1 // run 2 3 // Copyright 2009 The Go Authors. All rights reserved. 4 // Use of this source code is governed by a BSD-style 5 // license that can be found in the LICENSE file. 6 7 // Test concurrency primitives: power series. 8 9 // Power series package 10 // A power series is a channel, along which flow rational 11 // coefficients. A denominator of zero signifies the end. 12 // Original code in Newsqueak by Doug McIlroy. 13 // See Squinting at Power Series by Doug McIlroy, 14 // http://www.cs.bell-labs.com/who/rsc/thread/squint.pdf 15 16 package main 17 18 import "os" 19 20 type rat struct { 21 num, den int64 // numerator, denominator 22 } 23 24 func (u rat) pr() { 25 if u.den==1 { 26 print(u.num) 27 } else { 28 print(u.num, "/", u.den) 29 } 30 print(" ") 31 } 32 33 func (u rat) eq(c rat) bool { 34 return u.num == c.num && u.den == c.den 35 } 36 37 type dch struct { 38 req chan int 39 dat chan rat 40 nam int 41 } 42 43 type dch2 [2] *dch 44 45 var chnames string 46 var chnameserial int 47 var seqno int 48 49 func mkdch() *dch { 50 c := chnameserial % len(chnames) 51 chnameserial++ 52 d := new(dch) 53 d.req = make(chan int) 54 d.dat = make(chan rat) 55 d.nam = c 56 return d 57 } 58 59 func mkdch2() *dch2 { 60 d2 := new(dch2) 61 d2[0] = mkdch() 62 d2[1] = mkdch() 63 return d2 64 } 65 66 // split reads a single demand channel and replicates its 67 // output onto two, which may be read at different rates. 68 // A process is created at first demand for a rat and dies 69 // after the rat has been sent to both outputs. 70 71 // When multiple generations of split exist, the newest 72 // will service requests on one channel, which is 73 // always renamed to be out[0]; the oldest will service 74 // requests on the other channel, out[1]. All generations but the 75 // newest hold queued data that has already been sent to 76 // out[0]. When data has finally been sent to out[1], 77 // a signal on the release-wait channel tells the next newer 78 // generation to begin servicing out[1]. 79 80 func dosplit(in *dch, out *dch2, wait chan int ) { 81 both := false // do not service both channels 82 83 select { 84 case <-out[0].req: 85 86 case <-wait: 87 both = true 88 select { 89 case <-out[0].req: 90 91 case <-out[1].req: 92 out[0], out[1] = out[1], out[0] 93 } 94 } 95 96 seqno++ 97 in.req <- seqno 98 release := make(chan int) 99 go dosplit(in, out, release) 100 dat := <-in.dat 101 out[0].dat <- dat 102 if !both { 103 <-wait 104 } 105 <-out[1].req 106 out[1].dat <- dat 107 release <- 0 108 } 109 110 func split(in *dch, out *dch2) { 111 release := make(chan int) 112 go dosplit(in, out, release) 113 release <- 0 114 } 115 116 func put(dat rat, out *dch) { 117 <-out.req 118 out.dat <- dat 119 } 120 121 func get(in *dch) rat { 122 seqno++ 123 in.req <- seqno 124 return <-in.dat 125 } 126 127 // Get one rat from each of n demand channels 128 129 func getn(in []*dch) []rat { 130 n := len(in) 131 if n != 2 { panic("bad n in getn") } 132 req := new([2] chan int) 133 dat := new([2] chan rat) 134 out := make([]rat, 2) 135 var i int 136 var it rat 137 for i=0; i<n; i++ { 138 req[i] = in[i].req 139 dat[i] = nil 140 } 141 for n=2*n; n>0; n-- { 142 seqno++ 143 144 select { 145 case req[0] <- seqno: 146 dat[0] = in[0].dat 147 req[0] = nil 148 case req[1] <- seqno: 149 dat[1] = in[1].dat 150 req[1] = nil 151 case it = <-dat[0]: 152 out[0] = it 153 dat[0] = nil 154 case it = <-dat[1]: 155 out[1] = it 156 dat[1] = nil 157 } 158 } 159 return out 160 } 161 162 // Get one rat from each of 2 demand channels 163 164 func get2(in0 *dch, in1 *dch) []rat { 165 return getn([]*dch{in0, in1}) 166 } 167 168 func copy(in *dch, out *dch) { 169 for { 170 <-out.req 171 out.dat <- get(in) 172 } 173 } 174 175 func repeat(dat rat, out *dch) { 176 for { 177 put(dat, out) 178 } 179 } 180 181 type PS *dch // power series 182 type PS2 *[2] PS // pair of power series 183 184 var Ones PS 185 var Twos PS 186 187 func mkPS() *dch { 188 return mkdch() 189 } 190 191 func mkPS2() *dch2 { 192 return mkdch2() 193 } 194 195 // Conventions 196 // Upper-case for power series. 197 // Lower-case for rationals. 198 // Input variables: U,V,... 199 // Output variables: ...,Y,Z 200 201 // Integer gcd; needed for rational arithmetic 202 203 func gcd (u, v int64) int64 { 204 if u < 0 { return gcd(-u, v) } 205 if u == 0 { return v } 206 return gcd(v%u, u) 207 } 208 209 // Make a rational from two ints and from one int 210 211 func i2tor(u, v int64) rat { 212 g := gcd(u,v) 213 var r rat 214 if v > 0 { 215 r.num = u/g 216 r.den = v/g 217 } else { 218 r.num = -u/g 219 r.den = -v/g 220 } 221 return r 222 } 223 224 func itor(u int64) rat { 225 return i2tor(u, 1) 226 } 227 228 var zero rat 229 var one rat 230 231 232 // End mark and end test 233 234 var finis rat 235 236 func end(u rat) int64 { 237 if u.den==0 { return 1 } 238 return 0 239 } 240 241 // Operations on rationals 242 243 func add(u, v rat) rat { 244 g := gcd(u.den,v.den) 245 return i2tor(u.num*(v.den/g)+v.num*(u.den/g),u.den*(v.den/g)) 246 } 247 248 func mul(u, v rat) rat { 249 g1 := gcd(u.num,v.den) 250 g2 := gcd(u.den,v.num) 251 var r rat 252 r.num = (u.num/g1)*(v.num/g2) 253 r.den = (u.den/g2)*(v.den/g1) 254 return r 255 } 256 257 func neg(u rat) rat { 258 return i2tor(-u.num, u.den) 259 } 260 261 func sub(u, v rat) rat { 262 return add(u, neg(v)) 263 } 264 265 func inv(u rat) rat { // invert a rat 266 if u.num == 0 { panic("zero divide in inv") } 267 return i2tor(u.den, u.num) 268 } 269 270 // print eval in floating point of PS at x=c to n terms 271 func evaln(c rat, U PS, n int) { 272 xn := float64(1) 273 x := float64(c.num)/float64(c.den) 274 val := float64(0) 275 for i:=0; i<n; i++ { 276 u := get(U) 277 if end(u) != 0 { 278 break 279 } 280 val = val + x * float64(u.num)/float64(u.den) 281 xn = xn*x 282 } 283 print(val, "\n") 284 } 