Home | History | Annotate | Download | only in io
      1 // Protocol Buffers - Google's data interchange format
      2 // Copyright 2008 Google Inc.  All rights reserved.
      3 // http://code.google.com/p/protobuf/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are
      7 // met:
      8 //
      9 //     * Redistributions of source code must retain the above copyright
     10 // notice, this list of conditions and the following disclaimer.
     11 //     * Redistributions in binary form must reproduce the above
     12 // copyright notice, this list of conditions and the following disclaimer
     13 // in the documentation and/or other materials provided with the
     14 // distribution.
     15 //     * Neither the name of Google Inc. nor the names of its
     16 // contributors may be used to endorse or promote products derived from
     17 // this software without specific prior written permission.
     18 //
     19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     30 
     31 // Author: kenton (at) google.com (Kenton Varda)
     32 //  Based on original Protocol Buffers design by
     33 //  Sanjay Ghemawat, Jeff Dean, and others.
     34 //
     35 // This file contains the CodedInputStream and CodedOutputStream classes,
     36 // which wrap a ZeroCopyInputStream or ZeroCopyOutputStream, respectively,
     37 // and allow you to read or write individual pieces of data in various
     38 // formats.  In particular, these implement the varint encoding for
     39 // integers, a simple variable-length encoding in which smaller numbers
     40 // take fewer bytes.
     41 //
     42 // Typically these classes will only be used internally by the protocol
     43 // buffer library in order to encode and decode protocol buffers.  Clients
     44 // of the library only need to know about this class if they wish to write
     45 // custom message parsing or serialization procedures.
     46 //
     47 // CodedOutputStream example:
     48 //   // Write some data to "myfile".  First we write a 4-byte "magic number"
     49 //   // to identify the file type, then write a length-delimited string.  The
     50 //   // string is composed of a varint giving the length followed by the raw
     51 //   // bytes.
     52 //   int fd = open("myfile", O_WRONLY);
     53 //   ZeroCopyOutputStream* raw_output = new FileOutputStream(fd);
     54 //   CodedOutputStream* coded_output = new CodedOutputStream(raw_output);
     55 //
     56 //   int magic_number = 1234;
     57 //   char text[] = "Hello world!";
     58 //   coded_output->WriteLittleEndian32(magic_number);
     59 //   coded_output->WriteVarint32(strlen(text));
     60 //   coded_output->WriteRaw(text, strlen(text));
     61 //
     62 //   delete coded_output;
     63 //   delete raw_output;
     64 //   close(fd);
     65 //
     66 // CodedInputStream example:
     67 //   // Read a file created by the above code.
     68 //   int fd = open("myfile", O_RDONLY);
     69 //   ZeroCopyInputStream* raw_input = new FileInputStream(fd);
     70 //   CodedInputStream coded_input = new CodedInputStream(raw_input);
     71 //
     72 //   coded_input->ReadLittleEndian32(&magic_number);
     73 //   if (magic_number != 1234) {
     74 //     cerr << "File not in expected format." << endl;
     75 //     return;
     76 //   }
     77 //
     78 //   uint32 size;
     79 //   coded_input->ReadVarint32(&size);
     80 //
     81 //   char* text = new char[size + 1];
     82 //   coded_input->ReadRaw(buffer, size);
     83 //   text[size] = '\0';
     84 //
     85 //   delete coded_input;
     86 //   delete raw_input;
     87 //   close(fd);
     88 //
     89 //   cout << "Text is: " << text << endl;
     90 //   delete [] text;
     91 //
     92 // For those who are interested, varint encoding is defined as follows:
     93 //
     94 // The encoding operates on unsigned integers of up to 64 bits in length.
     95 // Each byte of the encoded value has the format:
     96 // * bits 0-6: Seven bits of the number being encoded.
     97 // * bit 7: Zero if this is the last byte in the encoding (in which
     98 //   case all remaining bits of the number are zero) or 1 if
     99 //   more bytes follow.
    100 // The first byte contains the least-significant 7 bits of the number, the
    101 // second byte (if present) contains the next-least-significant 7 bits,
    102 // and so on.  So, the binary number 1011000101011 would be encoded in two
    103 // bytes as "10101011 00101100".
    104 //
    105 // In theory, varint could be used to encode integers of any length.
    106 // However, for practicality we set a limit at 64 bits.  The maximum encoded
    107 // length of a number is thus 10 bytes.
    108 
    109 #ifndef GOOGLE_PROTOBUF_IO_CODED_STREAM_H__
    110 #define GOOGLE_PROTOBUF_IO_CODED_STREAM_H__
    111 
    112 #include <string>
    113 #ifdef _MSC_VER
    114   #if defined(_M_IX86) && \
    115       !defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST)
    116     #define PROTOBUF_LITTLE_ENDIAN 1
    117   #endif
    118   #if _MSC_VER >= 1300
    119     // If MSVC has "/RTCc" set, it will complain about truncating casts at
    120     // runtime.  This file contains some intentional truncating casts.
    121     #pragma runtime_checks("c", off)
    122   #endif
    123 #else
    124   #include <sys/param.h>   // __BYTE_ORDER
    125   #if defined(__BYTE_ORDER) && __BYTE_ORDER == __LITTLE_ENDIAN && \
    126       !defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST)
    127     #define PROTOBUF_LITTLE_ENDIAN 1
    128   #endif
    129 #endif
    130 #include <google/protobuf/stubs/common.h>
    131 
    132 
    133 namespace google {
    134 namespace protobuf {
    135 
    136 class DescriptorPool;
    137 class MessageFactory;
    138 
    139 namespace io {
    140 
    141 // Defined in this file.
    142 class CodedInputStream;
    143 class CodedOutputStream;
    144 
    145 // Defined in other files.
    146 class ZeroCopyInputStream;           // zero_copy_stream.h
    147 class ZeroCopyOutputStream;          // zero_copy_stream.h
    148 
    149 // Class which reads and decodes binary data which is composed of varint-
    150 // encoded integers and fixed-width pieces.  Wraps a ZeroCopyInputStream.
    151 // Most users will not need to deal with CodedInputStream.
    152 //
    153 // Most methods of CodedInputStream that return a bool return false if an
    154 // underlying I/O error occurs or if the data is malformed.  Once such a
    155 // failure occurs, the CodedInputStream is broken and is no longer useful.
    156 class LIBPROTOBUF_EXPORT CodedInputStream {
    157  public:
    158   // Create a CodedInputStream that reads from the given ZeroCopyInputStream.
