Home | History | Annotate | Download | only in asn1
      1 // Copyright 2009 The Go Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 // Package asn1 implements parsing of DER-encoded ASN.1 data structures,
      6 // as defined in ITU-T Rec X.690.
      7 //
      8 // See also ``A Layman's Guide to a Subset of ASN.1, BER, and DER,''
      9 // http://luca.ntop.org/Teaching/Appunti/asn1.html.
     10 package asn1
     11 
     12 // ASN.1 is a syntax for specifying abstract objects and BER, DER, PER, XER etc
     13 // are different encoding formats for those objects. Here, we'll be dealing
     14 // with DER, the Distinguished Encoding Rules. DER is used in X.509 because
     15 // it's fast to parse and, unlike BER, has a unique encoding for every object.
     16 // When calculating hashes over objects, it's important that the resulting
     17 // bytes be the same at both ends and DER removes this margin of error.
     18 //
     19 // ASN.1 is very complex and this package doesn't attempt to implement
     20 // everything by any means.
     21 
     22 import (
     23 	"errors"
     24 	"fmt"
     25 	"math/big"
     26 	"reflect"
     27 	"strconv"
     28 	"time"
     29 	"unicode/utf8"
     30 )
     31 
     32 // A StructuralError suggests that the ASN.1 data is valid, but the Go type
     33 // which is receiving it doesn't match.
     34 type StructuralError struct {
     35 	Msg string
     36 }
     37 
     38 func (e StructuralError) Error() string { return "asn1: structure error: " + e.Msg }
     39 
     40 // A SyntaxError suggests that the ASN.1 data is invalid.
     41 type SyntaxError struct {
     42 	Msg string
     43 }
     44 
     45 func (e SyntaxError) Error() string { return "asn1: syntax error: " + e.Msg }
     46 
     47 // We start by dealing with each of the primitive types in turn.
     48 
     49 // BOOLEAN
     50 
     51 func parseBool(bytes []byte) (ret bool, err error) {
     52 	if len(bytes) != 1 {
     53 		err = SyntaxError{"invalid boolean"}
     54 		return
     55 	}
     56 
     57 	// DER demands that "If the encoding represents the boolean value TRUE,
     58 	// its single contents octet shall have all eight bits set to one."
     59 	// Thus only 0 and 255 are valid encoded values.
     60 	switch bytes[0] {
     61 	case 0:
     62 		ret = false
     63 	case 0xff:
     64 		ret = true
     65 	default:
     66 		err = SyntaxError{"invalid boolean"}
     67 	}
     68 
     69 	return
     70 }
     71 
     72 // INTEGER
     73 
     74 // parseInt64 treats the given bytes as a big-endian, signed integer and
     75 // returns the result.
     76 func parseInt64(bytes []byte) (ret int64, err error) {
     77 	if len(bytes) > 8 {
     78 		// We'll overflow an int64 in this case.
     79 		err = StructuralError{"integer too large"}
     80 		return
     81 	}
     82 	for bytesRead := 0; bytesRead < len(bytes); bytesRead++ {
     83 		ret <<= 8
     84 		ret |= int64(bytes[bytesRead])
     85 	}
     86 
     87 	// Shift up and down in order to sign extend the result.
     88 	ret <<= 64 - uint8(len(bytes))*8
     89 	ret >>= 64 - uint8(len(bytes))*8
     90 	return
     91 }
     92 
     93 // parseInt treats the given bytes as a big-endian, signed integer and returns
     94 // the result.
     95 func parseInt32(bytes []byte) (int32, error) {
     96 	ret64, err := parseInt64(bytes)
     97 	if err != nil {
     98 		return 0, err
     99 	}
    100 	if ret64 != int64(int32(ret64)) {
    101 		return 0, StructuralError{"integer too large"}
    102 	}
    103 	return int32(ret64), nil
    104 }
    105 
    106 var bigOne = big.NewInt(1)
    107 
    108 // parseBigInt treats the given bytes as a big-endian, signed integer and returns
    109 // the result.
    110 func parseBigInt(bytes []byte) *big.Int {
    111 	ret := new(big.Int)
    112 	if len(bytes) > 0 && bytes[0]&0x80 == 0x80 {
    113 		// This is a negative number.
    114 		notBytes := make([]byte, len(bytes))
    115 		for i := range notBytes {
    116 			notBytes[i] = ^bytes[i]
    117 		}
    118 		ret.SetBytes(notBytes)
    119 		ret.Add(ret, bigOne)
    120 		ret.Neg(ret)
    121 		return ret
    122 	}
    123 	ret.SetBytes(bytes)
    124 	return ret
    125 }
    126 
    127 // BIT STRING
    128 
    129 // BitString is the structure to use when you want an ASN.1 BIT STRING type. A
    130 // bit string is padded up to the nearest byte in memory and the number of
    131 // valid bits is recorded. Padding bits will be zero.
