Home | History | Annotate | Download | only in ext4_utils
      1 /*
      2  * Copyright (C) 2010 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include <sys/stat.h>
     18 #include <string.h>
     19 #include <stdio.h>
     20 
     21 #ifdef __ANDROID__
     22 #include <linux/capability.h>
     23 #else
     24 #include <private/android_filesystem_capability.h>
     25 #endif
     26 
     27 #define XATTR_SELINUX_SUFFIX "selinux"
     28 #define XATTR_CAPS_SUFFIX "capability"
     29 
     30 #include "ext4_utils.h"
     31 #include "make_ext4fs.h"
     32 #include "allocate.h"
     33 #include "contents.h"
     34 #include "extent.h"
     35 #include "indirect.h"
     36 
     37 #ifdef USE_MINGW
     38 #define S_IFLNK 0  /* used by make_link, not needed under mingw */
     39 #endif
     40 
     41 static struct block_allocation* saved_allocation_head = NULL;
     42 
     43 struct block_allocation* get_saved_allocation_chain() {
     44 	return saved_allocation_head;
     45 }
     46 
     47 static u32 dentry_size(u32 entries, struct dentry *dentries)
     48 {
     49 	u32 len = 24;
     50 	unsigned int i;
     51 	unsigned int dentry_len;
     52 
     53 	for (i = 0; i < entries; i++) {
     54 		dentry_len = 8 + EXT4_ALIGN(strlen(dentries[i].filename), 4);
     55 		if (len % info.block_size + dentry_len > info.block_size)
     56 			len += info.block_size - (len % info.block_size);
     57 		len += dentry_len;
     58 	}
     59 
     60 	return len;
     61 }
     62 
     63 static struct ext4_dir_entry_2 *add_dentry(u8 *data, u32 *offset,
     64 		struct ext4_dir_entry_2 *prev, u32 inode, const char *name,
     65 		u8 file_type)
     66 {
     67 	u8 name_len = strlen(name);
     68 	u16 rec_len = 8 + EXT4_ALIGN(name_len, 4);
     69 	struct ext4_dir_entry_2 *dentry;
     70 
     71 	u32 start_block = *offset / info.block_size;
     72 	u32 end_block = (*offset + rec_len - 1) / info.block_size;
     73 	if (start_block != end_block) {
     74 		/* Adding this dentry will cross a block boundary, so pad the previous
     75 		   dentry to the block boundary */
     76 		if (!prev)
     77 			critical_error("no prev");
     78 		prev->rec_len += end_block * info.block_size - *offset;
     79 		*offset = end_block * info.block_size;
     80 	}
     81 
     82 	dentry = (struct ext4_dir_entry_2 *)(data + *offset);
     83 	dentry->inode = inode;
     84 	dentry->rec_len = rec_len;
     85 	dentry->name_len = name_len;
     86 	dentry->file_type = file_type;
     87 	memcpy(dentry->name, name, name_len);
     88 
     89 	*offset += rec_len;
     90 	return dentry;
     91 }
     92 
     93 /* Creates a directory structure for an array of directory entries, dentries,
     94    and stores the location of the structure in an inode.  The new inode's
     95    .. link is set to dir_inode_num.  Stores the location of the inode number
     96    of each directory entry into dentries[i].inode, to be filled in later
     97    when the inode for the entry is allocated.  Returns the inode number of the
     98    new directory */
     99 u32 make_directory(u32 dir_inode_num, u32 entries, struct dentry *dentries,
    100 	u32 dirs)
    101 {
    102 	struct ext4_inode *inode;
    103 	u32 blocks;
    104 	u32 len;
    105 	u32 offset = 0;
    106 	u32 inode_num;
    107 	u8 *data;
    108 	unsigned int i;
    109 	struct ext4_dir_entry_2 *dentry;
    110 