285 286 // Print n terms of a power series 287 func printn(U PS, n int) { 288 done := false 289 for ; !done && n>0; n-- { 290 u := get(U) 291 if end(u) != 0 { 292 done = true 293 } else { 294 u.pr() 295 } 296 } 297 print(("\n")) 298 } 299 300 // Evaluate n terms of power series U at x=c 301 func eval(c rat, U PS, n int) rat { 302 if n==0 { return zero } 303 y := get(U) 304 if end(y) != 0 { return zero } 305 return add(y,mul(c,eval(c,U,n-1))) 306 } 307 308 // Power-series constructors return channels on which power 309 // series flow. They start an encapsulated generator that 310 // puts the terms of the series on the channel. 311 312 // Make a pair of power series identical to a given power series 313 314 func Split(U PS) *dch2 { 315 UU := mkdch2() 316 go split(U,UU) 317 return UU 318 } 319 320 // Add two power series 321 func Add(U, V PS) PS { 322 Z := mkPS() 323 go func() { 324 var uv []rat 325 for { 326 <-Z.req 327 uv = get2(U,V) 328 switch end(uv[0])+2*end(uv[1]) { 329 case 0: 330 Z.dat <- add(uv[0], uv[1]) 331 case 1: 332 Z.dat <- uv[1] 333 copy(V,Z) 334 case 2: 335 Z.dat <- uv[0] 336 copy(U,Z) 337 case 3: 338 Z.dat <- finis 339 } 340 } 341 }() 342 return Z 343 } 344 345 // Multiply a power series by a constant 346 func Cmul(c rat,U PS) PS { 347 Z := mkPS() 348 go func() { 349 done := false 350 for !done { 351 <-Z.req 352 u := get(U) 353 if end(u) != 0 { 354 done = true 355 } else { 356 Z.dat <- mul(c,u) 357 } 358 } 359 Z.dat <- finis 360 }() 361 return Z 362 } 363 364 // Subtract 365 366 func Sub(U, V PS) PS { 367 return Add(U, Cmul(neg(one), V)) 368 } 369 370 // Multiply a power series by the monomial x^n 371 372 func Monmul(U PS, n int) PS { 373 Z := mkPS() 374 go func() { 375 for ; n>0; n-- { put(zero,Z) } 376 copy(U,Z) 377 }() 378 return Z 379 } 380 381 // Multiply by x 382 383 func Xmul(U PS) PS { 384 return Monmul(U,1) 385 } 386 387 func Rep(c rat) PS { 388 Z := mkPS() 389 go repeat(c,Z) 390 return Z 391 } 392 393 // Monomial c*x^n 394 395 func Mon(c rat, n int) PS { 396 Z:=mkPS() 397 go func() { 398 if(c.num!=0) { 399 for ; n>0; n=n-1 { put(zero,Z) } 400 put(c,Z) 401 } 402 put(finis,Z) 403 }() 404 return Z 405 } 406 407 func Shift(c rat, U PS) PS { 408 Z := mkPS() 409 go func() { 410 put(c,Z) 411 copy(U,Z) 412 }() 413 return Z 414 } 415 416 // simple pole at 1: 1/(1-x) = 1 1 1 1 1 ... 417 418 // Convert array of coefficients, constant term first 419 // to a (finite) power series 420 421 /* 422 func Poly(a []rat) PS { 423 Z:=mkPS() 424 begin func(a []rat, Z PS) { 425 j:=0 426 done:=0 427 for j=len(a); !done&&j>0; j=j-1) 428 if(a[j-1].num!=0) done=1 429 i:=0 430 for(; i<j; i=i+1) put(a[i],Z) 431 put(finis,Z) 432 }() 433 return Z 434 } 435 */ 436 437 // Multiply. The algorithm is 438 // let U = u + x*UU 439 // let V = v + x*VV 440 // then UV = u*v + x*(u*VV+v*UU) + x*x*UU*VV 441 442 func Mul(U, V PS) PS { 443 Z:=mkPS() 444 go func() { 445 <-Z.req 446 uv := get2(U,V) 447 if end(uv[0])!