Home | History | Annotate | Download | only in bits
      1 // Deque implementation -*- C++ -*-
      2 
      3 // Copyright (C) 2001-2014 Free Software Foundation, Inc.
      4 //
      5 // This file is part of the GNU ISO C++ Library.  This library is free
      6 // software; you can redistribute it and/or modify it under the
      7 // terms of the GNU General Public License as published by the
      8 // Free Software Foundation; either version 3, or (at your option)
      9 // any later version.
     10 
     11 // This library is distributed in the hope that it will be useful,
     12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
     13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     14 // GNU General Public License for more details.
     15 
     16 // Under Section 7 of GPL version 3, you are granted additional
     17 // permissions described in the GCC Runtime Library Exception, version
     18 // 3.1, as published by the Free Software Foundation.
     19 
     20 // You should have received a copy of the GNU General Public License and
     21 // a copy of the GCC Runtime Library Exception along with this program;
     22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
     23 // <http://www.gnu.org/licenses/>.
     24 
     25 /*
     26  *
     27  * Copyright (c) 1994
     28  * Hewlett-Packard Company
     29  *
     30  * Permission to use, copy, modify, distribute and sell this software
     31  * and its documentation for any purpose is hereby granted without fee,
     32  * provided that the above copyright notice appear in all copies and
     33  * that both that copyright notice and this permission notice appear
     34  * in supporting documentation.  Hewlett-Packard Company makes no
     35  * representations about the suitability of this software for any
     36  * purpose.  It is provided "as is" without express or implied warranty.
     37  *
     38  *
     39  * Copyright (c) 1997
     40  * Silicon Graphics Computer Systems, Inc.
     41  *
     42  * Permission to use, copy, modify, distribute and sell this software
     43  * and its documentation for any purpose is hereby granted without fee,
     44  * provided that the above copyright notice appear in all copies and
     45  * that both that copyright notice and this permission notice appear
     46  * in supporting documentation.  Silicon Graphics makes no
     47  * representations about the suitability of this software for any
     48  * purpose.  It is provided "as is" without express or implied warranty.
     49  */
     50 
     51 /** @file bits/stl_deque.h
     52  *  This is an internal header file, included by other library headers.
     53  *  Do not attempt to use it directly. @headername{deque}
     54  */
     55 
     56 #ifndef _STL_DEQUE_H
     57 #define _STL_DEQUE_H 1
     58 
     59 #include <bits/concept_check.h>
     60 #include <bits/stl_iterator_base_types.h>
     61 #include <bits/stl_iterator_base_funcs.h>
     62 #if __cplusplus >= 201103L
     63 #include <initializer_list>
     64 #endif
     65 
     66 namespace std _GLIBCXX_VISIBILITY(default)
     67 {
     68 _GLIBCXX_BEGIN_NAMESPACE_CONTAINER
     69 
     70   /**
     71    *  @brief This function controls the size of memory nodes.
     72    *  @param  __size  The size of an element.
     73    *  @return   The number (not byte size) of elements per node.
     74    *
     75    *  This function started off as a compiler kludge from SGI, but
     76    *  seems to be a useful wrapper around a repeated constant
     77    *  expression.  The @b 512 is tunable (and no other code needs to
     78    *  change), but no investigation has been done since inheriting the
     79    *  SGI code.  Touch _GLIBCXX_DEQUE_BUF_SIZE only if you know what
     80    *  you are doing, however: changing it breaks the binary
     81    *  compatibility!!
     82   */
     83 
     84 #ifndef _GLIBCXX_DEQUE_BUF_SIZE
     85 #define _GLIBCXX_DEQUE_BUF_SIZE 512
     86 #endif
     87 
     88   inline size_t
     89   __deque_buf_size(size_t __size)
     90   { return (__size < _GLIBCXX_DEQUE_BUF_SIZE
     91 	    ? size_t(_GLIBCXX_DEQUE_BUF_SIZE / __size) : size_t(1)); }
     92 
     93 
     94   /**
     95    *  @brief A deque::iterator.
     96    *
     97    *  Quite a bit of intelligence here.  Much of the functionality of
     98    *  deque is actually passed off to this class.  A deque holds two
     99    *  of these internally, marking its valid range.  Access to
    100    *  elements is done as offsets of either of those two, relying on
    101    *  operator overloading in this class.
    102    *
    103    *  All the functions are op overloads except for _M_set_node.
    104   */
    105   template<typename _Tp, typename _Ref, typename _Ptr>
    106     struct _Deque_iterator
    107     {
    108       typedef _Deque_iterator<_Tp, _Tp&, _Tp*>             iterator;
    109       typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
    110 
    111       static size_t _S_buffer_size() _GLIBCXX_NOEXCEPT
    112       { return __deque_buf_size(sizeof(_Tp)); }
    113 
    114       typedef std::random_access_iterator_tag iterator_category;
    115       typedef _Tp                             value_type;
    116       typedef _Ptr                            pointer;
    117       typedef _Ref                            reference;
    118       typedef size_t                          size_type;
    119       typedef ptrdiff_t                       difference_type;
    120       typedef _Tp**                           _Map_pointer;
    121       typedef _Deque_iterator                 _Self;
    122 
    123       _Tp* _M_cur;
    124       _Tp* _M_first;
    125       _Tp* _M_last;
    126       _Map_pointer _M_node;
    127 
    128       _Deque_iterator(_Tp* __x, _Map_pointer __y) _GLIBCXX_NOEXCEPT
    129       : _M_cur(__x), _M_first(*__y),
    130         _M_last(*__y + _S_buffer_size()), _M_node(__y) { }
    131 
    132       _Deque_iterator() _GLIBCXX_NOEXCEPT
    133       : _M_cur(0), _M_first(0), _M_last(0), _M_node(0) { }
    134 
    135       _Deque_iterator(const iterator& __x) _GLIBCXX_NOEXCEPT
    136       : _M_cur(__x._M_cur), _M_first(__x._M_first),
    137         _M_last(__x._M_last), _M_node(__x._M_node) { }
    138 
    139       iterator
    140       _M_const_cast() const _GLIBCXX_NOEXCEPT
    141       { return iterator(_M_cur, _M_node); }
    142 
    143       reference
    144       operator*() const _GLIBCXX_NOEXCEPT
    145       { return *_M_cur; }
    146 
    147       pointer
    148       operator->() const _GLIBCXX_NOEXCEPT
    149       { return _M_cur; }
    150 
    151       _Self&
    152       operator++() _GLIBCXX_NOEXCEPT
    153       {
    154 	++_M_cur;
    155 	if (_M_cur == _M_last)
    156 	  {
    157 	    _M_set_node(_M_node + 1);
    158 	    _M_cur = _M_first;
    159 	  }
    160 	return *this;
    161       }
    162 
    163       _Self
    164       operator++(int) _GLIBCXX_NOEXCEPT
    165       {
    166 	_Self __tmp = *this;
    167 	++*this;
    168 	return __tmp;
    169       }
    170 
    171       _Self&
    172       operator--() _GLIBCXX_NOEXCEPT
    173       {
    174 	if (_M_cur == _M_first)
    175 	  {
    176 	    _M_set_node(_M_node - 1);
    177 	    _M_cur = _M_last;
    178 	  }
    179 	--_M_cur;
    180 	return *this;
    181       }
    182 
    183       _Self
    184       operator--(int) _GLIBCXX_NOEXCEPT
    185       {
    186 	_Self __tmp = *this;
    187 	--*this;
    188 	return __tmp;
    189       }
    190 
    191       _Self&
    192       operator+=(difference_type __n) _GLIBCXX_NOEXCEPT
    193       {
    194 	const difference_type __offset = __n + (_M_cur - _M_first);
    195 	if (__offset >= 0 && __offset < difference_type(_S_buffer_size()))
    196 	  _M_cur += __n;
    197 	else
    198 	  {
    199 	    const difference_type __node_offset =
    200 	      __offset > 0 ? __offset / difference_type(_S_buffer_size())
    201 	                   : -difference_type((-__offset - 1)
    202 					      / _S_buffer_size()) - 1;
    203 	    _M_set_node(_M_node + __node_offset);
    204 	    _M_cur = _M_first + (__offset - __node_offset
    205 				 * difference_type(_S_buffer_size()));
    206 	  }
    207 	return *this;
    208       }
    209 
    210       _Self
    211       operator+(difference_type __n) const _GLIBCXX_NOEXCEPT
    212       {
    213 	_Self __tmp = *this;
    214 	return __tmp += __n;
    215       }
    216 
    217       _Self&
    218       operator-=(difference_type __n) _GLIBCXX_NOEXCEPT
    219       { return *this += -__n; }
    220 
    221       _Self
    222       operator-(difference_type __n) const _GLIBCXX_NOEXCEPT
    223       {
    224 	_Self __tmp = *this;
    225 	return __tmp -= __n;
    226       }
    227 
    228       reference
    229       operator[](difference_type __n) const _GLIBCXX_NOEXCEPT
    230       { return *(*this + __n); }
    231 
    232       /**
    233        *  Prepares to traverse new_node.  Sets everything except
    234        *  _M_cur, which should therefore be set by the caller
    235        *  immediately afterwards, based on _M_first and _M_last.