    111 	blocks = DIV_ROUND_UP(dentry_size(entries, dentries), info.block_size);
    112 	len = blocks * info.block_size;
    113 
    114 	if (dir_inode_num) {
    115 		inode_num = allocate_inode(info);
    116 	} else {
    117 		dir_inode_num = EXT4_ROOT_INO;
    118 		inode_num = EXT4_ROOT_INO;
    119 	}
    120 
    121 	if (inode_num == EXT4_ALLOCATE_FAILED) {
    122 		error("failed to allocate inode\n");
    123 		return EXT4_ALLOCATE_FAILED;
    124 	}
    125 
    126 	add_directory(inode_num);
    127 
    128 	inode = get_inode(inode_num);
    129 	if (inode == NULL) {
    130 		error("failed to get inode %u", inode_num);
    131 		return EXT4_ALLOCATE_FAILED;
    132 	}
    133 
    134 	data = inode_allocate_data_extents(inode, len, len);
    135 	if (data == NULL) {
    136 		error("failed to allocate %u extents", len);
    137 		return EXT4_ALLOCATE_FAILED;
    138 	}
    139 
    140 	inode->i_mode = S_IFDIR;
    141 	inode->i_links_count = dirs + 2;
    142 	inode->i_flags |= aux_info.default_i_flags;
    143 
    144 	dentry = NULL;
    145 
    146 	dentry = add_dentry(data, &offset, NULL, inode_num, ".", EXT4_FT_DIR);
    147 	if (!dentry) {
    148 		error("failed to add . directory");
    149 		return EXT4_ALLOCATE_FAILED;
    150 	}
    151 
    152 	dentry = add_dentry(data, &offset, dentry, dir_inode_num, "..", EXT4_FT_DIR);
    153 	if (!dentry) {
    154 		error("failed to add .. directory");
    155 		return EXT4_ALLOCATE_FAILED;
    156 	}
    157 
    158 	for (i = 0; i < entries; i++) {
    159 		dentry = add_dentry(data, &offset, dentry, 0,
    160 				dentries[i].filename, dentries[i].file_type);
    161 		if (offset > len || (offset == len && i != entries - 1))
    162 			critical_error("internal error: dentry for %s ends at %d, past %d\n",
    163 				dentries[i].filename, offset, len);
    164 		dentries[i].inode = &dentry->inode;
    165 		if (!dentry) {
    166 			error("failed to add directory");
    167 			return EXT4_ALLOCATE_FAILED;
    168 		}
    169 	}
    170 
    171 	/* pad the last dentry out to the end of the block */
    172 	dentry->rec_len += len - offset;
    173 
    174 	return inode_num;
    175 }
    176 
    177 /* Creates a file on disk.  Returns the inode number of the new file */
    178 u32 make_file(const char *filename, u64 len)
    179 {
    180 	struct ext4_inode *inode;
    181 	u32 inode_num;
    182 
    183 	inode_num = allocate_inode(info);
    184 	if (inode_num == EXT4_ALLOCATE_FAILED) {
    185 		error("failed to allocate inode\n");
    186 		return EXT4_ALLOCATE_FAILED;
    187 	}
    188 
    189 	inode = get_inode(inode_num);
    190 	if (inode == NULL) {
    191 		error("failed to get inode %u", inode_num);
    192 		return EXT4_ALLOCATE_FAILED;
    193 	}
    194 
    195 	if (len > 0) {
    196 		struct block_allocation* alloc = inode_allocate_file_extents(inode, len, filename);
    197 		if (alloc) {
    198 			alloc->filename = strdup(filename);
    199 			alloc->next = saved_allocation_head;
    200 			saved_allocation_head = alloc;
    201 		}
    202 	}
    203 
    204 	inode->i_mode = S_IFREG;
    205 	inode->i_links_count = 1;
    206 	inode->i_flags |= aux_info.default_i_flags;
    207 
    208 	return inode_num;
    209 }
    210 
    211 /* Creates a file on disk.  Returns the inode number of the new file */
    212 u32 make_link(const char *link)
    213 {
    214 	struct ext4_inode *inode;