    159   explicit CodedInputStream(ZeroCopyInputStream* input);
    160 
    161   // Create a CodedInputStream that reads from the given flat array.  This is
    162   // faster than using an ArrayInputStream.  PushLimit(size) is implied by
    163   // this constructor.
    164   explicit CodedInputStream(const uint8* buffer, int size);
    165 
    166   // Destroy the CodedInputStream and position the underlying
    167   // ZeroCopyInputStream at the first unread byte.  If an error occurred while
    168   // reading (causing a method to return false), then the exact position of
    169   // the input stream may be anywhere between the last value that was read
    170   // successfully and the stream's byte limit.
    171   ~CodedInputStream();
    172 
    173   // Return true if this CodedInputStream reads from a flat array instead of
    174   // a ZeroCopyInputStream.
    175   inline bool IsFlat() const;
    176 
    177   // Skips a number of bytes.  Returns false if an underlying read error
    178   // occurs.
    179   bool Skip(int count);
    180 
    181   // Sets *data to point directly at the unread part of the CodedInputStream's
    182   // underlying buffer, and *size to the size of that buffer, but does not
    183   // advance the stream's current position.  This will always either produce
    184   // a non-empty buffer or return false.  If the caller consumes any of
    185   // this data, it should then call Skip() to skip over the consumed bytes.
    186   // This may be useful for implementing external fast parsing routines for
    187   // types of data not covered by the CodedInputStream interface.
    188   bool GetDirectBufferPointer(const void** data, int* size);
    189 
    190   // Like GetDirectBufferPointer, but this method is inlined, and does not
    191   // attempt to Refresh() if the buffer is currently empty.
    192   inline void GetDirectBufferPointerInline(const void** data,
    193                                            int* size) GOOGLE_ATTRIBUTE_ALWAYS_INLINE;
    194 
    195   // Read raw bytes, copying them into the given buffer.
    196   bool ReadRaw(void* buffer, int size);
    197 
    198   // Like ReadRaw, but reads into a string.
    199   //
    200   // Implementation Note:  ReadString() grows the string gradually as it
    201   // reads in the data, rather than allocating the entire requested size
    202   // upfront.  This prevents denial-of-service attacks in which a client
    203   // could claim that a string is going to be MAX_INT bytes long in order to
    204   // crash the server because it can't allocate this much space at once.
    205   bool ReadString(string* buffer, int size);
    206   // Like the above, with inlined optimizations. This should only be used
    207   // by the protobuf implementation.
    208   inline bool InternalReadStringInline(string* buffer,
    209                                        int size) GOOGLE_ATTRIBUTE_ALWAYS_INLINE;
    210 
    211 
    212   // Read a 32-bit little-endian integer.
    213   bool ReadLittleEndian32(uint32* value);
    214   // Read a 64-bit little-endian integer.
    215   bool ReadLittleEndian64(uint64* value);
    216 
    217   // These methods read from an externally provided buffer. The caller is
    218   // responsible for ensuring that the buffer has sufficient space.
    219   // Read a 32-bit little-endian integer.
    220   static const uint8* ReadLittleEndian32FromArray(const uint8* buffer,
    221                                                    uint32* value);
    222   // Read a 64-bit little-endian integer.
    223   static const uint8* ReadLittleEndian64FromArray(const uint8* buffer,
    224                                                    uint64* value);
    225 
    226   // Read an unsigned integer with Varint encoding, truncating to 32 bits.
    227   // Reading a 32-bit value is equivalent to reading a 64-bit one and casting
    228   // it to uint32, but may be more efficient.
    229   bool ReadVarint32(uint32* value);
    230   // Read an unsigned integer with Varint encoding.
    231   bool ReadVarint64(uint64* value);
    232 
    233   // Read a tag.  This calls ReadVarint32() and returns the result, or returns
    234   // zero (which is not a valid tag) if ReadVarint32() fails.  Also, it updates
    235   // the last tag value, which can be checked with LastTagWas().
    236   // Always inline because this is only called in once place per parse loop
    237   // but it is called for every iteration of said loop, so it should be fast.
    238   // GCC doesn't want to inline this by default.
    239   uint32 ReadTag() GOOGLE_ATTRIBUTE_ALWAYS_INLINE;
    240 
    241   // Usually returns true if calling ReadVarint32() now would produce the given
    242   // value.  Will always return false if ReadVarint32() would not return the
    243   // given value.  If ExpectTag() returns true, it also advances past
    244   // the varint.  For best performance, use a compile-time constant as the
    245   // parameter.
    246   // Always inline because this collapses to a small number of instructions
    247   // when given a constant parameter, but GCC doesn't want to inline by default.
    248   bool ExpectTag(uint32 expected) GOOGLE_ATTRIBUTE_ALWAYS_INLINE;
    249 
    250   // Like above, except this reads from the specified buffer. The caller is
    251   // responsible for ensuring that the buffer is large enough to read a varint
    252   // of the expected size. For best performance, use a compile-time constant as
    253   // the expected tag parameter.
    254   //
    255   // Returns a pointer beyond the expected tag if it was found, or NULL if it
    256   // was not.
    257   static const uint8* ExpectTagFromArray(
    258       const uint8* buffer,
    259       uint32 expected) GOOGLE_ATTRIBUTE_ALWAYS_INLINE;
    260 
    261   // Usually returns true if no more bytes can be read.  Always returns false
    262   // if more bytes can be read.  If ExpectAtEnd() returns true, a subsequent
    263   // call to LastTagWas() will act as if ReadTag() had been called and returned
    264   // zero, and ConsumedEntireMessage() will return true.
    265   bool ExpectAtEnd();
    266 
    267   // If the last call to ReadTag() returned the given value, returns true.
    268   // Otherwise, returns false;
    269   //
    270   // This is needed because parsers for some types of embedded messages
    271   // (with field type TYPE_GROUP) don't actually know that they've reached the
    272   // end of a message until they see an ENDGROUP tag, which was actually part
    273   // of the enclosing message.  The enclosing message would like to check that
    274   // tag to make sure it had the right number, so it calls LastTagWas() on
    275   // return from the embedded parser to check.
    276   bool LastTagWas(uint32 expected);
    277 
    278   // When parsing message (but NOT a group), this method must be called
    279   // immediately after MergeFromCodedStream() returns (if it returns true)
    280   // to further verify that the message ended in a legitimate way.  For
    281   // example, this verifies that parsing did not end on an end-group tag.
