1 // Copyright 2011 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package syntax 6 7 import ( 8 "sort" 9 "strings" 10 "unicode" 11 "unicode/utf8" 12 ) 13 14 // An Error describes a failure to parse a regular expression 15 // and gives the offending expression. 16 type Error struct { 17 Code ErrorCode 18 Expr string 19 } 20 21 func (e *Error) Error() string { 22 return "error parsing regexp: " + e.Code.String() + ": `" + e.Expr + "`" 23 } 24 25 // An ErrorCode describes a failure to parse a regular expression. 26 type ErrorCode string 27 28 const ( 29 // Unexpected error 30 ErrInternalError ErrorCode = "regexp/syntax: internal error" 31 32 // Parse errors 33 ErrInvalidCharClass ErrorCode = "invalid character class" 34 ErrInvalidCharRange ErrorCode = "invalid character class range" 35 ErrInvalidEscape ErrorCode = "invalid escape sequence" 36 ErrInvalidNamedCapture ErrorCode = "invalid named capture" 37 ErrInvalidPerlOp ErrorCode = "invalid or unsupported Perl syntax" 38 ErrInvalidRepeatOp ErrorCode = "invalid nested repetition operator" 39 ErrInvalidRepeatSize ErrorCode = "invalid repeat count" 40 ErrInvalidUTF8 ErrorCode = "invalid UTF-8" 41 ErrMissingBracket ErrorCode = "missing closing ]" 42 ErrMissingParen ErrorCode = "missing closing )" 43 ErrMissingRepeatArgument ErrorCode = "missing argument to repetition operator" 44 ErrTrailingBackslash ErrorCode = "trailing backslash at end of expression" 45 ErrUnexpectedParen ErrorCode = "unexpected )" 46 ) 47 48 func (e ErrorCode) String() string { 49 return string(e) 50 } 51 52 // Flags control the behavior of the parser and record information about regexp context. 53 type Flags uint16 54 55 const ( 56 FoldCase Flags = 1 << iota // case-insensitive match 57 Literal // treat pattern as literal string 58 ClassNL // allow character classes like [^a-z] and [[:space:]] to match newline 59 DotNL // allow . to match newline 60 OneLine // treat ^ and $ as only matching at beginning and end of text 61 NonGreedy // make repetition operators default to non-greedy 62 PerlX // allow Perl extensions 63 UnicodeGroups // allow \p{Han}, \P{Han} for Unicode group and negation 64 WasDollar // regexp OpEndText was $, not \z 65 Simple // regexp contains no counted repetition 66 67 MatchNL = ClassNL | DotNL 68 69 Perl = ClassNL | OneLine | PerlX | UnicodeGroups // as close to Perl as possible 70 POSIX Flags = 0 // POSIX syntax 71 ) 72 73 // Pseudo-ops for parsing stack. 74 const ( 75 opLeftParen = opPseudo + iota 76 opVerticalBar 77 ) 78 79 type parser struct { 80 flags Flags // parse mode flags 81 stack []*Regexp // stack of parsed expressions 82 free *Regexp 83 numCap int // number of capturing groups seen 84 wholeRegexp string 85 tmpClass []rune // temporary char class work space 86 } 87 88 func (p *parser) newRegexp(op Op) *Regexp { 89 re := p.free 90 if re != nil { 91 p.free = re.Sub0[0] 92 *re = Regexp{} 93 } else { 94 re = new(Regexp) 95 } 96 re.Op = op 97 return re 98 } 99 100 func (p *parser) reuse(re *Regexp) { 101 re.Sub0[0] = p.free 102 p.free = re 103 } 104 105 // Parse stack manipulation. 106 107 // push pushes the regexp re onto the parse stack and returns the regexp. 108 func (p *parser) push(re *Regexp) *Regexp { 109 if re.Op == OpCharClass && len(re.Rune) == 2 && re.Rune[0] == re.Rune[1] { 110 // Single rune. 111 if p.maybeConcat(re.Rune[0], p.flags&^FoldCase) { 112 return nil 113 } 114 re.Op = OpLiteral 115 re.Rune = re.Rune[:1] 116 re.Flags = p.flags &^ FoldCase 117 } else if re.Op == OpCharClass && len(re.Rune) == 4 && 118 re.Rune[0] == re.Rune[1] && re.Rune[2] == re.Rune[3] && 119 unicode.SimpleFold(re.Rune[0]) == re.Rune[2] && 120 unicode.SimpleFold(re.Rune[2]) == re.Rune[0] || 121 re.Op == OpCharClass && len(re.Rune) == 2 && 122 re.Rune[0]+1 == re.Rune[1] && 123 unicode.SimpleFold(re.Rune[0]) == re.Rune[1] && 124 unicode.SimpleFold(re.Rune[1]) == re.Rune[0] { 125 // Case-insensitive rune like [Aa] or []. 126 if p.maybeConcat(re.Rune[0], p.flags|FoldCase) { 127 return nil 128 } 129 130 // Rewrite as (case-insensitive) literal. 131 re.Op = OpLiteral 132 re.Rune = re.Rune[:1] 133 re.Flags = p.flags | FoldCase 134 } else { 135 // Incremental concatenation. 136 p.maybeConcat(-1, 0) 137 } 138 139 p.stack = append(p.stack, re) 140 return re 141 } 142 143 // maybeConcat implements incremental concatenation 144 // of literal runes into string nodes. The parser calls this 145 // before each push, so only the top fragment of the stack 146 // might need processing. Since this is called before a push, 147 // the topmost literal is no longer subject to operators like * 148 // (Otherwise ab* would turn into (ab)*.) 149 // If r >= 0 and there's a node left over, maybeConcat uses it 150 // to push r with the given flags. 151 // maybeConcat reports whether r was pushed. 152 func (p *parser) maybeConcat(r rune, flags Flags) bool { 153 n := len(p.stack) 154 if n < 2 { 155 return false 156 } 157 158 re1 := p.stack[n-1] 159 re2 := p.stack[n-2] 160 if re1.Op != OpLiteral || re2.Op != OpLiteral || re1.Flags&FoldCase != re2.Flags&FoldCase { 161 return false 162 } 163 164 // Push re1 into re2. 165 re2.Rune = append(re2.Rune, re1.Rune...) 166 167 // Reuse re1 if possible. 168 if r >= 0 { 169 re1.Rune = re1.Rune0[:1] 170 re1.Rune[0] = r 171 re1.Flags = flags 172 return true 173 } 174 175 p.stack = p.stack[:n-1] 176 p.reuse(re1) 177 return false // did not push r 178 } 179 180 // newLiteral returns a new OpLiteral Regexp with the given flags 181 func (p *parser) newLiteral(r rune, flags Flags) *Regexp { 182 re := p.newRegexp(OpLiteral) 183 re.Flags = flags 184 if flags&FoldCase != 0 { 185 r = minFoldRune(r) 186 } 187 re.Rune0[0] = r 188 re.Rune = re.Rune0[:1] 189 return re 190 } 191 192 // minFoldRune returns the minimum rune fold-equivalent to r. 193 func minFoldRune(r rune) rune { 194 if r < minFold || r > maxFold { 195 return r 196 } 197 min := r 198 r0 := r 199 for r = unicode.SimpleFold(r); r != r0; r = unicode.SimpleFold(r) { 200 if min > r { 201 min = r 202 } 203 } 204 return min 205 } 206 207 // literal pushes a literal regexp for the rune r on the stack 208 // and returns that regexp. 209 func (p *parser) literal(r rune) { 210 p.push(p.newLiteral(r, p.flags)) 211 } 212 213 // op pushes a regexp with the given op onto the stack 214 // and returns that regexp. 