Home | History | Annotate | Download | only in big
      1 // Copyright 2009 The Go Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 // This file implements signed multi-precision integers.
      6 
      7 package big
      8 
      9 import (
     10 	"fmt"
     11 	"io"
     12 	"math/rand"
     13 	"strings"
     14 )
     15 
     16 // An Int represents a signed multi-precision integer.
     17 // The zero value for an Int represents the value 0.
     18 type Int struct {
     19 	neg bool // sign
     20 	abs nat  // absolute value of the integer
     21 }
     22 
     23 var intOne = &Int{false, natOne}
     24 
     25 // Sign returns:
     26 //
     27 //	-1 if x <  0
     28 //	 0 if x == 0
     29 //	+1 if x >  0
     30 //
     31 func (x *Int) Sign() int {
     32 	if len(x.abs) == 0 {
     33 		return 0
     34 	}
     35 	if x.neg {
     36 		return -1
     37 	}
     38 	return 1
     39 }
     40 
     41 // SetInt64 sets z to x and returns z.
     42 func (z *Int) SetInt64(x int64) *Int {
     43 	neg := false
     44 	if x < 0 {
     45 		neg = true
     46 		x = -x
     47 	}
     48 	z.abs = z.abs.setUint64(uint64(x))
     49 	z.neg = neg
     50 	return z
     51 }
     52 
     53 // SetUint64 sets z to x and returns z.
     54 func (z *Int) SetUint64(x uint64) *Int {
     55 	z.abs = z.abs.setUint64(x)
     56 	z.neg = false
     57 	return z
     58 }
     59 
     60 // NewInt allocates and returns a new Int set to x.
     61 func NewInt(x int64) *Int {
     62 	return new(Int).SetInt64(x)
     63 }
     64 
     65 // Set sets z to x and returns z.
     66 func (z *Int) Set(x *Int) *Int {
     67 	if z != x {
     68 		z.abs = z.abs.set(x.abs)
     69 		z.neg = x.neg
     70 	}
     71 	return z
     72 }
     73 
     74 // Bits provides raw (unchecked but fast) access to x by returning its
     75 // absolute value as a little-endian Word slice. The result and x share
     76 // the same underlying array.
     77 // Bits is intended to support implementation of missing low-level Int
     78 // functionality outside this package; it should be avoided otherwise.
     79 func (x *Int) Bits() []Word {
     80 	return x.abs
     81 }
     82 
     83 // SetBits provides raw (unchecked but fast) access to z by setting its
     84 // value to abs, interpreted as a little-endian Word slice, and returning
     85 // z. The result and abs share the same underlying array.
     86 // SetBits is intended to support implementation of missing low-level Int
     87 // functionality outside this package; it should be avoided otherwise.
     88 func (z *Int) SetBits(abs []Word) *Int {
     89 	z.abs = nat(abs).norm()
     90 	z.neg = false
     91 	return z
     92 }
     93 
     94 // Abs sets z to |x| (the absolute value of x) and returns z.
     95 func (z *Int) Abs(x *Int) *Int {
     96 	z.Set(x)
     97 	z.neg = false
     98 	return z
     99 }
    100 
    101 // Neg sets z to -x and returns z.
    102 func (z *Int) Neg(x *Int) *Int {
    103 	z.Set(x)
    104 	z.neg = len(z.abs) > 0 && !z.neg // 0 has no sign
    105 	return z
    106 }
    107 
    108 // Add sets z to the sum x+y and returns z.
    109 func (z *Int) Add(x, y *Int) *Int {
    110 	neg := x.neg
    111 	if x.neg == y.neg {
    112 		// x + y == x + y
    113 		// (-x) + (-y) == -(x + y)
    114 		z.abs = z.abs.add(x.abs, y.abs)
    115 	} else {
    116 		// x + (-y) == x - y == -(y - x)
    117 		// (-x) + y == y - x == -(x - y)
    118 		if x.abs.cmp(y.abs) >= 0 {
    119 			z.abs = z.abs.sub(x.abs, y.abs)
    120 		} else {
    121 			neg = !neg
    122 			z.abs = z.abs.sub(y.abs, x.abs)
    123 		}
    124 	}
    125 	z.neg = len(z.abs) > 0 && neg // 0 has no sign
    126 	return z
    127 }
    128 
    129 // Sub sets z to the difference x-y and returns z.