    236        */
    237       void
    238       _M_set_node(_Map_pointer __new_node) _GLIBCXX_NOEXCEPT
    239       {
    240 	_M_node = __new_node;
    241 	_M_first = *__new_node;
    242 	_M_last = _M_first + difference_type(_S_buffer_size());
    243       }
    244     };
    245 
    246   // Note: we also provide overloads whose operands are of the same type in
    247   // order to avoid ambiguous overload resolution when std::rel_ops operators
    248   // are in scope (for additional details, see libstdc++/3628)
    249   template<typename _Tp, typename _Ref, typename _Ptr>
    250     inline bool
    251     operator==(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
    252 	       const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT
    253     { return __x._M_cur == __y._M_cur; }
    254 
    255   template<typename _Tp, typename _RefL, typename _PtrL,
    256 	   typename _RefR, typename _PtrR>
    257     inline bool
    258     operator==(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
    259 	       const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT
    260     { return __x._M_cur == __y._M_cur; }
    261 
    262   template<typename _Tp, typename _Ref, typename _Ptr>
    263     inline bool
    264     operator!=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
    265 	       const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT
    266     { return !(__x == __y); }
    267 
    268   template<typename _Tp, typename _RefL, typename _PtrL,
    269 	   typename _RefR, typename _PtrR>
    270     inline bool
    271     operator!=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
    272 	       const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT
    273     { return !(__x == __y); }
    274 
    275   template<typename _Tp, typename _Ref, typename _Ptr>
    276     inline bool
    277     operator<(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
    278 	      const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT
    279     { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur)
    280                                           : (__x._M_node < __y._M_node); }
    281 
    282   template<typename _Tp, typename _RefL, typename _PtrL,
    283 	   typename _RefR, typename _PtrR>
    284     inline bool
    285     operator<(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
    286 	      const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT
    287     { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur)
    288 	                                  : (__x._M_node < __y._M_node); }
    289 
    290   template<typename _Tp, typename _Ref, typename _Ptr>
    291     inline bool
    292     operator>(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
    293 	      const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT
    294     { return __y < __x; }
    295 
    296   template<typename _Tp, typename _RefL, typename _PtrL,
    297 	   typename _RefR, typename _PtrR>
    298     inline bool
    299     operator>(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
    300 	      const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT
    301     { return __y < __x; }
    302 
    303   template<typename _Tp, typename _Ref, typename _Ptr>
    304     inline bool
    305     operator<=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
    306 	       const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT
    307     { return !(__y < __x); }
    308 
    309   template<typename _Tp, typename _RefL, typename _PtrL,
    310 	   typename _RefR, typename _PtrR>
    311     inline bool
    312     operator<=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
    313 	       const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT
    314     { return !(__y < __x); }
    315 
    316   template<typename _Tp, typename _Ref, typename _Ptr>
    317     inline bool
    318     operator>=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
    319 	       const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT
    320     { return !(__x < __y); }
    321 
    322   template<typename _Tp, typename _RefL, typename _PtrL,
    323 	   typename _RefR, typename _PtrR>
    324     inline bool
    325     operator>=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
    326 	       const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT
    327     { return !(__x < __y); }
    328 
    329   // _GLIBCXX_RESOLVE_LIB_DEFECTS
    330   // According to the resolution of DR179 not only the various comparison
    331   // operators but also operator- must accept mixed iterator/const_iterator
    332   // parameters.
    333   template<typename _Tp, typename _Ref, typename _Ptr>
    334     inline typename _Deque_iterator<_Tp, _Ref, _Ptr>::difference_type
    335     operator-(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
    336 	      const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT
    337     {
    338       return typename _Deque_iterator<_Tp, _Ref, _Ptr>::difference_type
    339 	(_Deque_iterator<_Tp, _Ref, _Ptr>::_S_buffer_size())
    340 	* (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first)
    341 	+ (__y._M_last - __y._M_cur);
    342     }
    343 
    344   template<typename _Tp, typename _RefL, typename _PtrL,
    345 	   typename _RefR, typename _PtrR>
    346     inline typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type
    347     operator-(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
    348 	      const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT
    349     {
    350       return typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type
    351 	(_Deque_iterator<_Tp, _RefL, _PtrL>::_S_buffer_size())
    352 	* (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first)
    353 	+ (__y._M_last - __y._M_cur);
    354     }
    355 
    356   template<typename _Tp, typename _Ref, typename _Ptr>
    357     inline _Deque_iterator<_Tp, _Ref, _Ptr>
    358     operator+(ptrdiff_t __n, const _Deque_iterator<_Tp, _Ref, _Ptr>& __x)
    359     _GLIBCXX_NOEXCEPT
    360     { return __x + __n; }
    361 
    362   template<typename _Tp>
    363     void
    364     fill(const _Deque_iterator<_Tp, _Tp&, _Tp*>&,
    365 	 const _Deque_iterator<_Tp, _Tp&, _Tp*>&, const _Tp&);
    366 
    367   template<typename _Tp>
    368     _Deque_iterator<_Tp, _Tp&, _Tp*>
    369     copy(_Deque_iterator<_Tp, const _Tp&, const _Tp*>,
    370 	 _Deque_iterator<_Tp, const _Tp&, const _Tp*>,
    371 	 _Deque_iterator<_Tp, _Tp&, _Tp*>);
    372 
    373   template<typename _Tp>
    374     inline _Deque_iterator<_Tp, _Tp&, _Tp*>
    375     copy(_Deque_iterator<_Tp, _Tp&, _Tp*> __first,
    376 	 _Deque_iterator<_Tp, _Tp&, _Tp*> __last,
    377 	 _Deque_iterator<_Tp, _Tp&, _Tp*> __result)
    378     { return std::copy(_Deque_iterator<_Tp, const _Tp&, const _Tp*>(__first),
    379 		       _Deque_iterator<_Tp, const _Tp&, const _Tp*>(__last),
    380 		       __result); }
    381 
    382   template<typename _Tp>
    383     _Deque_iterator<_Tp, _Tp&, _Tp*>
    384     copy_backward(_Deque_iterator<_Tp, const _Tp&, const _Tp*>,
    385 		  _Deque_iterator<_Tp, const _Tp&, const _Tp*>,
    386 		  _Deque_iterator<_Tp, _Tp&, _Tp*>);
    387 
    388   template<typename _Tp>
    389     inline _Deque_iterator<_Tp, _Tp&, _Tp*>
    390     copy_backward(_Deque_iterator<_Tp, _Tp&, _Tp*> __first,
    391 		  _Deque_iterator<_Tp, _Tp&, _Tp*> __last,
    392 		  _Deque_iterator<_Tp, _Tp&, _Tp*> __result)
    393     { return std::copy_backward(_Deque_iterator<_Tp,
    394 				const _Tp&, const _Tp*>(__first),
    395 				_Deque_iterator<_Tp,
    396 				const _Tp&, const _Tp*>(__last),
    397 				__result); }
    398 
    399 #if __cplusplus >= 201103L
    400   template<typename _Tp>
    401     _Deque_iterator<_Tp, _Tp&, _Tp*>
    402     move(_Deque_iterator<_Tp, const _Tp&, const _Tp*>,
    403 	 _Deque_iterator<_Tp, const _Tp&, const _Tp*>,
    404 	 _Deque_iterator<_Tp, _Tp&, _Tp*>);
    405 
    406   template<typename _Tp>
    407     inline _Deque_iterator<_Tp, _Tp&, _Tp*>
    408     move(_Deque_iterator<_Tp, _Tp&, _Tp*> __first,
    409 	 _Deque_iterator<_Tp, _Tp&, _Tp*> __last,
    410 	 _Deque_iterator<_Tp, _Tp&, _Tp*> __result)
    411     { return std::move(_Deque_iterator<_Tp, const _Tp&, const _Tp*>(__first),
    412 		       _Deque_iterator<_Tp, const _Tp&, const _Tp*>(__last),
    413 		       __result); }
    414 
    415   template<typename _Tp>
    416     _Deque_iterator<_Tp, _Tp&, _Tp*>
    417     move_backward(_Deque_iterator<_Tp, const _Tp&, const _Tp*>,
    418 		  _Deque_iterator<_Tp, const _Tp&, const _Tp*>,
    419 		  _Deque_iterator<_Tp, _Tp&, _Tp*>);
    420 
    421   template<typename _Tp>
    422     inline _Deque_iterator<_Tp, _Tp&, _Tp*>
    423     move_backward(_Deque_iterator<_Tp, _Tp&, _Tp*> __first,
    424 		  _Deque_iterator<_Tp, _Tp&, _Tp*> __last,
    425 		  _Deque_iterator<_Tp, _Tp&, _Tp*> __result)
    426     { return std::move_backward(_Deque_iterator<_Tp,
    427 				const _Tp&, const _Tp*>(__first),
    428 				_Deque_iterator<_Tp,
    429 				const _Tp&, const _Tp*>(__last),
    430 				__result); }
    431 #endif
    432 
    433   /**
    434    *  Deque base class.  This class provides the unified face for %deque's
    435    *  allocation.  This class's constructor and destructor allocate and
    436    *  deallocate (but do not initialize) storage.  This makes %exception
    437    *  safety easier.
    438    *
    439    *  Nothing in this class ever constructs or destroys an actual Tp element.
    440    *  (Deque handles that itself.)  Only/All memory management is performed
    441    *  here.
    442   */
    443   template<typename _Tp, typename _Alloc>
    444     class _Deque_base
    445     {
    446     public:
    447       typedef _Alloc                  allocator_type;
    448 
    449       allocator_type
    450       get_allocator() const _GLIBCXX_NOEXCEPT
    451       { return allocator_type(_M_get_Tp_allocator()); }
    452 
    453       typedef _Deque_iterator<_Tp, _Tp&, _Tp*>             iterator;
    454       typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
    455 
    456       _Deque_base()
    457       : _M_impl()
    458       { _M_initialize_map(0); }
    459 
    460       _Deque_base(size_t __num_elements)
    461       : _M_impl()
    462       { _M_initialize_map(__num_elements); }
    463 
    464       _Deque_base(const allocator_type& __a, size_t __num_elements)
    465       : _M_impl(__a)
    466       { _M_initialize_map(__num_elements); }
    467 
    468       _Deque_base(const allocator_type& __a)
    469       : _M_impl(__a)
    470       { }
    471 
    472 #if __cplusplus >= 201103L
    473       _Deque_base(_Deque_base&& __x)
    474       : _M_impl(std::move(__x._M_get_Tp_allocator()))
    475       {
    476 	_M_initialize_map(0);
    477 	if (__x._M_impl._M_map)
    478 	  {
    479 	    std::swap(this->_M_impl._M_start, __x._M_impl._M_start);
    480 	    std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish);
    481 	    std::swap(this->_M_impl._M_map, __x._M_impl._M_map);
    482 	    std::swap(this->_M_impl._M_map_size, __x._M_impl._M_map_size);
    483 	  }
    484       }
    485 #endif
    486 
    487       ~_Deque_base() _GLIBCXX_NOEXCEPT;
    488 
    489     protected:
    490       typedef typename _Alloc::template rebind<_Tp*>::other _Map_alloc_type;
    491 
    492       typedef typename _Alloc::template rebind<_Tp>::other  _Tp_alloc_type;
    493 
    494       //This struct encapsulates the implementation of the std::deque
    495       //standard container and at the same time makes use of the EBO
    496       //for empty allocators.