215 func (p *parser) op(op Op) *Regexp { 216 re := p.newRegexp(op) 217 re.Flags = p.flags 218 return p.push(re) 219 } 220 221 // repeat replaces the top stack element with itself repeated according to op, min, max. 222 // before is the regexp suffix starting at the repetition operator. 223 // after is the regexp suffix following after the repetition operator. 224 // repeat returns an updated 'after' and an error, if any. 225 func (p *parser) repeat(op Op, min, max int, before, after, lastRepeat string) (string, error) { 226 flags := p.flags 227 if p.flags&PerlX != 0 { 228 if len(after) > 0 && after[0] == '?' { 229 after = after[1:] 230 flags ^= NonGreedy 231 } 232 if lastRepeat != "" { 233 // In Perl it is not allowed to stack repetition operators: 234 // a** is a syntax error, not a doubled star, and a++ means 235 // something else entirely, which we don't support! 236 return "", &Error{ErrInvalidRepeatOp, lastRepeat[:len(lastRepeat)-len(after)]} 237 } 238 } 239 n := len(p.stack) 240 if n == 0 { 241 return "", &Error{ErrMissingRepeatArgument, before[:len(before)-len(after)]} 242 } 243 sub := p.stack[n-1] 244 if sub.Op >= opPseudo { 245 return "", &Error{ErrMissingRepeatArgument, before[:len(before)-len(after)]} 246 } 247 248 re := p.newRegexp(op) 249 re.Min = min 250 re.Max = max 251 re.Flags = flags 252 re.Sub = re.Sub0[:1] 253 re.Sub[0] = sub 254 p.stack[n-1] = re 255 256 if op == OpRepeat && (min >= 2 || max >= 2) && !repeatIsValid(re, 1000) { 257 return "", &Error{ErrInvalidRepeatSize, before[:len(before)-len(after)]} 258 } 259 260 return after, nil 261 } 262 263 // repeatIsValid reports whether the repetition re is valid. 264 // Valid means that the combination of the top-level repetition 265 // and any inner repetitions does not exceed n copies of the 266 // innermost thing. 267 // This function rewalks the regexp tree and is called for every repetition, 268 // so we have to worry about inducing quadratic behavior in the parser. 269 // We avoid this by only calling repeatIsValid when min or max >= 2. 270 // In that case the depth of any >= 2 nesting can only get to 9 without 271 // triggering a parse error, so each subtree can only be rewalked 9 times. 272 func repeatIsValid(re *Regexp, n int) bool { 273 if re.Op == OpRepeat { 274 m := re.Max 275 if m == 0 { 276 return true 277 } 278 if m < 0 { 279 m = re.Min 280 } 281 if m > n { 282 return false 283 } 284 if m > 0 { 285 n /= m 286 } 287 } 288 for _, sub := range re.Sub { 289 if !repeatIsValid(sub, n) { 290 return false 291 } 292 } 293 return true 294 } 295 296 // concat replaces the top of the stack (above the topmost '|' or '(') with its concatenation. 297 func (p *parser) concat() *Regexp { 298 p.maybeConcat(-1, 0) 299 300 // Scan down to find pseudo-operator | or (. 301 i := len(p.stack) 302 for i > 0 && p.stack[i-1].Op < opPseudo { 303 i-- 304 } 305 subs := p.stack[i:] 306 p.stack = p.stack[:i] 307 308 // Empty concatenation is special case. 309 if len(subs) == 0 { 310 return p.push(p.newRegexp(OpEmptyMatch)) 311 } 312 313 return p.push(p.collapse(subs, OpConcat)) 314 } 315 316 // alternate replaces the top of the stack (above the topmost '(') with its alternation. 317 func (p *parser) alternate() *Regexp { 318 // Scan down to find pseudo-operator (. 319 // There are no | above (. 320 i := len(p.stack) 321 for i > 0 && p.stack[i-1].Op < opPseudo { 322 i-- 323 } 324 subs := p.stack[i:] 325 p.stack = p.stack[:i] 326 327 // Make sure top class is clean. 328 // All the others already are (see swapVerticalBar). 329 if len(subs) > 0 { 330 cleanAlt(subs[len(subs)-1]) 331 } 332 333 // Empty alternate is special case 334 // (shouldn't happen but easy to handle). 335 if len(subs) == 0 { 336 return p.push(p.newRegexp(OpNoMatch)) 337 } 338 339 return p.push(p.collapse(subs, OpAlternate)) 340 } 341 342 // cleanAlt cleans re for eventual inclusion in an alternation. 343 func cleanAlt(re *Regexp) { 344 switch re.Op { 345 case OpCharClass: 346 re.Rune = cleanClass(&re.Rune) 347 if len(re.Rune) == 2 && re.Rune[0] == 0 && re.Rune[1] == unicode.MaxRune { 348 re.Rune = nil 349 re.Op = OpAnyChar 350 return 351 } 352 if len(re.Rune) == 4 && re.Rune[0] == 0 && re.Rune[1] == '\n'-1 && re.Rune[2] == '\n'+1 && re.Rune[3] == unicode.MaxRune { 353 re.Rune = nil 354 re.Op = OpAnyCharNotNL 355 return 356 } 357 if cap(re.Rune)-len(re.Rune) > 100 { 358 // re.Rune will not grow any more. 359 // Make a copy or inline to reclaim storage. 360 re.Rune = append(re.Rune0[:0], re.Rune...) 361 } 362 } 363 } 364 365 // collapse returns the result of applying op to sub. 366 // If sub contains op nodes, they all get hoisted up 367 // so that there is never a concat of a concat or an 368 // alternate of an alternate. 369 func (p *parser) collapse(subs []*Regexp, op Op) *Regexp { 370 if len(subs) == 1 { 371 return subs[0] 372 } 373 re := p.newRegexp(op) 374 re.Sub = re.Sub0[:0] 375 for _, sub := range subs { 376 if sub.Op == op { 377 re.Sub = append(re.Sub, sub.Sub...) 378 p.reuse(sub) 379 } else { 380 re.Sub = append(re.Sub, sub) 381 } 382 } 383 if op == OpAlternate { 384 re.Sub = p.factor(re.Sub, re.Flags) 385 if len(re.Sub) == 1 { 386 old := re 387 re = re.Sub[0] 388 p.reuse(old) 389 } 390 } 391 return re 392 } 393 394 // factor factors common prefixes from the alternation list sub. 395 // It returns a replacement list that reuses the same storage and 396 // frees (passes to p.reuse) any removed *Regexps. 397 // 398 // For example, 399 // ABC|ABD|AEF|BCX|BCY 400 // simplifies by literal prefix extraction to 401 // A(B(C|D)|EF)|BC(X|Y) 402 // which simplifies by character class introduction to 403 // A(B[CD]|EF)|BC[XY] 404 // 405 func (p *parser) factor(sub []*Regexp, flags Flags) []*Regexp { 406 if len(sub) < 2 { 407 return sub 408 } 409 410 // Round 1: Factor out common literal prefixes. 411 var str []rune 412 var strflags Flags 413 start := 0 414 out := sub[:0] 415 for i := 0; i <= len(sub); i++ { 416 // Invariant: the Regexps that were in sub[0:start] have been 417 // used or marked for reuse, and the slice space has been reused 418 // for out (len(out) <= start). 419 // 420 // Invariant: sub[start:i] consists of regexps that all begin 421 // with str as modified by strflags. 422 var istr []rune 423 var iflags Flags 424 if i < len(sub) { 425 istr, iflags = p.leadingString(sub[i]) 426 if iflags == strflags { 427 same := 0 428 for same < len(str) && same < len(istr) && str[same] == istr[same] { 429 same++ 430 } 431 if same > 0 { 432 // Matches at least one rune in current range. 433 // Keep going around. 