Home | History | Annotate | Download | only in bfd
      1 /* BFD back-end for Renesas H8/300 COFF binaries.
      2    Copyright (C) 1990-2014 Free Software Foundation, Inc.
      3    Written by Steve Chamberlain, <sac (at) cygnus.com>.
      4 
      5    This file is part of BFD, the Binary File Descriptor library.
      6 
      7    This program is free software; you can redistribute it and/or modify
      8    it under the terms of the GNU General Public License as published by
      9    the Free Software Foundation; either version 3 of the License, or
     10    (at your option) any later version.
     11 
     12    This program is distributed in the hope that it will be useful,
     13    but WITHOUT ANY WARRANTY; without even the implied warranty of
     14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     15    GNU General Public License for more details.
     16 
     17    You should have received a copy of the GNU General Public License
     18    along with this program; if not, write to the Free Software
     19    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
     20    MA 02110-1301, USA.  */
     21 
     22 #include "sysdep.h"
     23 #include "bfd.h"
     24 #include "libbfd.h"
     25 #include "bfdlink.h"
     26 #include "genlink.h"
     27 #include "coff/h8300.h"
     28 #include "coff/internal.h"
     29 #include "libcoff.h"
     30 #include "libiberty.h"
     31 
     32 #define COFF_DEFAULT_SECTION_ALIGNMENT_POWER (1)
     33 
     34 /* We derive a hash table from the basic BFD hash table to
     35    hold entries in the function vector.  Aside from the
     36    info stored by the basic hash table, we need the offset
     37    of a particular entry within the hash table as well as
     38    the offset where we'll add the next entry.  */
     39 
     40 struct funcvec_hash_entry
     41   {
     42     /* The basic hash table entry.  */
     43     struct bfd_hash_entry root;
     44 
     45     /* The offset within the vectors section where
     46        this entry lives.  */
     47     bfd_vma offset;
     48   };
     49 
     50 struct funcvec_hash_table
     51   {
     52     /* The basic hash table.  */
     53     struct bfd_hash_table root;
     54 
     55     bfd *abfd;
     56 
     57     /* Offset at which we'll add the next entry.  */
     58     unsigned int offset;
     59   };
     60 
     61 
     62 /* To lookup a value in the function vector hash table.  */
     63 #define funcvec_hash_lookup(table, string, create, copy) \
     64   ((struct funcvec_hash_entry *) \
     65    bfd_hash_lookup (&(table)->root, (string), (create), (copy)))
     66 
     67 /* The derived h8300 COFF linker table.  Note it's derived from
     68    the generic linker hash table, not the COFF backend linker hash
     69    table!  We use this to attach additional data structures we
     70    need while linking on the h8300.  */
     71 struct h8300_coff_link_hash_table {
     72   /* The main hash table.  */
     73   struct generic_link_hash_table root;
     74 
     75   /* Section for the vectors table.  This gets attached to a
     76      random input bfd, we keep it here for easy access.  */
     77   asection *vectors_sec;
     78 
     79   /* Hash table of the functions we need to enter into the function
     80      vector.  */
     81   struct funcvec_hash_table *funcvec_hash_table;
     82 };
     83 
     84 static struct bfd_link_hash_table *h8300_coff_link_hash_table_create (bfd *);
     85 
     86 /* Get the H8/300 COFF linker hash table from a link_info structure.  */
     87 
     88 #define h8300_coff_hash_table(p) \