    497       struct _Deque_impl
    498       : public _Tp_alloc_type
    499       {
    500 	_Tp** _M_map;
    501 	size_t _M_map_size;
    502 	iterator _M_start;
    503 	iterator _M_finish;
    504 
    505 	_Deque_impl()
    506 	: _Tp_alloc_type(), _M_map(0), _M_map_size(0),
    507 	  _M_start(), _M_finish()
    508 	{ }
    509 
    510 	_Deque_impl(const _Tp_alloc_type& __a) _GLIBCXX_NOEXCEPT
    511 	: _Tp_alloc_type(__a), _M_map(0), _M_map_size(0),
    512 	  _M_start(), _M_finish()
    513 	{ }
    514 
    515 #if __cplusplus >= 201103L
    516 	_Deque_impl(_Tp_alloc_type&& __a) _GLIBCXX_NOEXCEPT
    517 	: _Tp_alloc_type(std::move(__a)), _M_map(0), _M_map_size(0),
    518 	  _M_start(), _M_finish()
    519 	{ }
    520 #endif
    521       };
    522 
    523       _Tp_alloc_type&
    524       _M_get_Tp_allocator() _GLIBCXX_NOEXCEPT
    525       { return *static_cast<_Tp_alloc_type*>(&this->_M_impl); }
    526 
    527       const _Tp_alloc_type&
    528       _M_get_Tp_allocator() const _GLIBCXX_NOEXCEPT
    529       { return *static_cast<const _Tp_alloc_type*>(&this->_M_impl); }
    530 
    531       _Map_alloc_type
    532       _M_get_map_allocator() const _GLIBCXX_NOEXCEPT
    533       { return _Map_alloc_type(_M_get_Tp_allocator()); }
    534 
    535       _Tp*
    536       _M_allocate_node()
    537       {
    538 	return _M_impl._Tp_alloc_type::allocate(__deque_buf_size(sizeof(_Tp)));
    539       }
    540 
    541       void
    542       _M_deallocate_node(_Tp* __p) _GLIBCXX_NOEXCEPT
    543       {
    544 	_M_impl._Tp_alloc_type::deallocate(__p, __deque_buf_size(sizeof(_Tp)));
    545       }
    546 
    547       _Tp**
    548       _M_allocate_map(size_t __n)
    549       { return _M_get_map_allocator().allocate(__n); }
    550 
    551       void
    552       _M_deallocate_map(_Tp** __p, size_t __n) _GLIBCXX_NOEXCEPT
    553       { _M_get_map_allocator().deallocate(__p, __n); }
    554 
    555     protected:
    556       void _M_initialize_map(size_t);
    557       void _M_create_nodes(_Tp** __nstart, _Tp** __nfinish);
    558       void _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish) _GLIBCXX_NOEXCEPT;
    559       enum { _S_initial_map_size = 8 };
    560 
    561       _Deque_impl _M_impl;
    562     };
    563 
    564   template<typename _Tp, typename _Alloc>
    565     _Deque_base<_Tp, _Alloc>::
    566     ~_Deque_base() _GLIBCXX_NOEXCEPT
    567     {
    568       if (this->_M_impl._M_map)
    569 	{
    570 	  _M_destroy_nodes(this->_M_impl._M_start._M_node,
    571 			   this->_M_impl._M_finish._M_node + 1);
    572 	  _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size);
    573 	}
    574     }
    575 
    576   /**
    577    *  @brief Layout storage.
    578    *  @param  __num_elements  The count of T's for which to allocate space
    579    *                        at first.
    580    *  @return   Nothing.
    581    *
    582    *  The initial underlying memory layout is a bit complicated...
    583   */
    584   template<typename _Tp, typename _Alloc>
    585     void
    586     _Deque_base<_Tp, _Alloc>::
    587     _M_initialize_map(size_t __num_elements)
    588     {
    589       const size_t __num_nodes = (__num_elements/ __deque_buf_size(sizeof(_Tp))
    590 				  + 1);
    591 
    592       this->_M_impl._M_map_size = std::max((size_t) _S_initial_map_size,
    593 					   size_t(__num_nodes + 2));
    594       this->_M_impl._M_map = _M_allocate_map(this->_M_impl._M_map_size);
    595 
    596       // For "small" maps (needing less than _M_map_size nodes), allocation
    597       // starts in the middle elements and grows outwards.  So nstart may be
    598       // the beginning of _M_map, but for small maps it may be as far in as
    599       // _M_map+3.
    600 
    601       _Tp** __nstart = (this->_M_impl._M_map
    602 			+ (this->_M_impl._M_map_size - __num_nodes) / 2);
    603       _Tp** __nfinish = __nstart + __num_nodes;
    604 
    605       __try
    606 	{ _M_create_nodes(__nstart, __nfinish); }
    607       __catch(...)
    608 	{
    609 	  _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size);
    610 	  this->_M_impl._M_map = 0;
    611 	  this->_M_impl._M_map_size = 0;
    612 	  __throw_exception_again;
    613 	}
    614 
    615       this->_M_impl._M_start._M_set_node(__nstart);
    616       this->_M_impl._M_finish._M_set_node(__nfinish - 1);
    617       this->_M_impl._M_start._M_cur = _M_impl._M_start._M_first;
    618       this->_M_impl._M_finish._M_cur = (this->_M_impl._M_finish._M_first
    619 					+ __num_elements
    620 					% __deque_buf_size(sizeof(_Tp)));
    621     }
    622 
    623   template<typename _Tp, typename _Alloc>
    624     void
    625     _Deque_base<_Tp, _Alloc>::
    626     _M_create_nodes(_Tp** __nstart, _Tp** __nfinish)
    627     {
    628       _Tp** __cur;
    629       __try
    630 	{
    631 	  for (__cur = __nstart; __cur < __nfinish; ++__cur)
    632 	    *__cur = this->_M_allocate_node();
    633 	}
    634       __catch(...)
    635 	{
    636 	  _M_destroy_nodes(__nstart, __cur);
    637 	  __throw_exception_again;
    638 	}
    639     }
    640 
    641   template<typename _Tp, typename _Alloc>
    642     void
    643     _Deque_base<_Tp, _Alloc>::
    644     _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish) _GLIBCXX_NOEXCEPT
    645     {
    646       for (_Tp** __n = __nstart; __n < __nfinish; ++__n)
    647 	_M_deallocate_node(*__n);
    648     }
    649 
    650   /**
    651    *  @brief  A standard container using fixed-size memory allocation and
    652    *  constant-time manipulation of elements at either end.
    653    *
    654    *  @ingroup sequences
    655    *
    656    *  @tparam _Tp  Type of element.
    657    *  @tparam _Alloc  Allocator type, defaults to allocator<_Tp>.
    658    *
    659    *  Meets the requirements of a <a href="tables.html#65">container</a>, a
    660    *  <a href="tables.html#66">reversible container</a>, and a
    661    *  <a href="tables.html#67">sequence</a>, including the
    662    *  <a href="tables.html#68">optional sequence requirements</a>.
    663    *
    664    *  In previous HP/SGI versions of deque, there was an extra template
    665    *  parameter so users could control the node size.  This extension turned
    666    *  out to violate the C++ standard (it can be detected using template
    667    *  template parameters), and it was removed.
    668    *
    669    *  Here's how a deque<Tp> manages memory.  Each deque has 4 members:
    670    *
    671    *  - Tp**        _M_map
    672    *  - size_t      _M_map_size
    673    *  - iterator    _M_start, _M_finish
    674    *
    675    *  map_size is at least 8.  %map is an array of map_size
    676    *  pointers-to-@a nodes.  (The name %map has nothing to do with the
    677    *  std::map class, and @b nodes should not be confused with
    678    *  std::list's usage of @a node.)
    679    *
    680    *  A @a node has no specific type name as such, but it is referred
    681    *  to as @a node in this file.  It is a simple array-of-Tp.  If Tp
    682    *  is very large, there will be one Tp element per node (i.e., an
    683    *  @a array of one).  For non-huge Tp's, node size is inversely
    684    *  related to Tp size: the larger the Tp, the fewer Tp's will fit
    685    *  in a node.  The goal here is to keep the total size of a node
    686    *  relatively small and constant over different Tp's, to improve
    687    *  allocator efficiency.
    688    *
    689    *  Not every pointer in the %map array will point to a node.  If
    690    *  the initial number of elements in the deque is small, the
    691    *  /middle/ %map pointers will be valid, and the ones at the edges
    692    *  will be unused.  This same situation will arise as the %map
    693    *  grows: available %map pointers, if any, will be on the ends.  As
    694    *  new nodes are created, only a subset of the %map's pointers need
    695    *  to be copied @a outward.
    696    *
    697    *  Class invariants:
    698    * - For any nonsingular iterator i:
    699    *    - i.node points to a member of the %map array.  (Yes, you read that
    700    *      correctly:  i.node does not actually point to a node.)  The member of
    701    *      the %map array is what actually points to the node.
    702    *    - i.first == *(i.node)    (This points to the node (first Tp element).)
    703    *    - i.last  == i.first + node_size
    704    *    - i.cur is a pointer in the range [i.first, i.last).  NOTE:
    705    *      the implication of this is that i.cur is always a dereferenceable
    706    *      pointer, even if i is a past-the-end iterator.
    707    * - Start and Finish are always nonsingular iterators.  NOTE: this
    708    * means that an empty deque must have one node, a deque with <N
    709    * elements (where N is the node buffer size) must have one node, a
    710    * deque with N through (2N-1) elements must have two nodes, etc.
    711    * - For every node other than start.node and finish.node, every
    712    * element in the node is an initialized object.  If start.node ==
    713    * finish.node, then [start.cur, finish.cur) are initialized
    714    * objects, and the elements outside that range are uninitialized
    715    * storage.  Otherwise, [start.cur, start.last) and [finish.first,
    716    * finish.cur) are initialized objects, and [start.first, start.cur)
    717    * and [finish.cur, finish.last) are uninitialized storage.
    718    * - [%map, %map + map_size) is a valid, non-empty range.
    719    * - [start.node, finish.node] is a valid range contained within
    720    *   [%map, %map + map_size).
    721    * - A pointer in the range [%map, %map + map_size) points to an allocated
    722    *   node if and only if the pointer is in the range
    723    *   [start.node, finish.node].
    724    *
    725    *  Here's the magic:  nothing in deque is @b aware of the discontiguous
    726    *  storage!
    727    *
    728    *  The memory setup and layout occurs in the parent, _Base, and the iterator
    729    *  class is entirely responsible for @a leaping from one node to the next.
    730    *  All the implementation routines for deque itself work only through the
    731    *  start and finish iterators.  This keeps the routines simple and sane,
    732    *  and we can use other standard algorithms as well.
    733   */
    734   template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
    735     class deque : protected _Deque_base<_Tp, _Alloc>
    736     {
    737       // concept requirements
    738       typedef typename _Alloc::value_type        _Alloc_value_type;
    739       __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
    740       __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
    741 
    742       typedef _Deque_base<_Tp, _Alloc>           _Base;
    743       typedef typename _Base::_Tp_alloc_type	 _Tp_alloc_type;
    744 
    745     public:
    746       typedef _Tp                                        value_type;
    747       typedef typename _Tp_alloc_type::pointer           pointer;
    748       typedef typename _Tp_alloc_type::const_pointer     const_pointer;
    749       typedef typename _Tp_alloc_type::reference         reference;
    750       typedef typename _Tp_alloc_type::const_reference   const_reference;
    751       typedef typename _Base::iterator                   iterator;
    752       typedef typename _Base::const_iterator             const_iterator;
    753       typedef std::reverse_iterator<const_iterator>      const_reverse_iterator;
    754       typedef std::reverse_iterator<iterator>            reverse_iterator;
    755       typedef size_t                             size_type;
    756       typedef ptrdiff_t                          difference_type;
    757       typedef _Alloc                             allocator_type;
    758 
    759     protected:
    760       typedef pointer*                           _Map_pointer;
    761 
    762       static size_t _S_buffer_size() _GLIBCXX_NOEXCEPT
    763       { return __deque_buf_size(sizeof(_Tp)); }
    764 
    765       // Functions controlling memory layout, and nothing else.