434 str = str[:same] 435 continue 436 } 437 } 438 } 439 440 // Found end of a run with common leading literal string: 441 // sub[start:i] all begin with str[0:len(str)], but sub[i] 442 // does not even begin with str[0]. 443 // 444 // Factor out common string and append factored expression to out. 445 if i == start { 446 // Nothing to do - run of length 0. 447 } else if i == start+1 { 448 // Just one: don't bother factoring. 449 out = append(out, sub[start]) 450 } else { 451 // Construct factored form: prefix(suffix1|suffix2|...) 452 prefix := p.newRegexp(OpLiteral) 453 prefix.Flags = strflags 454 prefix.Rune = append(prefix.Rune[:0], str...) 455 456 for j := start; j < i; j++ { 457 sub[j] = p.removeLeadingString(sub[j], len(str)) 458 } 459 suffix := p.collapse(sub[start:i], OpAlternate) // recurse 460 461 re := p.newRegexp(OpConcat) 462 re.Sub = append(re.Sub[:0], prefix, suffix) 463 out = append(out, re) 464 } 465 466 // Prepare for next iteration. 467 start = i 468 str = istr 469 strflags = iflags 470 } 471 sub = out 472 473 // Round 2: Factor out common complex prefixes, 474 // just the first piece of each concatenation, 475 // whatever it is. This is good enough a lot of the time. 476 start = 0 477 out = sub[:0] 478 var first *Regexp 479 for i := 0; i <= len(sub); i++ { 480 // Invariant: the Regexps that were in sub[0:start] have been 481 // used or marked for reuse, and the slice space has been reused 482 // for out (len(out) <= start). 483 // 484 // Invariant: sub[start:i] consists of regexps that all begin with ifirst. 485 var ifirst *Regexp 486 if i < len(sub) { 487 ifirst = p.leadingRegexp(sub[i]) 488 if first != nil && first.Equal(ifirst) { 489 continue 490 } 491 } 492 493 // Found end of a run with common leading regexp: 494 // sub[start:i] all begin with first but sub[i] does not. 495 // 496 // Factor out common regexp and append factored expression to out. 497 if i == start { 498 // Nothing to do - run of length 0. 499 } else if i == start+1 { 500 // Just one: don't bother factoring. 501 out = append(out, sub[start]) 502 } else { 503 // Construct factored form: prefix(suffix1|suffix2|...) 504 prefix := first 505 for j := start; j < i; j++ { 506 reuse := j != start // prefix came from sub[start] 507 sub[j] = p.removeLeadingRegexp(sub[j], reuse) 508 } 509 suffix := p.collapse(sub[start:i], OpAlternate) // recurse 510 511 re := p.newRegexp(OpConcat) 512 re.Sub = append(re.Sub[:0], prefix, suffix) 513 out = append(out, re) 514 } 515 516 // Prepare for next iteration. 517 start = i 518 first = ifirst 519 } 520 sub = out 521 522 // Round 3: Collapse runs of single literals into character classes. 523 start = 0 524 out = sub[:0] 525 for i := 0; i <= len(sub); i++ { 526 // Invariant: the Regexps that were in sub[0:start] have been 527 // used or marked for reuse, and the slice space has been reused 528 // for out (len(out) <= start). 529 // 530 // Invariant: sub[start:i] consists of regexps that are either 531 // literal runes or character classes. 532 if i < len(sub) && isCharClass(sub[i]) { 533 continue 534 } 535 536 // sub[i] is not a char or char class; 537 // emit char class for sub[start:i]... 538 if i == start { 539 // Nothing to do - run of length 0. 540 } else if i == start+1 { 541 out = append(out, sub[start]) 542 } else { 543 // Make new char class. 544 // Start with most complex regexp in sub[start]. 545 max := start 546 for j := start + 1; j < i; j++ { 547 if sub[max].Op < sub[j].Op || sub[max].Op == sub[j].Op && len(sub[max].Rune) < len(sub[j].Rune) { 548 max = j 549 } 550 } 551 sub[start], sub[max] = sub[max], sub[start] 552 553 for j := start + 1; j < i; j++ { 554 mergeCharClass(sub[start], sub[j]) 555 p.reuse(sub[j]) 556 } 557 cleanAlt(sub[start]) 558 out = append(out, sub[start]) 559 } 560 561 // ... and then emit sub[i]. 562 if i < len(sub) { 563 out = append(out, sub[i]) 564 } 565 start = i + 1 566 } 567 sub = out 568 569 // Round 4: Collapse runs of empty matches into a single empty match. 570 start = 0 571 out = sub[:0] 572 for i := range sub { 573 if i+1 < len(sub) && sub[i].Op == OpEmptyMatch && sub[i+1].Op == OpEmptyMatch { 574 continue 575 } 576 out = append(out, sub[i]) 577 } 578 sub = out 579 580 return sub 581 } 582 583 // leadingString returns the leading literal string that re begins with. 584 // The string refers to storage in re or its children. 585 func (p *parser) leadingString(re *Regexp) ([]rune, Flags) { 586 if re.Op == OpConcat && len(re.Sub) > 0 { 587 re = re.Sub[0] 588 } 589 if re.Op != OpLiteral { 590 return nil, 0 591 } 592 return re.Rune, re.Flags & FoldCase 593 } 594 595 // removeLeadingString removes the first n leading runes 596 // from the beginning of re. It returns the replacement for re. 597 func (p *parser) removeLeadingString(re *Regexp, n int) *Regexp { 598 if re.Op == OpConcat && len(re.Sub) > 0 { 599 // Removing a leading string in a concatenation 600 // might simplify the concatenation. 601 sub := re.Sub[0] 602 sub = p.removeLeadingString(sub, n) 603 re.Sub[0] = sub 604 if sub.Op == OpEmptyMatch { 605 p.reuse(sub) 606 switch len(re.Sub) { 607 case 0, 1: 608 // Impossible but handle. 609 re.Op = OpEmptyMatch 610 re.Sub = nil 611 case 2: 612 old := re 613 re = re.Sub[1] 614 p.reuse(old) 615 default: 616 copy(re.Sub, re.Sub[1:]) 617 re.Sub = re.Sub[:len(re.Sub)-1] 618 } 619 } 620 return re 621 } 622 623 if re.Op == OpLiteral { 624 re.Rune = re.Rune[:copy(re.Rune, re.Rune[n:])] 625 if len(re.Rune) == 0 { 626 re.Op = OpEmptyMatch 627 } 628 } 629 return re 630 } 631 632 // leadingRegexp returns the leading regexp that re begins with. 633 // The regexp refers to storage in re or its children. 634 func (p *parser) leadingRegexp(re *Regexp) *Regexp { 635 if re.Op == OpEmptyMatch { 636 return nil 637 } 638 if re.Op == OpConcat && len(re.Sub) > 0 { 639 sub := re.Sub[0] 640 if sub.Op == OpEmptyMatch { 641 return nil 642 } 643 return sub 644 } 645 return re 646 } 647 648 // removeLeadingRegexp removes the leading regexp in re. 649 // It returns the replacement for re. 650 // If reuse is true, it passes the removed regexp (if no longer needed) to p.reuse. 