    282   // It also checks for some cases where, due to optimizations,
    283   // MergeFromCodedStream() can incorrectly return true.
    284   bool ConsumedEntireMessage();
    285 
    286   // Limits ----------------------------------------------------------
    287   // Limits are used when parsing length-delimited embedded messages.
    288   // After the message's length is read, PushLimit() is used to prevent
    289   // the CodedInputStream from reading beyond that length.  Once the
    290   // embedded message has been parsed, PopLimit() is called to undo the
    291   // limit.
    292 
    293   // Opaque type used with PushLimit() and PopLimit().  Do not modify
    294   // values of this type yourself.  The only reason that this isn't a
    295   // struct with private internals is for efficiency.
    296   typedef int Limit;
    297 
    298   // Places a limit on the number of bytes that the stream may read,
    299   // starting from the current position.  Once the stream hits this limit,
    300   // it will act like the end of the input has been reached until PopLimit()
    301   // is called.
    302   //
    303   // As the names imply, the stream conceptually has a stack of limits.  The
    304   // shortest limit on the stack is always enforced, even if it is not the
    305   // top limit.
    306   //
    307   // The value returned by PushLimit() is opaque to the caller, and must
    308   // be passed unchanged to the corresponding call to PopLimit().
    309   Limit PushLimit(int byte_limit);
    310 
    311   // Pops the last limit pushed by PushLimit().  The input must be the value
    312   // returned by that call to PushLimit().
    313   void PopLimit(Limit limit);
    314 
    315   // Returns the number of bytes left until the nearest limit on the
    316   // stack is hit, or -1 if no limits are in place.
    317   int BytesUntilLimit() const;
    318 
    319   // Returns current position relative to the beginning of the input stream.
    320   int CurrentPosition() const;
    321 
    322   // Total Bytes Limit -----------------------------------------------
    323   // To prevent malicious users from sending excessively large messages
    324   // and causing integer overflows or memory exhaustion, CodedInputStream
    325   // imposes a hard limit on the total number of bytes it will read.
    326 
    327   // Sets the maximum number of bytes that this CodedInputStream will read
    328   // before refusing to continue.  To prevent integer overflows in the
    329   // protocol buffers implementation, as well as to prevent servers from
    330   // allocating enormous amounts of memory to hold parsed messages, the
    331   // maximum message length should be limited to the shortest length that
    332   // will not harm usability.  The theoretical shortest message that could
    333   // cause integer overflows is 512MB.  The default limit is 64MB.  Apps
    334   // should set shorter limits if possible.  If warning_threshold is not -1,
    335   // a warning will be printed to stderr after warning_threshold bytes are
    336   // read.  For backwards compatibility all negative values get squached to -1,
    337   // as other negative values might have special internal meanings.
    338   // An error will always be printed to stderr if the limit is reached.
    339   //
    340   // This is unrelated to PushLimit()/PopLimit().
    341   //
    342   // Hint:  If you are reading this because your program is printing a
    343   //   warning about dangerously large protocol messages, you may be
    344   //   confused about what to do next.  The best option is to change your
    345   //   design such that excessively large messages are not necessary.
    346   //   For example, try to design file formats to consist of many small
    347   //   messages rather than a single large one.  If this is infeasible,
    348   //   you will need to increase the limit.  Chances are, though, that
    349   //   your code never constructs a CodedInputStream on which the limit
    350   //   can be set.  You probably parse messages by calling things like
    351   //   Message::ParseFromString().  In this case, you will need to change
    352   //   your code to instead construct some sort of ZeroCopyInputStream
    353   //   (e.g. an ArrayInputStream), construct a CodedInputStream around
    354   //   that, then call Message::ParseFromCodedStream() instead.  Then
    355   //   you can adjust the limit.  Yes, it's more work, but you're doing
    356   //   something unusual.
    357   void SetTotalBytesLimit(int total_bytes_limit, int warning_threshold);
    358 
    359   // Recursion Limit -------------------------------------------------
    360   // To prevent corrupt or malicious messages from causing stack overflows,
    361   // we must keep track of the depth of recursion when parsing embedded
    362   // messages and groups.  CodedInputStream keeps track of this because it
    363   // is the only object that is passed down the stack during parsing.
    364 
    365   // Sets the maximum recursion depth.  The default is 100.
    366   void SetRecursionLimit(int limit);
    367 
    368 
    369   // Increments the current recursion depth.  Returns true if the depth is
    370   // under the limit, false if it has gone over.
    371   bool IncrementRecursionDepth();
    372 
    373   // Decrements the recursion depth.
    374   void DecrementRecursionDepth();
    375 
    376   // Extension Registry ----------------------------------------------
    377   // ADVANCED USAGE:  99.9% of people can ignore this section.
    378   //
    379   // By default, when parsing extensions, the parser looks for extension
    380   // definitions in the pool which owns the outer message's Descriptor.
    381   // However, you may call SetExtensionRegistry() to provide an alternative
    382   // pool instead.  This makes it possible, for example, to parse a message
    383   // using a generated class, but represent some extensions using
    384   // DynamicMessage.
    385 
    386   // Set the pool used to look up extensions.  Most users do not need to call
    387   // this as the correct pool will be chosen automatically.
    388   //
    389   // WARNING:  It is very easy to misuse this.  Carefully read the requirements
    390   //   below.  Do not use this unless you are sure you need it.  Almost no one
    391   //   does.
    392   //
    393   // Let's say you are parsing a message into message object m, and you want
    394   // to take advantage of SetExtensionRegistry().  You must follow these
    395   // requirements:
    396   //
    397   // The given DescriptorPool must contain m->GetDescriptor().  It is not
    398   // sufficient for it to simply contain a descriptor that has the same name
    399   // and content -- it must be the *exact object*.  In other words:
    400   //   assert(pool->FindMessageTypeByName(m->GetDescriptor()->full_name()) ==
    401   //          m->GetDescriptor());
    402   // There are two ways to satisfy this requirement:
    403   // 1) Use m->GetDescriptor()->pool() as the pool.  This is generally useless
    404   //    because this is the pool that would be used anyway if you didn't call
    405   //    SetExtensionRegistry() at all.
    406   // 2) Use a DescriptorPool which has m->GetDescriptor()->pool() as an
    407   //    "underlay".  Read the documentation for DescriptorPool for more
    408   //    information about underlays.