    130 func (z *Int) Sub(x, y *Int) *Int {
    131 	neg := x.neg
    132 	if x.neg != y.neg {
    133 		// x - (-y) == x + y
    134 		// (-x) - y == -(x + y)
    135 		z.abs = z.abs.add(x.abs, y.abs)
    136 	} else {
    137 		// x - y == x - y == -(y - x)
    138 		// (-x) - (-y) == y - x == -(x - y)
    139 		if x.abs.cmp(y.abs) >= 0 {
    140 			z.abs = z.abs.sub(x.abs, y.abs)
    141 		} else {
    142 			neg = !neg
    143 			z.abs = z.abs.sub(y.abs, x.abs)
    144 		}
    145 	}
    146 	z.neg = len(z.abs) > 0 && neg // 0 has no sign
    147 	return z
    148 }
    149 
    150 // Mul sets z to the product x*y and returns z.
    151 func (z *Int) Mul(x, y *Int) *Int {
    152 	// x * y == x * y
    153 	// x * (-y) == -(x * y)
    154 	// (-x) * y == -(x * y)
    155 	// (-x) * (-y) == x * y
    156 	z.abs = z.abs.mul(x.abs, y.abs)
    157 	z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign
    158 	return z
    159 }
    160 
    161 // MulRange sets z to the product of all integers
    162 // in the range [a, b] inclusively and returns z.
    163 // If a > b (empty range), the result is 1.
    164 func (z *Int) MulRange(a, b int64) *Int {
    165 	switch {
    166 	case a > b:
    167 		return z.SetInt64(1) // empty range
    168 	case a <= 0 && b >= 0:
    169 		return z.SetInt64(0) // range includes 0
    170 	}
    171 	// a <= b && (b < 0 || a > 0)
    172 
    173 	neg := false
    174 	if a < 0 {
    175 		neg = (b-a)&1 == 0
    176 		a, b = -b, -a
    177 	}
    178 
    179 	z.abs = z.abs.mulRange(uint64(a), uint64(b))
    180 	z.neg = neg
    181 	return z
    182 }
    183 
    184 // Binomial sets z to the binomial coefficient of (n, k) and returns z.
    185 func (z *Int) Binomial(n, k int64) *Int {
    186 	// reduce the number of multiplications by reducing k
    187 	if n/2 < k && k <= n {
    188 		k = n - k // Binomial(n, k) == Binomial(n, n-k)
    189 	}
    190 	var a, b Int
    191 	a.MulRange(n-k+1, n)
    192 	b.MulRange(1, k)
    193 	return z.Quo(&a, &b)
    194 }
    195 
    196 // Quo sets z to the quotient x/y for y != 0 and returns z.
    197 // If y == 0, a division-by-zero run-time panic occurs.
    198 // Quo implements truncated division (like Go); see QuoRem for more details.
    199 func (z *Int) Quo(x, y *Int) *Int {
    200 	z.abs, _ = z.abs.div(nil, x.abs, y.abs)
    201 	z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign
    202 	return z
    203 }
    204 
    205 // Rem sets z to the remainder x%y for y != 0 and returns z.
    206 // If y == 0, a division-by-zero run-time panic occurs.
    207 // Rem implements truncated modulus (like Go); see QuoRem for more details.
    208 func (z *Int) Rem(x, y *Int) *Int {
    209 	_, z.abs = nat(nil).div(z.abs, x.abs, y.abs)
    210 	z.neg = len(z.abs) > 0 && x.neg // 0 has no sign
    211 	return z
    212 }
    213 
    214 // QuoRem sets z to the quotient x/y and r to the remainder x%y
    215 // and returns the pair (z, r) for y != 0.
    216 // If y == 0, a division-by-zero run-time panic occurs.
    217 //
    218 // QuoRem implements T-division and modulus (like Go):
    219 //
    220 //	q = x/y      with the result truncated to zero
    221 //	r = x - y*q
    222 //
    223 // (See Daan Leijen, ``Division and Modulus for Computer Scientists''.)
    224 // See DivMod for Euclidean division and modulus (unlike Go).
    225 //
    226 func (z *Int) QuoRem(x, y, r *Int) (*Int, *Int) {
    227 	z.abs, r.abs = z.abs.div(r.abs, x.abs, y.abs)
    228 	z.neg, r.neg = len(z.abs) > 0 && x.neg != y.neg, len(r.abs) > 0 && x.neg // 0 has no sign
    229 	return z, r
    230 }
    231 
    232 // Div sets z to the quotient x/y for y != 0 and returns z.
    233 // If y == 0, a division-by-zero run-time panic occurs.
    234 // Div implements Euclidean division (unlike Go); see DivMod for more details.
    235 func (z *Int) Div(x, y *Int) *Int {
    236 	y_neg := y.neg // z may be an alias for y
    237 	var r Int
    238 	z.QuoRem(x, y, &r)
    239 	if r.neg {
    240 		if y_neg {
    241 			z.Add(z, intOne)
    242 		} else {
    243 			z.Sub(z, intOne)
    244 		}
    245 	}
    246 	return z
    247 }
    248 
    249 // Mod sets z to the modulus x%y for y != 0 and returns z.