651 func (p *parser) removeLeadingRegexp(re *Regexp, reuse bool) *Regexp { 652 if re.Op == OpConcat && len(re.Sub) > 0 { 653 if reuse { 654 p.reuse(re.Sub[0]) 655 } 656 re.Sub = re.Sub[:copy(re.Sub, re.Sub[1:])] 657 switch len(re.Sub) { 658 case 0: 659 re.Op = OpEmptyMatch 660 re.Sub = nil 661 case 1: 662 old := re 663 re = re.Sub[0] 664 p.reuse(old) 665 } 666 return re 667 } 668 if reuse { 669 p.reuse(re) 670 } 671 return p.newRegexp(OpEmptyMatch) 672 } 673 674 func literalRegexp(s string, flags Flags) *Regexp { 675 re := &Regexp{Op: OpLiteral} 676 re.Flags = flags 677 re.Rune = re.Rune0[:0] // use local storage for small strings 678 for _, c := range s { 679 if len(re.Rune) >= cap(re.Rune) { 680 // string is too long to fit in Rune0. let Go handle it 681 re.Rune = []rune(s) 682 break 683 } 684 re.Rune = append(re.Rune, c) 685 } 686 return re 687 } 688 689 // Parsing. 690 691 // Parse parses a regular expression string s, controlled by the specified 692 // Flags, and returns a regular expression parse tree. The syntax is 693 // described in the top-level comment. 694 func Parse(s string, flags Flags) (*Regexp, error) { 695 if flags&Literal != 0 { 696 // Trivial parser for literal string. 697 if err := checkUTF8(s); err != nil { 698 return nil, err 699 } 700 return literalRegexp(s, flags), nil 701 } 702 703 // Otherwise, must do real work. 704 var ( 705 p parser 706 err error 707 c rune 708 op Op 709 lastRepeat string 710 ) 711 p.flags = flags 712 p.wholeRegexp = s 713 t := s 714 for t != "" { 715 repeat := "" 716 BigSwitch: 717 switch t[0] { 718 default: 719 if c, t, err = nextRune(t); err != nil { 720 return nil, err 721 } 722 p.literal(c) 723 724 case '(': 725 if p.flags&PerlX != 0 && len(t) >= 2 && t[1] == '?' { 726 // Flag changes and non-capturing groups. 727 if t, err = p.parsePerlFlags(t); err != nil { 728 return nil, err 729 } 730 break 731 } 732 p.numCap++ 733 p.op(opLeftParen).Cap = p.numCap 734 t = t[1:] 735 case '|': 736 if err = p.parseVerticalBar(); err != nil { 737 return nil, err 738 } 739 t = t[1:] 740 case ')': 741 if err = p.parseRightParen(); err != nil { 742 return nil, err 743 } 744 t = t[1:] 745 case '^': 746 if p.flags&OneLine != 0 { 747 p.op(OpBeginText) 748 } else { 749 p.op(OpBeginLine) 750 } 751 t = t[1:] 752 case '$': 753 if p.flags&OneLine != 0 { 754 p.op(OpEndText).Flags |= WasDollar 755 } else { 756 p.op(OpEndLine) 757 } 758 t = t[1:] 759 case '.': 760 if p.flags&DotNL != 0 { 761 p.op(OpAnyChar) 762 } else { 763 p.op(OpAnyCharNotNL) 764 } 765 t = t[1:] 766 case '[': 767 if t, err = p.parseClass(t); err != nil { 768 return nil, err 769 } 770 case '*', '+', '?': 771 before := t 772 switch t[0] { 773 case '*': 774 op = OpStar 775 case '+': 776 op = OpPlus 777 case '?': 778 op = OpQuest 779 } 780 after := t[1:] 781 if after, err = p.repeat(op, 0, 0, before, after, lastRepeat); err != nil { 782 return nil, err 783 } 784 repeat = before 785 t = after 786 case '{': 787 op = OpRepeat 788 before := t 789 min, max, after, ok := p.parseRepeat(t) 790 if !ok { 791 // If the repeat cannot be parsed, { is a literal. 792 p.literal('{') 793 t = t[1:] 794 break 795 } 796 if min < 0 || min > 1000 || max > 1000 || max >= 0 && min > max { 797 // Numbers were too big, or max is present and min > max. 798 return nil, &Error{ErrInvalidRepeatSize, before[:len(before)-len(after)]} 799 } 800 if after, err = p.repeat(op, min, max, before, after, lastRepeat); err != nil { 801 return nil, err 802 } 803 repeat = before 804 t = after 805 case '\\': 806 if p.flags&PerlX != 0 && len(t) >= 2 { 807 switch t[1] { 808 case 'A': 809 p.op(OpBeginText) 810 t = t[2:] 811 break BigSwitch 812 case 'b': 813 p.op(OpWordBoundary) 814 t = t[2:] 815 break BigSwitch 816 case 'B': 817 p.op(OpNoWordBoundary) 818 t = t[2:] 819 break BigSwitch 820 case 'C': 821 // any byte; not supported 822 return nil, &Error{ErrInvalidEscape, t[:2]} 823 case 'Q': 824 // \Q ... \E: the ... is always literals 825 var lit string 826 if i := strings.Index(t, `\E`); i < 0 { 827 lit = t[2:] 828 t = "" 829 } else { 830 lit = t[2:i] 831 t = t[i+2:] 832 } 833 p.push(literalRegexp(lit, p.flags)) 834 break BigSwitch 835 case 'z': 836 p.op(OpEndText) 837 t = t[2:] 838 break BigSwitch 839 } 840 } 841 842 re := p.newRegexp(OpCharClass) 843 re.Flags = p.flags 844 845 // Look for Unicode character group like \p{Han} 846 if len(t) >= 2 && (t[1] == 'p' || t[1] == 'P') { 847 r, rest, err := p.parseUnicodeClass(t, re.Rune0[:0]) 848 if err != nil { 849 return nil, err 850 } 851 if r != nil { 852 re.Rune = r 853 t = rest 854 p.push(re) 855 break BigSwitch 856 } 857 } 858 859 // Perl character class escape. 860 if r, rest := p.parsePerlClassEscape(t, re.Rune0[:0]); r != nil { 861 re.Rune = r 862 t = rest 863 p.push(re) 864 break BigSwitch 865 } 866 p.reuse(re) 867 868 // Ordinary single-character escape. 869 if c, t, err = p.parseEscape(t); err != nil { 870 return nil, err 871 } 872 p.literal(c) 873 } 874 lastRepeat = repeat 875 } 876 877 p.concat() 878 if p.swapVerticalBar() { 879 // pop vertical bar 880 p.stack = p.stack[:len(p.stack)-1] 881 } 882 p.alternate() 883 884 n := len(p.stack) 885 if n != 1 { 886 return nil, &Error{ErrMissingParen, s} 887 } 888 return p.stack[0], nil 889 } 890 891 // parseRepeat parses {min} (max=min) or {min,} (max=-1) or {min,max}. 892 // If s is not of that form, it returns ok == false. 893 // If s has the right form but the values are too big, it returns min == -1, ok == true. 894 func (p *parser) parseRepeat(s string) (min, max int, rest string, ok bool) { 895 if s == "" || s[0] != '{' { 896 return 897 } 898 s = s[1:] 899 var ok1 bool 900 if min, s, ok1 = p.parseInt(s); !ok1 { 901 return 902 } 903 if s == "" { 904 return 905 } 906 if s[0] != ',' { 907 max = min 908 } else { 909 s = s[1:] 910 if s == "" { 911 return 912 } 913 if s[0] == '}' { 914 max = -1 915 } else if max, s, ok1 = p.parseInt(s); !ok1 { 916 return 917 } else if max < 0 { 918 // parseInt found too big a number 919 min = -1 920 } 921 } 922 if s == "" || s[0] != '}' { 923 return 924 } 925 rest = s[1:] 926 ok = true 927 return 928 } 929 930 // parsePerlFlags parses a Perl flag setting or non-capturing group or both, 931 // like (?i) or (?: or (?i:. It removes the prefix from s and updates the parse state. 932 // The caller must have ensured that s begins with "(?". 933 func (p *parser) parsePerlFlags(s string) (rest string, err error) { 934 t := s 935 936 // Check for named captures, first introduced in Python's regexp library. 937 // As usual, there are three slightly different syntaxes: 938 // 939 // (?P<name>expr) the original, introduced by Python 940 // (?