    409   //
    410   // You must also provide a MessageFactory.  This factory will be used to
    411   // construct Message objects representing extensions.  The factory's
    412   // GetPrototype() MUST return non-NULL for any Descriptor which can be found
    413   // through the provided pool.
    414   //
    415   // If the provided factory might return instances of protocol-compiler-
    416   // generated (i.e. compiled-in) types, or if the outer message object m is
    417   // a generated type, then the given factory MUST have this property:  If
    418   // GetPrototype() is given a Descriptor which resides in
    419   // DescriptorPool::generated_pool(), the factory MUST return the same
    420   // prototype which MessageFactory::generated_factory() would return.  That
    421   // is, given a descriptor for a generated type, the factory must return an
    422   // instance of the generated class (NOT DynamicMessage).  However, when
    423   // given a descriptor for a type that is NOT in generated_pool, the factory
    424   // is free to return any implementation.
    425   //
    426   // The reason for this requirement is that generated sub-objects may be
    427   // accessed via the standard (non-reflection) extension accessor methods,
    428   // and these methods will down-cast the object to the generated class type.
    429   // If the object is not actually of that type, the results would be undefined.
    430   // On the other hand, if an extension is not compiled in, then there is no
    431   // way the code could end up accessing it via the standard accessors -- the
    432   // only way to access the extension is via reflection.  When using reflection,
    433   // DynamicMessage and generated messages are indistinguishable, so it's fine
    434   // if these objects are represented using DynamicMessage.
    435   //
    436   // Using DynamicMessageFactory on which you have called
    437   // SetDelegateToGeneratedFactory(true) should be sufficient to satisfy the
    438   // above requirement.
    439   //
    440   // If either pool or factory is NULL, both must be NULL.
    441   //
    442   // Note that this feature is ignored when parsing "lite" messages as they do
    443   // not have descriptors.
    444   void SetExtensionRegistry(const DescriptorPool* pool,
    445                             MessageFactory* factory);
    446 
    447   // Get the DescriptorPool set via SetExtensionRegistry(), or NULL if no pool
    448   // has been provided.
    449   const DescriptorPool* GetExtensionPool();
    450 
    451   // Get the MessageFactory set via SetExtensionRegistry(), or NULL if no
    452   // factory has been provided.
    453   MessageFactory* GetExtensionFactory();
    454 
    455  private:
    456   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(CodedInputStream);
    457 
    458   ZeroCopyInputStream* input_;
    459   const uint8* buffer_;
    460   const uint8* buffer_end_;     // pointer to the end of the buffer.
    461   int total_bytes_read_;  // total bytes read from input_, including
    462                           // the current buffer
    463 
    464   // If total_bytes_read_ surpasses INT_MAX, we record the extra bytes here
    465   // so that we can BackUp() on destruction.
    466   int overflow_bytes_;
    467 
    468   // LastTagWas() stuff.
    469   uint32 last_tag_;         // result of last ReadTag().
    470 
    471   // This is set true by ReadTag{Fallback/Slow}() if it is called when exactly
    472   // at EOF, or by ExpectAtEnd() when it returns true.  This happens when we
    473   // reach the end of a message and attempt to read another tag.
    474   bool legitimate_message_end_;
    475 
    476   // See EnableAliasing().
    477   bool aliasing_enabled_;
    478 
    479   // Limits
    480   Limit current_limit_;   // if position = -1, no limit is applied
    481 
    482   // For simplicity, if the current buffer crosses a limit (either a normal
    483   // limit created by PushLimit() or the total bytes limit), buffer_size_
    484   // only tracks the number of bytes before that limit.  This field
    485   // contains the number of bytes after it.  Note that this implies that if
    486   // buffer_size_ == 0 and buffer_size_after_limit_ > 0, we know we've
    487   // hit a limit.  However, if both are zero, it doesn't necessarily mean
    488   // we aren't at a limit -- the buffer may have ended exactly at the limit.
    489   int buffer_size_after_limit_;
    490 
    491   // Maximum number of bytes to read, period.  This is unrelated to
    492   // current_limit_.  Set using SetTotalBytesLimit().
    493   int total_bytes_limit_;
    494 
    495   // If positive/0: Limit for bytes read after which a warning due to size
    496   // should be logged.
    497   // If -1: Printing of warning disabled. Can be set by client.
    498   // If -2: Internal: Limit has been reached, print full size when destructing.
    499   int total_bytes_warning_threshold_;
    500 
    501   // Current recursion depth, controlled by IncrementRecursionDepth() and
    502   // DecrementRecursionDepth().
    503   int recursion_depth_;
    504   // Recursion depth limit, set by SetRecursionLimit().
    505   int recursion_limit_;
    506 
    507   // See SetExtensionRegistry().
    508   const DescriptorPool* extension_pool_;
    509   MessageFactory* extension_factory_;
    510 
    511   // Private member functions.
    512 
    513   // Advance the buffer by a given number of bytes.
    514   void Advance(int amount);
    515 
    516   // Back up input_ to the current buffer position.
    517   void BackUpInputToCurrentPosition();
    518 
    519   // Recomputes the value of buffer_size_after_limit_.  Must be called after
    520   // current_limit_ or total_bytes_limit_ changes.
    521   void RecomputeBufferLimits();
    522 
    523   // Writes an error message saying that we hit total_bytes_limit_.
    524   void PrintTotalBytesLimitError();
    525 
    526   // Called when the buffer runs out to request more data.  Implies an
    527   // Advance(BufferSize()).
    528   bool Refresh();
    529 
    530   // When parsing varints, we optimize for the common case of small values, and
    531   // then optimize for the case when the varint fits within the current buffer
    532   // piece. The Fallback method is used when we can't use the one-byte
    533   // optimization. The Slow method is yet another fallback when the buffer is
    534   // not large enough. Making the slow path out-of-line speeds up the common
    535   // case by 10-15%. The slow path is fairly uncommon: it only triggers when a
    536   // message crosses multiple buffers.
    537   bool ReadVarint32Fallback(uint32* value);
    538   bool ReadVarint64Fallback(uint64* value);
    539   bool ReadVarint32Slow(uint32* value);
    540   bool ReadVarint64Slow(uint64* value);
    541   bool ReadLittleEndian32Fallback(uint32* value);
    542   bool ReadLittleEndian64Fallback(uint64* value);
    543   // Fallback/slow methods for reading tags. These do not update last_tag_,
    544   // but will set legitimate_message_end_ if we are at the end of the input
    545   // stream.