    250 // If y == 0, a division-by-zero run-time panic occurs.
    251 // Mod implements Euclidean modulus (unlike Go); see DivMod for more details.
    252 func (z *Int) Mod(x, y *Int) *Int {
    253 	y0 := y // save y
    254 	if z == y || alias(z.abs, y.abs) {
    255 		y0 = new(Int).Set(y)
    256 	}
    257 	var q Int
    258 	q.QuoRem(x, y, z)
    259 	if z.neg {
    260 		if y0.neg {
    261 			z.Sub(z, y0)
    262 		} else {
    263 			z.Add(z, y0)
    264 		}
    265 	}
    266 	return z
    267 }
    268 
    269 // DivMod sets z to the quotient x div y and m to the modulus x mod y
    270 // and returns the pair (z, m) for y != 0.
    271 // If y == 0, a division-by-zero run-time panic occurs.
    272 //
    273 // DivMod implements Euclidean division and modulus (unlike Go):
    274 //
    275 //	q = x div y  such that
    276 //	m = x - y*q  with 0 <= m < |q|
    277 //
    278 // (See Raymond T. Boute, ``The Euclidean definition of the functions
    279 // div and mod''. ACM Transactions on Programming Languages and
    280 // Systems (TOPLAS), 14(2):127-144, New York, NY, USA, 4/1992.
    281 // ACM press.)
    282 // See QuoRem for T-division and modulus (like Go).
    283 //
    284 func (z *Int) DivMod(x, y, m *Int) (*Int, *Int) {
    285 	y0 := y // save y
    286 	if z == y || alias(z.abs, y.abs) {
    287 		y0 = new(Int).Set(y)
    288 	}
    289 	z.QuoRem(x, y, m)
    290 	if m.neg {
    291 		if y0.neg {
    292 			z.Add(z, intOne)
    293 			m.Sub(m, y0)
    294 		} else {
    295 			z.Sub(z, intOne)
    296 			m.Add(m, y0)
    297 		}
    298 	}
    299 	return z, m
    300 }
    301 
    302 // Cmp compares x and y and returns:
    303 //
    304 //   -1 if x <  y
    305 //    0 if x == y
    306 //   +1 if x >  y
    307 //
    308 func (x *Int) Cmp(y *Int) (r int) {
    309 	// x cmp y == x cmp y
    310 	// x cmp (-y) == x
    311 	// (-x) cmp y == y
    312 	// (-x) cmp (-y) == -(x cmp y)
    313 	switch {
    314 	case x.neg == y.neg:
    315 		r = x.abs.cmp(y.abs)
    316 		if x.neg {
    317 			r = -r
    318 		}
    319 	case x.neg:
    320 		r = -1
    321 	default:
    322 		r = 1
    323 	}
    324 	return
    325 }
    326 
    327 // low32 returns the least significant 32 bits of z.
    328 func low32(z nat) uint32 {
    329 	if len(z) == 0 {
    330 		return 0
    331 	}
    332 	return uint32(z[0])
    333 }
    334 
    335 // low64 returns the least significant 64 bits of z.
    336 func low64(z nat) uint64 {
    337 	if len(z) == 0 {
    338 		return 0
    339 	}
    340 	v := uint64(z[0])
    341 	if _W == 32 && len(z) > 1 {
    342 		v |= uint64(z[1]) << 32
    343 	}
    344 	return v
    345 }
    346 
    347 // Int64 returns the int64 representation of x.
    348 // If x cannot be represented in an int64, the result is undefined.
    349 func (x *Int) Int64() int64 {
    350 	v := int64(low64(x.abs))
    351 	if x.neg {
    352 		v = -v
    353 	}
    354 	return v
    355 }
    356 
    357 // Uint64 returns the uint64 representation of x.
    358 // If x cannot be represented in a uint64, the result is undefined.
    359 func (x *Int) Uint64() uint64 {
    360 	return low64(x.abs)
    361 }
    362 
    363 // SetString sets z to the value of s, interpreted in the given base,
    364 // and returns z and a boolean indicating success. If SetString fails,
    365 // the value of z is undefined but the returned value is nil.
    366 //
    367 // The base argument must be 0 or a value between 2 and MaxBase. If the base
    368 // is 0, the string prefix determines the actual conversion base. A prefix of
    369 // ``0x'' or ``0X'' selects base 16; the ``0'' prefix selects base 8, and a
    370 // ``0b'' or ``0B'' prefix selects base 2. Otherwise the selected base is 10.