<name>expr) the .NET alteration, adopted by Perl 5.10 941 // (?'name'expr) another .NET alteration, adopted by Perl 5.10 942 // 943 // Perl 5.10 gave in and implemented the Python version too, 944 // but they claim that the last two are the preferred forms. 945 // PCRE and languages based on it (specifically, PHP and Ruby) 946 // support all three as well. EcmaScript 4 uses only the Python form. 947 // 948 // In both the open source world (via Code Search) and the 949 // Google source tree, (?P<expr>name) is the dominant form, 950 // so that's the one we implement. One is enough. 951 if len(t) > 4 && t[2] == 'P' && t[3] == '<' { 952 // Pull out name. 953 end := strings.IndexRune(t, '>') 954 if end < 0 { 955 if err = checkUTF8(t); err != nil { 956 return "", err 957 } 958 return "", &Error{ErrInvalidNamedCapture, s} 959 } 960 961 capture := t[:end+1] // "(?P<name>" 962 name := t[4:end] // "name" 963 if err = checkUTF8(name); err != nil { 964 return "", err 965 } 966 if !isValidCaptureName(name) { 967 return "", &Error{ErrInvalidNamedCapture, capture} 968 } 969 970 // Like ordinary capture, but named. 971 p.numCap++ 972 re := p.op(opLeftParen) 973 re.Cap = p.numCap 974 re.Name = name 975 return t[end+1:], nil 976 } 977 978 // Non-capturing group. Might also twiddle Perl flags. 979 var c rune 980 t = t[2:] // skip (? 981 flags := p.flags 982 sign := +1 983 sawFlag := false 984 Loop: 985 for t != "" { 986 if c, t, err = nextRune(t); err != nil { 987 return "", err 988 } 989 switch c { 990 default: 991 break Loop 992 993 // Flags. 994 case 'i': 995 flags |= FoldCase 996 sawFlag = true 997 case 'm': 998 flags &^= OneLine 999 sawFlag = true 1000 case 's': 1001 flags |= DotNL 1002 sawFlag = true 1003 case 'U': 1004 flags |= NonGreedy 1005 sawFlag = true 1006 1007 // Switch to negation. 1008 case '-': 1009 if sign < 0 { 1010 break Loop 1011 } 1012 sign = -1 1013 // Invert flags so that | above turn into &^ and vice versa. 1014 // We'll invert flags again before using it below. 1015 flags = ^flags 1016 sawFlag = false 1017 1018 // End of flags, starting group or not. 1019 case ':', ')': 1020 if sign < 0 { 1021 if !sawFlag { 1022 break Loop 1023 } 1024 flags = ^flags 1025 } 1026 if c == ':' { 1027 // Open new group 1028 p.op(opLeftParen) 1029 } 1030 p.flags = flags 1031 return t, nil 1032 } 1033 } 1034 1035 return "", &Error{ErrInvalidPerlOp, s[:len(s)-len(t)]} 1036 } 1037 1038 // isValidCaptureName reports whether name 1039 // is a valid capture name: [A-Za-z0-9_]+. 1040 // PCRE limits names to 32 bytes. 1041 // Python rejects names starting with digits. 1042 // We don't enforce either of those. 1043 func isValidCaptureName(name string) bool { 1044 if name == "" { 1045 return false 1046 } 1047 for _, c := range name { 1048 if c != '_' && !isalnum(c) { 1049 return false 1050 } 1051 } 1052 return true 1053 } 1054 1055 // parseInt parses a decimal integer. 1056 func (p *parser) parseInt(s string) (n int, rest string, ok bool) { 1057 if s == "" || s[0] < '0' || '9' < s[0] { 1058 return 1059 } 1060 // Disallow leading zeros. 1061 if len(s) >= 2 && s[0] == '0' && '0' <= s[1] && s[1] <= '9' { 1062 return 1063 } 1064 t := s 1065 for s != "" && '0' <= s[0] && s[0] <= '9' { 1066 s = s[1:] 1067 } 1068 rest = s 1069 ok = true 1070 // Have digits, compute value. 1071 t = t[:len(t)-len(s)] 1072 for i := 0; i < len(t); i++ { 1073 // Avoid overflow. 1074 if n >= 1e8 { 1075 n = -1 1076 break 1077 } 1078 n = n*10 + int(t[i]) - '0' 1079 } 1080 return 1081 } 1082 1083 // can this be represented as a character class? 1084 // single-rune literal string, char class, ., and .|\n. 1085 func isCharClass(re *Regexp) bool { 1086 return re.Op == OpLiteral && len(re.Rune) == 1 || 1087 re.Op == OpCharClass || 1088 re.Op == OpAnyCharNotNL || 1089 re.Op == OpAnyChar 1090 } 1091 1092 // does re match r? 1093 func matchRune(re *Regexp, r rune) bool { 1094 switch re.Op { 1095 case OpLiteral: 1096 return len(re.Rune) == 1 && re.Rune[0] == r 1097 case OpCharClass: 1098 for i := 0; i < len(re.Rune); i += 2 { 1099 if re.Rune[i] <= r && r <= re.Rune[i+1] { 1100 return true 1101 } 1102 } 1103 return false 1104 case OpAnyCharNotNL: 1105 return r != '\n' 1106 case OpAnyChar: 1107 return true 1108 } 1109 return false 1110 } 1111 1112 // parseVerticalBar handles a | in the input. 1113 func (p *parser) parseVerticalBar() error { 1114 p.concat() 1115 1116 // The concatenation we just parsed is on top of the stack. 1117 // If it sits above an opVerticalBar, swap it below 1118 // (things below an opVerticalBar become an alternation). 1119 // Otherwise, push a new vertical bar. 1120 if !p.swapVerticalBar() { 1121 p.op(opVerticalBar) 1122 } 1123 1124 return nil 1125 } 1126 1127 // mergeCharClass makes dst = dst|src. 1128 // The caller must ensure that dst.Op >= src.Op, 1129 // to reduce the amount of copying. 1130 func mergeCharClass(dst, src *Regexp) { 1131 switch dst.Op { 1132 case OpAnyChar: 1133 // src doesn't add anything. 1134 case OpAnyCharNotNL: 1135 // src might add \n 1136 if matchRune(src, '\n') { 1137 dst.Op = OpAnyChar 1138 } 1139 case OpCharClass: 1140 // src is simpler, so either literal or char class 1141 if src.Op == OpLiteral { 1142 dst.Rune = appendLiteral(dst.Rune, src.Rune[0], src.Flags) 1143 } else { 1144 dst.Rune = appendClass(dst.Rune, src.Rune) 1145 } 1146 case OpLiteral: 1147 // both literal 1148 if src.Rune[0] == dst.Rune[0] && src.Flags == dst.Flags { 1149 break 1150 } 1151 dst.Op = OpCharClass 1152 dst.Rune = appendLiteral(dst.Rune[:0], dst.Rune[0], dst.Flags) 1153 dst.Rune = appendLiteral(dst.Rune, src.Rune[0], src.Flags) 1154 } 1155 } 1156 1157 // If the top of the stack is an element followed by an opVerticalBar 1158 // swapVerticalBar swaps the two and returns true. 1159 // Otherwise it returns false. 1160 func (p *parser) swapVerticalBar() bool { 1161 // If above and below vertical bar are literal or char class, 1162 // can merge into a single char class. 1163 n := len(p.stack) 1164 if n >= 3 && p.stack[n-2].Op == opVerticalBar && isCharClass(p.stack[n-1]) && isCharClass(p.stack[n-3]) { 1165 re1 := p.stack[n-1] 1166 re3 := p.stack[n-3] 1167 // Make re3 the more complex of the two. 1168 if re1.Op > re3.Op { 1169 re1, re3 = re3, re1 1170 p.stack[n-3] = re3 1171 } 1172 mergeCharClass(re3, re1) 1173 p.reuse(re1) 1174 p.stack = p.stack[:n-1] 1175 return true 1176 } 1177 1178 if n >= 2 { 1179 re1 := p.stack[n-1] 1180 re2 := p.stack[n-2] 1181 if re2.Op == opVerticalBar { 1182 if n >= 3 { 1183 // Now out of reach. 1184 // Clean opportunistically. 