     89   ((struct h8300_coff_link_hash_table *) ((coff_hash_table (p))))
     90 
     91 /* Initialize fields within a funcvec hash table entry.  Called whenever
     92    a new entry is added to the funcvec hash table.  */
     93 
     94 static struct bfd_hash_entry *
     95 funcvec_hash_newfunc (struct bfd_hash_entry *entry,
     96 		      struct bfd_hash_table *gen_table,
     97 		      const char *string)
     98 {
     99   struct funcvec_hash_entry *ret;
    100   struct funcvec_hash_table *table;
    101 
    102   ret = (struct funcvec_hash_entry *) entry;
    103   table = (struct funcvec_hash_table *) gen_table;
    104 
    105   /* Allocate the structure if it has not already been allocated by a
    106      subclass.  */
    107   if (ret == NULL)
    108     ret = ((struct funcvec_hash_entry *)
    109 	   bfd_hash_allocate (gen_table,
    110 			      sizeof (struct funcvec_hash_entry)));
    111   if (ret == NULL)
    112     return NULL;
    113 
    114   /* Call the allocation method of the superclass.  */
    115   ret = ((struct funcvec_hash_entry *)
    116 	 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, gen_table, string));
    117 
    118   if (ret == NULL)
    119     return NULL;
    120 
    121   /* Note where this entry will reside in the function vector table.  */
    122   ret->offset = table->offset;
    123 
    124   /* Bump the offset at which we store entries in the function
    125      vector.  We'd like to bump up the size of the vectors section,
    126      but it's not easily available here.  */
    127  switch (bfd_get_mach (table->abfd))
    128    {
    129    case bfd_mach_h8300:
    130    case bfd_mach_h8300hn:
    131    case bfd_mach_h8300sn:
    132      table->offset += 2;
    133      break;
    134    case bfd_mach_h8300h:
    135    case bfd_mach_h8300s:
    136      table->offset += 4;
    137      break;
    138    default:
    139      return NULL;
    140    }
    141 
    142   /* Everything went OK.  */
    143   return (struct bfd_hash_entry *) ret;
    144 }
    145 
    146 /* Initialize the function vector hash table.  */
    147 
    148 static bfd_boolean
    149 funcvec_hash_table_init (struct funcvec_hash_table *table,
    150 			 bfd *abfd,
    151 			 struct bfd_hash_entry *(*newfunc)
    152 			   (struct bfd_hash_entry *,
    153 			    struct bfd_hash_table *,
    154 			    const char *),
    155 			 unsigned int entsize)
    156 {
    157   /* Initialize our local fields, then call the generic initialization
    158      routine.  */
    159   table->offset = 0;
    160   table->abfd = abfd;
    161   return (bfd_hash_table_init (&table->root, newfunc, entsize));
    162 }
    163 
    164 /* Create the derived linker hash table.  We use a derived hash table
    165    basically to hold "static" information during an H8/300 coff link
    166    without using static variables.  */
    167 
    168 static struct bfd_link_hash_table *
    169 h8300_coff_link_hash_table_create (bfd *abfd)
    170 {
    171   struct h8300_coff_link_hash_table *ret;
    172   bfd_size_type amt = sizeof (struct h8300_coff_link_hash_table);
    173 
    174   ret = (struct h8300_coff_link_hash_table *) bfd_zmalloc (amt);
    175   if (ret == NULL)
    176     return NULL;
    177   if (!_bfd_link_hash_table_init (&ret->root.root, abfd,
    178 				  _bfd_generic_link_hash_newfunc,
    179 				  sizeof (struct generic_link_hash_entry)))
    180     {
    181       free (ret);
    182       return NULL;
    183     }
    184 
    185   return &ret->root.root;
    186 }
    187 
    188 /* Special handling for H8/300 relocs.