    546   uint32 ReadTagFallback();
    547   uint32 ReadTagSlow();
    548   bool ReadStringFallback(string* buffer, int size);
    549 
    550   // Return the size of the buffer.
    551   int BufferSize() const;
    552 
    553   static const int kDefaultTotalBytesLimit = 64 << 20;  // 64MB
    554 
    555   static const int kDefaultTotalBytesWarningThreshold = 32 << 20;  // 32MB
    556 
    557   static int default_recursion_limit_;  // 100 by default.
    558 };
    559 
    560 // Class which encodes and writes binary data which is composed of varint-
    561 // encoded integers and fixed-width pieces.  Wraps a ZeroCopyOutputStream.
    562 // Most users will not need to deal with CodedOutputStream.
    563 //
    564 // Most methods of CodedOutputStream which return a bool return false if an
    565 // underlying I/O error occurs.  Once such a failure occurs, the
    566 // CodedOutputStream is broken and is no longer useful. The Write* methods do
    567 // not return the stream status, but will invalidate the stream if an error
    568 // occurs. The client can probe HadError() to determine the status.
    569 //
    570 // Note that every method of CodedOutputStream which writes some data has
    571 // a corresponding static "ToArray" version. These versions write directly
    572 // to the provided buffer, returning a pointer past the last written byte.
    573 // They require that the buffer has sufficient capacity for the encoded data.
    574 // This allows an optimization where we check if an output stream has enough
    575 // space for an entire message before we start writing and, if there is, we
    576 // call only the ToArray methods to avoid doing bound checks for each
    577 // individual value.
    578 // i.e., in the example above:
    579 //
    580 //   CodedOutputStream coded_output = new CodedOutputStream(raw_output);
    581 //   int magic_number = 1234;
    582 //   char text[] = "Hello world!";
    583 //
    584 //   int coded_size = sizeof(magic_number) +
    585 //                    CodedOutputStream::VarintSize32(strlen(text)) +
    586 //                    strlen(text);
    587 //
    588 //   uint8* buffer =
    589 //       coded_output->GetDirectBufferForNBytesAndAdvance(coded_size);
    590 //   if (buffer != NULL) {
    591 //     // The output stream has enough space in the buffer: write directly to
    592 //     // the array.
    593 //     buffer = CodedOutputStream::WriteLittleEndian32ToArray(magic_number,
    594 //                                                            buffer);
    595 //     buffer = CodedOutputStream::WriteVarint32ToArray(strlen(text), buffer);
    596 //     buffer = CodedOutputStream::WriteRawToArray(text, strlen(text), buffer);
    597 //   } else {
    598 //     // Make bound-checked writes, which will ask the underlying stream for
    599 //     // more space as needed.
    600 //     coded_output->WriteLittleEndian32(magic_number);
    601 //     coded_output->WriteVarint32(strlen(text));
    602 //     coded_output->WriteRaw(text, strlen(text));
    603 //   }
    604 //
    605 //   delete coded_output;
    606 class LIBPROTOBUF_EXPORT CodedOutputStream {
    607  public:
    608   // Create an CodedOutputStream that writes to the given ZeroCopyOutputStream.
    609   explicit CodedOutputStream(ZeroCopyOutputStream* output);
    610 
    611   // Destroy the CodedOutputStream and position the underlying
    612   // ZeroCopyOutputStream immediately after the last byte written.
    613   ~CodedOutputStream();
    614 
    615   // Skips a number of bytes, leaving the bytes unmodified in the underlying
    616   // buffer.  Returns false if an underlying write error occurs.  This is
    617   // mainly useful with GetDirectBufferPointer().
    618   bool Skip(int count);
    619 
    620   // Sets *data to point directly at the unwritten part of the
    621   // CodedOutputStream's underlying buffer, and *size to the size of that
    622   // buffer, but does not advance the stream's current position.  This will
    623   // always either produce a non-empty buffer or return false.  If the caller
    624   // writes any data to this buffer, it should then call Skip() to skip over
    625   // the consumed bytes.  This may be useful for implementing external fast
    626   // serialization routines for types of data not covered by the
    627   // CodedOutputStream interface.
    628   bool GetDirectBufferPointer(void** data, int* size);
    629 
    630   // If there are at least "size" bytes available in the current buffer,
    631   // returns a pointer directly into the buffer and advances over these bytes.
    632   // The caller may then write directly into this buffer (e.g. using the
    633   // *ToArray static methods) rather than go through CodedOutputStream.  If
    634   // there are not enough bytes available, returns NULL.  The return pointer is
    635   // invalidated as soon as any other non-const method of CodedOutputStream
    636   // is called.
    637   inline uint8* GetDirectBufferForNBytesAndAdvance(int size);
    638 
    639   // Write raw bytes, copying them from the given buffer.
    640   void WriteRaw(const void* buffer, int size);
    641   // Like WriteRaw()  but writing directly to the target array.
    642   // This is _not_ inlined, as the compiler often optimizes memcpy into inline
    643   // copy loops. Since this gets called by every field with string or bytes
    644   // type, inlining may lead to a significant amount of code bloat, with only a
    645   // minor performance gain.
    646   static uint8* WriteRawToArray(const void* buffer, int size, uint8* target);
    647 
    648   // Equivalent to WriteRaw(str.data(), str.size()).
    649   void WriteString(const string& str);
    650   // Like WriteString()  but writing directly to the target array.
    651   static uint8* WriteStringToArray(const string& str, uint8* target);
    652 
    653 
    654   // Write a 32-bit little-endian integer.
    655   void WriteLittleEndian32(uint32 value);
    656   // Like WriteLittleEndian32()  but writing directly to the target array.
    657   static uint8* WriteLittleEndian32ToArray(uint32 value, uint8* target);
    658   // Write a 64-bit little-endian integer.
    659   void WriteLittleEndian64(uint64 value);
    660   // Like WriteLittleEndian64()  but writing directly to the target array.
    661   static uint8* WriteLittleEndian64ToArray(uint64 value, uint8* target);
    662 
    663   // Write an unsigned integer with Varint encoding.  Writing a 32-bit value
    664   // is equivalent to casting it to uint64 and writing it as a 64-bit value,
    665   // but may be more efficient.
    666   void WriteVarint32(uint32 value);
    667   // Like WriteVarint32()  but writing directly to the target array.