1185 cleanAlt(p.stack[n-3]) 1186 } 1187 p.stack[n-2] = re1 1188 p.stack[n-1] = re2 1189 return true 1190 } 1191 } 1192 return false 1193 } 1194 1195 // parseRightParen handles a ) in the input. 1196 func (p *parser) parseRightParen() error { 1197 p.concat() 1198 if p.swapVerticalBar() { 1199 // pop vertical bar 1200 p.stack = p.stack[:len(p.stack)-1] 1201 } 1202 p.alternate() 1203 1204 n := len(p.stack) 1205 if n < 2 { 1206 return &Error{ErrUnexpectedParen, p.wholeRegexp} 1207 } 1208 re1 := p.stack[n-1] 1209 re2 := p.stack[n-2] 1210 p.stack = p.stack[:n-2] 1211 if re2.Op != opLeftParen { 1212 return &Error{ErrUnexpectedParen, p.wholeRegexp} 1213 } 1214 // Restore flags at time of paren. 1215 p.flags = re2.Flags 1216 if re2.Cap == 0 { 1217 // Just for grouping. 1218 p.push(re1) 1219 } else { 1220 re2.Op = OpCapture 1221 re2.Sub = re2.Sub0[:1] 1222 re2.Sub[0] = re1 1223 p.push(re2) 1224 } 1225 return nil 1226 } 1227 1228 // parseEscape parses an escape sequence at the beginning of s 1229 // and returns the rune. 1230 func (p *parser) parseEscape(s string) (r rune, rest string, err error) { 1231 t := s[1:] 1232 if t == "" { 1233 return 0, "", &Error{ErrTrailingBackslash, ""} 1234 } 1235 c, t, err := nextRune(t) 1236 if err != nil { 1237 return 0, "", err 1238 } 1239 1240 Switch: 1241 switch c { 1242 default: 1243 if c < utf8.RuneSelf && !isalnum(c) { 1244 // Escaped non-word characters are always themselves. 1245 // PCRE is not quite so rigorous: it accepts things like 1246 // \q, but we don't. We once rejected \_, but too many 1247 // programs and people insist on using it, so allow \_. 1248 return c, t, nil 1249 } 1250 1251 // Octal escapes. 1252 case '1', '2', '3', '4', '5', '6', '7': 1253 // Single non-zero digit is a backreference; not supported 1254 if t == "" || t[0] < '0' || t[0] > '7' { 1255 break 1256 } 1257 fallthrough 1258 case '0': 1259 // Consume up to three octal digits; already have one. 1260 r = c - '0' 1261 for i := 1; i < 3; i++ { 1262 if t == "" || t[0] < '0' || t[0] > '7' { 1263 break 1264 } 1265 r = r*8 + rune(t[0]) - '0' 1266 t = t[1:] 1267 } 1268 return r, t, nil 1269 1270 // Hexadecimal escapes. 1271 case 'x': 1272 if t == "" { 1273 break 1274 } 1275 if c, t, err = nextRune(t); err != nil { 1276 return 0, "", err 1277 } 1278 if c == '{' { 1279 // Any number of digits in braces. 1280 // Perl accepts any text at all; it ignores all text 1281 // after the first non-hex digit. We require only hex digits, 1282 // and at least one. 1283 nhex := 0 1284 r = 0 1285 for { 1286 if t == "" { 1287 break Switch 1288 } 1289 if c, t, err = nextRune(t); err != nil { 1290 return 0, "", err 1291 } 1292 if c == '}' { 1293 break 1294 } 1295 v := unhex(c) 1296 if v < 0 { 1297 break Switch 1298 } 1299 r = r*16 + v 1300 if r > unicode.MaxRune { 1301 break Switch 1302 } 1303 nhex++ 1304 } 1305 if nhex == 0 { 1306 break Switch 1307 } 1308 return r, t, nil 1309 } 1310 1311 // Easy case: two hex digits. 1312 x := unhex(c) 1313 if c, t, err = nextRune(t); err != nil { 1314 return 0, "", err 1315 } 1316 y := unhex(c) 1317 if x < 0 || y < 0 { 1318 break 1319 } 1320 return x*16 + y, t, nil 1321 1322 // C escapes. There is no case 'b', to avoid misparsing 1323 // the Perl word-boundary \b as the C backspace \b 1324 // when in POSIX mode. In Perl, /\b/ means word-boundary 1325 // but /[\b]/ means backspace. We don't support that. 1326 // If you want a backspace, embed a literal backspace 1327 // character or use \x08. 1328 case 'a': 1329 return '\a', t, err 1330 case 'f': 1331 return '\f', t, err 1332 case 'n': 1333 return '\n', t, err 1334 case 'r': 1335 return '\r', t, err 1336 case 't': 1337 return '\t', t, err 1338 case 'v': 1339 return '\v', t, err 1340 } 1341 return 0, "", &Error{ErrInvalidEscape, s[:len(s)-len(t)]} 1342 } 1343 1344 // parseClassChar parses a character class character at the beginning of s 1345 // and returns it. 1346 func (p *parser) parseClassChar(s, wholeClass string) (r rune, rest string, err error) { 1347 if s == "" { 1348 return 0, "", &Error{Code: ErrMissingBracket, Expr: wholeClass} 1349 } 1350 1351 // Allow regular escape sequences even though 1352 // many need not be escaped in this context. 1353 if s[0] == '\\' { 1354 return p.parseEscape(s) 1355 } 1356 1357 return nextRune(s) 1358 } 1359 1360 type charGroup struct { 1361 sign int 1362 class []rune 1363 } 1364 1365 // parsePerlClassEscape parses a leading Perl character class escape like \d 1366 // from the beginning of s. If one is present, it appends the characters to r 1367 // and returns the new slice r and the remainder of the string. 1368 func (p *parser) parsePerlClassEscape(s string, r []rune) (out []rune, rest string) { 1369 if p.flags&PerlX == 0 || len(s) < 2 || s[0] != '\\' { 1370 return 1371 } 1372 g := perlGroup[s[0:2]] 1373 if g.sign == 0 { 1374 return 1375 } 1376 return p.appendGroup(r, g), s[2:] 1377 } 1378 1379 // parseNamedClass parses a leading POSIX named character class like [:alnum:] 1380 // from the beginning of s. If one is present, it appends the characters to r 1381 // and returns the new slice r and the remainder of the string. 1382 func (p *parser) parseNamedClass(s string, r []rune) (out []rune, rest string, err error) { 1383 if len(s) < 2 || s[0] != '[' || s[1] != ':' { 1384 return 1385 } 1386 1387 i := strings.Index(s[2:], ":]") 1388 if i < 0 { 1389 return 1390 } 1391 i += 2 1392 name, s := s[0:i+2], s[i+2:] 1393 g := posixGroup[name] 1394 if g.sign == 0 { 1395 return nil, "", &Error{ErrInvalidCharRange, name} 1396 } 1397 return p.appendGroup(r, g), s, nil 1398 } 1399 1400 func (p *parser) appendGroup(r []rune, g charGroup) []rune { 1401 if p.flags&FoldCase == 0 { 1402 if g.sign < 0 { 1403 r = appendNegatedClass(r, g.class) 1404 } else { 1405 r = appendClass(r, g.class) 1406 } 1407 } else { 1408 tmp := p.tmpClass[:0] 1409 tmp = appendFoldedClass(tmp, g.class) 1410 p.tmpClass = tmp 1411 tmp = cleanClass(&p.tmpClass) 1412 if g.sign < 0 { 1413 r = appendNegatedClass(r, tmp) 1414 } else { 1415 r = appendClass(r, tmp) 1416 } 1417 } 1418 return r 1419 } 1420 1421 var anyTable = &unicode.RangeTable{ 1422 R16: []unicode.Range16{{Lo: 0, Hi: 1<<16 - 1, Stride: 1}}, 1423 R32: []unicode.Range32{{Lo: 1 << 16, Hi: unicode.MaxRune, Stride: 1}}, 1424 } 1425 1426 // unicodeTable returns the unicode.RangeTable identified by name 1427 // and the table of additional fold-equivalent code points. 