    766       using _Base::_M_initialize_map;
    767       using _Base::_M_create_nodes;
    768       using _Base::_M_destroy_nodes;
    769       using _Base::_M_allocate_node;
    770       using _Base::_M_deallocate_node;
    771       using _Base::_M_allocate_map;
    772       using _Base::_M_deallocate_map;
    773       using _Base::_M_get_Tp_allocator;
    774 
    775       /**
    776        *  A total of four data members accumulated down the hierarchy.
    777        *  May be accessed via _M_impl.*
    778        */
    779       using _Base::_M_impl;
    780 
    781     public:
    782       // [23.2.1.1] construct/copy/destroy
    783       // (assign() and get_allocator() are also listed in this section)
    784 
    785       /**
    786        *  @brief  Creates a %deque with no elements.
    787        */
    788       deque() : _Base() { }
    789 
    790       /**
    791        *  @brief  Creates a %deque with no elements.
    792        *  @param  __a  An allocator object.
    793        */
    794       explicit
    795       deque(const allocator_type& __a)
    796       : _Base(__a, 0) { }
    797 
    798 #if __cplusplus >= 201103L
    799       /**
    800        *  @brief  Creates a %deque with default constructed elements.
    801        *  @param  __n  The number of elements to initially create.
    802        *
    803        *  This constructor fills the %deque with @a n default
    804        *  constructed elements.
    805        */
    806       explicit
    807       deque(size_type __n)
    808       : _Base(__n)
    809       { _M_default_initialize(); }
    810 
    811       /**
    812        *  @brief  Creates a %deque with copies of an exemplar element.
    813        *  @param  __n  The number of elements to initially create.
    814        *  @param  __value  An element to copy.
    815        *  @param  __a  An allocator.
    816        *
    817        *  This constructor fills the %deque with @a __n copies of @a __value.
    818        */
    819       deque(size_type __n, const value_type& __value,
    820 	    const allocator_type& __a = allocator_type())
    821       : _Base(__a, __n)
    822       { _M_fill_initialize(__value); }
    823 #else
    824       /**
    825        *  @brief  Creates a %deque with copies of an exemplar element.
    826        *  @param  __n  The number of elements to initially create.
    827        *  @param  __value  An element to copy.
    828        *  @param  __a  An allocator.
    829        *
    830        *  This constructor fills the %deque with @a __n copies of @a __value.
    831        */
    832       explicit
    833       deque(size_type __n, const value_type& __value = value_type(),
    834 	    const allocator_type& __a = allocator_type())
    835       : _Base(__a, __n)
    836       { _M_fill_initialize(__value); }
    837 #endif
    838 
    839       /**
    840        *  @brief  %Deque copy constructor.
    841        *  @param  __x  A %deque of identical element and allocator types.
    842        *
    843        *  The newly-created %deque uses a copy of the allocation object used
    844        *  by @a __x.
    845        */
    846       deque(const deque& __x)
    847       : _Base(__x._M_get_Tp_allocator(), __x.size())
    848       { std::__uninitialized_copy_a(__x.begin(), __x.end(),
    849 				    this->_M_impl._M_start,
    850 				    _M_get_Tp_allocator()); }
    851 
    852 #if __cplusplus >= 201103L
    853       /**
    854        *  @brief  %Deque move constructor.
    855        *  @param  __x  A %deque of identical element and allocator types.
    856        *
    857        *  The newly-created %deque contains the exact contents of @a __x.
    858        *  The contents of @a __x are a valid, but unspecified %deque.
    859        */
    860       deque(deque&& __x)
    861       : _Base(std::move(__x)) { }
    862 
    863       /**
    864        *  @brief  Builds a %deque from an initializer list.
    865        *  @param  __l  An initializer_list.
    866        *  @param  __a  An allocator object.
    867        *
    868        *  Create a %deque consisting of copies of the elements in the
    869        *  initializer_list @a __l.
    870        *
    871        *  This will call the element type's copy constructor N times
    872        *  (where N is __l.size()) and do no memory reallocation.
    873        */
    874       deque(initializer_list<value_type> __l,
    875 	    const allocator_type& __a = allocator_type())
    876       : _Base(__a)
    877       {
    878 	_M_range_initialize(__l.begin(), __l.end(),
    879 			    random_access_iterator_tag());
    880       }
    881 #endif
    882 
    883       /**
    884        *  @brief  Builds a %deque from a range.
    885        *  @param  __first  An input iterator.
    886        *  @param  __last  An input iterator.
    887        *  @param  __a  An allocator object.
    888        *
    889        *  Create a %deque consisting of copies of the elements from [__first,
    890        *  __last).
    891        *
    892        *  If the iterators are forward, bidirectional, or random-access, then
    893        *  this will call the elements' copy constructor N times (where N is
    894        *  distance(__first,__last)) and do no memory reallocation.  But if only
    895        *  input iterators are used, then this will do at most 2N calls to the
    896        *  copy constructor, and logN memory reallocations.
    897        */
    898 #if __cplusplus >= 201103L
    899       template<typename _InputIterator,
    900 	       typename = std::_RequireInputIter<_InputIterator>>
    901         deque(_InputIterator __first, _InputIterator __last,
    902 	      const allocator_type& __a = allocator_type())
    903 	: _Base(__a)
    904         { _M_initialize_dispatch(__first, __last, __false_type()); }
    905 #else
    906       template<typename _InputIterator>
    907         deque(_InputIterator __first, _InputIterator __last,
    908 	      const allocator_type& __a = allocator_type())
    909 	: _Base(__a)
    910         {
    911 	  // Check whether it's an integral type.  If so, it's not an iterator.
    912 	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
    913 	  _M_initialize_dispatch(__first, __last, _Integral());
    914 	}
    915 #endif
    916 
    917       /**
    918        *  The dtor only erases the elements, and note that if the elements
    919        *  themselves are pointers, the pointed-to memory is not touched in any
    920        *  way.  Managing the pointer is the user's responsibility.
    921        */
    922       ~deque() _GLIBCXX_NOEXCEPT
    923       { _M_destroy_data(begin(), end(), _M_get_Tp_allocator()); }
    924 
    925       /**
    926        *  @brief  %Deque assignment operator.
    927        *  @param  __x  A %deque of identical element and allocator types.
    928        *
    929        *  All the elements of @a x are copied, but unlike the copy constructor,
    930        *  the allocator object is not copied.
    931        */
    932       deque&
    933       operator=(const deque& __x);
    934 
    935 #if __cplusplus >= 201103L
    936       /**
    937        *  @brief  %Deque move assignment operator.
    938        *  @param  __x  A %deque of identical element and allocator types.
    939        *
    940        *  The contents of @a __x are moved into this deque (without copying).
    941        *  @a __x is a valid, but unspecified %deque.
    942        */
    943       deque&
    944       operator=(deque&& __x) noexcept
    945       {
    946 	// NB: DR 1204.
    947 	// NB: DR 675.
    948 	this->clear();
    949 	this->swap(__x);
    950 	return *this;
    951       }
    952 
    953       /**
    954        *  @brief  Assigns an initializer list to a %deque.
    955        *  @param  __l  An initializer_list.
    956        *
    957        *  This function fills a %deque with copies of the elements in the
    958        *  initializer_list @a __l.
    959        *
    960        *  Note that the assignment completely changes the %deque and that the
    961        *  resulting %deque's size is the same as the number of elements
    962        *  assigned.  Old data may be lost.
    963        */
    964       deque&
    965       operator=(initializer_list<value_type> __l)
    966       {
    967 	this->assign(__l.begin(), __l.end());
    968 	return *this;
    969       }
    970 #endif
    971 
    972       /**
    973        *  @brief  Assigns a given value to a %deque.
    974        *  @param  __n  Number of elements to be assigned.
    975        *  @param  __val  Value to be assigned.
    976        *
    977        *  This function fills a %deque with @a n copies of the given
    978        *  value.  Note that the assignment completely changes the
    979        *  %deque and that the resulting %deque's size is the same as
    980        *  the number of elements assigned.  Old data may be lost.
    981        */
    982       void
    983       assign(size_type __n, const value_type& __val)
    984       { _M_fill_assign(__n, __val); }
    985 
    986       /**
    987        *  @brief  Assigns a range to a %deque.
    988        *  @param  __first  An input iterator.
    989        *  @param  __last   An input iterator.
    990        *
    991        *  This function fills a %deque with copies of the elements in the
    992        *  range [__first,__last).
    993        *
    994        *  Note that the assignment completely changes the %deque and that the
    995        *  resulting %deque's size is the same as the number of elements
    996        *  assigned.  Old data may be lost.
    997        */
    998 #if __cplusplus >= 201103L
    999       template<typename _InputIterator,
   1000 	       typename = std::_RequireInputIter<_InputIterator>>
   1001         void
   1002         assign(_InputIterator __first, _InputIterator __last)
   1003         { _M_assign_dispatch(__first, __last, __false_type()); }
   1004 #else
   1005       template<typename _InputIterator>
   1006         void
   1007         assign(_InputIterator __first, _InputIterator __last)
   1008         {
   1009 	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
   1010 	  _M_assign_dispatch(__first, __last, _Integral());
   1011 	}
   1012 #endif
   1013 
   1014 #if __cplusplus >= 201103L
   1015       /**
   1016        *  @brief  Assigns an initializer list to a %deque.
   1017        *  @param  __l  An initializer_list.
   1018        *
   1019        *  This function fills a %deque with copies of the elements in the
   1020        *  initializer_list @a __l.
   1021        *
   1022        *  Note that the assignment completely changes the %deque and that the
   1023        *  resulting %deque's size is the same as the number of elements
   1024        *  assigned.  Old data may be lost.
   1025        */
   1026       void
   1027       assign(initializer_list<value_type> __l)
   1028       { this->assign(__l.begin(), __l.end()); }
   1029 #endif
   1030 
   1031       /// Get a copy of the memory allocation object.
   1032       allocator_type
   1033       get_allocator() const _GLIBCXX_NOEXCEPT
   1034       { return _Base::get_allocator(); }
   1035 
   1036       // iterators
   1037       /**
   1038        *  Returns a read/write iterator that points to the first element in the
   1039        *  %deque.  Iteration is done in ordinary element order.