    371 //
    372 func (z *Int) SetString(s string, base int) (*Int, bool) {
    373 	r := strings.NewReader(s)
    374 	_, _, err := z.scan(r, base)
    375 	if err != nil {
    376 		return nil, false
    377 	}
    378 	_, err = r.ReadByte()
    379 	if err != io.EOF {
    380 		return nil, false
    381 	}
    382 	return z, true // err == io.EOF => scan consumed all of s
    383 }
    384 
    385 // SetBytes interprets buf as the bytes of a big-endian unsigned
    386 // integer, sets z to that value, and returns z.
    387 func (z *Int) SetBytes(buf []byte) *Int {
    388 	z.abs = z.abs.setBytes(buf)
    389 	z.neg = false
    390 	return z
    391 }
    392 
    393 // Bytes returns the absolute value of x as a big-endian byte slice.
    394 func (x *Int) Bytes() []byte {
    395 	buf := make([]byte, len(x.abs)*_S)
    396 	return buf[x.abs.bytes(buf):]
    397 }
    398 
    399 // BitLen returns the length of the absolute value of x in bits.
    400 // The bit length of 0 is 0.
    401 func (x *Int) BitLen() int {
    402 	return x.abs.bitLen()
    403 }
    404 
    405 // Exp sets z = x**y mod |m| (i.e. the sign of m is ignored), and returns z.
    406 // If y <= 0, the result is 1 mod |m|; if m == nil or m == 0, z = x**y.
    407 // See Knuth, volume 2, section 4.6.3.
    408 func (z *Int) Exp(x, y, m *Int) *Int {
    409 	var yWords nat
    410 	if !y.neg {
    411 		yWords = y.abs
    412 	}
    413 	// y >= 0
    414 
    415 	var mWords nat
    416 	if m != nil {
    417 		mWords = m.abs // m.abs may be nil for m == 0
    418 	}
    419 
    420 	z.abs = z.abs.expNN(x.abs, yWords, mWords)
    421 	z.neg = len(z.abs) > 0 && x.neg && len(yWords) > 0 && yWords[0]&1 == 1 // 0 has no sign
    422 	if z.neg && len(mWords) > 0 {
    423 		// make modulus result positive
    424 		z.abs = z.abs.sub(mWords, z.abs) // z == x**y mod |m| && 0 <= z < |m|
    425 		z.neg = false
    426 	}
    427 
    428 	return z
    429 }
    430 
    431 // GCD sets z to the greatest common divisor of a and b, which both must
    432 // be > 0, and returns z.
    433 // If x and y are not nil, GCD sets x and y such that z = a*x + b*y.
    434 // If either a or b is <= 0, GCD sets z = x = y = 0.
    435 func (z *Int) GCD(x, y, a, b *Int) *Int {
    436 	if a.Sign() <= 0 || b.Sign() <= 0 {
    437 		z.SetInt64(0)
    438 		if x != nil {
    439 			x.SetInt64(0)
    440 		}
    441 		if y != nil {
    442 			y.SetInt64(0)
    443 		}
    444 		return z
    445 	}
    446 	if x == nil && y == nil {
    447 		return z.binaryGCD(a, b)
    448 	}
    449 
    450 	A := new(Int).Set(a)
    451 	B := new(Int).Set(b)
    452 
    453 	X := new(Int)
    454 	Y := new(Int).SetInt64(1)
    455 
    456 	lastX := new(Int).SetInt64(1)
    457 	lastY := new(Int)
    458 
    459 	q := new(Int)
    460 	temp := new(Int)
    461 
    462 	for len(B.abs) > 0 {
    463 		r := new(Int)
    464 		q, r = q.QuoRem(A, B, r)
    465 
    466 		A, B = B, r
    467 
    468 		temp.Set(X)
    469 		X.Mul(X, q)
    470 		X.neg = !X.neg
    471 		X.Add(X, lastX)
    472 		lastX.Set(temp)
    473 
    474 		temp.Set(Y)
    475 		Y.Mul(Y, q)
    476 		Y.neg = !Y.neg
    477 		Y.Add(Y, lastY)
    478 		lastY.Set(temp)
    479 	}
    480 
    481 	if x != nil {
    482 		*x = *lastX
    483 	}
    484 
    485 	if y != nil {
    486 		*y = *lastY
    487 	}
    488 
    489 	*z = *A
    490 	return z
    491 }
    492 
    493 // binaryGCD sets z to the greatest common divisor of a and b, which both must
    494 // be > 0, and returns z.
    495 // See Knuth, The Art of Computer Programming, Vol. 2, Section 4.5.2, Algorithm B.
