Home | History | Annotate | Download | only in math
      1 // Copyright 2009 The Go Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 package math
      6 
      7 // The original C code and the long comment below are
      8 // from FreeBSD's /usr/src/lib/msun/src/e_sqrt.c and
      9 // came with this notice.  The go code is a simplified
     10 // version of the original C.
     11 //
     12 // ====================================================
     13 // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
     14 //
     15 // Developed at SunPro, a Sun Microsystems, Inc. business.
     16 // Permission to use, copy, modify, and distribute this
     17 // software is freely granted, provided that this notice
     18 // is preserved.
     19 // ====================================================
     20 //
     21 // __ieee754_sqrt(x)
     22 // Return correctly rounded sqrt.
     23 //           -----------------------------------------
     24 //           | Use the hardware sqrt if you have one |
     25 //           -----------------------------------------
     26 // Method:
     27 //   Bit by bit method using integer arithmetic. (Slow, but portable)
     28 //   1. Normalization
     29 //      Scale x to y in [1,4) with even powers of 2:
     30 //      find an integer k such that  1 <= (y=x*2**(2k)) < 4, then
     31 //              sqrt(x) = 2**k * sqrt(y)
     32 //   2. Bit by bit computation
     33 //      Let q  = sqrt(y) truncated to i bit after binary point (q = 1),
     34 //           i                                                   0
     35 //                                     i+1         2
     36 //          s  = 2*q , and      y  =  2   * ( y - q  ).          (1)
     37 //           i      i            i                 i
     38 //
     39 //      To compute q    from q , one checks whether
     40 //                  i+1       i
     41 //
     42 //                            -(i+1) 2
     43 //                      (q + 2      )  <= y.                     (2)
     44 //                        i
     45 //                                                            -(i+1)
     46 //      If (2) is false, then q   = q ; otherwise q   = q  + 2      .
     47 //                             i+1   i             i+1   i
     48 //
     49 //      With some algebraic manipulation, it is not difficult to see
     50 //      that (2) is equivalent to
     51 //                             -(i+1)
     52 //                      s  +  2       <= y                       (3)
     53 //                       i                i
     54 //
     55 //      The advantage of (3) is that s  and y  can be computed by
     56 //                                    i      i
     57 //      the following recurrence formula:
     58 //          if (3) is false
     59 //
     60 //          s     =  s  ,       y    = y   ;                     (4)
     61 //           i+1      i          i+1    i
     62 //
     63 //      otherwise,
     64 //                         -i                      -(i+1)
     65 //          s     =  s  + 2  ,  y    = y  -  s  - 2              (5)
     66 //           i+1      i          i+1    i     i
     67 //
     68 //      One may easily use induction to prove (4) and (5).
     69 //      Note. Since the left hand side of (3) contain only i+2 bits,
     70 //            it does not necessary to do a full (53-bit) comparison
     71 //            in (3).
     72 //   3. Final rounding
     73 //      After generating the 53 bits result, we compute one more bit.
     74 //      Together with the remainder, we can decide whether the
     75 //      result is exact, bigger than 1/2ulp, or less than 1/2ulp
     76 //      (it will never equal to 1/2ulp).
     77 //      The rounding mode can be detected by checking whether
     78 //      huge + tiny is equal to huge, and whether huge - tiny is
     79 //      equal to huge for some floating point number "huge" and "tiny".
     80 //
     81 //
     82 // Notes:  Rounding mode detection omitted.  The constants "mask", "shift",
     83 // and "bias" are found in src/math/bits.go
     84 
     85 // Sqrt returns the square root of x.
     86 //
     87 // Special cases are:
     88 //	Sqrt(+Inf) = +Inf
     89 //	Sqrt(0) = 0
     90 //	Sqrt(x < 0) = NaN
     91 //	Sqrt(NaN) = NaN
     92 func Sqrt(x float64) float64
     93 
     94 // Note: Sqrt is implemented in assembly on some systems.
     95 // Others have assembly stubs that jump to func sqrt below.
     96 // On systems where Sqrt is a single instruction, the compiler
     97 // may turn a direct call into a direct use of that instruction instead.
     98 
     99 func sqrt(x float64) float64 {
    100 	// special cases
    101 	switch {
    102 	case x == 0 || IsNaN(x) || IsInf(x, 1):
    103 		return x
    104 	case x < 0:
    105 		return NaN()
    106 	}
    107 	ix := Float64bits(x)
    108 	// normalize x
    109 	exp := int((ix >> shift) & mask)
    110 	if exp == 0 { // subnormal x
    111 		for ix&1<<shift == 0 {
    112 			ix <<= 1
    113 			exp--
    114 		}
    115 		exp++
    116 	}
    117 	exp -= bias // unbias exponent
    118 	ix &^= mask << shift
    119 	ix |= 1 << shift
    120 	if exp&1 == 1 { // odd exp, double x to make it even
    121 		ix <<= 1
    122 	}
    123 	exp >>= 1 // exp = exp/2, exponent of square root
    124 	// generate sqrt(x) bit by bit
    125 	ix <<= 1
    126 	var q, s uint64               // q = sqrt(x)
    127 	r := uint64(1 << (shift + 1)) // r = moving bit from MSB to LSB
    128 	for r != 0 {
    129 		t := s + r
    130 		if t <= ix {
    131 			s = t + r
    132 			ix -= t
    133 			q += r
    134 		}
    135 		ix <<= 1
    136 		r >>= 1
    137 	}
    138 	// final rounding
    139 	if ix != 0 { // remainder, result not exact
    140 		q += q & 1 // round according to extra bit
    141 	}
    142 	ix = q>>1 + uint64(exp-1+bias)<<shift // significand + biased exponent
    143 	return Float64frombits(ix)
    144 }
    145 
    146 func sqrtC(f float64, r *float64) {
    147 	*r = sqrt(f)
    148 }
    149