    132 type BitString struct {
    133 	Bytes     []byte // bits packed into bytes.
    134 	BitLength int    // length in bits.
    135 }
    136 
    137 // At returns the bit at the given index. If the index is out of range it
    138 // returns false.
    139 func (b BitString) At(i int) int {
    140 	if i < 0 || i >= b.BitLength {
    141 		return 0
    142 	}
    143 	x := i / 8
    144 	y := 7 - uint(i%8)
    145 	return int(b.Bytes[x]>>y) & 1
    146 }
    147 
    148 // RightAlign returns a slice where the padding bits are at the beginning. The
    149 // slice may share memory with the BitString.
    150 func (b BitString) RightAlign() []byte {
    151 	shift := uint(8 - (b.BitLength % 8))
    152 	if shift == 8 || len(b.Bytes) == 0 {
    153 		return b.Bytes
    154 	}
    155 
    156 	a := make([]byte, len(b.Bytes))
    157 	a[0] = b.Bytes[0] >> shift
    158 	for i := 1; i < len(b.Bytes); i++ {
    159 		a[i] = b.Bytes[i-1] << (8 - shift)
    160 		a[i] |= b.Bytes[i] >> shift
    161 	}
    162 
    163 	return a
    164 }
    165 
    166 // parseBitString parses an ASN.1 bit string from the given byte slice and returns it.
    167 func parseBitString(bytes []byte) (ret BitString, err error) {
    168 	if len(bytes) == 0 {
    169 		err = SyntaxError{"zero length BIT STRING"}
    170 		return
    171 	}
    172 	paddingBits := int(bytes[0])
    173 	if paddingBits > 7 ||
    174 		len(bytes) == 1 && paddingBits > 0 ||
    175 		bytes[len(bytes)-1]&((1<<bytes[0])-1) != 0 {
    176 		err = SyntaxError{"invalid padding bits in BIT STRING"}
    177 		return
    178 	}
    179 	ret.BitLength = (len(bytes)-1)*8 - paddingBits
    180 	ret.Bytes = bytes[1:]
    181 	return
    182 }
    183 
    184 // OBJECT IDENTIFIER
    185 
    186 // An ObjectIdentifier represents an ASN.1 OBJECT IDENTIFIER.
    187 type ObjectIdentifier []int
    188 
    189 // Equal reports whether oi and other represent the same identifier.
    190 func (oi ObjectIdentifier) Equal(other ObjectIdentifier) bool {
    191 	if len(oi) != len(other) {
    192 		return false
    193 	}
    194 	for i := 0; i < len(oi); i++ {
    195 		if oi[i] != other[i] {
    196 			return false
    197 		}
    198 	}
    199 
    200 	return true
    201 }
    202 
    203 func (oi ObjectIdentifier) String() string {
    204 	var s string
    205 
    206 	for i, v := range oi {
    207 		if i > 0 {
    208 			s += "."
    209 		}
    210 		s += strconv.Itoa(v)
    211 	}
    212 
    213 	return s
    214 }
    215 
    216 // parseObjectIdentifier parses an OBJECT IDENTIFIER from the given bytes and
    217 // returns it. An object identifier is a sequence of variable length integers
    218 // that are assigned in a hierarchy.
    219 func parseObjectIdentifier(bytes []byte) (s []int, err error) {
    220 	if len(bytes) == 0 {
    221 		err = SyntaxError{"zero length OBJECT IDENTIFIER"}
    222 		return
    223 	}
    224 
    225 	// In the worst case, we get two elements from the first byte (which is
    226 	// encoded differently) and then every varint is a single byte long.
    227 	s = make([]int, len(bytes)+1)
    228 
    229 	// The first varint is 40*value1 + value2:
    230 	// According to this packing, value1 can take the values 0, 1 and 2 only.
    231 	// When value1 = 0 or value1 = 1, then value2 is <= 39. When value1 = 2,
    232 	// then there are no restrictions on value2.
    233 	v, offset, err := parseBase128Int(bytes, 0)
    234 	if err != nil {
    235 		return
    236 	}
    237 	if v < 80 {
    238 		s[0] = v / 40
    239 		s[1] = v % 40
    240 	} else {
    241 		s[0] = 2
    242 		s[1] = v - 80
    243 	}
    244 
    245 	i := 2
    246 	for ; offset < len(bytes); i++ {
    247 		v, offset, err = parseBase128Int(bytes, offset)
    248 		if err != nil {
    249 			return
    250 		}
    251 		s[i] = v
    252 	}
    253 	s = s[0:i]
    254 	return
    255 }
    256 
    257 // ENUMERATED
    258 
    259 // An Enumerated is represented as a plain int.