    496 func (z *Int) binaryGCD(a, b *Int) *Int {
    497 	u := z
    498 	v := new(Int)
    499 
    500 	// use one Euclidean iteration to ensure that u and v are approx. the same size
    501 	switch {
    502 	case len(a.abs) > len(b.abs):
    503 		u.Set(b)
    504 		v.Rem(a, b)
    505 	case len(a.abs) < len(b.abs):
    506 		u.Set(a)
    507 		v.Rem(b, a)
    508 	default:
    509 		u.Set(a)
    510 		v.Set(b)
    511 	}
    512 
    513 	// v might be 0 now
    514 	if len(v.abs) == 0 {
    515 		return u
    516 	}
    517 	// u > 0 && v > 0
    518 
    519 	// determine largest k such that u = u' << k, v = v' << k
    520 	k := u.abs.trailingZeroBits()
    521 	if vk := v.abs.trailingZeroBits(); vk < k {
    522 		k = vk
    523 	}
    524 	u.Rsh(u, k)
    525 	v.Rsh(v, k)
    526 
    527 	// determine t (we know that u > 0)
    528 	t := new(Int)
    529 	if u.abs[0]&1 != 0 {
    530 		// u is odd
    531 		t.Neg(v)
    532 	} else {
    533 		t.Set(u)
    534 	}
    535 
    536 	for len(t.abs) > 0 {
    537 		// reduce t
    538 		t.Rsh(t, t.abs.trailingZeroBits())
    539 		if t.neg {
    540 			v, t = t, v
    541 			v.neg = len(v.abs) > 0 && !v.neg // 0 has no sign
    542 		} else {
    543 			u, t = t, u
    544 		}
    545 		t.Sub(u, v)
    546 	}
    547 
    548 	return z.Lsh(u, k)
    549 }
    550 
    551 // ProbablyPrime performs n Miller-Rabin tests to check whether x is prime.
    552 // If it returns true, x is prime with probability 1 - 1/4^n.
    553 // If it returns false, x is not prime. n must be > 0.
    554 func (x *Int) ProbablyPrime(n int) bool {
    555 	if n <= 0 {
    556 		panic("non-positive n for ProbablyPrime")
    557 	}
    558 	return !x.neg && x.abs.probablyPrime(n)
    559 }
    560 
    561 // Rand sets z to a pseudo-random number in [0, n) and returns z.
    562 func (z *Int) Rand(rnd *rand.Rand, n *Int) *Int {
    563 	z.neg = false
    564 	if n.neg == true || len(n.abs) == 0 {
    565 		z.abs = nil
    566 		return z
    567 	}
    568 	z.abs = z.abs.random(rnd, n.abs, n.abs.bitLen())
    569 	return z
    570 }
    571 
    572 // ModInverse sets z to the multiplicative inverse of g in the ring /n
    573 // and returns z. If g and n are not relatively prime, the result is undefined.
    574 func (z *Int) ModInverse(g, n *Int) *Int {
    575 	var d Int
    576 	d.GCD(z, nil, g, n)
    577 	// x and y are such that g*x + n*y = d. Since g and n are
    578 	// relatively prime, d = 1. Taking that modulo n results in
    579 	// g*x = 1, therefore x is the inverse element.
    580 	if z.neg {
    581 		z.Add(z, n)
    582 	}
    583 	return z
    584 }
    585 
    586 // Jacobi returns the Jacobi symbol (x/y), either +1, -1, or 0.
    587 // The y argument must be an odd integer.
    588 func Jacobi(x, y *Int) int {
    589 	if len(y.abs) == 0 || y.abs[0]&1 == 0 {
    590 		panic(fmt.Sprintf("big: invalid 2nd argument to Int.Jacobi: need odd integer but got %s", y))
    591 	}
    592 
    593 	// We use the formulation described in chapter 2, section 2.4,
    594 	// "The Yacas Book of Algorithms":
    595 	// http://yacas.sourceforge.net/Algo.book.pdf
    596 
    597 	var a, b, c Int
    598 	a.Set(x)
    599 	b.Set(y)
    600 	j := 1
    601 
    602 	if b.neg {
    603 		if a.neg {
    604 			j = -1
    605 		}
    606 		b.neg = false
    607 	}
    608 
    609 	for {
    610 		if b.Cmp(intOne) == 0 {
    611 			return j
    612 		}
    613 		if len(a.abs) == 0 {
    614 			return 0
    615 		}
    616 		a.Mod(&a, &b)
    617 		if len(a.abs) == 0 {
    618 			return 0
    619 		}
    620 		// a > 0
    621 
    622 		// handle factors of 2 in 'a'
    623 		s := a.abs.trailingZeroBits()
    624 		if s&1 != 0 {
    625 			bmod8 := b.abs[0] & 7
    626 			if bmod8 == 3 || bmod8 == 5 {
    627 				j = -j
    628 			}
    629 		}
    630 		c.Rsh(&a, s) // a = 2^s*c
    631 
    632 		// swap numerator and denominator
    633 		if b.abs[0]&3 == 3 && c.abs[0]&3 == 3 {
    634 			j = -j
    635 		}
    636 		a.Set(&b)
    637 		b.Set(&c)
    638 	}
    639 }
    640 
    641 // ModSqrt sets z to a square root of x mod p if such a square root exists, and
    642 // returns z. The modulus p must be an odd prime. If x is not a square mod p,
    643 // ModSqrt leaves z unchanged and returns nil. This function panics if p is
    644 // not an odd integer.