    189    We only come here for pcrel stuff and return normally if not an -r link.
    190    When doing -r, we can't do any arithmetic for the pcrel stuff, because
    191    the code in reloc.c assumes that we can manipulate the targets of
    192    the pcrel branches.  This isn't so, since the H8/300 can do relaxing,
    193    which means that the gap after the instruction may not be enough to
    194    contain the offset required for the branch, so we have to use only
    195    the addend until the final link.  */
    196 
    197 static bfd_reloc_status_type
    198 special (bfd *      abfd ATTRIBUTE_UNUSED,
    199 	 arelent *  reloc_entry ATTRIBUTE_UNUSED,
    200 	 asymbol *  symbol ATTRIBUTE_UNUSED,
    201 	 void *     data ATTRIBUTE_UNUSED,
    202 	 asection * input_section ATTRIBUTE_UNUSED,
    203 	 bfd *      output_bfd,
    204 	 char **    error_message ATTRIBUTE_UNUSED)
    205 {
    206   if (output_bfd == (bfd *) NULL)
    207     return bfd_reloc_continue;
    208 
    209   /* Adjust the reloc address to that in the output section.  */
    210   reloc_entry->address += input_section->output_offset;
    211   return bfd_reloc_ok;
    212 }
    213 
    214 static reloc_howto_type howto_table[] =
    215 {
    216   HOWTO (R_RELBYTE, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "8", FALSE, 0x000000ff, 0x000000ff, FALSE),
    217   HOWTO (R_RELWORD, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "16", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
    218   HOWTO (R_RELLONG, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, special, "32", FALSE, 0xffffffff, 0xffffffff, FALSE),
    219   HOWTO (R_PCRBYTE, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "DISP8", FALSE, 0x000000ff, 0x000000ff, TRUE),
    220   HOWTO (R_PCRWORD, 0, 1, 16, TRUE, 0, complain_overflow_signed, special, "DISP16", FALSE, 0x0000ffff, 0x0000ffff, TRUE),
    221   HOWTO (R_PCRLONG, 0, 2, 32, TRUE, 0, complain_overflow_signed, special, "DISP32", FALSE, 0xffffffff, 0xffffffff, TRUE),
    222   HOWTO (R_MOV16B1, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "relaxable mov.b:16", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
    223   HOWTO (R_MOV16B2, 0, 1, 8, FALSE, 0, complain_overflow_bitfield, special, "relaxed mov.b:16", FALSE, 0x000000ff, 0x000000ff, FALSE),
    224   HOWTO (R_JMP1, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "16/pcrel", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
    225   HOWTO (R_JMP2, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "pcrecl/16", FALSE, 0x000000ff, 0x000000ff, FALSE),
    226   HOWTO (R_JMPL1, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, special, "24/pcrell", FALSE, 0x00ffffff, 0x00ffffff, FALSE),
    227   HOWTO (R_JMPL2, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "pc8/24", FALSE, 0x000000ff, 0x000000ff, FALSE),
    228   HOWTO (R_MOV24B1, 0, 1, 32, FALSE, 0, complain_overflow_bitfield, special, "relaxable mov.b:24", FALSE, 0xffffffff, 0xffffffff, FALSE),
    229   HOWTO (R_MOV24B2, 0, 1, 8, FALSE, 0, complain_overflow_bitfield, special, "relaxed mov.b:24", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
    230 
    231   /* An indirect reference to a function.  This causes the function's address
    232      to be added to the function vector in lo-mem and puts the address of
    233      the function vector's entry in the jsr instruction.  */
    234   HOWTO (R_MEM_INDIRECT, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "8/indirect", FALSE, 0x000000ff, 0x000000ff, FALSE),
    235 
    236   /* Internal reloc for relaxing.  This is created when a 16-bit pc-relative
    237      branch is turned into an 8-bit pc-relative branch.  */
    238   HOWTO (R_PCRWORD_B, 0, 0, 8, TRUE, 0, complain_overflow_bitfield, special, "relaxed bCC:16", FALSE, 0x000000ff, 0x000000ff, FALSE),
    239 
    240   HOWTO (R_MOVL1, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,special, "32/24 relaxable move", FALSE, 0xffffffff, 0xffffffff, FALSE),
    241 
    242   HOWTO (R_MOVL2, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "32/24 relaxed move", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
    243 
    244   HOWTO (R_BCC_INV, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "DISP8 inverted", FALSE, 0x000000ff, 0x000000ff, TRUE),
    245 
    246   HOWTO (R_JMP_DEL, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "Deleted jump", FALSE, 0x000000ff, 0x000000ff, TRUE),
    247 };
    248 
    249 /* Turn a howto into a reloc number.  */
    250 
    251 #define SELECT_RELOC(x,howto) \
    252   { x.r_type = select_reloc (howto); }
    253 
    254 #define BADMAG(x) (H8300BADMAG (x) && H8300HBADMAG (x) && H8300SBADMAG (x) \
    255 				   && H8300HNBADMAG(x) && H8300SNBADMAG(x))