=0 || end(uv[1]) != 0 { 448 Z.dat <- finis 449 } else { 450 Z.dat <- mul(uv[0],uv[1]) 451 UU := Split(U) 452 VV := Split(V) 453 W := Add(Cmul(uv[0],VV[0]),Cmul(uv[1],UU[0])) 454 <-Z.req 455 Z.dat <- get(W) 456 copy(Add(W,Mul(UU[1],VV[1])),Z) 457 } 458 }() 459 return Z 460 } 461 462 // Differentiate 463 464 func Diff(U PS) PS { 465 Z:=mkPS() 466 go func() { 467 <-Z.req 468 u := get(U) 469 if end(u) == 0 { 470 done:=false 471 for i:=1; !done; i++ { 472 u = get(U) 473 if end(u) != 0 { 474 done = true 475 } else { 476 Z.dat <- mul(itor(int64(i)),u) 477 <-Z.req 478 } 479 } 480 } 481 Z.dat <- finis 482 }() 483 return Z 484 } 485 486 // Integrate, with const of integration 487 func Integ(c rat,U PS) PS { 488 Z:=mkPS() 489 go func() { 490 put(c,Z) 491 done:=false 492 for i:=1; !done; i++ { 493 <-Z.req 494 u := get(U) 495 if end(u) != 0 { done= true } 496 Z.dat <- mul(i2tor(1,int64(i)),u) 497 } 498 Z.dat <- finis 499 }() 500 return Z 501 } 502 503 // Binomial theorem (1+x)^c 504 505 func Binom(c rat) PS { 506 Z:=mkPS() 507 go func() { 508 n := 1 509 t := itor(1) 510 for c.num!=0 { 511 put(t,Z) 512 t = mul(mul(t,c),i2tor(1,int64(n))) 513 c = sub(c,one) 514 n++ 515 } 516 put(finis,Z) 517 }() 518 return Z 519 } 520 521 // Reciprocal of a power series 522 // let U = u + x*UU 523 // let Z = z + x*ZZ 524 // (u+x*UU)*(z+x*ZZ) = 1 525 // z = 1/u 526 // u*ZZ + z*UU +x*UU*ZZ = 0 527 // ZZ = -UU*(z+x*ZZ)/u 528 529 func Recip(U PS) PS { 530 Z:=mkPS() 531 go func() { 532 ZZ:=mkPS2() 533 <-Z.req 534 z := inv(get(U)) 535 Z.dat <- z 536 split(Mul(Cmul(neg(z),U),Shift(z,ZZ[0])),ZZ) 537 copy(ZZ[1],Z) 538 }() 539 return Z 540 } 541 542 // Exponential of a power series with constant term 0 543 // (nonzero constant term would make nonrational coefficients) 544 // bug: the constant term is simply ignored 545 // Z = exp(U) 546 // DZ = Z*DU 547 // integrate to get Z 548 549 func Exp(U PS) PS { 550 ZZ := mkPS2() 551 split(Integ(one,Mul(ZZ[0],Diff(U))),ZZ) 552 return ZZ[1] 553 } 554 555 // Substitute V for x in U, where the leading term of V is zero 556 // let U = u + x*UU 557 // let V = v + x*VV 558 // then S(U,V) = u + VV*S(V,UU) 559 // bug: a nonzero constant term is ignored 560 561 func Subst(U, V PS) PS { 562 Z:= mkPS() 563 go func() { 564 VV := Split(V) 565 <-Z.req 566 u := get(U) 567 Z.dat <- u 568 if end(u) == 0 { 569 if end(get(VV[0])) != 0 { 570 put(finis,Z) 571 } else { 572 copy(Mul(VV[0],Subst(U,VV[1])),Z) 573 } 574 } 575 }() 576 return Z 577 } 578 579 // Monomial Substition: U(c x^n) 580 // Each Ui is multiplied by c^i and followed by n-1 zeros 581 582 func MonSubst(U PS, c0 rat, n int) PS { 583 Z:= mkPS() 584 go func() { 585 c := one 586 for { 587 <-Z.req 588 u := get(U) 589 Z.dat <- mul(u, c) 590 c = mul(c, c0) 591 if end(u) != 0 { 592 Z.dat <- finis 593 break 594 } 595 for i := 1; i < n; i++ { 596 <-Z.req 597 Z.dat <- zero 598 } 599 } 600 }() 601 