   1040        */
   1041       iterator
   1042       begin() _GLIBCXX_NOEXCEPT
   1043       { return this->_M_impl._M_start; }
   1044 
   1045       /**
   1046        *  Returns a read-only (constant) iterator that points to the first
   1047        *  element in the %deque.  Iteration is done in ordinary element order.
   1048        */
   1049       const_iterator
   1050       begin() const _GLIBCXX_NOEXCEPT
   1051       { return this->_M_impl._M_start; }
   1052 
   1053       /**
   1054        *  Returns a read/write iterator that points one past the last
   1055        *  element in the %deque.  Iteration is done in ordinary
   1056        *  element order.
   1057        */
   1058       iterator
   1059       end() _GLIBCXX_NOEXCEPT
   1060       { return this->_M_impl._M_finish; }
   1061 
   1062       /**
   1063        *  Returns a read-only (constant) iterator that points one past
   1064        *  the last element in the %deque.  Iteration is done in
   1065        *  ordinary element order.
   1066        */
   1067       const_iterator
   1068       end() const _GLIBCXX_NOEXCEPT
   1069       { return this->_M_impl._M_finish; }
   1070 
   1071       /**
   1072        *  Returns a read/write reverse iterator that points to the
   1073        *  last element in the %deque.  Iteration is done in reverse
   1074        *  element order.
   1075        */
   1076       reverse_iterator
   1077       rbegin() _GLIBCXX_NOEXCEPT
   1078       { return reverse_iterator(this->_M_impl._M_finish); }
   1079 
   1080       /**
   1081        *  Returns a read-only (constant) reverse iterator that points
   1082        *  to the last element in the %deque.  Iteration is done in
   1083        *  reverse element order.
   1084        */
   1085       const_reverse_iterator
   1086       rbegin() const _GLIBCXX_NOEXCEPT
   1087       { return const_reverse_iterator(this->_M_impl._M_finish); }
   1088 
   1089       /**
   1090        *  Returns a read/write reverse iterator that points to one
   1091        *  before the first element in the %deque.  Iteration is done
   1092        *  in reverse element order.
   1093        */
   1094       reverse_iterator
   1095       rend() _GLIBCXX_NOEXCEPT
   1096       { return reverse_iterator(this->_M_impl._M_start); }
   1097 
   1098       /**
   1099        *  Returns a read-only (constant) reverse iterator that points
   1100        *  to one before the first element in the %deque.  Iteration is
   1101        *  done in reverse element order.
   1102        */
   1103       const_reverse_iterator
   1104       rend() const _GLIBCXX_NOEXCEPT
   1105       { return const_reverse_iterator(this->_M_impl._M_start); }
   1106 
   1107 #if __cplusplus >= 201103L
   1108       /**
   1109        *  Returns a read-only (constant) iterator that points to the first
   1110        *  element in the %deque.  Iteration is done in ordinary element order.
   1111        */
   1112       const_iterator
   1113       cbegin() const noexcept
   1114       { return this->_M_impl._M_start; }
   1115 
   1116       /**
   1117        *  Returns a read-only (constant) iterator that points one past
   1118        *  the last element in the %deque.  Iteration is done in
   1119        *  ordinary element order.
   1120        */
   1121       const_iterator
   1122       cend() const noexcept
   1123       { return this->_M_impl._M_finish; }
   1124 
   1125       /**
   1126        *  Returns a read-only (constant) reverse iterator that points
   1127        *  to the last element in the %deque.  Iteration is done in
   1128        *  reverse element order.
   1129        */
   1130       const_reverse_iterator
   1131       crbegin() const noexcept
   1132       { return const_reverse_iterator(this->_M_impl._M_finish); }
   1133 
   1134       /**
   1135        *  Returns a read-only (constant) reverse iterator that points
   1136        *  to one before the first element in the %deque.  Iteration is
   1137        *  done in reverse element order.
   1138        */
   1139       const_reverse_iterator
   1140       crend() const noexcept
   1141       { return const_reverse_iterator(this->_M_impl._M_start); }
   1142 #endif
   1143 
   1144       // [23.2.1.2] capacity
   1145       /**  Returns the number of elements in the %deque.  */
   1146       size_type
   1147       size() const _GLIBCXX_NOEXCEPT
   1148       { return this->_M_impl._M_finish - this->_M_impl._M_start; }
   1149 
   1150       /**  Returns the size() of the largest possible %deque.  */
   1151       size_type
   1152       max_size() const _GLIBCXX_NOEXCEPT
   1153       { return _M_get_Tp_allocator().max_size(); }
   1154 
   1155 #if __cplusplus >= 201103L
   1156       /**
   1157        *  @brief  Resizes the %deque to the specified number of elements.
   1158        *  @param  __new_size  Number of elements the %deque should contain.
   1159        *
   1160        *  This function will %resize the %deque to the specified
   1161        *  number of elements.  If the number is smaller than the
   1162        *  %deque's current size the %deque is truncated, otherwise
   1163        *  default constructed elements are appended.
   1164        */
   1165       void
   1166       resize(size_type __new_size)
   1167       {
   1168 	const size_type __len = size();
   1169 	if (__new_size > __len)
   1170 	  _M_default_append(__new_size - __len);
   1171 	else if (__new_size < __len)
   1172 	  _M_erase_at_end(this->_M_impl._M_start
   1173 			  + difference_type(__new_size));
   1174       }
   1175 
   1176       /**
   1177        *  @brief  Resizes the %deque to the specified number of elements.
   1178        *  @param  __new_size  Number of elements the %deque should contain.
   1179        *  @param  __x  Data with which new elements should be populated.
   1180        *
   1181        *  This function will %resize the %deque to the specified
   1182        *  number of elements.  If the number is smaller than the
   1183        *  %deque's current size the %deque is truncated, otherwise the
   1184        *  %deque is extended and new elements are populated with given
   1185        *  data.
   1186        */
   1187       void
   1188       resize(size_type __new_size, const value_type& __x)
   1189       {
   1190 	const size_type __len = size();
   1191 	if (__new_size > __len)
   1192 	  insert(this->_M_impl._M_finish, __new_size - __len, __x);
   1193 	else if (__new_size < __len)
   1194 	  _M_erase_at_end(this->_M_impl._M_start
   1195 			  + difference_type(__new_size));
   1196       }
   1197 #else
   1198       /**
   1199        *  @brief  Resizes the %deque to the specified number of elements.
   1200        *  @param  __new_size  Number of elements the %deque should contain.
   1201        *  @param  __x  Data with which new elements should be populated.
   1202        *
   1203        *  This function will %resize the %deque to the specified
   1204        *  number of elements.  If the number is smaller than the
   1205        *  %deque's current size the %deque is truncated, otherwise the
   1206        *  %deque is extended and new elements are populated with given
   1207        *  data.
   1208        */
   1209       void
   1210       resize(size_type __new_size, value_type __x = value_type())
   1211       {
   1212 	const size_type __len = size();
   1213 	if (__new_size > __len)
   1214 	  insert(this->_M_impl._M_finish, __new_size - __len, __x);
   1215 	else if (__new_size < __len)
   1216 	  _M_erase_at_end(this->_M_impl._M_start
   1217 			  + difference_type(__new_size));
   1218       }
   1219 #endif
   1220 
   1221 #if __cplusplus >= 201103L
   1222       /**  A non-binding request to reduce memory use.  */
   1223       void
   1224       shrink_to_fit() noexcept
   1225       { _M_shrink_to_fit(); }
   1226 #endif
   1227 
   1228       /**
   1229        *  Returns true if the %deque is empty.  (Thus begin() would
   1230        *  equal end().)
   1231        */
   1232       bool
   1233       empty() const _GLIBCXX_NOEXCEPT
   1234       { return this->_M_impl._M_finish == this->_M_impl._M_start; }
   1235 
   1236       // element access
   1237       /**
   1238        *  @brief Subscript access to the data contained in the %deque.
   1239        *  @param __n The index of the element for which data should be
   1240        *  accessed.
   1241        *  @return  Read/write reference to data.
   1242        *
   1243        *  This operator allows for easy, array-style, data access.
   1244        *  Note that data access with this operator is unchecked and
   1245        *  out_of_range lookups are not defined. (For checked lookups
   1246        *  see at().)
   1247        */
   1248       reference
   1249       operator[](size_type __n) _GLIBCXX_NOEXCEPT
   1250       {
   1251 #if __google_stl_debug_deque
   1252 	_M_range_check(__n);
   1253 #endif
   1254 	return this->_M_impl._M_start[difference_type(__n)];
   1255       }
   1256 
   1257       /**
   1258        *  @brief Subscript access to the data contained in the %deque.
   1259        *  @param __n The index of the element for which data should be
   1260        *  accessed.
   1261        *  @return  Read-only (constant) reference to data.
   1262        *
   1263        *  This operator allows for easy, array-style, data access.
   1264        *  Note that data access with this operator is unchecked and
   1265        *  out_of_range lookups are not defined. (For checked lookups
   1266        *  see at().)
   1267        */
   1268       const_reference
   1269       operator[](size_type __n) const _GLIBCXX_NOEXCEPT
   1270       {
   1271 #if __google_stl_debug_deque
   1272 	_M_range_check(__n);
   1273 #endif
   1274 	return this->_M_impl._M_start[difference_type(__n)];
   1275       }
   1276 
   1277     protected:
   1278       /// Safety check used only from at().
   1279       void
   1280       _M_range_check(size_type __n) const
   1281       {
   1282 	if (__n >= this->size())
   1283 	  __throw_out_of_range_fmt(__N("deque::_M_range_check: __n "
   1284 				       "(which is %zu)>= this->size() "
   1285 				       "(which is %zu)"),
   1286 				   __n, this->size());
   1287       }
   1288 
   1289     public:
   1290       /**
   1291        *  @brief  Provides access to the data contained in the %deque.
   1292        *  @param __n The index of the element for which data should be
   1293        *  accessed.
   1294        *  @return  Read/write reference to data.
   1295        *  @throw  std::out_of_range  If @a __n is an invalid index.
   1296        *
   1297        *  This function provides for safer data access.  The parameter
   1298        *  is first checked that it is in the range of the deque.  The
   1299        *  function throws out_of_range if the check fails.
   1300        */
   1301       reference
   1302       at(size_type __n)
   1303       {
   1304 	_M_range_check(__n);
   1305 	return (*this)[__n];
   1306       }
   1307 
   1308       /**
   1309        *  @brief  Provides access to the data contained in the %deque.
   1310        *  @param __n The index of the element for which data should be
   1311        *  accessed.
   1312        *  @return  Read-only (constant) reference to data.
   1313        *  @throw  std::out_of_range  If @a __n is an invalid index.
   1314        *
   1315        *  This function provides for safer data access.  The parameter is first
   1316        *  checked that it is in the range of the deque.  The function throws
   1317        *  out_of_range if the check fails.