    256 #define H8300 1			/* Customize coffcode.h  */
    257 #define __A_MAGIC_SET__
    258 
    259 /* Code to swap in the reloc.  */
    260 #define SWAP_IN_RELOC_OFFSET	H_GET_32
    261 #define SWAP_OUT_RELOC_OFFSET	H_PUT_32
    262 #define SWAP_OUT_RELOC_EXTRA(abfd, src, dst) \
    263   dst->r_stuff[0] = 'S'; \
    264   dst->r_stuff[1] = 'C';
    265 
    266 static int
    267 select_reloc (reloc_howto_type *howto)
    268 {
    269   return howto->type;
    270 }
    271 
    272 /* Code to turn a r_type into a howto ptr, uses the above howto table.  */
    273 
    274 static void
    275 rtype2howto (arelent *internal, struct internal_reloc *dst)
    276 {
    277   switch (dst->r_type)
    278     {
    279     case R_RELBYTE:
    280       internal->howto = howto_table + 0;
    281       break;
    282     case R_RELWORD:
    283       internal->howto = howto_table + 1;
    284       break;
    285     case R_RELLONG:
    286       internal->howto = howto_table + 2;
    287       break;
    288     case R_PCRBYTE:
    289       internal->howto = howto_table + 3;
    290       break;
    291     case R_PCRWORD:
    292       internal->howto = howto_table + 4;
    293       break;
    294     case R_PCRLONG:
    295       internal->howto = howto_table + 5;
    296       break;
    297     case R_MOV16B1:
    298       internal->howto = howto_table + 6;
    299       break;
    300     case R_MOV16B2:
    301       internal->howto = howto_table + 7;
    302       break;
    303     case R_JMP1:
    304       internal->howto = howto_table + 8;
    305       break;
    306     case R_JMP2:
    307       internal->howto = howto_table + 9;
    308       break;
    309     case R_JMPL1:
    310       internal->howto = howto_table + 10;
    311       break;
    312     case R_JMPL2:
    313       internal->howto = howto_table + 11;
    314       break;
    315     case R_MOV24B1:
    316       internal->howto = howto_table + 12;
    317       break;
    318     case R_MOV24B2:
    319       internal->howto = howto_table + 13;
    320       break;
    321     case R_MEM_INDIRECT:
    322       internal->howto = howto_table + 14;
    323       break;
    324     case R_PCRWORD_B:
    325       internal->howto = howto_table + 15;
    326       break;
    327     case R_MOVL1:
    328       internal->howto = howto_table + 16;
    329       break;
    330     case R_MOVL2:
    331       internal->howto = howto_table + 17;
    332       break;
    333     case R_BCC_INV:
    334       internal->howto = howto_table + 18;
    335       break;
    336     case R_JMP_DEL:
    337       internal->howto = howto_table + 19;
    338       break;
    339     default:
    340       abort ();
    341       break;
    342     }
    343 }
    344 
    345 #define RTYPE2HOWTO(internal, relocentry) rtype2howto (internal, relocentry)
    346 
    347 /* Perform any necessary magic to the addend in a reloc entry.  */
    348 
    349 #define CALC_ADDEND(abfd, symbol, ext_reloc, cache_ptr) \
    350  cache_ptr->addend = ext_reloc.r_offset;
    351 
    352 #define RELOC_PROCESSING(relent,reloc,symbols,abfd,section) \
    353  reloc_processing (relent, reloc, symbols, abfd, section)
    354 
    355 static void
    356 reloc_processing (arelent *relent, struct internal_reloc *reloc,
    357 		  asymbol **symbols, bfd *abfd, asection *section)
    358 {
    359   relent->address = reloc->r_vaddr;
    360   rtype2howto (relent, reloc);
    361 
    362   if (((int) reloc->r_symndx) > 0)
    363     relent->sym_ptr_ptr = symbols + obj_convert (abfd)[reloc->r_symndx];
    364   else
    365     relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
    366 
    367   relent->addend = reloc->r_offset;
    368   relent->address -= section->vma;
    369 }
    370 
    371 static bfd_boolean
    372 h8300_symbol_address_p (bfd *abfd, asection *input_section, bfd_vma address)
    373 {
    374   asymbol **s;
    375 
    376   s = _bfd_generic_link_get_symbols (abfd);
    377   BFD_ASSERT (s != (asymbol **) NULL);
    378 
    379   /* Search all the symbols for one in INPUT_SECTION with
    380      address ADDRESS.  */
    381   while (*s)
    382     {
    383       asymbol *p = *s;
    384 
    385       if (p->section == input_section
    386 	  && (input_section->output_section->vma
    387 	      + input_section->output_offset
    388 	      + p->value) == address)
    389 	return TRUE;
    390       s++;
    391     }
    392   return FALSE;
    393 }
    394 
    395 /* If RELOC represents a relaxable instruction/reloc, change it into
    396    the relaxed reloc, notify the linker that symbol addresses
    397    have changed (bfd_perform_slip) and return how much the current
    398    section has shrunk by.
