Home | History | Annotate | Download | only in math
      1 // Copyright 2010 The Go Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 package math
      6 
      7 /*
      8 	Bessel function of the first and second kinds of order one.
      9 */
     10 
     11 // The original C code and the long comment below are
     12 // from FreeBSD's /usr/src/lib/msun/src/e_j1.c and
     13 // came with this notice.  The go code is a simplified
     14 // version of the original C.
     15 //
     16 // ====================================================
     17 // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
     18 //
     19 // Developed at SunPro, a Sun Microsystems, Inc. business.
     20 // Permission to use, copy, modify, and distribute this
     21 // software is freely granted, provided that this notice
     22 // is preserved.
     23 // ====================================================
     24 //
     25 // __ieee754_j1(x), __ieee754_y1(x)
     26 // Bessel function of the first and second kinds of order one.
     27 // Method -- j1(x):
     28 //      1. For tiny x, we use j1(x) = x/2 - x**3/16 + x**5/384 - ...
     29 //      2. Reduce x to |x| since j1(x)=-j1(-x),  and
     30 //         for x in (0,2)
     31 //              j1(x) = x/2 + x*z*R0/S0,  where z = x*x;
     32 //         (precision:  |j1/x - 1/2 - R0/S0 |<2**-61.51 )
     33 //         for x in (2,inf)
     34 //              j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1))
     35 //              y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
     36 //         where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
     37 //         as follow:
     38 //              cos(x1) =  cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
     39 //                      =  1/sqrt(2) * (sin(x) - cos(x))
     40 //              sin(x1) =  sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
     41 //                      = -1/sqrt(2) * (sin(x) + cos(x))
     42 //         (To avoid cancellation, use
     43 //              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
     44 //         to compute the worse one.)
     45 //
     46 //      3 Special cases
     47 //              j1(nan)= nan
     48 //              j1(0) = 0
     49 //              j1(inf) = 0
     50 //
     51 // Method -- y1(x):
     52 //      1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN
     53 //      2. For x<2.
     54 //         Since
     55 //              y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x**3-...)
     56 //         therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function.
     57 //         We use the following function to approximate y1,
     58 //              y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x**2
     59 //         where for x in [0,2] (abs err less than 2**-65.89)
     60 //              U(z) = U0[0] + U0[1]*z + ... + U0[4]*z**4
     61 //              V(z) = 1  + v0[0]*z + ... + v0[4]*z**5
     62 //         Note: For tiny x, 1/x dominate y1 and hence
     63 //              y1(tiny) = -2/pi/tiny, (choose tiny<2**-54)
     64 //      3. For x>=2.
     65 //               y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
     66 //         where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
     67 //         by method mentioned above.
     68 
     69 // J1 returns the order-one Bessel function of the first kind.
     70 //
     71 // Special cases are:
     72 //	J1(Inf) = 0
     73 //	J1(NaN) = NaN
     74 func J1(x float64) float64 {
     75 	const (
     76 		TwoM27 = 1.0 / (1 << 27) // 2**-27 0x3e40000000000000
     77 		Two129 = 1 << 129        // 2**129 0x4800000000000000
     78 		// R0/S0 on [0, 2]
     79 		R00 = -6.25000000000000000000e-02 // 0xBFB0000000000000
     80 		R01 = 1.40705666955189706048e-03  // 0x3F570D9F98472C61
     81 		R02 = -1.59955631084035597520e-05 // 0xBEF0C5C6BA169668
     82 		R03 = 4.96727999609584448412e-08  // 0x3E6AAAFA46CA0BD9