    260 type Enumerated int
    261 
    262 // FLAG
    263 
    264 // A Flag accepts any data and is set to true if present.
    265 type Flag bool
    266 
    267 // parseBase128Int parses a base-128 encoded int from the given offset in the
    268 // given byte slice. It returns the value and the new offset.
    269 func parseBase128Int(bytes []byte, initOffset int) (ret, offset int, err error) {
    270 	offset = initOffset
    271 	for shifted := 0; offset < len(bytes); shifted++ {
    272 		if shifted > 4 {
    273 			err = StructuralError{"base 128 integer too large"}
    274 			return
    275 		}
    276 		ret <<= 7
    277 		b := bytes[offset]
    278 		ret |= int(b & 0x7f)
    279 		offset++
    280 		if b&0x80 == 0 {
    281 			return
    282 		}
    283 	}
    284 	err = SyntaxError{"truncated base 128 integer"}
    285 	return
    286 }
    287 
    288 // UTCTime
    289 
    290 func parseUTCTime(bytes []byte) (ret time.Time, err error) {
    291 	s := string(bytes)
    292 
    293 	formatStr := "0601021504Z0700"
    294 	ret, err = time.Parse(formatStr, s)
    295 	if err != nil {
    296 		formatStr = "060102150405Z0700"
    297 		ret, err = time.Parse(formatStr, s)
    298 	}
    299 	if err != nil {
    300 		return
    301 	}
    302 
    303 	if serialized := ret.Format(formatStr); serialized != s {
    304 		err = fmt.Errorf("asn1: time did not serialize back to the original value and may be invalid: given %q, but serialized as %q", s, serialized)
    305 		return
    306 	}
    307 
    308 	if ret.Year() >= 2050 {
    309 		// UTCTime only encodes times prior to 2050. See https://tools.ietf.org/html/rfc5280#section-4.1.2.5.1
    310 		ret = ret.AddDate(-100, 0, 0)
    311 	}
    312 
    313 	return
    314 }
    315 
    316 // parseGeneralizedTime parses the GeneralizedTime from the given byte slice
    317 // and returns the resulting time.
    318 func parseGeneralizedTime(bytes []byte) (ret time.Time, err error) {
    319 	const formatStr = "20060102150405Z0700"
    320 	s := string(bytes)
    321 
    322 	if ret, err = time.Parse(formatStr, s); err != nil {
    323 		return
    324 	}
    325 
    326 	if serialized := ret.Format(formatStr); serialized != s {
    327 		err = fmt.Errorf("asn1: time did not serialize back to the original value and may be invalid: given %q, but serialized as %q", s, serialized)
    328 	}
    329 
    330 	return
    331 }
    332 
    333 // PrintableString
    334 
    335 // parsePrintableString parses a ASN.1 PrintableString from the given byte
    336 // array and returns it.
    337 func parsePrintableString(bytes []byte) (ret string, err error) {
    338 	for _, b := range bytes {
    339 		if !isPrintable(b) {
    340 			err = SyntaxError{"PrintableString contains invalid character"}
    341 			return
    342 		}
    343 	}
    344 	ret = string(bytes)
    345 	return
    346 }
    347 
    348 // isPrintable reports whether the given b is in the ASN.1 PrintableString set.
    349 func isPrintable(b byte) bool {
    350 	return 'a' <= b && b <= 'z' ||
    351 		'A' <= b && b <= 'Z' ||
    352 		'0' <= b && b <= '9' ||
    353 		'\'' <= b && b <= ')' ||
    354 		'+' <= b && b <= '/' ||
    355 		b == ' ' ||
    356 		b == ':' ||
    357 		b == '=' ||
    358 		b == '?' ||
    359 		// This is technically not allowed in a PrintableString.
    360 		// However, x509 certificates with wildcard strings don't
    361 		// always use the correct string type so we permit it.
    362 		b == '*'
    363 }
    364 
    365 // IA5String
    366 
    367 // parseIA5String parses a ASN.1 IA5String (ASCII string) from the given
    368 // byte slice and returns it.
    369 func parseIA5String(bytes []byte) (ret string, err error) {
    370 	for _, b := range bytes {
    371 		if b >= 0x80 {
    372 			err = SyntaxError{"IA5String contains invalid character"}
    373 			return
    374 		}
    375 	}
    376 	ret = string(bytes)
    377 	return
    378 }
    379 
    380 // T61String
    381 
    382 // parseT61String parses a ASN.1 T61String (8-bit clean string) from the given
    383 // byte slice and returns it.