    399 
    400    FIXME: Much of this code has knowledge of the ordering of entries
    401    in the howto table.  This needs to be fixed.  */
    402 
    403 static int
    404 h8300_reloc16_estimate (bfd *abfd, asection *input_section, arelent *reloc,
    405 			unsigned int shrink, struct bfd_link_info *link_info)
    406 {
    407   bfd_vma value;
    408   bfd_vma dot;
    409   bfd_vma gap;
    410   static asection *last_input_section = NULL;
    411   static arelent *last_reloc = NULL;
    412 
    413   /* The address of the thing to be relocated will have moved back by
    414      the size of the shrink - but we don't change reloc->address here,
    415      since we need it to know where the relocation lives in the source
    416      uncooked section.  */
    417   bfd_vma address = reloc->address - shrink;
    418 
    419   if (input_section != last_input_section)
    420     last_reloc = NULL;
    421 
    422   /* Only examine the relocs which might be relaxable.  */
    423   switch (reloc->howto->type)
    424     {
    425       /* This is the 16-/24-bit absolute branch which could become an
    426 	 8-bit pc-relative branch.  */
    427     case R_JMP1:
    428     case R_JMPL1:
    429       /* Get the address of the target of this branch.  */
    430       value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
    431 
    432       /* Get the address of the next instruction (not the reloc).  */
    433       dot = (input_section->output_section->vma
    434 	     + input_section->output_offset + address);
    435 
    436       /* Adjust for R_JMP1 vs R_JMPL1.  */
    437       dot += (reloc->howto->type == R_JMP1 ? 1 : 2);
    438 
    439       /* Compute the distance from this insn to the branch target.  */
    440       gap = value - dot;
    441 
    442       /* If the distance is within -128..+128 inclusive, then we can relax
    443 	 this jump.  +128 is valid since the target will move two bytes
    444 	 closer if we do relax this branch.  */
    445       if ((int) gap >= -128 && (int) gap <= 128)
    446 	{
    447 	  bfd_byte code;
    448 
    449 	  if (!bfd_get_section_contents (abfd, input_section, & code,
    450 					 reloc->address, 1))
    451 	    break;
    452 	  code = bfd_get_8 (abfd, & code);
    453 
    454 	  /* It's possible we may be able to eliminate this branch entirely;
    455 	     if the previous instruction is a branch around this instruction,
    456 	     and there's no label at this instruction, then we can reverse
    457 	     the condition on the previous branch and eliminate this jump.
    458 
    459 	       original:			new:
    460 		 bCC lab1			bCC' lab2
    461 		 jmp lab2
    462 		lab1:				lab1:
    463 
    464 	     This saves 4 bytes instead of two, and should be relatively
    465 	     common.