    668   static uint8* WriteVarint32ToArray(uint32 value, uint8* target);
    669   // Write an unsigned integer with Varint encoding.
    670   void WriteVarint64(uint64 value);
    671   // Like WriteVarint64()  but writing directly to the target array.
    672   static uint8* WriteVarint64ToArray(uint64 value, uint8* target);
    673 
    674   // Equivalent to WriteVarint32() except when the value is negative,
    675   // in which case it must be sign-extended to a full 10 bytes.
    676   void WriteVarint32SignExtended(int32 value);
    677   // Like WriteVarint32SignExtended()  but writing directly to the target array.
    678   static uint8* WriteVarint32SignExtendedToArray(int32 value, uint8* target);
    679 
    680   // This is identical to WriteVarint32(), but optimized for writing tags.
    681   // In particular, if the input is a compile-time constant, this method
    682   // compiles down to a couple instructions.
    683   // Always inline because otherwise the aformentioned optimization can't work,
    684   // but GCC by default doesn't want to inline this.
    685   void WriteTag(uint32 value);
    686   // Like WriteTag()  but writing directly to the target array.
    687   static uint8* WriteTagToArray(
    688       uint32 value, uint8* target) GOOGLE_ATTRIBUTE_ALWAYS_INLINE;
    689 
    690   // Returns the number of bytes needed to encode the given value as a varint.
    691   static int VarintSize32(uint32 value);
    692   // Returns the number of bytes needed to encode the given value as a varint.
    693   static int VarintSize64(uint64 value);
    694 
    695   // If negative, 10 bytes.  Otheriwse, same as VarintSize32().
    696   static int VarintSize32SignExtended(int32 value);
    697 
    698   // Compile-time equivalent of VarintSize32().
    699   template <uint32 Value>
    700   struct StaticVarintSize32 {
    701     static const int value =
    702         (Value < (1 << 7))
    703             ? 1
    704             : (Value < (1 << 14))
    705                 ? 2
    706                 : (Value < (1 << 21))
    707                     ? 3
    708                     : (Value < (1 << 28))
    709                         ? 4
    710                         : 5;
    711   };
    712 
    713   // Returns the total number of bytes written since this object was created.
    714   inline int ByteCount() const;
    715 
    716   // Returns true if there was an underlying I/O error since this object was
    717   // created.
    718   bool HadError() const { return had_error_; }
    719 
    720  private:
    721   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(CodedOutputStream);
    722 
    723   ZeroCopyOutputStream* output_;
    724   uint8* buffer_;
    725   int buffer_size_;
    726   int total_bytes_;  // Sum of sizes of all buffers seen so far.
    727   bool had_error_;   // Whether an error occurred during output.
    728 
    729   // Advance the buffer by a given number of bytes.
    730   void Advance(int amount);
    731 
    732   // Called when the buffer runs out to request more data.  Implies an
    733   // Advance(buffer_size_).
    734   bool Refresh();
    735 
    736   static uint8* WriteVarint32FallbackToArray(uint32 value, uint8* target);
    737 
    738   // Always-inlined versions of WriteVarint* functions so that code can be
    739   // reused, while still controlling size. For instance, WriteVarint32ToArray()
    740   // should not directly call this: since it is inlined itself, doing so
    741   // would greatly increase the size of generated code. Instead, it should call
    742   // WriteVarint32FallbackToArray.  Meanwhile, WriteVarint32() is already
    743   // out-of-line, so it should just invoke this directly to avoid any extra
    744   // function call overhead.
    745   static uint8* WriteVarint32FallbackToArrayInline(
    746       uint32 value, uint8* target) GOOGLE_ATTRIBUTE_ALWAYS_INLINE;
    747   static uint8* WriteVarint64ToArrayInline(
    748       uint64 value, uint8* target) GOOGLE_ATTRIBUTE_ALWAYS_INLINE;
    749 
    750   static int VarintSize32Fallback(uint32 value);
    751 };
    752 
    753 // inline methods ====================================================
    754 // The vast majority of varints are only one byte.  These inline
    755 // methods optimize for that case.
    756 
    757 inline bool CodedInputStream::ReadVarint32(uint32* value) {
    758   if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_) && *buffer_ < 0x80) {
    759     *value = *buffer_;
    760     Advance(1);
    761     return true;
    762   } else {
    763     return ReadVarint32Fallback(value);
    764   }
    765 }
    766 
    767 inline bool CodedInputStream::ReadVarint64(uint64* value) {
    768   if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_) && *buffer_ < 0x80) {
    769     *value = *buffer_;
    770     Advance(1);
    771     return true;
    772   } else {
    773     return ReadVarint64Fallback(value);
    774   }
    775 }
    776 
    777 // static
    778 inline const uint8* CodedInputStream::ReadLittleEndian32FromArray(
    779     const uint8* buffer,
    780     uint32* value) {
    781 #if defined(PROTOBUF_LITTLE_ENDIAN)
    782   memcpy(value, buffer, sizeof(*value));
    783   return buffer + sizeof(*value);
    784 #else
    785   *value = (static_cast<uint32>(buffer[0])      ) |
    786            (static_cast<uint32>(buffer[1]) <<  8) |
    787            (static_cast<uint32>(buffer[2]) << 16) |
    788            (static_cast<uint32>(buffer[3]) << 24);
    789   return buffer + sizeof(*value);
    790 #endif
    791 }
    792 // static
    793 inline const uint8* CodedInputStream::ReadLittleEndian64FromArray(
    794     const uint8* buffer,
    795     uint64* value) {
    796 #if defined(PROTOBUF_LITTLE_ENDIAN)
    797   memcpy(value, buffer, sizeof(*value));
    798   return buffer + sizeof(*value);
    799 #else
    800   uint32 part0 = (static_cast<uint32>(buffer[0])      ) |
    801                  (static_cast<uint32>(buffer[1]) <<  8) |
    802                  (static_cast<uint32>(buffer[2]) << 16) |
    803                  (static_cast<uint32>(buffer[3]) << 24);
    804   uint32 part1 = (static_cast<uint32>(buffer[4])      ) |
    805                  (static_cast<uint32>(buffer[5]) <<  8) |
    806                  (static_cast<uint32>(buffer[6]) << 16) |
    807                  (static_cast<uint32>(buffer[7]) << 24);
    808   *value = static_cast<uint64>(part0) |
    809           (static_cast<uint64>(part1) << 32);
    810   return buffer + sizeof(*value);
    811 #endif
    812 }
    813 
    814 inline bool CodedInputStream::ReadLittleEndian32(uint32* value) {
    815 #if defined(PROTOBUF_LITTLE_ENDIAN)
    816   if (GOOGLE_PREDICT_TRUE(BufferSize() >= static_cast<int>(sizeof(*value)))) {
    817     memcpy(value, buffer_, sizeof(*value));
    818     Advance(sizeof(*value));
    819     return true;
    820   } else {
    821     return ReadLittleEndian32Fallback(value);
    822   }
    823 #else
    824   return ReadLittleEndian32Fallback(value);
    825 #endif
    826 }
    827 