    384 func parseT61String(bytes []byte) (ret string, err error) {
    385 	return string(bytes), nil
    386 }
    387 
    388 // UTF8String
    389 
    390 // parseUTF8String parses a ASN.1 UTF8String (raw UTF-8) from the given byte
    391 // array and returns it.
    392 func parseUTF8String(bytes []byte) (ret string, err error) {
    393 	if !utf8.Valid(bytes) {
    394 		return "", errors.New("asn1: invalid UTF-8 string")
    395 	}
    396 	return string(bytes), nil
    397 }
    398 
    399 // A RawValue represents an undecoded ASN.1 object.
    400 type RawValue struct {
    401 	Class, Tag int
    402 	IsCompound bool
    403 	Bytes      []byte
    404 	FullBytes  []byte // includes the tag and length
    405 }
    406 
    407 // RawContent is used to signal that the undecoded, DER data needs to be
    408 // preserved for a struct. To use it, the first field of the struct must have
    409 // this type. It's an error for any of the other fields to have this type.
    410 type RawContent []byte
    411 
    412 // Tagging
    413 
    414 // parseTagAndLength parses an ASN.1 tag and length pair from the given offset
    415 // into a byte slice. It returns the parsed data and the new offset. SET and
    416 // SET OF (tag 17) are mapped to SEQUENCE and SEQUENCE OF (tag 16) since we
    417 // don't distinguish between ordered and unordered objects in this code.
    418 func parseTagAndLength(bytes []byte, initOffset int) (ret tagAndLength, offset int, err error) {
    419 	offset = initOffset
    420 	// parseTagAndLength should not be called without at least a single
    421 	// byte to read. Thus this check is for robustness:
    422 	if offset >= len(bytes) {
    423 		err = errors.New("asn1: internal error in parseTagAndLength")
    424 		return
    425 	}
    426 	b := bytes[offset]
    427 	offset++
    428 	ret.class = int(b >> 6)
    429 	ret.isCompound = b&0x20 == 0x20
    430 	ret.tag = int(b & 0x1f)
    431 
    432 	// If the bottom five bits are set, then the tag number is actually base 128
    433 	// encoded afterwards
    434 	if ret.tag == 0x1f {
    435 		ret.tag, offset, err = parseBase128Int(bytes, offset)
    436 		if err != nil {
    437 			return
    438 		}
    439 	}
    440 	if offset >= len(bytes) {
    441 		err = SyntaxError{"truncated tag or length"}
    442 		return
    443 	}
    444 	b = bytes[offset]
    445 	offset++
    446 	if b&0x80 == 0 {
    447 		// The length is encoded in the bottom 7 bits.
    448 		ret.length = int(b & 0x7f)
    449 	} else {
    450 		// Bottom 7 bits give the number of length bytes to follow.
    451 		numBytes := int(b & 0x7f)
    452 		if numBytes == 0 {
    453 			err = SyntaxError{"indefinite length found (not DER)"}
    454 			return
    455 		}
    456 		ret.length = 0
    457 		for i := 0; i < numBytes; i++ {
    458 			if offset >= len(bytes) {
    459 				err = SyntaxError{"truncated tag or length"}
    460 				return
    461 			}
    462 			b = bytes[offset]
    463 			offset++
    464 			if ret.length >= 1<<23 {
    465 				// We can't shift ret.length up without
    466 				// overflowing.
    467 				err = StructuralError{"length too large"}
    468 				return
    469 			}
    470 			ret.length <<= 8
    471 			ret.length |= int(b)
    472 			if ret.length == 0 {
    473 				// DER requires that lengths be minimal.
    474 				err = StructuralError{"superfluous leading zeros in length"}
    475 				return
    476 			}
    477 		}
    478 	}
    479 
    480 	return
    481 }
    482 
    483 // parseSequenceOf is used for SEQUENCE OF and SET OF values. It tries to parse
    484 // a number of ASN.1 values from the given byte slice and returns them as a
    485 // slice of Go values of the given type.
    486 func parseSequenceOf(bytes []byte, sliceType reflect.Type, elemType reflect.Type) (ret reflect.Value, err error) {
    487 	expectedTag, compoundType, ok := getUniversalType(elemType)
    488 	if !ok {
    489 		err = StructuralError{"unknown Go type for slice"}
    490 		return
    491 	}
    492 
    493 	// First we iterate over the input and count the number of elements,
    494 	// checking that the types are correct in each case.