    645 func (z *Int) ModSqrt(x, p *Int) *Int {
    646 	switch Jacobi(x, p) {
    647 	case -1:
    648 		return nil // x is not a square mod p
    649 	case 0:
    650 		return z.SetInt64(0) // sqrt(0) mod p = 0
    651 	case 1:
    652 		break
    653 	}
    654 	if x.neg || x.Cmp(p) >= 0 { // ensure 0 <= x < p
    655 		x = new(Int).Mod(x, p)
    656 	}
    657 
    658 	// Break p-1 into s*2^e such that s is odd.
    659 	var s Int
    660 	s.Sub(p, intOne)
    661 	e := s.abs.trailingZeroBits()
    662 	s.Rsh(&s, e)
    663 
    664 	// find some non-square n
    665 	var n Int
    666 	n.SetInt64(2)
    667 	for Jacobi(&n, p) != -1 {
    668 		n.Add(&n, intOne)
    669 	}
    670 
    671 	// Core of the Tonelli-Shanks algorithm. Follows the description in
    672 	// section 6 of "Square roots from 1; 24, 51, 10 to Dan Shanks" by Ezra
    673 	// Brown:
    674 	// https://www.maa.org/sites/default/files/pdf/upload_library/22/Polya/07468342.di020786.02p0470a.pdf
    675 	var y, b, g, t Int
    676 	y.Add(&s, intOne)
    677 	y.Rsh(&y, 1)
    678 	y.Exp(x, &y, p)  // y = x^((s+1)/2)
    679 	b.Exp(x, &s, p)  // b = x^s
    680 	g.Exp(&n, &s, p) // g = n^s
    681 	r := e
    682 	for {
    683 		// find the least m such that ord_p(b) = 2^m
    684 		var m uint
    685 		t.Set(&b)
    686 		for t.Cmp(intOne) != 0 {
    687 			t.Mul(&t, &t).Mod(&t, p)
    688 			m++
    689 		}
    690 
    691 		if m == 0 {
    692 			return z.Set(&y)
    693 		}
    694 
    695 		t.SetInt64(0).SetBit(&t, int(r-m-1), 1).Exp(&g, &t, p)
    696 		// t = g^(2^(r-m-1)) mod p
    697 		g.Mul(&t, &t).Mod(&g, p) // g = g^(2^(r-m)) mod p
    698 		y.Mul(&y, &t).Mod(&y, p)
    699 		b.Mul(&b, &g).Mod(&b, p)
    700 		r = m
    701 	}
    702 }
    703 
    704 // Lsh sets z = x << n and returns z.
    705 func (z *Int) Lsh(x *Int, n uint) *Int {
    706 	z.abs = z.abs.shl(x.abs, n)
    707 	z.neg = x.neg
    708 	return z
    709 }
    710 
    711 // Rsh sets z = x >> n and returns z.
    712 func (z *Int) Rsh(x *Int, n uint) *Int {
    713 	if x.neg {
    714 		// (-x) >> s == ^(x-1) >> s == ^((x-1) >> s) == -(((x-1) >> s) + 1)
    715 		t := z.abs.sub(x.abs, natOne) // no underflow because |x| > 0
    716 		t = t.shr(t, n)
    717 		z.abs = t.add(t, natOne)
    718 		z.neg = true // z cannot be zero if x is negative
    719 		return z
    720 	}
    721 
    722 	z.abs = z.abs.shr(x.abs, n)
    723 	z.neg = false
    724 	return z
    725 }
    726 
    727 // Bit returns the value of the i'th bit of x. That is, it
    728 // returns (x>>i)&1. The bit index i must be >= 0.
    729 func (x *Int) Bit(i int) uint {
    730 	if i == 0 {
    731 		// optimization for common case: odd/even test of x
    732 		if len(x.abs) > 0 {
    733 			return uint(x.abs[0] & 1) // bit 0 is same for -x
    734 		}
    735 		return 0
    736 	}
    737 	if i < 0 {
    738 		panic("negative bit index")
    739 	}
    740 	if x.neg {
    741 		t := nat(nil).sub(x.abs, natOne)
    742 		return t.bit(uint(i)) ^ 1
    743 	}
    744 
    745 	return x.abs.bit(uint(i))
    746 }
    747 
    748 // SetBit sets z to x, with x's i'th bit set to b (0 or 1).