    215 	u32 inode_num;
    216 	u32 len = strlen(link);
    217 
    218 	inode_num = allocate_inode(info);
    219 	if (inode_num == EXT4_ALLOCATE_FAILED) {
    220 		error("failed to allocate inode\n");
    221 		return EXT4_ALLOCATE_FAILED;
    222 	}
    223 
    224 	inode = get_inode(inode_num);
    225 	if (inode == NULL) {
    226 		error("failed to get inode %u", inode_num);
    227 		return EXT4_ALLOCATE_FAILED;
    228 	}
    229 
    230 	inode->i_mode = S_IFLNK;
    231 	inode->i_links_count = 1;
    232 	inode->i_flags |= aux_info.default_i_flags;
    233 	inode->i_size_lo = len;
    234 
    235 	if (len + 1 <= sizeof(inode->i_block)) {
    236 		/* Fast symlink */
    237 		memcpy((char*)inode->i_block, link, len);
    238 	} else {
    239 		u8 *data = inode_allocate_data_indirect(inode, info.block_size, info.block_size);
    240 		memcpy(data, link, len);
    241 		inode->i_blocks_lo = info.block_size / 512;
    242 	}
    243 
    244 	return inode_num;
    245 }
    246 
    247 int inode_set_permissions(u32 inode_num, u16 mode, u16 uid, u16 gid, u32 mtime)
    248 {
    249 	struct ext4_inode *inode = get_inode(inode_num);
    250 
    251 	if (!inode)
    252 		return -1;
    253 
    254 	inode->i_mode |= mode;
    255 	inode->i_uid = uid;
    256 	inode->i_gid = gid;
    257 	inode->i_mtime = mtime;
    258 	inode->i_atime = mtime;
    259 	inode->i_ctime = mtime;
    260 
    261 	return 0;
    262 }
    263 
    264 /*
    265  * Returns the amount of free space available in the specified
    266  * xattr region
    267  */
    268 static size_t xattr_free_space(struct ext4_xattr_entry *entry, char *end)
    269 {
    270         end -= sizeof(uint32_t); /* Required four null bytes */
    271 	while(!IS_LAST_ENTRY(entry) && (((char *) entry) < end)) {
    272 		end   -= EXT4_XATTR_SIZE(le32_to_cpu(entry->e_value_size));
    273 		entry  = EXT4_XATTR_NEXT(entry);
    274 	}
    275 
    276 	if (((char *) entry) > end) {
    277 		error("unexpected read beyond end of xattr space");
    278 		return 0;
    279 	}
    280 
    281 	return end - ((char *) entry);
    282 }
    283 
    284 /*
    285  * Returns a pointer to the free space immediately after the
    286  * last xattr element
    287  */
    288 static struct ext4_xattr_entry* xattr_get_last(struct ext4_xattr_entry *entry)
    289 {
    290 	for (; !IS_LAST_ENTRY(entry); entry = EXT4_XATTR_NEXT(entry)) {
    291 		// skip entry
    292 	}
    293 	return entry;
    294 }
    295 
    296 /*
    297  * assert that the elements in the ext4 xattr section are in sorted order
    298  *
    299  * The ext4 filesystem requires extended attributes to be sorted when
    300  * they're not stored in the inode. The kernel ext4 code uses the following
    301  * sorting algorithm:
    302  *
    303  * 1) First sort extended attributes by their name_index. For example,
    304  *    EXT4_XATTR_INDEX_USER (1) comes before EXT4_XATTR_INDEX_SECURITY (6).
    305  * 2) If the name_indexes are equal, then sorting is based on the length
    306  *    of the name. For example, XATTR_SELINUX_SUFFIX ("selinux") comes before
    307  *    XATTR_CAPS_SUFFIX ("capability") because "selinux" is shorter than "capability"
    308  * 3) If the name_index and name_length are equal, then memcmp() is used to determine
    309  *    which name comes first. For example, "selinux" would come before "yelinux".