1428 func unicodeTable(name string) (*unicode.RangeTable, *unicode.RangeTable) { 1429 // Special case: "Any" means any. 1430 if name == "Any" { 1431 return anyTable, anyTable 1432 } 1433 if t := unicode.Categories[name]; t != nil { 1434 return t, unicode.FoldCategory[name] 1435 } 1436 if t := unicode.Scripts[name]; t != nil { 1437 return t, unicode.FoldScript[name] 1438 } 1439 return nil, nil 1440 } 1441 1442 // parseUnicodeClass parses a leading Unicode character class like \p{Han} 1443 // from the beginning of s. If one is present, it appends the characters to r 1444 // and returns the new slice r and the remainder of the string. 1445 func (p *parser) parseUnicodeClass(s string, r []rune) (out []rune, rest string, err error) { 1446 if p.flags&UnicodeGroups == 0 || len(s) < 2 || s[0] != '\\' || s[1] != 'p' && s[1] != 'P' { 1447 return 1448 } 1449 1450 // Committed to parse or return error. 1451 sign := +1 1452 if s[1] == 'P' { 1453 sign = -1 1454 } 1455 t := s[2:] 1456 c, t, err := nextRune(t) 1457 if err != nil { 1458 return 1459 } 1460 var seq, name string 1461 if c != '{' { 1462 // Single-letter name. 1463 seq = s[:len(s)-len(t)] 1464 name = seq[2:] 1465 } else { 1466 // Name is in braces. 1467 end := strings.IndexRune(s, '}') 1468 if end < 0 { 1469 if err = checkUTF8(s); err != nil { 1470 return 1471 } 1472 return nil, "", &Error{ErrInvalidCharRange, s} 1473 } 1474 seq, t = s[:end+1], s[end+1:] 1475 name = s[3:end] 1476 if err = checkUTF8(name); err != nil { 1477 return 1478 } 1479 } 1480 1481 // Group can have leading negation too. \p{^Han} == \P{Han}, \P{^Han} == \p{Han}. 1482 if name != "" && name[0] == '^' { 1483 sign = -sign 1484 name = name[1:] 1485 } 1486 1487 tab, fold := unicodeTable(name) 1488 if tab == nil { 1489 return nil, "", &Error{ErrInvalidCharRange, seq} 1490 } 1491 1492 if p.flags&FoldCase == 0 || fold == nil { 1493 if sign > 0 { 1494 r = appendTable(r, tab) 1495 } else { 1496 r = appendNegatedTable(r, tab) 1497 } 1498 } else { 1499 // Merge and clean tab and fold in a temporary buffer. 1500 // This is necessary for the negative case and just tidy 1501 // for the positive case. 1502 tmp := p.tmpClass[:0] 1503 tmp = appendTable(tmp, tab) 1504 tmp = appendTable(tmp, fold) 1505 p.tmpClass = tmp 1506 tmp = cleanClass(&p.tmpClass) 1507 if sign > 0 { 1508 r = appendClass(r, tmp) 1509 } else { 1510 r = appendNegatedClass(r, tmp) 1511 } 1512 } 1513 return r, t, nil 1514 } 1515 1516 // parseClass parses a character class at the beginning of s 1517 // and pushes it onto the parse stack. 1518 func (p *parser) parseClass(s string) (rest string, err error) { 1519 t := s[1:] // chop [ 1520 re := p.newRegexp(OpCharClass) 1521 re.Flags = p.flags 1522 re.Rune = re.Rune0[:0] 1523 1524 sign := +1 1525 if t != "" && t[0] == '^' { 1526 sign = -1 1527 t = t[1:] 1528 1529 // If character class does not match \n, add it here, 1530 // so that negation later will do the right thing. 1531 if p.flags&ClassNL == 0 { 1532 re.Rune = append(re.Rune, '\n', '\n') 1533 } 1534 } 1535 1536 class := re.Rune 1537 first := true // ] and - are okay as first char in class 1538 for t == "" || t[0] != ']' || first { 1539 // POSIX: - is only okay unescaped as first or last in class. 1540 // Perl: - is okay anywhere. 1541 if t != "" && t[0] == '-' && p.flags&PerlX == 0 && !first && (len(t) == 1 || t[1] != ']') { 1542 _, size := utf8.DecodeRuneInString(t[1:]) 1543 return "", &Error{Code: ErrInvalidCharRange, Expr: t[:1+size]} 1544 } 1545 first = false 1546 1547 // Look for POSIX [:alnum:] etc. 1548 if len(t) > 2 && t[0] == '[' && t[1] == ':' { 1549 nclass, nt, err := p.parseNamedClass(t, class) 1550 if err != nil { 1551 return "", err 1552 } 1553 if nclass != nil { 1554 class, t = nclass, nt 1555 continue 1556 } 1557 } 1558 1559 // Look for Unicode character group like \p{Han}. 1560 nclass, nt, err := p.parseUnicodeClass(t, class) 1561 if err != nil { 1562 return "", err 1563 } 1564 if nclass != nil { 1565 class, t = nclass, nt 1566 continue 1567 } 1568 1569 // Look for Perl character class symbols (extension). 1570 if nclass, nt := p.parsePerlClassEscape(t, class); nclass != nil { 1571 class, t = nclass, nt 1572 continue 1573 } 1574 1575 // Single character or simple range. 1576 rng := t 1577 var lo, hi rune 1578 if lo, t, err = p.parseClassChar(t, s); err != nil { 1579 return "", err 1580 } 1581 hi = lo 1582 // [a-] means (a|-) so check for final ]. 1583 if len(t) >= 2 && t[0] == '-' && t[1] != ']' { 1584 t = t[1:] 1585 if hi, t, err = p.parseClassChar(t, s); err != nil { 1586 return "", err 1587 } 1588 if hi < lo { 1589 rng = rng[:len(rng)-len(t)] 1590 return "", &Error{Code: ErrInvalidCharRange, Expr: rng} 1591 } 1592 } 1593 if p.flags&FoldCase == 0 { 1594 class = appendRange(class, lo, hi) 1595 } else { 1596 class = appendFoldedRange(class, lo, hi) 1597 } 1598 } 1599 t = t[1:] // chop ] 1600 1601 // Use &re.Rune instead of &class to avoid allocation. 1602 re.Rune = class 1603 class = cleanClass(&re.Rune) 1604 if sign < 0 { 1605 class = negateClass(class) 1606 } 1607 re.Rune = class 1608 p.push(re) 1609 return t, nil 1610 } 1611 1612 // cleanClass sorts the ranges (pairs of elements of r), 1613 // merges them, and eliminates duplicates. 1614 func cleanClass(rp *[]rune) []rune { 1615 1616 // Sort by lo increasing, hi decreasing to break ties. 1617 sort.Sort(ranges{rp}) 1618 1619 r := *rp 1620 if len(r) < 2 { 1621 return r 1622 } 1623 1624 // Merge abutting, overlapping. 1625 w := 2 // write index 1626 for i := 2; i < len(r); i += 2 { 1627 lo, hi := r[i], r[i+1] 1628 if lo <= r[w-1]+1 { 1629 // merge with previous range 1630 if hi > r[w-1] { 1631 r[w-1] = hi 1632 } 1633 continue 1634 } 1635 // new disjoint range 1636 r[w] = lo 1637 r[w+1] = hi 1638 w += 2 1639 } 1640 1641 return r[:w] 1642 } 1643 1644 // appendLiteral returns the result of appending the literal x to the class r. 1645 func appendLiteral(r []rune, x rune, flags Flags) []rune { 1646 if flags&FoldCase != 0 { 1647 return appendFoldedRange(r, x, x) 1648 } 1649 return appendRange(r, x, x) 1650 } 1651 1652 // appendRange returns the result of appending the range lo-hi to the class r. 1653 func appendRange(r []rune, lo, hi rune) []rune { 1654 // Expand last range or next to last range if it overlaps or abuts. 