    495 	numElements := 0
    496 	for offset := 0; offset < len(bytes); {
    497 		var t tagAndLength
    498 		t, offset, err = parseTagAndLength(bytes, offset)
    499 		if err != nil {
    500 			return
    501 		}
    502 		switch t.tag {
    503 		case tagIA5String, tagGeneralString, tagT61String, tagUTF8String:
    504 			// We pretend that various other string types are
    505 			// PRINTABLE STRINGs so that a sequence of them can be
    506 			// parsed into a []string.
    507 			t.tag = tagPrintableString
    508 		case tagGeneralizedTime, tagUTCTime:
    509 			// Likewise, both time types are treated the same.
    510 			t.tag = tagUTCTime
    511 		}
    512 
    513 		if t.class != classUniversal || t.isCompound != compoundType || t.tag != expectedTag {
    514 			err = StructuralError{"sequence tag mismatch"}
    515 			return
    516 		}
    517 		if invalidLength(offset, t.length, len(bytes)) {
    518 			err = SyntaxError{"truncated sequence"}
    519 			return
    520 		}
    521 		offset += t.length
    522 		numElements++
    523 	}
    524 	ret = reflect.MakeSlice(sliceType, numElements, numElements)
    525 	params := fieldParameters{}
    526 	offset := 0
    527 	for i := 0; i < numElements; i++ {
    528 		offset, err = parseField(ret.Index(i), bytes, offset, params)
    529 		if err != nil {
    530 			return
    531 		}
    532 	}
    533 	return
    534 }
    535 
    536 var (
    537 	bitStringType        = reflect.TypeOf(BitString{})
    538 	objectIdentifierType = reflect.TypeOf(ObjectIdentifier{})
    539 	enumeratedType       = reflect.TypeOf(Enumerated(0))
    540 	flagType             = reflect.TypeOf(Flag(false))
    541 	timeType             = reflect.TypeOf(time.Time{})
    542 	rawValueType         = reflect.TypeOf(RawValue{})
    543 	rawContentsType      = reflect.TypeOf(RawContent(nil))
    544 	bigIntType           = reflect.TypeOf(new(big.Int))
    545 )
    546 
    547 // invalidLength returns true iff offset + length > sliceLength, or if the
    548 // addition would overflow.
    549 func invalidLength(offset, length, sliceLength int) bool {
    550 	return offset+length < offset || offset+length > sliceLength
    551 }
    552 
    553 // parseField is the main parsing function. Given a byte slice and an offset
    554 // into the array, it will try to parse a suitable ASN.1 value out and store it
    555 // in the given Value.
    556 func parseField(v reflect.Value, bytes []byte, initOffset int, params fieldParameters) (offset int, err error) {
    557 	offset = initOffset
    558 	fieldType := v.Type()
    559 
    560 	// If we have run out of data, it may be that there are optional elements at the end.
    561 	if offset == len(bytes) {
    562 		if !setDefaultValue(v, params) {
    563 			err = SyntaxError{"sequence truncated"}
    564 		}
    565 		return
    566 	}
    567 
    568 	// Deal with raw values.
    569 	if fieldType == rawValueType {
    570 		var t tagAndLength
    571 		t, offset, err = parseTagAndLength(bytes, offset)
    572 		if err != nil {
    573 			return
    574 		}
    575 		if invalidLength(offset, t.length, len(bytes)) {
    576 			err = SyntaxError{"data truncated"}
    577 			return
    578 		}
    579 		result := RawValue{t.class, t.tag, t.isCompound, bytes[offset : offset+t.length], bytes[initOffset : offset+t.length]}
    580 		offset += t.length
    581 		v.Set(reflect.ValueOf(result))
    582 		return
    583 	}
    584 
    585 	// Deal with the ANY type.
    586 	if ifaceType := fieldType; ifaceType.Kind() == reflect.Interface && ifaceType.NumMethod() == 0 {
    587 		var t tagAndLength
    588 		t, offset, err = parseTagAndLength(bytes, offset)
    589 		if err != nil {
    590 			return
    591 		}
    592 		if invalidLength(offset, t.length, len(bytes)) {
    593 			err = SyntaxError{"data truncated"}
    594 			return
    595 		}
    596 		var result interface{}
    597 		if !t.isCompound && t.class == classUniversal {
    598 			innerBytes := bytes[offset : offset+t.length]
    599 			switch t.tag {
    600 			case tagPrintableString:
    601 				result, err = parsePrintableString(innerBytes)
    602 			case tagIA5String:
    603 				result, err = parseIA5String(innerBytes)
    604 			case tagT61String:
    605 				result, err = parseT61String(innerBytes)
    606 			case tagUTF8String:
    607 				result, err = parseUTF8String(innerBytes)
    608 			case tagInteger:
    609 				result, err = parseInt64(innerBytes)
    610 			case tagBitString:
    611 				result, err = parseBitString(innerBytes)
    612 			case tagOID:
    613 				result, err = parseObjectIdentifier(innerBytes)
    614 			case tagUTCTime:
    615 				result, err = parseUTCTime(innerBytes)
    616 			case tagGeneralizedTime:
    617 				result, err = parseGeneralizedTime(innerBytes)
    618 			case tagOctetString:
    619 				result = innerBytes
    620 			default:
    621 				// If we don't know how to handle the type, we just leave Value as nil.