    466 
    467 	     Only perform this optimisation for jumps (code 0x5a) not
    468 	     subroutine calls, as otherwise it could transform:
    469 
    470 			     mov.w   r0,r0
    471 			     beq     .L1
    472 			     jsr     @_bar
    473 		      .L1:   rts
    474 		      _bar:  rts
    475 	     into:
    476 			     mov.w   r0,r0
    477 			     bne     _bar
    478 			     rts
    479 		      _bar:  rts
    480 
    481 	     which changes the call (jsr) into a branch (bne).  */
    482 	  if (code == 0x5a
    483 	      && gap <= 126
    484 	      && last_reloc
    485 	      && last_reloc->howto->type == R_PCRBYTE)
    486 	    {
    487 	      bfd_vma last_value;
    488 	      last_value = bfd_coff_reloc16_get_value (last_reloc, link_info,
    489 						       input_section) + 1;
    490 
    491 	      if (last_value == dot + 2
    492 		  && last_reloc->address + 1 == reloc->address
    493 		  && !h8300_symbol_address_p (abfd, input_section, dot - 2))
    494 		{
    495 		  reloc->howto = howto_table + 19;
    496 		  last_reloc->howto = howto_table + 18;
    497 		  last_reloc->sym_ptr_ptr = reloc->sym_ptr_ptr;
    498 		  last_reloc->addend = reloc->addend;
    499 		  shrink += 4;
    500 		  bfd_perform_slip (abfd, 4, input_section, address);
    501 		  break;
    502 		}
    503 	    }
    504 
    505 	  /* Change the reloc type.  */
    506 	  reloc->howto = reloc->howto + 1;
    507 
    508 	  /* This shrinks this section by two bytes.  */
    509 	  shrink += 2;
    510 	  bfd_perform_slip (abfd, 2, input_section, address);
    511 	}
    512       break;
    513 
    514     /* This is the 16-bit pc-relative branch which could become an 8-bit
    515        pc-relative branch.  */
    516     case R_PCRWORD:
    517       /* Get the address of the target of this branch, add one to the value
    518 	 because the addend field in PCrel jumps is off by -1.  */
    519       value = bfd_coff_reloc16_get_value (reloc, link_info, input_section) + 1;
    520 
    521       /* Get the address of the next instruction if we were to relax.  */
    522       dot = input_section->output_section->vma +
    523 	input_section->output_offset + address;
    524 
    525       /* Compute the distance from this insn to the branch target.  */
    526       gap = value - dot;
    527 
    528       /* If the distance is within -128..+128 inclusive, then we can relax
    529 	 this jump.  +128 is valid since the target will move two bytes
    530 	 closer if we do relax this branch.  */
    531       if ((int) gap >= -128 && (int) gap <= 128)
    532 	{
    533 	  /* Change the reloc type.  */
    534 	  reloc->howto = howto_table + 15;
    535 
    536 	  /* This shrinks this section by two bytes.  */
    537 	  shrink += 2;
    538 	  bfd_perform_slip (abfd, 2, input_section, address);
    539 	}
    540       break;
    541 
    542     /* This is a 16-bit absolute address in a mov.b insn, which can
    543        become an 8-bit absolute address if it's in the right range.  */
    544     case R_MOV16B1:
    545       /* Get the address of the data referenced by this mov.b insn.  */
    546       value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
    547       value = bfd_h8300_pad_address (abfd, value);
    548 
    549       /* If the address is in the top 256 bytes of the address space
    550 	 then we can relax this instruction.  */
    551       if (value >= 0xffffff00u)
    552 	{
    553 	  /* Change the reloc type.  */
    554 	  reloc->howto = reloc->howto + 1;
    555 
    556 	  /* This shrinks this section by two bytes.  */
    557 	  shrink += 2;
    558 	  bfd_perform_slip (abfd, 2, input_section, address);
    559 	}
    560       break;
    561 
    562     /* Similarly for a 24-bit absolute address in a mov.b.  Note that
    563        if we can't relax this into an 8-bit absolute, we'll fall through
    564        and try to relax it into a 16-bit absolute.  */
    565     case R_MOV24B1:
    566       /* Get the address of the data referenced by this mov.b insn.  */
    567       value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
    568       value = bfd_h8300_pad_address (abfd, value);
    569 
    570       if (value >= 0xffffff00u)
    571 	{
    572 	  /* Change the reloc type.  */
    573 	  reloc->howto = reloc->howto + 1;
    574 
    575 	  /* This shrinks this section by four bytes.  */
    576 	  shrink += 4;
    577 	  bfd_perform_slip (abfd, 4, input_section, address);
    578 
    579 	  /* Done with this reloc.  */
    580 	  break;
    581 	}
    582 
    583       /* FALLTHROUGH and try to turn the 24-/32-bit reloc into a 16-bit
    584 	 reloc.  */
    585 
    586     /* This is a 24-/32-bit absolute address in a mov insn, which can
    587        become an 16-bit absolute address if it's in the right range.  */
    588     case R_MOVL1:
    589       /* Get the address of the data referenced by this mov insn.  */
    590       value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
    591       value = bfd_h8300_pad_address (abfd, value);
    592 
    593       /* If the address is a sign-extended 16-bit value then we can
    594          relax this instruction.  */
    595       if (value <= 0x7fff || value >= 0xffff8000u)
    596 	{
    597 	  /* Change the reloc type.  */
    598 	  reloc->howto = howto_table + 17;
    599 
    600 	  /* This shrinks this section by two bytes.  */
    601 	  shrink += 2;
    602 	  bfd_perform_slip (abfd, 2, input_section, address);
    603 	}
    604       break;
    605 
    606       /* No other reloc types represent relaxing opportunities.  */
    607     default:
    608       break;
    609     }
    610 
    611   last_reloc = reloc;
    612   last_input_section = input_section;
    613   return shrink;
    614 }
    615 
    616 /* Handle relocations for the H8/300, including relocs for relaxed
    617    instructions.
