Home | History | Annotate | Download | only in math
      1 // Copyright 2010 The Go Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 package math
      6 
      7 /*
      8 	Bessel function of the first and second kinds of order n.
      9 */
     10 
     11 // The original C code and the long comment below are
     12 // from FreeBSD's /usr/src/lib/msun/src/e_jn.c and
     13 // came with this notice.  The go code is a simplified
     14 // version of the original C.
     15 //
     16 // ====================================================
     17 // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
     18 //
     19 // Developed at SunPro, a Sun Microsystems, Inc. business.
     20 // Permission to use, copy, modify, and distribute this
     21 // software is freely granted, provided that this notice
     22 // is preserved.
     23 // ====================================================
     24 //
     25 // __ieee754_jn(n, x), __ieee754_yn(n, x)
     26 // floating point Bessel's function of the 1st and 2nd kind
     27 // of order n
     28 //
     29 // Special cases:
     30 //      y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
     31 //      y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
     32 // Note 2. About jn(n,x), yn(n,x)
     33 //      For n=0, j0(x) is called,
     34 //      for n=1, j1(x) is called,
     35 //      for n<x, forward recursion is used starting
     36 //      from values of j0(x) and j1(x).
     37 //      for n>x, a continued fraction approximation to
     38 //      j(n,x)/j(n-1,x) is evaluated and then backward
     39 //      recursion is used starting from a supposed value
     40 //      for j(n,x). The resulting value of j(0,x) is
     41 //      compared with the actual value to correct the
     42 //      supposed value of j(n,x).
     43 //
     44 //      yn(n,x) is similar in all respects, except
     45 //      that forward recursion is used for all
     46 //      values of n>1.
     47 
     48 // Jn returns the order-n Bessel function of the first kind.
     49 //
     50 // Special cases are:
     51 //	Jn(n, Inf) = 0
     52 //	Jn(n, NaN) = NaN
     53 func Jn(n int, x float64) float64 {
     54 	const (
     55 		TwoM29 = 1.0 / (1 << 29) // 2**-29 0x3e10000000000000
     56 		Two302 = 1 << 302        // 2**302 0x52D0000000000000
     57 	)
     58 	// special cases
     59 	switch {
     60 	case IsNaN(x):
     61 		return x
     62 	case IsInf(x, 0):
     63 		return 0
     64 	}
     65 	// J(-n, x) = (-1)**n * J(n, x), J(n, -x) = (-1)**n * J(n, x)
     66 	// Thus, J(-n, x) = J(n, -x)
     67 
     68 	if n == 0 {
     69 		return J0(x)
     70 	}
     71 	if x == 0 {
     72 		return 0
     73 	}
     74 	if n < 0 {
     75 		n, x = -n, -x
     76 	}
     77 	if n == 1 {
     78 		return J1(x)
     79 	}
     80 	sign := false
     81 	if x < 0 {
     82 		x = -x
     83 		if n&1 == 1 {
     84 			sign = true // odd n and negative x
     85 		}
     86 	}
     87 	var b float64
     88 	if float64(n) <= x {
     89 		// Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x)
     90 		if x >= Two302 { // x > 2**302
     91 
     92 			// (x >> n**2)
     93 			//          Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
     94 			//          Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
     95 			//          Let s=sin(x), c=cos(x),
     96 			//              xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
     97 			//
     98 			//                 n    sin(xn)*sqt2    cos(xn)*sqt2
     99 			//              ----------------------------------
    100 			//                 0     s-c             c+s
    101 			//                 1    -s-c            -c+s
    102 			//                 2    -s+c            -c-s
    103 			//                 3     s+c             c-s
    104 
    105 			var temp float64
    106 			switch n & 3 {
    107 			case 0:
    108 				temp = Cos(x) + Sin(x)
    109 			case 1:
    110 				temp = -Cos(x) + Sin(x)
    111 			case 2:
    112 				temp = -Cos(x) - Sin(x)
    113 			case 3:
    114 				temp = Cos(x) - Sin(x)
    115 			}
    116 			b = (1 / SqrtPi) * temp / Sqrt(x)
    117 		} else {
    118 			b = J1(x)
    119 			for i, a := 1, J0(x); i < n; i++ {
    120 				a, b = b, b*(float64(i+i)/x)-a // avoid underflow
    121 			}
    122 		}
    123 	} else {
    124 		if x < TwoM29 { // x < 2**-29
    125 			// x is tiny, return the first Taylor expansion of J(n,x)
    126 			// J(n,x) = 1/n!*(x/2)**n  - ...
    127 
    128 			if n > 33 { // underflow
    129 				b = 0
    130 			} else {
    131 				temp := x * 0.5
    132 				b = temp
    133 				a := 1.0
    134 				for i := 2; i <= n; i++ {
    135 					a *= float64(i) // a = n!
    136 					b *= temp       // b = (x/2)**n
    137 				}
    138 				b /= a
    139 			}
    140 		} else {
    141 			// use backward recurrence
    142 			//                      x      x**2      x**2
    143 			//  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
    144 			//                      2n  - 2(n+1) - 2(n+2)
    145 			//
    146 			//                      1      1        1
    147 			//  (for large x)   =  ----  ------   ------   .....