     83 		S01 = 1.91537599538363460805e-02  // 0x3F939D0B12637E53
     84 		S02 = 1.85946785588630915560e-04  // 0x3F285F56B9CDF664
     85 		S03 = 1.17718464042623683263e-06  // 0x3EB3BFF8333F8498
     86 		S04 = 5.04636257076217042715e-09  // 0x3E35AC88C97DFF2C
     87 		S05 = 1.23542274426137913908e-11  // 0x3DAB2ACFCFB97ED8
     88 	)
     89 	// special cases
     90 	switch {
     91 	case IsNaN(x):
     92 		return x
     93 	case IsInf(x, 0) || x == 0:
     94 		return 0
     95 	}
     96 
     97 	sign := false
     98 	if x < 0 {
     99 		x = -x
    100 		sign = true
    101 	}
    102 	if x >= 2 {
    103 		s, c := Sincos(x)
    104 		ss := -s - c
    105 		cc := s - c
    106 
    107 		// make sure x+x does not overflow
    108 		if x < MaxFloat64/2 {
    109 			z := Cos(x + x)
    110 			if s*c > 0 {
    111 				cc = z / ss
    112 			} else {
    113 				ss = z / cc
    114 			}
    115 		}
    116 
    117 		// j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
    118 		// y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
    119 
    120 		var z float64
    121 		if x > Two129 {
    122 			z = (1 / SqrtPi) * cc / Sqrt(x)
    123 		} else {
    124 			u := pone(x)
    125 			v := qone(x)
    126 			z = (1 / SqrtPi) * (u*cc - v*ss) / Sqrt(x)
    127 		}
    128 		if sign {
    129 			return -z
    130 		}
    131 		return z
    132 	}
    133 	if x < TwoM27 { // |x|<2**-27
    134 		return 0.5 * x // inexact if x!=0 necessary
    135 	}
    136 	z := x * x
    137 	r := z * (R00 + z*(R01+z*(R02+z*R03)))
    138 	s := 1.0 + z*(S01+z*(S02+z*(S03+z*(S04+z*S05))))
    139 	r *= x
    140 	z = 0.5*x + r/s
    141 	if sign {
    142 		return -z
    143 	}
    144 	return z
    145 }
    146 
    147 // Y1 returns the order-one Bessel function of the second kind.
    148 //
    149 // Special cases are:
    150 //	Y1(+Inf) = 0
    151 //	Y1(0) = -Inf
    152 //	Y1(x < 0) = NaN
    153 //	Y1(NaN) = NaN
    154 func Y1(x float64) float64 {
    155 	const (
    156 		TwoM54 = 1.0 / (1 << 54)             // 2**-54 0x3c90000000000000
    157 		Two129 = 1 << 129                    // 2**129 0x4800000000000000
    158 		U00    = -1.96057090646238940668e-01 // 0xBFC91866143CBC8A
    159 		U01    = 5.04438716639811282616e-02  // 0x3FA9D3C776292CD1
    160 		U02    = -1.91256895875763547298e-03 // 0xBF5F55E54844F50F
    161 		U03    = 2.35252600561610495928e-05  // 0x3EF8AB038FA6B88E
    162 		U04    = -9.19099158039878874504e-08 // 0xBE78AC00569105B8
    163 		V00    = 1.99167318236649903973e-02  // 0x3F94650D3F4DA9F0
    164 		V01    = 2.02552581025135171496e-04  // 0x3F2A8C896C257764
    165 		V02    = 1.35608801097516229404e-06  // 0x3EB6C05A894E8CA6
    166 		V03    = 6.22741452364621501295e-09  // 0x3E3ABF1D5BA69A86
    167 		V04    = 1.66559246207992079114e-11  // 0x3DB25039DACA772A
    168 	)
    169 	// special cases
    170 	switch {
    171 	case x < 0 || IsNaN(x):
    172 		return NaN()
    173 	case IsInf(x, 1):
    174 		return 0
    175 	case x == 0:
    176 		return Inf(-1)
    177 	}
    178 
    179 	if x >= 2 {
    180 		s, c := Sincos(x)
    181 		ss := -s - c
    182 		cc := s - c
    183 
    184 		// make sure x+x does not overflow
    185 		if x < MaxFloat64/2 {
    186 			z := Cos(x + x)
    187 			if s*c > 0 {
    188 				cc = z / ss
    189 			} else {
    190 				ss = z / cc
    191 			}
    192 		}
    193 		// y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
    194 		// where x0 = x-3pi/4
    195 		//     Better formula:
    196 		//         cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
    197 		//                 =  1/sqrt(2) * (sin(x) - cos(x))
    198 		//         sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
    199 		//                 = -1/sqrt(2) * (cos(x) + sin(x))
    200 		// To avoid cancellation, use
    201 		//     sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
    202 		// to compute the worse one.
