sa4 = 6.45387271733267880336e+02  // 0x40842B1921EC2868
    161 	sa5 = 4.29008140027567833386e+02  // 0x407AD02157700314
    162 	sa6 = 1.08635005541779435134e+02  // 0x405B28A3EE48AE2C
    163 	sa7 = 6.57024977031928170135e+00  // 0x401A47EF8E484A93
    164 	sa8 = -6.04244152148580987438e-02 // 0xBFAEEFF2EE749A62
    165 	// Coefficients for approximation to  erfc in [1/.35, 28]
    166 	rb0 = -9.86494292470009928597e-03 // 0xBF84341239E86F4A
    167 	rb1 = -7.99283237680523006574e-01 // 0xBFE993BA70C285DE
    168 	rb2 = -1.77579549177547519889e+01 // 0xC031C209555F995A
    169 	rb3 = -1.60636384855821916062e+02 // 0xC064145D43C5ED98
    170 	rb4 = -6.37566443368389627722e+02 // 0xC083EC881375F228
    171 	rb5 = -1.02509513161107724954e+03 // 0xC09004616A2E5992
    172 	rb6 = -4.83519191608651397019e+02 // 0xC07E384E9BDC383F
    173 	sb1 = 3.03380607434824582924e+01  // 0x403E568B261D5190
    174 	sb2 = 3.25792512996573918826e+02  // 0x40745CAE221B9F0A
    175 	sb3 = 1.53672958608443695994e+03  // 0x409802EB189D5118
    176 	sb4 = 3.19985821950859553908e+03  // 0x40A8FFB7688C246A
    177 	sb5 = 2.55305040643316442583e+03  // 0x40A3F219CEDF3BE6
    178 	sb6 = 4.74528541206955367215e+02  // 0x407DA874E79FE763
    179 	sb7 = -2.24409524465858183362e+01 // 0xC03670E242712D62
    180 )
    181 
    182 // Erf returns the error function of x.
    183 //
    184 // Special cases are:
    185 //	Erf(+Inf) = 1
    186 //	Erf(-Inf) = -1
    187 //	Erf(NaN) = NaN
    188 func Erf(x float64) float64 {
    189 	const (
    190 		VeryTiny = 2.848094538889218e-306 // 0x0080000000000000
    191 		Small    = 1.0 / (1 << 28)        // 2**-28
    192 	)
    193 	// special cases
    194 	switch {
    195 	case IsNaN(x):
    196 		return NaN()
    197 	case IsInf(x, 1):
    198 		return 1
    199 	case IsInf(x, -1):
    200 		return -1
    201 	}
    202 	sign := false
    203 	if x < 0 {
    204 		x = -x
    205 		sign = true
    206 	}
    207 	if x < 0.84375 { // |x| < 0.84375
    208 		var temp float64
    209 		if x < Small { // |x| < 2**-28
    210 			if x < VeryTiny {
    211 				temp = 0.125 * (8.0*x + efx8*x) // avoid underflow
    212 			} else {
    213 				temp = x + efx*x
    214 			}
    215 		} else {
    216 			z := x * x
    217 			r := pp0 + z*(pp1+z*(pp2+z*(pp3+z*pp4)))
    218 			s := 1 + z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))))
    219 			y := r / s
    220 			temp = x + x*y
    221 		}
    222 		if sign {
    223 			return -temp
    224 		}
    225 		return temp
    226 	}
    227 	if x < 1.25 { // 0.84375 <= |x| < 1.25
    228 		s := x - 1
    229 		P := pa0 + s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))))
    230 		Q := 1 + s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))))
    231 		if sign {
    232 			return -erx - P/Q
    233 		}
    234 		return erx + P/Q
    235 	}
    236 	if x >= 6 { // inf > |x| >= 6
    237 		if sign {
    238 			return -1
    239 		}
    240 		return 1
    241 	}
    242 	s := 1 / (x * x)
    243 	var R, S float64
    244 	if x < 1/0.35 { // |x| < 1 / 0.35  ~ 2.857143
    245 		R = ra0 + s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(ra5+s*(ra6+s*ra7))))))
    246 		S = 1 + s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(sa5+s*(sa6+s*(sa7+s*sa8)))))))
    247 	} else { // |x| >= 1 / 0.35  ~ 2.857143
    248 		R = rb0 + s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+s*rb6)))))
    249 		S = 1 + s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(sb5+s*(sb6+s*sb7))))))
    250 	}
    251 	z := Float64frombits(Float64bits(x) & 0xffffffff00000000) // pseudo-single (20-bit) precision x
    252 	r := Exp(-z*z-0.5625) * Exp((z-x)*(z+x)+R/S)
    253 	if sign {
    254 		return r/x - 1
    255 	}
    256 	return 1 - r/x
    257 }
    258 
    259 // Erfc returns the complementary error function of x.
    260 //
    261 // Special cases are:
    262 //	Erfc(+Inf) = 0
    263 //	Erfc(-Inf) = 2
    264 //	Erfc(NaN) = NaN
    265 func Erfc(x float64) float64 {
    266 	const Tiny = 1.0 / (1 << 56) // 2**-56
    267 	// special cases
    268 	switch {
    269 	case IsNaN(x):
    270 		return NaN()
    271 	case IsInf(x, 1):
    272 		return 0
    273 	case IsInf(x, -1):
    274 		return 2
    275 	}
    276 	sign := false
    277 	if x < 0 {
    278 		x = -x
    279 		sign = true
    280 	}
    281 	if x < 0.84375 { // |x| < 0.84375
    282 		var temp float64
    283 		if x < Tiny { // |x| < 2**-56
    284 			temp = x
    285 		} else {
    286 			z := x * x
    287 			r := pp0 + z*(pp1+z*(pp2+z*(pp3+z*pp4)))
    288 			s := 1 + z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))))
    289 			y := r / s
    290 			if x < 0.25 { // |x| < 1/4
    291 				temp = x + x*y
    292 			} else {
    293 				temp = 0.5 + (x*y + (x - 0.5))
    294 			}
    295 		}
    296 		if sign {
    297 			return 1 + temp
    298 		}
    299 		return 1 - temp
    300 	}
    301 	if x < 1.25 { // 0.84375 <= |x| < 1.25
    302 		s := x - 1
    303 		P := pa0 + s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))))
    304 		Q := 1 + s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))))
    305 		if sign {
    306 			return 1 + erx + P/Q
    307 		}
    308 		return 1 - erx - P/Q
    309 
    310 	}
    311 	if x < 28 { // |x| < 28
    312 		s := 1 / (x * x)
    313 		var R, S float64
    314 		if x < 1/0.35 { // |x| < 1 / 0.35 ~ 2.857143
    315 			R = ra0 + s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(ra5+s*(ra6+s*ra7))))))
    316 			S = 1 + s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(sa5+s*(sa6+s*(sa7+s*sa8)))))))
    317 		} else { // |x| >= 1 / 0.35 ~ 2.857143
    318 			if sign && x > 6 {
    319 				return 2 // x < -6
    320 			}
    321 			R = rb0 + s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+s*rb6)))))
    322 			S = 1 + s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(sb5+s*(sb6+s*sb7))))))
    323 		}
    324 		z := Float64frombits(Float64bits(x) & 0xffffffff00000000) // pseudo-single (20-bit) precision x
    325 		r := Exp(-z*z-0.5625) * Exp((z-x)*(z+x)+R/S)
    326 		if sign {
    327 			return 2 - r/x
    328 		}
    329 		return r / x
    330 	}
    331 	if sign {
    332 		return 2
    333 	}
    334 	return 0
    335 }
    336