    828 inline bool CodedInputStream::ReadLittleEndian64(uint64* value) {
    829 #if defined(PROTOBUF_LITTLE_ENDIAN)
    830   if (GOOGLE_PREDICT_TRUE(BufferSize() >= static_cast<int>(sizeof(*value)))) {
    831     memcpy(value, buffer_, sizeof(*value));
    832     Advance(sizeof(*value));
    833     return true;
    834   } else {
    835     return ReadLittleEndian64Fallback(value);
    836   }
    837 #else
    838   return ReadLittleEndian64Fallback(value);
    839 #endif
    840 }
    841 
    842 inline uint32 CodedInputStream::ReadTag() {
    843   if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_) && buffer_[0] < 0x80) {
    844     last_tag_ = buffer_[0];
    845     Advance(1);
    846     return last_tag_;
    847   } else {
    848     last_tag_ = ReadTagFallback();
    849     return last_tag_;
    850   }
    851 }
    852 
    853 inline bool CodedInputStream::LastTagWas(uint32 expected) {
    854   return last_tag_ == expected;
    855 }
    856 
    857 inline bool CodedInputStream::ConsumedEntireMessage() {
    858   return legitimate_message_end_;
    859 }
    860 
    861 inline bool CodedInputStream::ExpectTag(uint32 expected) {
    862   if (expected < (1 << 7)) {
    863     if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_) && buffer_[0] == expected) {
    864       Advance(1);
    865       return true;
    866     } else {
    867       return false;
    868     }
    869   } else if (expected < (1 << 14)) {
    870     if (GOOGLE_PREDICT_TRUE(BufferSize() >= 2) &&
    871         buffer_[0] == static_cast<uint8>(expected | 0x80) &&
    872         buffer_[1] == static_cast<uint8>(expected >> 7)) {
    873       Advance(2);
    874       return true;
    875     } else {
    876       return false;
    877     }
    878   } else {
    879     // Don't bother optimizing for larger values.
    880     return false;
    881   }
    882 }
    883 
    884 inline const uint8* CodedInputStream::ExpectTagFromArray(
    885     const uint8* buffer, uint32 expected) {
    886   if (expected < (1 << 7)) {
    887     if (buffer[0] == expected) {
    888       return buffer + 1;
    889     }
    890   } else if (expected < (1 << 14)) {
    891     if (buffer[0] == static_cast<uint8>(expected | 0x80) &&
    892         buffer[1] == static_cast<uint8>(expected >> 7)) {
    893       return buffer + 2;
    894     }
    895   }
    896   return NULL;
    897 }
    898 
    899 inline void CodedInputStream::GetDirectBufferPointerInline(const void** data,
    900                                                            int* size) {
    901   *data = buffer_;
    902   *size = buffer_end_ - buffer_;
    903 }
    904 
    905 inline bool CodedInputStream::ExpectAtEnd() {
    906   // If we are at a limit we know no more bytes can be read.  Otherwise, it's
    907   // hard to say without calling Refresh(), and we'd rather not do that.
    908 
    909   if (buffer_ == buffer_end_ &&
    910       ((buffer_size_after_limit_ != 0) ||
    911        (total_bytes_read_ == current_limit_))) {
    912     last_tag_ = 0;                   // Pretend we called ReadTag()...
    913     legitimate_message_end_ = true;  // ... and it hit EOF.
    914     return true;
    915   } else {
    916     return false;
    917   }
    918 }
    919 
    920 inline int CodedInputStream::CurrentPosition() const {
    921   return total_bytes_read_ - (BufferSize() + buffer_size_after_limit_);
    922 }
    923 
    924 inline uint8* CodedOutputStream::GetDirectBufferForNBytesAndAdvance(int size) {
    925   if (buffer_size_ < size) {
    926     return NULL;
    927   } else {
    928     uint8* result = buffer_;
    929     Advance(size);
    930     return result;
    931   }
    932 }
    933 
    934 inline uint8* CodedOutputStream::WriteVarint32ToArray(uint32 value,
    935                                                         uint8* target) {
    936   if (value < 0x80) {
    937     *target = value;
    938     return target + 1;
    939   } else {
    940     return WriteVarint32FallbackToArray(value, target);
    941   }
    942 }
    943 
    944 inline void CodedOutputStream::WriteVarint32SignExtended(int32 value) {
    945   if (value < 0) {
    946     WriteVarint64(static_cast<uint64>(value));
    947   } else {
    948     WriteVarint32(static_cast<uint32>(value));
    949   }
    950 }
    951 
    952 inline uint8* CodedOutputStream::WriteVarint32SignExtendedToArray(
    953     int32 value, uint8* target) {
    954   if (value < 0) {
    955     return WriteVarint64ToArray(static_cast<uint64>(value), target);
    956   } else {
    957     return WriteVarint32ToArray(static_cast<uint32>(value), target);
    958   }
    959 }
    960 
    961 inline uint8* CodedOutputStream::WriteLittleEndian32ToArray(uint32 value,
    962                                                             uint8* target) {
    963 #if defined(PROTOBUF_LITTLE_ENDIAN)
    964   memcpy(target, &value, sizeof(value));
    965 #else
    966   target[0] = static_cast<uint8>(value);
    967   target[1] = static_cast<uint8>(value >>  8);
    968   target[2] = static_cast<uint8>(value >> 16);
    969   target[3] = static_cast<uint8>(value >> 24);
    970 #endif
    971   return target + sizeof(value);
    972 }
    973 
    974 inline uint8* CodedOutputStream::WriteLittleEndian64ToArray(uint64 value,
    975                                                             uint8* target) {
    976 #if defined(PROTOBUF_LITTLE_ENDIAN)
    977   memcpy(target, &value, sizeof(value));
    978 #else
    979   uint32 part0 = static_cast<uint32>(value);
    980   uint32 part1 = static_cast<uint32>(value >> 32);
    981 
    982   target[0] = static_cast<uint8>(part0);
    983   target[1] = static_cast<uint8>(part0 >>  8);
    984   target[2] = static_cast<uint8>(part0 >> 16);
    985   target[3] = static_cast<uint8>(part0 >> 24);
    986   target[4] = static_cast<uint8>(part1);
    987   target[5] = static_cast<uint8>(part1 >>  8);
    988   target[6] = static_cast<uint8>(part1 >> 16);
    989   target[7] = static_cast<uint8>(part1 >> 24);
    990 #endif
    991   return target + sizeof(value);
    992 }
    993 
    994 inline void CodedOutputStream::WriteTag(uint32 value) {
    995   WriteVarint32(value);
    996 }
    997 
    998 inline uint8* CodedOutputStream::WriteTagToArray(
    999     uint32 value, uint8* target) {
   1000   if (value < (1 << 7)) {
   1001     target[0] = value;
   1002     return target + 1;
   1003   } else if (value < (1 << 14)) {
   1004     target[0] = static_cast<uint8>(value | 0x80);
   1005     target[1] = static_cast<uint8>(value >> 7);
   1006     return target + 2;
   1007   } else {
   1008     return WriteVarint32FallbackToArray(value, target);
   1009   }
   1010 }
   1011 
   1012 inline int CodedOutputStream::VarintSize32(uint32 value) {
   1013   if (value < (1 << 7)) {
   1014     return 1;
   1015   } else  {
   1016     return VarintSize32Fallback(value);
   1017   }
   1018 }
   1019 
   1020 inline int CodedOutputStream::VarintSize32SignExtended(int32 value) {
   1021   if (value < 0) {
   1022     return 10;     // TODO(kenton):  Make this a symbolic constant.