    310  *
    311  * This method is intended to implement the sorting function defined in
    312  * the Linux kernel file fs/ext4/xattr.c function ext4_xattr_find_entry().
    313  */
    314 static void xattr_assert_sane(struct ext4_xattr_entry *entry)
    315 {
    316 	for( ; !IS_LAST_ENTRY(entry); entry = EXT4_XATTR_NEXT(entry)) {
    317 		struct ext4_xattr_entry *next = EXT4_XATTR_NEXT(entry);
    318 		if (IS_LAST_ENTRY(next)) {
    319 			return;
    320 		}
    321 
    322 		int cmp = next->e_name_index - entry->e_name_index;
    323 		if (cmp == 0)
    324 			cmp = next->e_name_len - entry->e_name_len;
    325 		if (cmp == 0)
    326 			cmp = memcmp(next->e_name, entry->e_name, next->e_name_len);
    327 		if (cmp < 0) {
    328 			error("BUG: extended attributes are not sorted\n");
    329 			return;
    330 		}
    331 		if (cmp == 0) {
    332 			error("BUG: duplicate extended attributes detected\n");
    333 			return;
    334 		}
    335 	}
    336 }
    337 
    338 #define NAME_HASH_SHIFT 5
    339 #define VALUE_HASH_SHIFT 16
    340 
    341 static void ext4_xattr_hash_entry(struct ext4_xattr_header *header,
    342 		struct ext4_xattr_entry *entry)
    343 {
    344 	u32 hash = 0;
    345 	char *name = entry->e_name;
    346 	int n;
    347 
    348 	for (n = 0; n < entry->e_name_len; n++) {
    349 		hash = (hash << NAME_HASH_SHIFT) ^
    350 			(hash >> (8*sizeof(hash) - NAME_HASH_SHIFT)) ^
    351 			*name++;
    352 	}
    353 
    354 	if (entry->e_value_block == 0 && entry->e_value_size != 0) {
    355 		u32 *value = (u32 *)((char *)header +
    356 			le16_to_cpu(entry->e_value_offs));
    357 		for (n = (le32_to_cpu(entry->e_value_size) +
    358 			EXT4_XATTR_ROUND) >> EXT4_XATTR_PAD_BITS; n; n--) {
    359 			hash = (hash << VALUE_HASH_SHIFT) ^
    360 				(hash >> (8*sizeof(hash) - VALUE_HASH_SHIFT)) ^
    361 				le32_to_cpu(*value++);
    362 		}
    363 	}
    364 	entry->e_hash = cpu_to_le32(hash);
    365 }
    366 
    367 #undef NAME_HASH_SHIFT
    368 #undef VALUE_HASH_SHIFT
    369 
    370 static struct ext4_xattr_entry* xattr_addto_range(
    371 		void *block_start,
    372 		void *block_end,
    373 		struct ext4_xattr_entry *first,
    374 		int name_index,
    375 		const char *name,
    376 		const void *value,
    377 		size_t value_len)
    378 {
    379 	size_t name_len = strlen(name);
    380 	if (name_len > 255)
    381 		return NULL;
    382 
    383 	size_t available_size = xattr_free_space(first, block_end);
    384 	size_t needed_size = EXT4_XATTR_LEN(name_len) + EXT4_XATTR_SIZE(value_len);
    385 
    386 	if (needed_size > available_size)
    387 		return NULL;
    388 
    389 	struct ext4_xattr_entry *new_entry = xattr_get_last(first);
    390 	memset(new_entry, 0, EXT4_XATTR_LEN(name_len));
    391 
    392 	new_entry->e_name_len = name_len;
    393 	new_entry->e_name_index = name_index;
    394 	memcpy(new_entry->e_name, name, name_len);
    395 	new_entry->e_value_block = 0;
    396 	new_entry->e_value_size = cpu_to_le32(value_len);
    397 
    398 	char *val = (char *) new_entry + available_size - EXT4_XATTR_SIZE(value_len);
    399 	size_t e_value_offs = val - (char *) block_start;
    400 
    401 	new_entry->e_value_offs = cpu_to_le16(e_value_offs);