return Z 602 } 603 604 605 func Init() { 606 chnameserial = -1 607 seqno = 0 608 chnames = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" 609 zero = itor(0) 610 one = itor(1) 611 finis = i2tor(1,0) 612 Ones = Rep(one) 613 Twos = Rep(itor(2)) 614 } 615 616 func check(U PS, c rat, count int, str string) { 617 for i := 0; i < count; i++ { 618 r := get(U) 619 if !r.eq(c) { 620 print("got: ") 621 r.pr() 622 print("should get ") 623 c.pr() 624 print("\n") 625 panic(str) 626 } 627 } 628 } 629 630 const N=10 631 func checka(U PS, a []rat, str string) { 632 for i := 0; i < N; i++ { 633 check(U, a[i], 1, str) 634 } 635 } 636 637 func main() { 638 Init() 639 if len(os.Args) > 1 { // print 640 print("Ones: "); printn(Ones, 10) 641 print("Twos: "); printn(Twos, 10) 642 print("Add: "); printn(Add(Ones, Twos), 10) 643 print("Diff: "); printn(Diff(Ones), 10) 644 print("Integ: "); printn(Integ(zero, Ones), 10) 645 print("CMul: "); printn(Cmul(neg(one), Ones), 10) 646 print("Sub: "); printn(Sub(Ones, Twos), 10) 647 print("Mul: "); printn(Mul(Ones, Ones), 10) 648 print("Exp: "); printn(Exp(Ones), 15) 649 print("MonSubst: "); printn(MonSubst(Ones, neg(one), 2), 10) 650 print("ATan: "); printn(Integ(zero, MonSubst(Ones, neg(one), 2)), 10) 651 } else { // test 652 check(Ones, one, 5, "Ones") 653 check(Add(Ones, Ones), itor(2), 0, "Add Ones Ones") // 1 1 1 1 1 654 check(Add(Ones, Twos), itor(3), 0, "Add Ones Twos") // 3 3 3 3 3 655 a := make([]rat, N) 656 d := Diff(Ones) 657 for i:=0; i < N; i++ { 658 a[i] = itor(int64(i+1)) 659 } 660 checka(d, a, "Diff") // 1 2 3 4 5 661 in := Integ(zero, Ones) 662 a[0] = zero // integration constant 663 for i:=1; i < N; i++ { 664 a[i] = i2tor(1, int64(i)) 665 } 666 checka(in, a, "Integ") // 0 1 1/2 1/3 1/4 1/5 667 check(Cmul(neg(one), Twos), itor(-2), 10, "CMul") // -1 -1 -1 -1 -1 668 check(Sub(Ones, Twos), itor(-1), 0, "Sub Ones Twos") // -1 -1 -1 -1 -1 669 m := Mul(Ones, Ones) 670 for i:=0; i < N; i++ { 671 a[i] = itor(int64(i+1)) 672 } 673 checka(m, a, "Mul") // 1 2 3 4 5 674 e := Exp(Ones) 675 a[0] = itor(1) 676 a[1] = itor(1) 677 a[2] = i2tor(3,2) 678 a[3] = i2tor(13,6) 679 a[4] = i2tor(73,24) 680 a[5] = i2tor(167,40) 681 a[6] = i2tor(4051,720) 682 a[7] = i2tor(37633,5040) 683 a[8] = i2tor(43817,4480) 684 a[9] = i2tor(4596553,362880) 685 checka(e, a, "Exp") // 1 1 3/2 13/6 73/24 686 at := Integ(zero, MonSubst(Ones, neg(one), 2)) 687 for c, i := 1, 0; i < N; i++ { 688 if i%2 == 0 { 689 a[i] = zero 690 } else { 691 a[i] = i2tor(int64(c), int64(i)) 692 c *= -1 693 } 694 } 695 checka(at, a, "ATan") // 0 -1 0 -1/3 0 -1/5 696 /* 697 t := Revert(Integ(zero, MonSubst(Ones, neg(one), 2))) 698 a[0] = zero 699 a[1] = itor(1) 700 a[2] = zero 701 a[3] = i2tor(1,3) 702 a[4] = zero 703 a[5] = i2tor(2,15) 704 a[6] = zero 705 a[7] = i2tor(17,315) 706 a[8] = zero 707 a[9] = i2tor(62,2835) 708 checka(t, a, "Tan") // 0 1 0 1/3 0 2/15 709 */ 710 } 711 } 712