    622 			}
    623 		}
    624 		offset += t.length
    625 		if err != nil {
    626 			return
    627 		}
    628 		if result != nil {
    629 			v.Set(reflect.ValueOf(result))
    630 		}
    631 		return
    632 	}
    633 	universalTag, compoundType, ok1 := getUniversalType(fieldType)
    634 	if !ok1 {
    635 		err = StructuralError{fmt.Sprintf("unknown Go type: %v", fieldType)}
    636 		return
    637 	}
    638 
    639 	t, offset, err := parseTagAndLength(bytes, offset)
    640 	if err != nil {
    641 		return
    642 	}
    643 	if params.explicit {
    644 		expectedClass := classContextSpecific
    645 		if params.application {
    646 			expectedClass = classApplication
    647 		}
    648 		if offset == len(bytes) {
    649 			err = StructuralError{"explicit tag has no child"}
    650 			return
    651 		}
    652 		if t.class == expectedClass && t.tag == *params.tag && (t.length == 0 || t.isCompound) {
    653 			if t.length > 0 {
    654 				t, offset, err = parseTagAndLength(bytes, offset)
    655 				if err != nil {
    656 					return
    657 				}
    658 			} else {
    659 				if fieldType != flagType {
    660 					err = StructuralError{"zero length explicit tag was not an asn1.Flag"}
    661 					return
    662 				}
    663 				v.SetBool(true)
    664 				return
    665 			}
    666 		} else {
    667 			// The tags didn't match, it might be an optional element.
    668 			ok := setDefaultValue(v, params)
    669 			if ok {
    670 				offset = initOffset
    671 			} else {
    672 				err = StructuralError{"explicitly tagged member didn't match"}
    673 			}
    674 			return
    675 		}
    676 	}
    677 
    678 	// Special case for strings: all the ASN.1 string types map to the Go
    679 	// type string. getUniversalType returns the tag for PrintableString
    680 	// when it sees a string, so if we see a different string type on the
    681 	// wire, we change the universal type to match.
    682 	if universalTag == tagPrintableString {
    683 		if t.class == classUniversal {
    684 			switch t.tag {
    685 			case tagIA5String, tagGeneralString, tagT61String, tagUTF8String:
    686 				universalTag = t.tag
    687 			}
    688 		} else if params.stringType != 0 {
    689 			universalTag = params.stringType
    690 		}
    691 	}
    692 
    693 	// Special case for time: UTCTime and GeneralizedTime both map to the
    694 	// Go type time.Time.
    695 	if universalTag == tagUTCTime && t.tag == tagGeneralizedTime && t.class == classUniversal {
    696 		universalTag = tagGeneralizedTime
    697 	}
    698 
    699 	if params.set {
    700 		universalTag = tagSet
    701 	}
    702 
    703 	expectedClass := classUniversal
    704 	expectedTag := universalTag
    705 
    706 	if !params.explicit && params.tag != nil {
    707 		expectedClass = classContextSpecific
    708 		expectedTag = *params.tag
    709 	}
    710 
    711 	if !params.explicit && params.application && params.tag != nil {
    712 		expectedClass = classApplication
    713 		expectedTag = *params.tag
    714 	}
    715 
    716 	// We have unwrapped any explicit tagging at this point.
    717 	if t.class != expectedClass || t.tag != expectedTag || t.isCompound != compoundType {
    718 		// Tags don't match. Again, it could be an optional element.
    719 		ok := setDefaultValue(v, params)
    720 		if ok {
    721 			offset = initOffset
    722 		} else {
    723 			err = StructuralError{fmt.Sprintf("tags don't match (%d vs %+v) %+v %s @%d", expectedTag, t, params, fieldType.Name(), offset)}
    724 		}
    725 		return
    726 	}
    727 	if invalidLength(offset, t.length, len(bytes)) {
    728 		err = SyntaxError{"data truncated"}
    729 		return
    730 	}
    731 	innerBytes := bytes[offset : offset+t.length]
    732 	offset += t.length
    733 
    734 	// We deal with the structures defined in this package first.