    749 // That is, if b is 1 SetBit sets z = x | (1 << i);
    750 // if b is 0 SetBit sets z = x &^ (1 << i). If b is not 0 or 1,
    751 // SetBit will panic.
    752 func (z *Int) SetBit(x *Int, i int, b uint) *Int {
    753 	if i < 0 {
    754 		panic("negative bit index")
    755 	}
    756 	if x.neg {
    757 		t := z.abs.sub(x.abs, natOne)
    758 		t = t.setBit(t, uint(i), b^1)
    759 		z.abs = t.add(t, natOne)
    760 		z.neg = len(z.abs) > 0
    761 		return z
    762 	}
    763 	z.abs = z.abs.setBit(x.abs, uint(i), b)
    764 	z.neg = false
    765 	return z
    766 }
    767 
    768 // And sets z = x & y and returns z.
    769 func (z *Int) And(x, y *Int) *Int {
    770 	if x.neg == y.neg {
    771 		if x.neg {
    772 			// (-x) & (-y) == ^(x-1) & ^(y-1) == ^((x-1) | (y-1)) == -(((x-1) | (y-1)) + 1)
    773 			x1 := nat(nil).sub(x.abs, natOne)
    774 			y1 := nat(nil).sub(y.abs, natOne)
    775 			z.abs = z.abs.add(z.abs.or(x1, y1), natOne)
    776 			z.neg = true // z cannot be zero if x and y are negative
    777 			return z
    778 		}
    779 
    780 		// x & y == x & y
    781 		z.abs = z.abs.and(x.abs, y.abs)
    782 		z.neg = false
    783 		return z
    784 	}
    785 
    786 	// x.neg != y.neg
    787 	if x.neg {
    788 		x, y = y, x // & is symmetric
    789 	}
    790 
    791 	// x & (-y) == x & ^(y-1) == x &^ (y-1)
    792 	y1 := nat(nil).sub(y.abs, natOne)
    793 	z.abs = z.abs.andNot(x.abs, y1)
    794 	z.neg = false
    795 	return z
    796 }
    797 
    798 // AndNot sets z = x &^ y and returns z.
    799 func (z *Int) AndNot(x, y *Int) *Int {
    800 	if x.neg == y.neg {
    801 		if x.neg {
    802 			// (-x) &^ (-y) == ^(x-1) &^ ^(y-1) == ^(x-1) & (y-1) == (y-1) &^ (x-1)
    803 			x1 := nat(nil).sub(x.abs, natOne)
    804 			y1 := nat(nil).sub(y.abs, natOne)
    805 			z.abs = z.abs.andNot(y1, x1)
    806 			z.neg = false
    807 			return z
    808 		}
    809 
    810 		// x &^ y == x &^ y
    811 		z.abs = z.abs.andNot(x.abs, y.abs)
    812 		z.neg = false
    813 		return z
    814 	}
    815 
    816 	if x.neg {
    817 		// (-x) &^ y == ^(x-1) &^ y == ^(x-1) & ^y == ^((x-1) | y) == -(((x-1) | y) + 1)
    818 		x1 := nat(nil).sub(x.abs, natOne)
    819 		z.abs = z.abs.add(z.abs.or(x1, y.abs), natOne)
    820 		z.neg = true // z cannot be zero if x is negative and y is positive
    821 		return z
    822 	}
    823 
    824 	// x &^ (-y) == x &^ ^(y-1) == x & (y-1)
    825 	y1 := nat(nil).sub(y.abs, natOne)
    826 	z.abs = z.abs.and(x.abs, y1)
    827 	z.neg = false
    828 	return z
    829 }
    830 
    831 // Or sets z = x | y and returns z.
    832 func (z *Int) Or(x, y *Int) *Int {
    833 	if x.neg == y.neg {
    834 		if x.neg {
    835 			// (-x) | (-y) == ^(x-1) | ^(y-1) == ^((x-1) & (y-1)) == -(((x-1) & (y-1)) + 1)
    836 			x1 := nat(nil).sub(x.abs, natOne)
    837 			y1 := nat(nil).sub(y.abs, natOne)
    838 			z.abs = z.abs.add(z.abs.and(x1, y1), natOne)
    839 			z.neg = true // z cannot be zero if x and y are negative
    840 			return z
    841 		}
    842 
    843 		// x | y == x | y
    844 		z.abs = z.abs.or(x.abs, y.abs)
    845 		z.neg = false
    846 		return z
    847 	}
    848 
    849 	// x.neg != y.neg
    850 	if x.neg {
    851 		x, y = y, x // | is symmetric
    852 	}
    853 
    854 	// x | (-y) == x | ^(y-1) == ^((y-1) &^ x) == -(^((y-1) &^ x) + 1)
    855 	y1 := nat(nil).sub(y.abs, natOne)
    856 	z.abs = z.abs.add(z.abs.andNot(y1, x.abs), natOne)
    857 	z.neg = true // z cannot be zero if one of x or y is negative
    858 	return z
    859 }
    860 
    861 // Xor sets z = x ^ y and returns z.