   1318        */
   1319       const_reference
   1320       at(size_type __n) const
   1321       {
   1322 	_M_range_check(__n);
   1323 	return (*this)[__n];
   1324       }
   1325 
   1326       /**
   1327        *  Returns a read/write reference to the data at the first
   1328        *  element of the %deque.
   1329        */
   1330       reference
   1331       front() _GLIBCXX_NOEXCEPT
   1332       {
   1333 #if __google_stl_debug_deque
   1334 	if (empty()) __throw_logic_error("front() on empty deque");
   1335 #endif
   1336 	return *begin();
   1337       }
   1338 
   1339       /**
   1340        *  Returns a read-only (constant) reference to the data at the first
   1341        *  element of the %deque.
   1342        */
   1343       const_reference
   1344       front() const _GLIBCXX_NOEXCEPT
   1345       {
   1346 #if __google_stl_debug_deque
   1347 	if (empty()) __throw_logic_error("front() on empty deque");
   1348 #endif
   1349 	return *begin();
   1350       }
   1351 
   1352       /**
   1353        *  Returns a read/write reference to the data at the last element of the
   1354        *  %deque.
   1355        */
   1356       reference
   1357       back() _GLIBCXX_NOEXCEPT
   1358       {
   1359 #if __google_stl_debug_deque
   1360 	if (empty()) __throw_logic_error("back() on empty deque");
   1361 #endif
   1362 	iterator __tmp = end();
   1363 	--__tmp;
   1364 	return *__tmp;
   1365       }
   1366 
   1367       /**
   1368        *  Returns a read-only (constant) reference to the data at the last
   1369        *  element of the %deque.
   1370        */
   1371       const_reference
   1372       back() const _GLIBCXX_NOEXCEPT
   1373       {
   1374 #if __google_stl_debug_deque
   1375 	if (empty()) __throw_logic_error("back() on empty deque");
   1376 #endif
   1377 	const_iterator __tmp = end();
   1378 	--__tmp;
   1379 	return *__tmp;
   1380       }
   1381 
   1382       // [23.2.1.2] modifiers
   1383       /**
   1384        *  @brief  Add data to the front of the %deque.
   1385        *  @param  __x  Data to be added.
   1386        *
   1387        *  This is a typical stack operation.  The function creates an
   1388        *  element at the front of the %deque and assigns the given
   1389        *  data to it.  Due to the nature of a %deque this operation
   1390        *  can be done in constant time.
   1391        */
   1392       void
   1393       push_front(const value_type& __x)
   1394       {
   1395 	if (this->_M_impl._M_start._M_cur != this->_M_impl._M_start._M_first)
   1396 	  {
   1397 	    this->_M_impl.construct(this->_M_impl._M_start._M_cur - 1, __x);
   1398 	    --this->_M_impl._M_start._M_cur;
   1399 	  }
   1400 	else
   1401 	  _M_push_front_aux(__x);
   1402       }
   1403 
   1404 #if __cplusplus >= 201103L
   1405       void
   1406       push_front(value_type&& __x)
   1407       { emplace_front(std::move(__x)); }
   1408 
   1409       template<typename... _Args>
   1410         void
   1411         emplace_front(_Args&&... __args);
   1412 #endif
   1413 
   1414       /**
   1415        *  @brief  Add data to the end of the %deque.
   1416        *  @param  __x  Data to be added.
   1417        *
   1418        *  This is a typical stack operation.  The function creates an
   1419        *  element at the end of the %deque and assigns the given data
   1420        *  to it.  Due to the nature of a %deque this operation can be
   1421        *  done in constant time.
   1422        */
   1423       void
   1424       push_back(const value_type& __x)
   1425       {
   1426 	if (this->_M_impl._M_finish._M_cur
   1427 	    != this->_M_impl._M_finish._M_last - 1)
   1428 	  {
   1429 	    this->_M_impl.construct(this->_M_impl._M_finish._M_cur, __x);
   1430 	    ++this->_M_impl._M_finish._M_cur;
   1431 	  }
   1432 	else
   1433 	  _M_push_back_aux(__x);
   1434       }
   1435 
   1436 #if __cplusplus >= 201103L
   1437       void
   1438       push_back(value_type&& __x)
   1439       { emplace_back(std::move(__x)); }
   1440 
   1441       template<typename... _Args>
   1442         void
   1443         emplace_back(_Args&&... __args);
   1444 #endif
   1445 
   1446       /**
   1447        *  @brief  Removes first element.
   1448        *
   1449        *  This is a typical stack operation.  It shrinks the %deque by one.
   1450        *
   1451        *  Note that no data is returned, and if the first element's data is
   1452        *  needed, it should be retrieved before pop_front() is called.
   1453        */
   1454       void
   1455       pop_front() _GLIBCXX_NOEXCEPT
   1456       {
   1457 #if __google_stl_debug_deque
   1458 	if (empty()) __throw_logic_error("pop_front() on empty deque");
   1459 #endif
   1460 	if (this->_M_impl._M_start._M_cur
   1461 	    != this->_M_impl._M_start._M_last - 1)
   1462 	  {
   1463 	    this->_M_impl.destroy(this->_M_impl._M_start._M_cur);
   1464 	    ++this->_M_impl._M_start._M_cur;
   1465 	  }
   1466 	else
   1467 	  _M_pop_front_aux();
   1468       }
   1469 
   1470       /**
   1471        *  @brief  Removes last element.
   1472        *
   1473        *  This is a typical stack operation.  It shrinks the %deque by one.
   1474        *
   1475        *  Note that no data is returned, and if the last element's data is
   1476        *  needed, it should be retrieved before pop_back() is called.
   1477        */
   1478       void
   1479       pop_back() _GLIBCXX_NOEXCEPT
   1480       {
   1481 #if __google_stl_debug_deque
   1482 	if (empty()) __throw_logic_error("pop_back() on empty deque");
   1483 #endif
   1484 	if (this->_M_impl._M_finish._M_cur
   1485 	    != this->_M_impl._M_finish._M_first)
   1486 	  {
   1487 	    --this->_M_impl._M_finish._M_cur;
   1488 	    this->_M_impl.destroy(this->_M_impl._M_finish._M_cur);
   1489 	  }
   1490 	else
   1491 	  _M_pop_back_aux();
   1492       }
   1493 
   1494 #if __cplusplus >= 201103L
   1495       /**
   1496        *  @brief  Inserts an object in %deque before specified iterator.
   1497        *  @param  __position  A const_iterator into the %deque.
   1498        *  @param  __args  Arguments.
   1499        *  @return  An iterator that points to the inserted data.
   1500        *
   1501        *  This function will insert an object of type T constructed
   1502        *  with T(std::forward<Args>(args)...) before the specified location.
   1503        */
   1504       template<typename... _Args>
   1505         iterator
   1506         emplace(const_iterator __position, _Args&&... __args);
   1507 
   1508       /**
   1509        *  @brief  Inserts given value into %deque before specified iterator.
   1510        *  @param  __position  A const_iterator into the %deque.
   1511        *  @param  __x  Data to be inserted.
   1512        *  @return  An iterator that points to the inserted data.
   1513        *
   1514        *  This function will insert a copy of the given value before the
   1515        *  specified location.
   1516        */
   1517       iterator
   1518       insert(const_iterator __position, const value_type& __x);
   1519 #else
   1520       /**
   1521        *  @brief  Inserts given value into %deque before specified iterator.
   1522        *  @param  __position  An iterator into the %deque.
   1523        *  @param  __x  Data to be inserted.
   1524        *  @return  An iterator that points to the inserted data.
   1525        *
   1526        *  This function will insert a copy of the given value before the
   1527        *  specified location.
   1528        */
   1529       iterator
   1530       insert(iterator __position, const value_type& __x);
   1531 #endif
   1532 
   1533 #if __cplusplus >= 201103L
   1534       /**
   1535        *  @brief  Inserts given rvalue into %deque before specified iterator.
   1536        *  @param  __position  A const_iterator into the %deque.
   1537        *  @param  __x  Data to be inserted.
   1538        *  @return  An iterator that points to the inserted data.
   1539        *
   1540        *  This function will insert a copy of the given rvalue before the
   1541        *  specified location.
   1542        */
   1543       iterator
   1544       insert(const_iterator __position, value_type&& __x)
   1545       { return emplace(__position, std::move(__x)); }
   1546 
   1547       /**
   1548        *  @brief  Inserts an initializer list into the %deque.
   1549        *  @param  __p  An iterator into the %deque.
   1550        *  @param  __l  An initializer_list.
   1551        *
   1552        *  This function will insert copies of the data in the
   1553        *  initializer_list @a __l into the %deque before the location
   1554        *  specified by @a __p.  This is known as <em>list insert</em>.
   1555        */
   1556       iterator
   1557       insert(const_iterator __p, initializer_list<value_type> __l)
   1558       { return this->insert(__p, __l.begin(), __l.end()); }
   1559 #endif
   1560 
   1561 #if __cplusplus >= 201103L
   1562       /**
   1563        *  @brief  Inserts a number of copies of given data into the %deque.
   1564        *  @param  __position  A const_iterator into the %deque.
   1565        *  @param  __n  Number of elements to be inserted.
   1566        *  @param  __x  Data to be inserted.
   1567        *  @return  An iterator that points to the inserted data.
   1568        *
   1569        *  This function will insert a specified number of copies of the given
   1570        *  data before the location specified by @a __position.
   1571        */
   1572       iterator
   1573       insert(const_iterator __position, size_type __n, const value_type& __x)
   1574       {
   1575 #if __google_stl_debug_deque
   1576 	if (__position < this->begin() || __position > this->end())
   1577 	  __throw_logic_error("insert() at invalid position");
   1578 #endif
   1579 	difference_type __offset = __position - cbegin();
   1580 	_M_fill_insert(__position._M_const_cast(), __n, __x);
   1581 	return begin() + __offset;
   1582       }
   1583 #else
   1584       /**
   1585        *  @brief  Inserts a number of copies of given data into the %deque.
   1586        *  @param  __position  An iterator into the %deque.
   1587        *  @param  __n  Number of elements to be inserted.
   1588        *  @param  __x  Data to be inserted.
   1589        *
   1590        *  This function will insert a specified number of copies of the given
   1591        *  data before the location specified by @a __position.
   1592        */
   1593       void
   1594       insert(iterator __position, size_type __n, const value_type& __x)
   1595       {
   1596 #if __google_stl_debug_deque
   1597 	if (__position < this->begin() || __position > this->end())
   1598 	  __throw_logic_error("insert() at invalid position");
   1599 #endif
   1600 	_M_fill_insert(__position, __n, __x);
   1601       }
   1602 #endif
   1603 
   1604 #if __cplusplus >= 201103L
   1605       /**
   1606        *  @brief  Inserts a range into the %deque.