    735 	switch fieldType {
    736 	case objectIdentifierType:
    737 		newSlice, err1 := parseObjectIdentifier(innerBytes)
    738 		v.Set(reflect.MakeSlice(v.Type(), len(newSlice), len(newSlice)))
    739 		if err1 == nil {
    740 			reflect.Copy(v, reflect.ValueOf(newSlice))
    741 		}
    742 		err = err1
    743 		return
    744 	case bitStringType:
    745 		bs, err1 := parseBitString(innerBytes)
    746 		if err1 == nil {
    747 			v.Set(reflect.ValueOf(bs))
    748 		}
    749 		err = err1
    750 		return
    751 	case timeType:
    752 		var time time.Time
    753 		var err1 error
    754 		if universalTag == tagUTCTime {
    755 			time, err1 = parseUTCTime(innerBytes)
    756 		} else {
    757 			time, err1 = parseGeneralizedTime(innerBytes)
    758 		}
    759 		if err1 == nil {
    760 			v.Set(reflect.ValueOf(time))
    761 		}
    762 		err = err1
    763 		return
    764 	case enumeratedType:
    765 		parsedInt, err1 := parseInt32(innerBytes)
    766 		if err1 == nil {
    767 			v.SetInt(int64(parsedInt))
    768 		}
    769 		err = err1
    770 		return
    771 	case flagType:
    772 		v.SetBool(true)
    773 		return
    774 	case bigIntType:
    775 		parsedInt := parseBigInt(innerBytes)
    776 		v.Set(reflect.ValueOf(parsedInt))
    777 		return
    778 	}
    779 	switch val := v; val.Kind() {
    780 	case reflect.Bool:
    781 		parsedBool, err1 := parseBool(innerBytes)
    782 		if err1 == nil {
    783 			val.SetBool(parsedBool)
    784 		}
    785 		err = err1
    786 		return
    787 	case reflect.Int, reflect.Int32, reflect.Int64:
    788 		if val.Type().Size() == 4 {
    789 			parsedInt, err1 := parseInt32(innerBytes)
    790 			if err1 == nil {
    791 				val.SetInt(int64(parsedInt))
    792 			}
    793 			err = err1
    794 		} else {
    795 			parsedInt, err1 := parseInt64(innerBytes)
    796 			if err1 == nil {
    797 				val.SetInt(parsedInt)
    798 			}
    799 			err = err1
    800 		}
    801 		return
    802 	// TODO(dfc) Add support for the remaining integer types
    803 	case reflect.Struct:
    804 		structType := fieldType
    805 
    806 		if structType.NumField() > 0 &&
    807 			structType.Field(0).Type == rawContentsType {
    808 			bytes := bytes[initOffset:offset]
    809 			val.Field(0).Set(reflect.ValueOf(RawContent(bytes)))
    810 		}
    811 
    812 		innerOffset := 0
    813 		for i := 0; i < structType.NumField(); i++ {
    814 			field := structType.Field(i)
    815 			if i == 0 && field.Type == rawContentsType {
    816 				continue
    817 			}
    818 			innerOffset, err = parseField(val.Field(i), innerBytes, innerOffset, parseFieldParameters(field.Tag.Get("asn1")))
    819 			if err != nil {
    820 				return
    821 			}
    822 		}
    823 		// We allow extra bytes at the end of the SEQUENCE because
    824 		// adding elements to the end has been used in X.509 as the
    825 		// version numbers have increased.
    826 		return
    827 	case reflect.Slice:
    828 		sliceType := fieldType
    829 		if sliceType.Elem().Kind() == reflect.Uint8 {
    830 			val.Set(reflect.MakeSlice(sliceType, len(innerBytes), len(innerBytes)))
    831 			reflect.Copy(val, reflect.ValueOf(innerBytes))
    832 			return
    833 		}
    834 		newSlice, err1 := parseSequenceOf(innerBytes, sliceType, sliceType.Elem())
    835 		if err1 == nil {
    836 			val.Set(newSlice)
    837 		}
    838 		err = err1
    839 		return
    840 	case reflect.String:
    841 		var v string
    842 		switch universalTag {
    843 		case tagPrintableString:
    844 			v, err = parsePrintableString(innerBytes)
    845 		case tagIA5String:
    846 			v, err = parseIA5String(innerBytes)
    847 		case tagT61String:
    848 			v, err = parseT61String(innerBytes)
    849 		case tagUTF8String:
    850 			v, err = parseUTF8String(innerBytes)
    851 		case tagGeneralString:
    852 			// GeneralString is specified in ISO-2022/ECMA-35,
    853 			// A brief review suggests that it includes structures
    854 			// that allow the encoding to change midstring and
    855 			// such. We give up and pass it as an 8-bit string.