    402 	memset(val, 0, EXT4_XATTR_SIZE(value_len));
    403 	memcpy(val, value, value_len);
    404 
    405 	xattr_assert_sane(first);
    406 	return new_entry;
    407 }
    408 
    409 static int xattr_addto_inode(struct ext4_inode *inode, int name_index,
    410 		const char *name, const void *value, size_t value_len)
    411 {
    412 	struct ext4_xattr_ibody_header *hdr = (struct ext4_xattr_ibody_header *) (inode + 1);
    413 	struct ext4_xattr_entry *first = (struct ext4_xattr_entry *) (hdr + 1);
    414 	char *block_end = ((char *) inode) + info.inode_size;
    415 
    416 	struct ext4_xattr_entry *result =
    417 		xattr_addto_range(first, block_end, first, name_index, name, value, value_len);
    418 
    419 	if (result == NULL)
    420 		return -1;
    421 
    422 	hdr->h_magic = cpu_to_le32(EXT4_XATTR_MAGIC);
    423 	inode->i_extra_isize = cpu_to_le16(sizeof(struct ext4_inode) - EXT4_GOOD_OLD_INODE_SIZE);
    424 
    425 	return 0;
    426 }
    427 
    428 static int xattr_addto_block(struct ext4_inode *inode, int name_index,
    429 		const char *name, const void *value, size_t value_len)
    430 {
    431 	struct ext4_xattr_header *header = get_xattr_block_for_inode(inode);
    432 	if (!header)
    433 		return -1;
    434 
    435 	struct ext4_xattr_entry *first = (struct ext4_xattr_entry *) (header + 1);
    436 	char *block_end = ((char *) header) + info.block_size;
    437 
    438 	struct ext4_xattr_entry *result =
    439 		xattr_addto_range(header, block_end, first, name_index, name, value, value_len);
    440 
    441 	if (result == NULL)
    442 		return -1;
    443 
    444 	ext4_xattr_hash_entry(header, result);
    445 	return 0;
    446 }
    447 
    448 
    449 static int xattr_add(u32 inode_num, int name_index, const char *name,
    450 		const void *value, size_t value_len)
    451 {
    452 	if (!value)
    453 		return 0;
    454 
    455 	struct ext4_inode *inode = get_inode(inode_num);
    456 
    457 	if (!inode)
    458 		return -1;
    459 
    460 	int result = xattr_addto_inode(inode, name_index, name, value, value_len);
    461 	if (result != 0) {
    462 		result = xattr_addto_block(inode, name_index, name, value, value_len);
    463 	}
    464 	return result;
    465 }
    466 
    467 int inode_set_selinux(u32 inode_num, const char *secon)
    468 {
    469 	if (!secon)
    470 		return 0;
    471 
    472 	return xattr_add(inode_num, EXT4_XATTR_INDEX_SECURITY,
    473 		XATTR_SELINUX_SUFFIX, secon, strlen(secon) + 1);
    474 }
    475 
    476 int inode_set_capabilities(u32 inode_num, uint64_t capabilities) {
    477 	if (capabilities == 0)
    478 		return 0;
    479 
    480 	struct vfs_cap_data cap_data;
    481 	memset(&cap_data, 0, sizeof(cap_data));
    482 
    483 	cap_data.magic_etc = VFS_CAP_REVISION | VFS_CAP_FLAGS_EFFECTIVE;
    484 	cap_data.data[0].permitted = (uint32_t) (capabilities & 0xffffffff);
    485 	cap_data.data[0].inheritable = 0;
    486 	cap_data.data[1].permitted = (uint32_t) (capabilities >> 32);
    487 	cap_data.data[1].inheritable = 0;
    488 
    489 	return xattr_add(inode_num, EXT4_XATTR_INDEX_SECURITY,
    490 		XATTR_CAPS_SUFFIX, &cap_data, sizeof(cap_data));
    491 }
    492