    203 
    204 		var z float64
    205 		if x > Two129 {
    206 			z = (1 / SqrtPi) * ss / Sqrt(x)
    207 		} else {
    208 			u := pone(x)
    209 			v := qone(x)
    210 			z = (1 / SqrtPi) * (u*ss + v*cc) / Sqrt(x)
    211 		}
    212 		return z
    213 	}
    214 	if x <= TwoM54 { // x < 2**-54
    215 		return -(2 / Pi) / x
    216 	}
    217 	z := x * x
    218 	u := U00 + z*(U01+z*(U02+z*(U03+z*U04)))
    219 	v := 1 + z*(V00+z*(V01+z*(V02+z*(V03+z*V04))))
    220 	return x*(u/v) + (2/Pi)*(J1(x)*Log(x)-1/x)
    221 }
    222 
    223 // For x >= 8, the asymptotic expansions of pone is
    224 //      1 + 15/128 s**2 - 4725/2**15 s**4 - ..., where s = 1/x.
    225 // We approximate pone by
    226 //      pone(x) = 1 + (R/S)
    227 // where R = pr0 + pr1*s**2 + pr2*s**4 + ... + pr5*s**10
    228 //       S = 1 + ps0*s**2 + ... + ps4*s**10
    229 // and
    230 //      | pone(x)-1-R/S | <= 2**(-60.06)
    231 
    232 // for x in [inf, 8]=1/[0,0.125]
    233 var p1R8 = [6]float64{
    234 	0.00000000000000000000e+00, // 0x0000000000000000
    235 	1.17187499999988647970e-01, // 0x3FBDFFFFFFFFFCCE
    236 	1.32394806593073575129e+01, // 0x402A7A9D357F7FCE
    237 	4.12051854307378562225e+02, // 0x4079C0D4652EA590
    238 	3.87474538913960532227e+03, // 0x40AE457DA3A532CC
    239 	7.91447954031891731574e+03, // 0x40BEEA7AC32782DD
    240 }
    241 var p1S8 = [5]float64{
    242 	1.14207370375678408436e+02, // 0x405C8D458E656CAC
    243 	3.65093083420853463394e+03, // 0x40AC85DC964D274F
    244 	3.69562060269033463555e+04, // 0x40E20B8697C5BB7F
    245 	9.76027935934950801311e+04, // 0x40F7D42CB28F17BB
    246 	3.08042720627888811578e+04, // 0x40DE1511697A0B2D
    247 }
    248 
    249 // for x in [8,4.5454] = 1/[0.125,0.22001]
    250 var p1R5 = [6]float64{
    251 	1.31990519556243522749e-11, // 0x3DAD0667DAE1CA7D
    252 	1.17187493190614097638e-01, // 0x3FBDFFFFE2C10043
    253 	6.80275127868432871736e+00, // 0x401B36046E6315E3
    254 	1.08308182990189109773e+02, // 0x405B13B9452602ED
    255 	5.17636139533199752805e+02, // 0x40802D16D052D649
    256 	5.28715201363337541807e+02, // 0x408085B8BB7E0CB7
    257 }
    258 var p1S5 = [5]float64{
    259 	5.92805987221131331921e+01, // 0x404DA3EAA8AF633D
    260 	9.91401418733614377743e+02, // 0x408EFB361B066701
    261 	5.35326695291487976647e+03, // 0x40B4E9445706B6FB
    262 	7.84469031749551231769e+03, // 0x40BEA4B0B8A5BB15
    263 	1.50404688810361062679e+03, // 0x40978030036F5E51
    264 }
    265 
    266 // for x in[4.5453,2.8571] = 1/[0.2199,0.35001]
    267 var p1R3 = [6]float64{
    268 	3.02503916137373618024e-09, // 0x3E29FC21A7AD9EDD
    269 	1.17186865567253592491e-01, // 0x3FBDFFF55B21D17B
    270 	3.93297750033315640650e+00, // 0x400F76BCE85EAD8A
    271 	3.51194035591636932736e+01, // 0x40418F489DA6D129
    272 	9.10550110750781271918e+01, // 0x4056C3854D2C1837
    273 	4.85590685197364919645e+01, // 0x4048478F8EA83EE5
    274 }
    275 var p1S3 = [5]float64{
    276 	3.47913095001251519989e+01, // 0x40416549A134069C
    277 	3.36762458747825746741e+02, // 0x40750C3307F1A75F
    278 	1.04687139975775130551e+03, // 0x40905B7C5037D523
    279 	8.90811346398256432622e+02, // 0x408BD67DA32E31E9
    280 	1.03787932439639277504e+02, // 0x4059F26D7C2EED53
    281 }
    282 
    283 // for x in [2.8570,2] = 1/[0.3499,0.5]
    284 var p1R2 = [6]float64{
    285 	1.07710830106873743082e-07, // 0x3E7CE9D4F65544F4