    148 			//                      2n   2(n+1)   2(n+2)
    149 			//                      -- - ------ - ------ -
    150 			//                       x     x         x
    151 			//
    152 			// Let w = 2n/x and h=2/x, then the above quotient
    153 			// is equal to the continued fraction:
    154 			//                  1
    155 			//      = -----------------------
    156 			//                     1
    157 			//         w - -----------------
    158 			//                        1
    159 			//              w+h - ---------
    160 			//                     w+2h - ...
    161 			//
    162 			// To determine how many terms needed, let
    163 			// Q(0) = w, Q(1) = w(w+h) - 1,
    164 			// Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
    165 			// When Q(k) > 1e4	good for single
    166 			// When Q(k) > 1e9	good for double
    167 			// When Q(k) > 1e17	good for quadruple
    168 
    169 			// determine k
    170 			w := float64(n+n) / x
    171 			h := 2 / x
    172 			q0 := w
    173 			z := w + h
    174 			q1 := w*z - 1
    175 			k := 1
    176 			for q1 < 1e9 {
    177 				k += 1
    178 				z += h
    179 				q0, q1 = q1, z*q1-q0
    180 			}
    181 			m := n + n
    182 			t := 0.0
    183 			for i := 2 * (n + k); i >= m; i -= 2 {
    184 				t = 1 / (float64(i)/x - t)
    185 			}
    186 			a := t
    187 			b = 1
    188 			//  estimate log((2/x)**n*n!) = n*log(2/x)+n*ln(n)
    189 			//  Hence, if n*(log(2n/x)) > ...
    190 			//  single 8.8722839355e+01
    191 			//  double 7.09782712893383973096e+02
    192 			//  long double 1.1356523406294143949491931077970765006170e+04
    193 			//  then recurrent value may overflow and the result is
    194 			//  likely underflow to zero
    195 
    196 			tmp := float64(n)
    197 			v := 2 / x
    198 			tmp = tmp * Log(Abs(v*tmp))
    199 			if tmp < 7.09782712893383973096e+02 {
    200 				for i := n - 1; i > 0; i-- {
    201 					di := float64(i + i)
    202 					a, b = b, b*di/x-a
    203 					di -= 2
    204 				}
    205 			} else {
    206 				for i := n - 1; i > 0; i-- {
    207 					di := float64(i + i)
    208 					a, b = b, b*di/x-a
    209 					di -= 2
    210 					// scale b to avoid spurious overflow
    211 					if b > 1e100 {
    212 						a /= b
    213 						t /= b
    214 						b = 1
    215 					}
    216 				}
    217 			}
    218 			b = t * J0(x) / b
    219 		}
    220 	}
    221 	if sign {
    222 		return -b
    223 	}
    224 	return b
    225 }
    226 
    227 // Yn returns the order-n Bessel function of the second kind.
    228 //
    229 // Special cases are:
    230 //	Yn(n, +Inf) = 0
    231 //	Yn(n > 0, 0) = -Inf
    232 //	Yn(n < 0, 0) = +Inf if n is odd, -Inf if n is even
    233 //	Y1(n, x < 0) = NaN
    234 //	Y1(n, NaN) = NaN
    235 func Yn(n int, x float64) float64 {
    236 	const Two302 = 1 << 302 // 2**302 0x52D0000000000000
    237 	// special cases
    238 	switch {
    239 	case x < 0 || IsNaN(x):
    240 		return NaN()
    241 	case IsInf(x, 1):
    242 		return 0
    243 	}
    244 
    245 	if n == 0 {
    246 		return Y0(x)
    247 	}
    248 	if x == 0 {
    249 		if n < 0 && n&1 == 1 {
    250 			return Inf(1)
    251 		}
    252 		return Inf(-1)
    253 	}
    254 	sign := false
    255 	if n < 0 {
    256 		n = -n
    257 		if n&1 == 1 {
    258 			sign = true // sign true if n < 0 && |n| odd
    259 		}
    260 	}
    261 	if n == 1 {
    262 		if sign {
    263 			return -Y1(x)
    264 		}
    265 		return Y1(x)
    266 	}
    267 	var b float64
    268 	if x >= Two302 { // x > 2**302
    269 		// (x >> n**2)
    270 		//	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
    271 		//	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
    272 		//	    Let s=sin(x), c=cos(x),
    273 		//		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
    274 		//
    275 		//		   n	sin(xn)*sqt2	cos(xn)*sqt2
    276 		//		----------------------------------
    277 		//		   0	 s-c		 c+s
    278 		//		   1	-s-c 		-c+s
    279 		//		   2	-s+c		-c-s
    280 		//		   3	 s+c		 c-s
    281 
    282 		var temp float64
    283 		switch n & 3 {
    284 		case 0:
    285 			temp = Sin(x) - Cos(x)
    286 		case 1:
    287 			temp = -Sin(x) - Cos(x)
    288 		case 2:
    289 			temp = -Sin(x) + Cos(x)
    290 		case 3:
    291 			temp = Sin(x) + Cos(x)
    292 		}
    293 		b = (1 / SqrtPi) * temp / Sqrt(x)
    294 	} else {
    295 		a := Y0(x)
    296 		b = Y1(x)
    297 		// quit if b is -inf
    298 		for i := 1; i < n && !IsInf(b, -1); i++ {
    299 			a, b = b, (float64(i+i)/x)*b-a
    300 		}
    301 	}
    302 	if sign {
    303 		return -b
    304 	}
    305 	return b
    306 }
    307