1655 // Checking two ranges helps when appending case-folded 1656 // alphabets, so that one range can be expanding A-Z and the 1657 // other expanding a-z. 1658 n := len(r) 1659 for i := 2; i <= 4; i += 2 { // twice, using i=2, i=4 1660 if n >= i { 1661 rlo, rhi := r[n-i], r[n-i+1] 1662 if lo <= rhi+1 && rlo <= hi+1 { 1663 if lo < rlo { 1664 r[n-i] = lo 1665 } 1666 if hi > rhi { 1667 r[n-i+1] = hi 1668 } 1669 return r 1670 } 1671 } 1672 } 1673 1674 return append(r, lo, hi) 1675 } 1676 1677 const ( 1678 // minimum and maximum runes involved in folding. 1679 // checked during test. 1680 minFold = 0x0041 1681 maxFold = 0x118df 1682 ) 1683 1684 // appendFoldedRange returns the result of appending the range lo-hi 1685 // and its case folding-equivalent runes to the class r. 1686 func appendFoldedRange(r []rune, lo, hi rune) []rune { 1687 // Optimizations. 1688 if lo <= minFold && hi >= maxFold { 1689 // Range is full: folding can't add more. 1690 return appendRange(r, lo, hi) 1691 } 1692 if hi < minFold || lo > maxFold { 1693 // Range is outside folding possibilities. 1694 return appendRange(r, lo, hi) 1695 } 1696 if lo < minFold { 1697 // [lo, minFold-1] needs no folding. 1698 r = appendRange(r, lo, minFold-1) 1699 lo = minFold 1700 } 1701 if hi > maxFold { 1702 // [maxFold+1, hi] needs no folding. 1703 r = appendRange(r, maxFold+1, hi) 1704 hi = maxFold 1705 } 1706 1707 // Brute force. Depend on appendRange to coalesce ranges on the fly. 1708 for c := lo; c <= hi; c++ { 1709 r = appendRange(r, c, c) 1710 f := unicode.SimpleFold(c) 1711 for f != c { 1712 r = appendRange(r, f, f) 1713 f = unicode.SimpleFold(f) 1714 } 1715 } 1716 return r 1717 } 1718 1719 // appendClass returns the result of appending the class x to the class r. 1720 // It assume x is clean. 1721 func appendClass(r []rune, x []rune) []rune { 1722 for i := 0; i < len(x); i += 2 { 1723 r = appendRange(r, x[i], x[i+1]) 1724 } 1725 return r 1726 } 1727 1728 // appendFolded returns the result of appending the case folding of the class x to the class r. 1729 func appendFoldedClass(r []rune, x []rune) []rune { 1730 for i := 0; i < len(x); i += 2 { 1731 r = appendFoldedRange(r, x[i], x[i+1]) 1732 } 1733 return r 1734 } 1735 1736 // appendNegatedClass returns the result of appending the negation of the class x to the class r. 1737 // It assumes x is clean. 1738 func appendNegatedClass(r []rune, x []rune) []rune { 1739 nextLo := '\u0000' 1740 for i := 0; i < len(x); i += 2 { 1741 lo, hi := x[i], x[i+1] 1742 if nextLo <= lo-1 { 1743 r = appendRange(r, nextLo, lo-1) 1744 } 1745 nextLo = hi + 1 1746 } 1747 if nextLo <= unicode.MaxRune { 1748 r = appendRange(r, nextLo, unicode.MaxRune) 1749 } 1750 return r 1751 } 1752 1753 // appendTable returns the result of appending x to the class r. 1754 func appendTable(r []rune, x *unicode.RangeTable) []rune { 1755 for _, xr := range x.R16 { 1756 lo, hi, stride := rune(xr.Lo), rune(xr.Hi), rune(xr.Stride) 1757 if stride == 1 { 1758 r = appendRange(r, lo, hi) 1759 continue 1760 } 1761 for c := lo; c <= hi; c += stride { 1762 r = appendRange(r, c, c) 1763 } 1764 } 1765 for _, xr := range x.R32 { 1766 lo, hi, stride := rune(xr.Lo), rune(xr.Hi), rune(xr.Stride) 1767 if stride == 1 { 1768 r = appendRange(r, lo, hi) 1769 continue 1770 } 1771 for c := lo; c <= hi; c += stride { 1772 r = appendRange(r, c, c) 1773 } 1774 } 1775 return r 1776 } 1777 1778 // appendNegatedTable returns the result of appending the negation of x to the class r. 1779 func appendNegatedTable(r []rune, x *unicode.RangeTable) []rune { 1780 nextLo := '\u0000' // lo end of next class to add 1781 for _, xr := range x.R16 { 1782 lo, hi, stride := rune(xr.Lo), rune(xr.Hi), rune(xr.Stride) 1783 if stride == 1 { 1784 if nextLo <= lo-1 { 1785 r = appendRange(r, nextLo, lo-1) 1786 } 1787 nextLo = hi + 1 1788 continue 1789 } 1790 for c := lo; c <= hi; c += stride { 1791 if nextLo <= c-1 { 1792 r = appendRange(r, nextLo, c-1) 1793 } 1794 nextLo = c + 1 1795 } 1796 } 1797 for _, xr := range x.R32 { 1798 lo, hi, stride := rune(xr.Lo), rune(xr.Hi), rune(xr.Stride) 1799 if stride == 1 { 1800 if nextLo <= lo-1 { 1801 r = appendRange(r, nextLo, lo-1) 1802 } 1803 nextLo = hi + 1 1804 continue 1805 } 1806 for c := lo; c <= hi; c += stride { 1807 if nextLo <= c-1 { 1808 r = appendRange(r, nextLo, c-1) 1809 } 1810 nextLo = c + 1 1811 } 1812 } 1813 if nextLo <= unicode.MaxRune { 1814 r = appendRange(r, nextLo, unicode.MaxRune) 1815 } 1816 return r 1817 } 1818 1819 // negateClass overwrites r and returns r's negation. 1820 // It assumes the class r is already clean. 1821 func negateClass(r []rune) []rune { 1822 nextLo := '\u0000' // lo end of next class to add 1823 w := 0 // write index 1824 for i := 0; i < len(r); i += 2 { 1825 lo, hi := r[i], r[i+1] 1826 if nextLo <= lo-1 { 1827 r[w] = nextLo 1828 r[w+1] = lo - 1 1829 w += 2 1830 } 1831 nextLo = hi + 1 1832 } 1833 r = r[:w] 1834 if nextLo <= unicode.MaxRune { 1835 // It's possible for the negation to have one more 1836 // range - this one - than the original class, so use append. 1837 r = append(r, nextLo, unicode.MaxRune) 1838 } 1839 return r 1840 } 1841 1842 // ranges implements sort.Interface on a []rune. 1843 // The choice of receiver type definition is strange 1844 // but avoids an allocation since we already have 1845 // a *[]rune. 1846 type ranges struct { 1847 p *[]rune 1848 } 1849 1850 func (ra ranges) Less(i, j int) bool { 1851 p := *ra.p 1852 i *= 2 1853 j *= 2 1854 return p[i] < p[j] || p[i] == p[j] && p[i+1] > p[j+1] 1855 } 1856 1857 func (ra ranges) Len() int { 1858 return len(*ra.p) / 2 1859 } 1860 1861 func (ra ranges) Swap(i, j int) { 1862 p := *ra.p 1863 i *= 2 1864 j *= 2 1865 p[i], p[i+1], p[j], p[j+1] = p[j], p[j+1], p[i], p[i+1] 1866 } 1867 1868 func checkUTF8(s string) error { 1869 for s != "" { 1870 rune, size := utf8.DecodeRuneInString(s) 1871 if rune == utf8.RuneError && size == 1 { 1872 return &Error{Code: ErrInvalidUTF8, Expr: s} 1873 } 1874 s = s[size:] 1875 } 1876 return nil 1877 } 1878 1879 func nextRune(s string) (c rune, t string, err error) { 1880 c, size := utf8.DecodeRuneInString(s) 1881 if c == utf8.RuneError && size == 1 { 1882 return 0, "", &Error{Code: ErrInvalidUTF8, Expr: s} 1883 } 1884 return c, s[size:], nil 1885 } 1886 1887 func isalnum(c rune) bool { 1888 return '0' <= c && c <= '9' || 'A' <= c && c <= 'Z' || 'a' <= c && c <= 'z' 1889 } 1890 1891 func unhex(c rune) rune { 1892 if '0' <= c && c <= '9' { 1893 return c - '0' 1894 } 1895 if 'a' <= c && c <= 'f' { 1896 return c - 'a' + 10 1897 } 1898 if 'A' <= c && c <= 'F' { 1899 return c - 'A' + 10 1900 } 1901 return -1 1902 } 1903