    286 	1.17176219462683348094e-01, // 0x3FBDFF42BE760D83
    287 	2.36851496667608785174e+00, // 0x4002F2B7F98FAEC0
    288 	1.22426109148261232917e+01, // 0x40287C377F71A964
    289 	1.76939711271687727390e+01, // 0x4031B1A8177F8EE2
    290 	5.07352312588818499250e+00, // 0x40144B49A574C1FE
    291 }
    292 var p1S2 = [5]float64{
    293 	2.14364859363821409488e+01, // 0x40356FBD8AD5ECDC
    294 	1.25290227168402751090e+02, // 0x405F529314F92CD5
    295 	2.32276469057162813669e+02, // 0x406D08D8D5A2DBD9
    296 	1.17679373287147100768e+02, // 0x405D6B7ADA1884A9
    297 	8.36463893371618283368e+00, // 0x4020BAB1F44E5192
    298 }
    299 
    300 func pone(x float64) float64 {
    301 	var p [6]float64
    302 	var q [5]float64
    303 	if x >= 8 {
    304 		p = p1R8
    305 		q = p1S8
    306 	} else if x >= 4.5454 {
    307 		p = p1R5
    308 		q = p1S5
    309 	} else if x >= 2.8571 {
    310 		p = p1R3
    311 		q = p1S3
    312 	} else if x >= 2 {
    313 		p = p1R2
    314 		q = p1S2
    315 	}
    316 	z := 1 / (x * x)
    317 	r := p[0] + z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))))
    318 	s := 1.0 + z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))))
    319 	return 1 + r/s
    320 }
    321 
    322 // For x >= 8, the asymptotic expansions of qone is
    323 //      3/8 s - 105/1024 s**3 - ..., where s = 1/x.
    324 // We approximate qone by
    325 //      qone(x) = s*(0.375 + (R/S))
    326 // where R = qr1*s**2 + qr2*s**4 + ... + qr5*s**10
    327 //       S = 1 + qs1*s**2 + ... + qs6*s**12
    328 // and
    329 //      | qone(x)/s -0.375-R/S | <= 2**(-61.13)
    330 
    331 // for x in [inf, 8] = 1/[0,0.125]
    332 var q1R8 = [6]float64{
    333 	0.00000000000000000000e+00,  // 0x0000000000000000
    334 	-1.02539062499992714161e-01, // 0xBFBA3FFFFFFFFDF3
    335 	-1.62717534544589987888e+01, // 0xC0304591A26779F7
    336 	-7.59601722513950107896e+02, // 0xC087BCD053E4B576
    337 	-1.18498066702429587167e+04, // 0xC0C724E740F87415
    338 	-4.84385124285750353010e+04, // 0xC0E7A6D065D09C6A
    339 }
    340 var q1S8 = [6]float64{
    341 	1.61395369700722909556e+02,  // 0x40642CA6DE5BCDE5
    342 	7.82538599923348465381e+03,  // 0x40BE9162D0D88419
    343 	1.33875336287249578163e+05,  // 0x4100579AB0B75E98
    344 	7.19657723683240939863e+05,  // 0x4125F65372869C19
    345 	6.66601232617776375264e+05,  // 0x412457D27719AD5C
    346 	-2.94490264303834643215e+05, // 0xC111F9690EA5AA18
    347 }
    348 
    349 // for x in [8,4.5454] = 1/[0.125,0.22001]
    350 var q1R5 = [6]float64{
    351 	-2.08979931141764104297e-11, // 0xBDB6FA431AA1A098
    352 	-1.02539050241375426231e-01, // 0xBFBA3FFFCB597FEF
    353 	-8.05644828123936029840e+00, // 0xC0201CE6CA03AD4B
    354 	-1.83669607474888380239e+02, // 0xC066F56D6CA7B9B0
    355 	-1.37319376065508163265e+03, // 0xC09574C66931734F
    356 	-2.61244440453215656817e+03, // 0xC0A468E388FDA79D
    357 }
    358 var q1S5 = [6]float64{
    359 	8.12765501384335777857e+01,  // 0x405451B2FF5A11B2
    360 	1.99179873460485964642e+03,  // 0x409F1F31E77BF839
    361 	1.74684851924908907677e+04,  // 0x40D10F1F0D64CE29
    362 	4.98514270910352279316e+04,  // 0x40E8576DAABAD197
    363 	2.79480751638918118260e+04,  // 0x40DB4B04CF7C364B
    364 	-4.71918354795128470869e+03, // 0xC0B26F2EFCFFA004
    365 }
    366 
    367 // for x in [4.5454,2.8571] = 1/[0.2199,0.35001] ???