   1607        *  @param  __position  A const_iterator into the %deque.
   1608        *  @param  __first  An input iterator.
   1609        *  @param  __last   An input iterator.
   1610        *  @return  An iterator that points to the inserted data.
   1611        *
   1612        *  This function will insert copies of the data in the range
   1613        *  [__first,__last) into the %deque before the location specified
   1614        *  by @a __position.  This is known as <em>range insert</em>.
   1615        */
   1616       template<typename _InputIterator,
   1617 	       typename = std::_RequireInputIter<_InputIterator>>
   1618         iterator
   1619         insert(const_iterator __position, _InputIterator __first,
   1620 	       _InputIterator __last)
   1621         {
   1622 #if __google_stl_debug_vector
   1623 	  if (__position < this->begin() || __position > this->end())
   1624 	    __throw_out_of_range(__N("insert() at invalid position"));
   1625 #endif
   1626 	  difference_type __offset = __position - cbegin();
   1627 	  _M_insert_dispatch(__position._M_const_cast(),
   1628 			     __first, __last, __false_type());
   1629 	  return begin() + __offset;
   1630 	}
   1631 #else
   1632       /**
   1633        *  @brief  Inserts a range into the %deque.
   1634        *  @param  __position  An iterator into the %deque.
   1635        *  @param  __first  An input iterator.
   1636        *  @param  __last   An input iterator.
   1637        *
   1638        *  This function will insert copies of the data in the range
   1639        *  [__first,__last) into the %deque before the location specified
   1640        *  by @a __position.  This is known as <em>range insert</em>.
   1641        */
   1642       template<typename _InputIterator>
   1643         void
   1644         insert(iterator __position, _InputIterator __first,
   1645 	       _InputIterator __last)
   1646         {
   1647 	  // Check whether it's an integral type.  If so, it's not an iterator.
   1648 	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
   1649 	  _M_insert_dispatch(__position, __first, __last, _Integral());
   1650 	}
   1651 #endif
   1652 
   1653       /**
   1654        *  @brief  Remove element at given position.
   1655        *  @param  __position  Iterator pointing to element to be erased.
   1656        *  @return  An iterator pointing to the next element (or end()).
   1657        *
   1658        *  This function will erase the element at the given position and thus
   1659        *  shorten the %deque by one.
   1660        *
   1661        *  The user is cautioned that
   1662        *  this function only erases the element, and that if the element is
   1663        *  itself a pointer, the pointed-to memory is not touched in any way.
   1664        *  Managing the pointer is the user's responsibility.
   1665        */
   1666       iterator
   1667 #if __cplusplus >= 201103L
   1668       erase(const_iterator __position)
   1669 #else
   1670       erase(iterator __position)
   1671 #endif
   1672       { return _M_erase(__position._M_const_cast()); }
   1673 
   1674       /**
   1675        *  @brief  Remove a range of elements.
   1676        *  @param  __first  Iterator pointing to the first element to be erased.
   1677        *  @param  __last  Iterator pointing to one past the last element to be
   1678        *                erased.
   1679        *  @return  An iterator pointing to the element pointed to by @a last
   1680        *           prior to erasing (or end()).
   1681        *
   1682        *  This function will erase the elements in the range
   1683        *  [__first,__last) and shorten the %deque accordingly.
   1684        *
   1685        *  The user is cautioned that
   1686        *  this function only erases the elements, and that if the elements
   1687        *  themselves are pointers, the pointed-to memory is not touched in any
   1688        *  way.  Managing the pointer is the user's responsibility.
   1689        */
   1690       iterator
   1691 #if __cplusplus >= 201103L
   1692       erase(const_iterator __first, const_iterator __last)
   1693 #else
   1694       erase(iterator __first, iterator __last)
   1695 #endif
   1696       { return _M_erase(__first._M_const_cast(), __last._M_const_cast()); }
   1697 
   1698       /**
   1699        *  @brief  Swaps data with another %deque.
   1700        *  @param  __x  A %deque of the same element and allocator types.
   1701        *
   1702        *  This exchanges the elements between two deques in constant time.
   1703        *  (Four pointers, so it should be quite fast.)
   1704        *  Note that the global std::swap() function is specialized such that
   1705        *  std::swap(d1,d2) will feed to this function.
   1706        */
   1707       void
   1708       swap(deque& __x) _GLIBCXX_NOEXCEPT
   1709       {
   1710 	std::swap(this->_M_impl._M_start, __x._M_impl._M_start);
   1711 	std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish);
   1712 	std::swap(this->_M_impl._M_map, __x._M_impl._M_map);
   1713 	std::swap(this->_M_impl._M_map_size, __x._M_impl._M_map_size);
   1714 
   1715 	// _GLIBCXX_RESOLVE_LIB_DEFECTS
   1716 	// 431. Swapping containers with unequal allocators.
   1717 	std::__alloc_swap<_Tp_alloc_type>::_S_do_it(_M_get_Tp_allocator(),
   1718 						    __x._M_get_Tp_allocator());
   1719       }
   1720 
   1721       /**
   1722        *  Erases all the elements.  Note that this function only erases the
   1723        *  elements, and that if the elements themselves are pointers, the
   1724        *  pointed-to memory is not touched in any way.  Managing the pointer is
   1725        *  the user's responsibility.
   1726        */
   1727       void
   1728       clear() _GLIBCXX_NOEXCEPT
   1729       { _M_erase_at_end(begin()); }
   1730 
   1731     protected:
   1732       // Internal constructor functions follow.
   1733 
   1734       // called by the range constructor to implement [23.1.1]/9
   1735 
   1736       // _GLIBCXX_RESOLVE_LIB_DEFECTS
   1737       // 438. Ambiguity in the "do the right thing" clause
   1738       template<typename _Integer>
   1739         void
   1740         _M_initialize_dispatch(_Integer __n, _Integer __x, __true_type)
   1741         {
   1742 	  _M_initialize_map(static_cast<size_type>(__n));
   1743 	  _M_fill_initialize(__x);
   1744 	}
   1745 
   1746       // called by the range constructor to implement [23.1.1]/9
   1747       template<typename _InputIterator>
   1748         void
   1749         _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
   1750 			       __false_type)
   1751         {
   1752 	  typedef typename std::iterator_traits<_InputIterator>::
   1753 	    iterator_category _IterCategory;
   1754 	  _M_range_initialize(__first, __last, _IterCategory());
   1755 	}
   1756 
   1757       // called by the second initialize_dispatch above
   1758       //@{
   1759       /**
   1760        *  @brief Fills the deque with whatever is in [first,last).
   1761        *  @param  __first  An input iterator.
   1762        *  @param  __last  An input iterator.
   1763        *  @return   Nothing.
   1764        *
   1765        *  If the iterators are actually forward iterators (or better), then the
   1766        *  memory layout can be done all at once.  Else we move forward using
   1767        *  push_back on each value from the iterator.
   1768        */
   1769       template<typename _InputIterator>
   1770         void
   1771         _M_range_initialize(_InputIterator __first, _InputIterator __last,
   1772 			    std::input_iterator_tag);
   1773 
   1774       // called by the second initialize_dispatch above
   1775       template<typename _ForwardIterator>
   1776         void
   1777         _M_range_initialize(_ForwardIterator __first, _ForwardIterator __last,
   1778 			    std::forward_iterator_tag);
   1779       //@}
   1780 
   1781       /**
   1782        *  @brief Fills the %deque with copies of value.
   1783        *  @param  __value  Initial value.
   1784        *  @return   Nothing.
   1785        *  @pre _M_start and _M_finish have already been initialized,
   1786        *  but none of the %deque's elements have yet been constructed.
   1787        *
   1788        *  This function is called only when the user provides an explicit size
   1789        *  (with or without an explicit exemplar value).
   1790        */
   1791       void
   1792       _M_fill_initialize(const value_type& __value);
   1793 
   1794 #if __cplusplus >= 201103L
   1795       // called by deque(n).
   1796       void
   1797       _M_default_initialize();
   1798 #endif
   1799 
   1800       // Internal assign functions follow.  The *_aux functions do the actual
   1801       // assignment work for the range versions.
   1802 
   1803       // called by the range assign to implement [23.1.1]/9
   1804 
   1805       // _GLIBCXX_RESOLVE_LIB_DEFECTS
   1806       // 438. Ambiguity in the "do the right thing" clause
   1807       template<typename _Integer>
   1808         void
   1809         _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
   1810         { _M_fill_assign(__n, __val); }
   1811 
   1812       // called by the range assign to implement [23.1.1]/9
   1813       template<typename _InputIterator>
   1814         void
   1815         _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
   1816 			   __false_type)
   1817         {
   1818 	  typedef typename std::iterator_traits<_InputIterator>::
   1819 	    iterator_category _IterCategory;
   1820 	  _M_assign_aux(__first, __last, _IterCategory());
   1821 	}
   1822 
   1823       // called by the second assign_dispatch above
   1824       template<typename _InputIterator>
   1825         void
   1826         _M_assign_aux(_InputIterator __first, _InputIterator __last,
   1827 		      std::input_iterator_tag);
   1828 
   1829       // called by the second assign_dispatch above
   1830       template<typename _ForwardIterator>
   1831         void
   1832         _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
   1833 		      std::forward_iterator_tag)
   1834         {
   1835 	  const size_type __len = std::distance(__first, __last);
   1836 	  if (__len > size())
   1837 	    {
   1838 	      _ForwardIterator __mid = __first;
   1839 	      std::advance(__mid, size());
   1840 	      std::copy(__first, __mid, begin());
   1841 	      insert(end(), __mid, __last);
   1842 	    }
   1843 	  else
   1844 	    _M_erase_at_end(std::copy(__first, __last, begin()));
   1845 	}
   1846 
   1847       // Called by assign(n,t), and the range assign when it turns out
   1848       // to be the same thing.
   1849       void
   1850       _M_fill_assign(size_type __n, const value_type& __val)
   1851       {
   1852 	if (__n > size())
   1853 	  {
   1854 	    std::fill(begin(), end(), __val);
   1855 	    insert(end(), __n - size(), __val);
   1856 	  }
   1857 	else
   1858 	  {
   1859 	    _M_erase_at_end(begin() + difference_type(__n));
   1860 	    std::fill(begin(), end(), __val);
   1861 	  }
   1862       }
   1863 
   1864       //@{
   1865       /// Helper functions for push_* and pop_*.
   1866 #if __cplusplus < 201103L
   1867       void _M_push_back_aux(const value_type&);
   1868 
   1869       void _M_push_front_aux(const value_type&);
   1870 #else
   1871       template<typename... _Args>
   1872         void _M_push_back_aux(_Args&&... __args);
   1873 
   1874       template<typename... _Args>
   1875         void _M_push_front_aux(_Args&&... __args);
   1876 #endif
   1877 
   1878       void _M_pop_back_aux();
   1879 
   1880       void _M_pop_front_aux();
   1881       //@}
   1882 
   1883       // Internal insert functions follow.  The *_aux functions do the actual
   1884       // insertion work when all shortcuts fail.