    856 			v, err = parseT61String(innerBytes)
    857 		default:
    858 			err = SyntaxError{fmt.Sprintf("internal error: unknown string type %d", universalTag)}
    859 		}
    860 		if err == nil {
    861 			val.SetString(v)
    862 		}
    863 		return
    864 	}
    865 	err = StructuralError{"unsupported: " + v.Type().String()}
    866 	return
    867 }
    868 
    869 // canHaveDefaultValue reports whether k is a Kind that we will set a default
    870 // value for. (A signed integer, essentially.)
    871 func canHaveDefaultValue(k reflect.Kind) bool {
    872 	switch k {
    873 	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
    874 		return true
    875 	}
    876 
    877 	return false
    878 }
    879 
    880 // setDefaultValue is used to install a default value, from a tag string, into
    881 // a Value. It is successful if the field was optional, even if a default value
    882 // wasn't provided or it failed to install it into the Value.
    883 func setDefaultValue(v reflect.Value, params fieldParameters) (ok bool) {
    884 	if !params.optional {
    885 		return
    886 	}
    887 	ok = true
    888 	if params.defaultValue == nil {
    889 		return
    890 	}
    891 	if canHaveDefaultValue(v.Kind()) {
    892 		v.SetInt(*params.defaultValue)
    893 	}
    894 	return
    895 }
    896 
    897 // Unmarshal parses the DER-encoded ASN.1 data structure b
    898 // and uses the reflect package to fill in an arbitrary value pointed at by val.
    899 // Because Unmarshal uses the reflect package, the structs
    900 // being written to must use upper case field names.
    901 //
    902 // An ASN.1 INTEGER can be written to an int, int32, int64,
    903 // or *big.Int (from the math/big package).
    904 // If the encoded value does not fit in the Go type,
    905 // Unmarshal returns a parse error.
    906 //
    907 // An ASN.1 BIT STRING can be written to a BitString.
    908 //
    909 // An ASN.1 OCTET STRING can be written to a []byte.
    910 //
    911 // An ASN.1 OBJECT IDENTIFIER can be written to an
    912 // ObjectIdentifier.
    913 //
    914 // An ASN.1 ENUMERATED can be written to an Enumerated.
    915 //
    916 // An ASN.1 UTCTIME or GENERALIZEDTIME can be written to a time.Time.
    917 //
    918 // An ASN.1 PrintableString or IA5String can be written to a string.
    919 //
    920 // Any of the above ASN.1 values can be written to an interface{}.
    921 // The value stored in the interface has the corresponding Go type.
    922 // For integers, that type is int64.
    923 //
    924 // An ASN.1 SEQUENCE OF x or SET OF x can be written
    925 // to a slice if an x can be written to the slice's element type.
    926 //
    927 // An ASN.1 SEQUENCE or SET can be written to a struct
    928 // if each of the elements in the sequence can be
    929 // written to the corresponding element in the struct.
    930 //
    931 // The following tags on struct fields have special meaning to Unmarshal:
    932 //
    933 //	application	specifies that a APPLICATION tag is used
    934 //	default:x	sets the default value for optional integer fields
    935 //	explicit	specifies that an additional, explicit tag wraps the implicit one
    936 //	optional	marks the field as ASN.1 OPTIONAL
    937 //	set		causes a SET, rather than a SEQUENCE type to be expected
    938 //	tag:x		specifies the ASN.1 tag number; implies ASN.1 CONTEXT SPECIFIC
    939 //
    940 // If the type of the first field of a structure is RawContent then the raw
    941 // ASN1 contents of the struct will be stored in it.
    942 //
    943 // If the type name of a slice element ends with "SET" then it's treated as if
    944 // the "set" tag was set on it. This can be used with nested slices where a
    945 // struct tag cannot be given.
    946 //
    947 // Other ASN.1 types are not supported; if it encounters them,
    948 // Unmarshal returns a parse error.
    949 func Unmarshal(b []byte, val interface{}) (rest []byte, err error) {
    950 	return UnmarshalWithParams(b, val, "")
    951 }
    952 
    953 // UnmarshalWithParams allows field parameters to be specified for the
    954 // top-level element. The form of the params is the same as the field tags.
    955 func UnmarshalWithParams(b []byte, val interface{}, params string) (rest []byte, err error) {
    956 	v := reflect.ValueOf(val).Elem()
    957 	offset, err := parseField(v, b, 0, parseFieldParameters(params))
    958 	if err != nil {
    959 		return nil, err
    960 	}
    961 	return b[offset:], nil
    962 }
    963