    862 func (z *Int) Xor(x, y *Int) *Int {
    863 	if x.neg == y.neg {
    864 		if x.neg {
    865 			// (-x) ^ (-y) == ^(x-1) ^ ^(y-1) == (x-1) ^ (y-1)
    866 			x1 := nat(nil).sub(x.abs, natOne)
    867 			y1 := nat(nil).sub(y.abs, natOne)
    868 			z.abs = z.abs.xor(x1, y1)
    869 			z.neg = false
    870 			return z
    871 		}
    872 
    873 		// x ^ y == x ^ y
    874 		z.abs = z.abs.xor(x.abs, y.abs)
    875 		z.neg = false
    876 		return z
    877 	}
    878 
    879 	// x.neg != y.neg
    880 	if x.neg {
    881 		x, y = y, x // ^ is symmetric
    882 	}
    883 
    884 	// x ^ (-y) == x ^ ^(y-1) == ^(x ^ (y-1)) == -((x ^ (y-1)) + 1)
    885 	y1 := nat(nil).sub(y.abs, natOne)
    886 	z.abs = z.abs.add(z.abs.xor(x.abs, y1), natOne)
    887 	z.neg = true // z cannot be zero if only one of x or y is negative
    888 	return z
    889 }
    890 
    891 // Not sets z = ^x and returns z.
    892 func (z *Int) Not(x *Int) *Int {
    893 	if x.neg {
    894 		// ^(-x) == ^(^(x-1)) == x-1
    895 		z.abs = z.abs.sub(x.abs, natOne)
    896 		z.neg = false
    897 		return z
    898 	}
    899 
    900 	// ^x == -x-1 == -(x+1)
    901 	z.abs = z.abs.add(x.abs, natOne)
    902 	z.neg = true // z cannot be zero if x is positive
    903 	return z
    904 }
    905 
    906 // Gob codec version. Permits backward-compatible changes to the encoding.
    907 const intGobVersion byte = 1
    908 
    909 // GobEncode implements the gob.GobEncoder interface.
    910 func (x *Int) GobEncode() ([]byte, error) {
    911 	if x == nil {
    912 		return nil, nil
    913 	}
    914 	buf := make([]byte, 1+len(x.abs)*_S) // extra byte for version and sign bit
    915 	i := x.abs.bytes(buf) - 1            // i >= 0
    916 	b := intGobVersion << 1              // make space for sign bit
    917 	if x.neg {
    918 		b |= 1
    919 	}
    920 	buf[i] = b
    921 	return buf[i:], nil
    922 }
    923 
    924 // GobDecode implements the gob.GobDecoder interface.
    925 func (z *Int) GobDecode(buf []byte) error {
    926 	if len(buf) == 0 {
    927 		// Other side sent a nil or default value.
    928 		*z = Int{}
    929 		return nil
    930 	}
    931 	b := buf[0]
    932 	if b>>1 != intGobVersion {
    933 		return fmt.Errorf("Int.GobDecode: encoding version %d not supported", b>>1)
    934 	}
    935 	z.neg = b&1 != 0
    936 	z.abs = z.abs.setBytes(buf[1:])
    937 	return nil
    938 }
    939 
    940 // MarshalJSON implements the json.Marshaler interface.
    941 func (z *Int) MarshalJSON() ([]byte, error) {
    942 	// TODO(gri): get rid of the []byte/string conversions
    943 	return []byte(z.String()), nil
    944 }
    945 
    946 // UnmarshalJSON implements the json.Unmarshaler interface.
    947 func (z *Int) UnmarshalJSON(text []byte) error {
    948 	// TODO(gri): get rid of the []byte/string conversions
    949 	if _, ok := z.SetString(string(text), 0); !ok {
    950 		return fmt.Errorf("math/big: cannot unmarshal %q into a *big.Int", text)
    951 	}
    952 	return nil
    953 }
    954 
    955 // MarshalText implements the encoding.TextMarshaler interface.
    956 func (z *Int) MarshalText() (text []byte, err error) {
    957 	return []byte(z.String()), nil
    958 }
    959 
    960 // UnmarshalText implements the encoding.TextUnmarshaler interface.
    961 func (z *Int) UnmarshalText(text []byte) error {
    962 	if _, ok := z.SetString(string(text), 0); !ok {
    963 		return fmt.Errorf("math/big: cannot unmarshal %q into a *big.Int", text)
    964 	}
    965 	return nil
    966 }
    967