    368 var q1R3 = [6]float64{
    369 	-5.07831226461766561369e-09, // 0xBE35CFA9D38FC84F
    370 	-1.02537829820837089745e-01, // 0xBFBA3FEB51AEED54
    371 	-4.61011581139473403113e+00, // 0xC01270C23302D9FF
    372 	-5.78472216562783643212e+01, // 0xC04CEC71C25D16DA
    373 	-2.28244540737631695038e+02, // 0xC06C87D34718D55F
    374 	-2.19210128478909325622e+02, // 0xC06B66B95F5C1BF6
    375 }
    376 var q1S3 = [6]float64{
    377 	4.76651550323729509273e+01,  // 0x4047D523CCD367E4
    378 	6.73865112676699709482e+02,  // 0x40850EEBC031EE3E
    379 	3.38015286679526343505e+03,  // 0x40AA684E448E7C9A
    380 	5.54772909720722782367e+03,  // 0x40B5ABBAA61D54A6
    381 	1.90311919338810798763e+03,  // 0x409DBC7A0DD4DF4B
    382 	-1.35201191444307340817e+02, // 0xC060E670290A311F
    383 }
    384 
    385 // for x in [2.8570,2] = 1/[0.3499,0.5]
    386 var q1R2 = [6]float64{
    387 	-1.78381727510958865572e-07, // 0xBE87F12644C626D2
    388 	-1.02517042607985553460e-01, // 0xBFBA3E8E9148B010
    389 	-2.75220568278187460720e+00, // 0xC006048469BB4EDA
    390 	-1.96636162643703720221e+01, // 0xC033A9E2C168907F
    391 	-4.23253133372830490089e+01, // 0xC04529A3DE104AAA
    392 	-2.13719211703704061733e+01, // 0xC0355F3639CF6E52
    393 }
    394 var q1S2 = [6]float64{
    395 	2.95333629060523854548e+01,  // 0x403D888A78AE64FF
    396 	2.52981549982190529136e+02,  // 0x406F9F68DB821CBA
    397 	7.57502834868645436472e+02,  // 0x4087AC05CE49A0F7
    398 	7.39393205320467245656e+02,  // 0x40871B2548D4C029
    399 	1.55949003336666123687e+02,  // 0x40637E5E3C3ED8D4
    400 	-4.95949898822628210127e+00, // 0xC013D686E71BE86B
    401 }
    402 
    403 func qone(x float64) float64 {
    404 	var p, q [6]float64
    405 	if x >= 8 {
    406 		p = q1R8
    407 		q = q1S8
    408 	} else if x >= 4.5454 {
    409 		p = q1R5
    410 		q = q1S5
    411 	} else if x >= 2.8571 {
    412 		p = q1R3
    413 		q = q1S3
    414 	} else if x >= 2 {
    415 		p = q1R2
    416 		q = q1S2
    417 	}
    418 	z := 1 / (x * x)
    419 	r := p[0] + z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))))
    420 	s := 1 + z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))))
    421 	return (0.375 + r/s) / x
    422 }
    423