   1023   } else {
   1024     return VarintSize32(static_cast<uint32>(value));
   1025   }
   1026 }
   1027 
   1028 inline void CodedOutputStream::WriteString(const string& str) {
   1029   WriteRaw(str.data(), static_cast<int>(str.size()));
   1030 }
   1031 
   1032 inline uint8* CodedOutputStream::WriteStringToArray(
   1033     const string& str, uint8* target) {
   1034   return WriteRawToArray(str.data(), static_cast<int>(str.size()), target);
   1035 }
   1036 
   1037 inline int CodedOutputStream::ByteCount() const {
   1038   return total_bytes_ - buffer_size_;
   1039 }
   1040 
   1041 inline void CodedInputStream::Advance(int amount) {
   1042   buffer_ += amount;
   1043 }
   1044 
   1045 inline void CodedOutputStream::Advance(int amount) {
   1046   buffer_ += amount;
   1047   buffer_size_ -= amount;
   1048 }
   1049 
   1050 inline void CodedInputStream::SetRecursionLimit(int limit) {
   1051   recursion_limit_ = limit;
   1052 }
   1053 
   1054 inline bool CodedInputStream::IncrementRecursionDepth() {
   1055   ++recursion_depth_;
   1056   return recursion_depth_ <= recursion_limit_;
   1057 }
   1058 
   1059 inline void CodedInputStream::DecrementRecursionDepth() {
   1060   if (recursion_depth_ > 0) --recursion_depth_;
   1061 }
   1062 
   1063 inline void CodedInputStream::SetExtensionRegistry(const DescriptorPool* pool,
   1064                                                    MessageFactory* factory) {
   1065   extension_pool_ = pool;
   1066   extension_factory_ = factory;
   1067 }
   1068 
   1069 inline const DescriptorPool* CodedInputStream::GetExtensionPool() {
   1070   return extension_pool_;
   1071 }
   1072 
   1073 inline MessageFactory* CodedInputStream::GetExtensionFactory() {
   1074   return extension_factory_;
   1075 }
   1076 
   1077 inline int CodedInputStream::BufferSize() const {
   1078   return buffer_end_ - buffer_;
   1079 }
   1080 
   1081 inline CodedInputStream::CodedInputStream(ZeroCopyInputStream* input)
   1082   : input_(input),
   1083     buffer_(NULL),
   1084     buffer_end_(NULL),
   1085     total_bytes_read_(0),
   1086     overflow_bytes_(0),
   1087     last_tag_(0),
   1088     legitimate_message_end_(false),
   1089     aliasing_enabled_(false),
   1090     current_limit_(kint32max),
   1091     buffer_size_after_limit_(0),
   1092     total_bytes_limit_(kDefaultTotalBytesLimit),
   1093     total_bytes_warning_threshold_(kDefaultTotalBytesWarningThreshold),
   1094     recursion_depth_(0),
   1095     recursion_limit_(default_recursion_limit_),
   1096     extension_pool_(NULL),
   1097     extension_factory_(NULL) {
   1098   // Eagerly Refresh() so buffer space is immediately available.
   1099   Refresh();
   1100 }
   1101 
   1102 inline CodedInputStream::CodedInputStream(const uint8* buffer, int size)
   1103   : input_(NULL),
   1104     buffer_(buffer),
   1105     buffer_end_(buffer + size),
   1106     total_bytes_read_(size),
   1107     overflow_bytes_(0),
   1108     last_tag_(0),
   1109     legitimate_message_end_(false),
   1110     aliasing_enabled_(false),
   1111     current_limit_(size),
   1112     buffer_size_after_limit_(0),
   1113     total_bytes_limit_(kDefaultTotalBytesLimit),
   1114     total_bytes_warning_threshold_(kDefaultTotalBytesWarningThreshold),
   1115     recursion_depth_(0),
   1116     recursion_limit_(default_recursion_limit_),
   1117     extension_pool_(NULL),
   1118     extension_factory_(NULL) {
   1119   // Note that setting current_limit_ == size is important to prevent some
   1120   // code paths from trying to access input_ and segfaulting.
   1121 }
   1122 
   1123 inline bool CodedInputStream::IsFlat() const {
   1124   return input_ == NULL;
   1125 }
   1126 
   1127 }  // namespace io
   1128 }  // namespace protobuf
   1129 
   1130 
   1131 #if defined(_MSC_VER) && _MSC_VER >= 1300
   1132   #pragma runtime_checks("c", restore)
   1133 #endif  // _MSC_VER
   1134 
   1135 }  // namespace google
   1136 #endif  // GOOGLE_PROTOBUF_IO_CODED_STREAM_H__
   1137