   1885 
   1886       // called by the range insert to implement [23.1.1]/9
   1887 
   1888       // _GLIBCXX_RESOLVE_LIB_DEFECTS
   1889       // 438. Ambiguity in the "do the right thing" clause
   1890       template<typename _Integer>
   1891         void
   1892         _M_insert_dispatch(iterator __pos,
   1893 			   _Integer __n, _Integer __x, __true_type)
   1894         { _M_fill_insert(__pos, __n, __x); }
   1895 
   1896       // called by the range insert to implement [23.1.1]/9
   1897       template<typename _InputIterator>
   1898         void
   1899         _M_insert_dispatch(iterator __pos,
   1900 			   _InputIterator __first, _InputIterator __last,
   1901 			   __false_type)
   1902         {
   1903 	  typedef typename std::iterator_traits<_InputIterator>::
   1904 	    iterator_category _IterCategory;
   1905           _M_range_insert_aux(__pos, __first, __last, _IterCategory());
   1906 	}
   1907 
   1908       // called by the second insert_dispatch above
   1909       template<typename _InputIterator>
   1910         void
   1911         _M_range_insert_aux(iterator __pos, _InputIterator __first,
   1912 			    _InputIterator __last, std::input_iterator_tag);
   1913 
   1914       // called by the second insert_dispatch above
   1915       template<typename _ForwardIterator>
   1916         void
   1917         _M_range_insert_aux(iterator __pos, _ForwardIterator __first,
   1918 			    _ForwardIterator __last, std::forward_iterator_tag);
   1919 
   1920       // Called by insert(p,n,x), and the range insert when it turns out to be
   1921       // the same thing.  Can use fill functions in optimal situations,
   1922       // otherwise passes off to insert_aux(p,n,x).
   1923       void
   1924       _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
   1925 
   1926       // called by insert(p,x)
   1927 #if __cplusplus < 201103L
   1928       iterator
   1929       _M_insert_aux(iterator __pos, const value_type& __x);
   1930 #else
   1931       template<typename... _Args>
   1932         iterator
   1933         _M_insert_aux(iterator __pos, _Args&&... __args);
   1934 #endif
   1935 
   1936       // called by insert(p,n,x) via fill_insert
   1937       void
   1938       _M_insert_aux(iterator __pos, size_type __n, const value_type& __x);
   1939 
   1940       // called by range_insert_aux for forward iterators
   1941       template<typename _ForwardIterator>
   1942         void
   1943         _M_insert_aux(iterator __pos,
   1944 		      _ForwardIterator __first, _ForwardIterator __last,
   1945 		      size_type __n);
   1946 
   1947 
   1948       // Internal erase functions follow.
   1949 
   1950       void
   1951       _M_destroy_data_aux(iterator __first, iterator __last);
   1952 
   1953       // Called by ~deque().
   1954       // NB: Doesn't deallocate the nodes.
   1955       template<typename _Alloc1>
   1956         void
   1957         _M_destroy_data(iterator __first, iterator __last, const _Alloc1&)
   1958         { _M_destroy_data_aux(__first, __last); }
   1959 
   1960       void
   1961       _M_destroy_data(iterator __first, iterator __last,
   1962 		      const std::allocator<_Tp>&)
   1963       {
   1964 	if (!__has_trivial_destructor(value_type))
   1965 	  _M_destroy_data_aux(__first, __last);
   1966       }
   1967 
   1968       // Called by erase(q1, q2).
   1969       void
   1970       _M_erase_at_begin(iterator __pos)
   1971       {
   1972 	_M_destroy_data(begin(), __pos, _M_get_Tp_allocator());
   1973 	_M_destroy_nodes(this->_M_impl._M_start._M_node, __pos._M_node);
   1974 	this->_M_impl._M_start = __pos;
   1975       }
   1976 
   1977       // Called by erase(q1, q2), resize(), clear(), _M_assign_aux,
   1978       // _M_fill_assign, operator=.
   1979       void
   1980       _M_erase_at_end(iterator __pos)
   1981       {
   1982 	_M_destroy_data(__pos, end(), _M_get_Tp_allocator());
   1983 	_M_destroy_nodes(__pos._M_node + 1,
   1984 			 this->_M_impl._M_finish._M_node + 1);
   1985 	this->_M_impl._M_finish = __pos;
   1986       }
   1987 
   1988       iterator
   1989       _M_erase(iterator __pos);
   1990 
   1991       iterator
   1992       _M_erase(iterator __first, iterator __last);
   1993 
   1994 #if __cplusplus >= 201103L
   1995       // Called by resize(sz).
   1996       void
   1997       _M_default_append(size_type __n);
   1998 
   1999       bool
   2000       _M_shrink_to_fit();
   2001 #endif
   2002 
   2003       //@{
   2004       /// Memory-handling helpers for the previous internal insert functions.
   2005       iterator
   2006       _M_reserve_elements_at_front(size_type __n)
   2007       {
   2008 	const size_type __vacancies = this->_M_impl._M_start._M_cur
   2009 	                              - this->_M_impl._M_start._M_first;
   2010 	if (__n > __vacancies)
   2011 	  _M_new_elements_at_front(__n - __vacancies);
   2012 	return this->_M_impl._M_start - difference_type(__n);
   2013       }
   2014 
   2015       iterator
   2016       _M_reserve_elements_at_back(size_type __n)
   2017       {
   2018 	const size_type __vacancies = (this->_M_impl._M_finish._M_last
   2019 				       - this->_M_impl._M_finish._M_cur) - 1;
   2020 	if (__n > __vacancies)
   2021 	  _M_new_elements_at_back(__n - __vacancies);
   2022 	return this->_M_impl._M_finish + difference_type(__n);
   2023       }
   2024 
   2025       void
   2026       _M_new_elements_at_front(size_type __new_elements);
   2027 
   2028       void
   2029       _M_new_elements_at_back(size_type __new_elements);
   2030       //@}
   2031 
   2032 
   2033       //@{
   2034       /**
   2035        *  @brief Memory-handling helpers for the major %map.
   2036        *
   2037        *  Makes sure the _M_map has space for new nodes.  Does not
   2038        *  actually add the nodes.  Can invalidate _M_map pointers.
   2039        *  (And consequently, %deque iterators.)
   2040        */
   2041       void
   2042       _M_reserve_map_at_back(size_type __nodes_to_add = 1)
   2043       {
   2044 	if (__nodes_to_add + 1 > this->_M_impl._M_map_size
   2045 	    - (this->_M_impl._M_finish._M_node - this->_M_impl._M_map))
   2046 	  _M_reallocate_map(__nodes_to_add, false);
   2047       }
   2048 
   2049       void
   2050       _M_reserve_map_at_front(size_type __nodes_to_add = 1)
   2051       {
   2052 	if (__nodes_to_add > size_type(this->_M_impl._M_start._M_node
   2053 				       - this->_M_impl._M_map))
   2054 	  _M_reallocate_map(__nodes_to_add, true);
   2055       }
   2056 
   2057       void
   2058       _M_reallocate_map(size_type __nodes_to_add, bool __add_at_front);
   2059       //@}
   2060     };
   2061 
   2062 
   2063   /**
   2064    *  @brief  Deque equality comparison.
   2065    *  @param  __x  A %deque.
   2066    *  @param  __y  A %deque of the same type as @a __x.
   2067    *  @return  True iff the size and elements of the deques are equal.
   2068    *
   2069    *  This is an equivalence relation.  It is linear in the size of the
   2070    *  deques.  Deques are considered equivalent if their sizes are equal,
   2071    *  and if corresponding elements compare equal.
   2072   */
   2073   template<typename _Tp, typename _Alloc>
   2074     inline bool
   2075     operator==(const deque<_Tp, _Alloc>& __x,
   2076                          const deque<_Tp, _Alloc>& __y)
   2077     { return __x.size() == __y.size()
   2078              && std::equal(__x.begin(), __x.end(), __y.begin()); }
   2079 
   2080   /**
   2081    *  @brief  Deque ordering relation.
   2082    *  @param  __x  A %deque.
   2083    *  @param  __y  A %deque of the same type as @a __x.
   2084    *  @return  True iff @a x is lexicographically less than @a __y.
   2085    *
   2086    *  This is a total ordering relation.  It is linear in the size of the
   2087    *  deques.  The elements must be comparable with @c <.
   2088    *
   2089    *  See std::lexicographical_compare() for how the determination is made.
   2090   */
   2091   template<typename _Tp, typename _Alloc>
   2092     inline bool
   2093     operator<(const deque<_Tp, _Alloc>& __x,
   2094 	      const deque<_Tp, _Alloc>& __y)
   2095     { return std::lexicographical_compare(__x.begin(), __x.end(),
   2096 					  __y.begin(), __y.end()); }
   2097 
   2098   /// Based on operator==
   2099   template<typename _Tp, typename _Alloc>
   2100     inline bool
   2101     operator!=(const deque<_Tp, _Alloc>& __x,
   2102 	       const deque<_Tp, _Alloc>& __y)
   2103     { return !(__x == __y); }
   2104 
   2105   /// Based on operator<
   2106   template<typename _Tp, typename _Alloc>
   2107     inline bool
   2108     operator>(const deque<_Tp, _Alloc>& __x,
   2109 	      const deque<_Tp, _Alloc>& __y)
   2110     { return __y < __x; }
   2111 
   2112   /// Based on operator<
   2113   template<typename _Tp, typename _Alloc>
   2114     inline bool
   2115     operator<=(const deque<_Tp, _Alloc>& __x,
   2116 	       const deque<_Tp, _Alloc>& __y)
   2117     { return !(__y < __x); }
   2118 
   2119   /// Based on operator<
   2120   template<typename _Tp, typename _Alloc>
   2121     inline bool
   2122     operator>=(const deque<_Tp, _Alloc>& __x,
   2123 	       const deque<_Tp, _Alloc>& __y)
   2124     { return !(__x < __y); }
   2125 
   2126   /// See std::deque::swap().
   2127   template<typename _Tp, typename _Alloc>
   2128     inline void
   2129     swap(deque<_Tp,_Alloc>& __x, deque<_Tp,_Alloc>& __y)
   2130     { __x.swap(__y); }
   2131 
   2132 #undef _GLIBCXX_DEQUE_BUF_SIZE
   2133 
   2134 _GLIBCXX_END_NAMESPACE_CONTAINER
   2135 } // namespace std
   2136 
   2137 #endif /* _STL_DEQUE_H */
   2138