    618 
    619    FIXME: Not all relocations check for overflow!  */
    620 
    621 static void
    622 h8300_reloc16_extra_cases (bfd *abfd, struct bfd_link_info *link_info,
    623 			   struct bfd_link_order *link_order, arelent *reloc,
    624 			   bfd_byte *data, unsigned int *src_ptr,
    625 			   unsigned int *dst_ptr)
    626 {
    627   unsigned int src_address = *src_ptr;
    628   unsigned int dst_address = *dst_ptr;
    629   asection *input_section = link_order->u.indirect.section;
    630   bfd_vma value;
    631   bfd_vma dot;
    632   int gap, tmp;
    633   unsigned char temp_code;
    634 
    635   switch (reloc->howto->type)
    636     {
    637     /* Generic 8-bit pc-relative relocation.  */
    638     case R_PCRBYTE:
    639       /* Get the address of the target of this branch.  */
    640       value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
    641 
    642       dot = (input_section->output_offset
    643 	     + dst_address
    644 	     + link_order->u.indirect.section->output_section->vma);
    645 
    646       gap = value - dot;
    647 
    648       /* Sanity check.  */
    649       if (gap < -128 || gap > 126)
    650 	{
    651 	  if (! ((*link_info->callbacks->reloc_overflow)
    652 		 (link_info, NULL,
    653 		  bfd_asymbol_name (*reloc->sym_ptr_ptr),
    654 		  reloc->howto->name, reloc->addend, input_section->owner,
    655 		  input_section, reloc->address)))
    656 	    abort ();
    657 	}
    658 
    659       /* Everything looks OK.  Apply the relocation and update the
    660 	 src/dst address appropriately.  */
    661       bfd_put_8 (abfd, gap, data + dst_address);
    662       dst_address++;
    663       src_address++;
    664 
    665       /* All done.  */
    666       break;
    667 
    668     /* Generic 16-bit pc-relative relocation.  */
    669     case R_PCRWORD:
    670       /* Get the address of the target of this branch.  */
    671       value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
    672 
    673       /* Get the address of the instruction (not the reloc).  */
    674       dot = (input_section->output_offset
    675 	     + dst_address
    676 	     + link_order->u.indirect.section->output_section->vma + 1);
    677 
    678       gap = value - dot;
    679 
    680       /* Sanity check.  */
    681       if (gap > 32766 || gap < -32768)
    682 	{
    683 	  if (! ((*link_info->callbacks->reloc_overflow)
    684 		 (link_info, NULL,
    685 		  bfd_asymbol_name (*reloc->sym_ptr_ptr),
    686 		  reloc->howto->name, reloc->addend, input_section->owner,
    687 		  input_section, reloc->address)))
    688 	    abort ();
    689 	}
    690 
    691       /* Everything looks OK.  Apply the relocation and update the
    692 	 src/dst address appropriately.  */
    693       bfd_put_16 (abfd, (bfd_vma) gap, data + dst_address);
    694       dst_address += 2;
    695       src_address += 2;
    696 
    697       /* All done.  */
    698       break;
    699 
    700     /* Generic 8-bit absolute relocation.  */
    701     case R_RELBYTE:
    702       /* Get the address of the object referenced by this insn.  */
    703       value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
    704 
    705       bfd_put_8 (abfd, value & 0xff, data + dst_address);
    706       dst_address += 1;
    707       src_address += 1;
    708 
    709       /* All done.  */
    710       break;
    711 
    712     /* Various simple 16-bit absolute relocations.  */
    713     case R_MOV16B1:
    714     case R_JMP1:
    715     case R_RELWORD:
    716       value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
    717       bfd_put_16 (abfd, value, data + dst_address);
    718       dst_address += 2;
    719       src_address += 2;
    720       break;
    721 
    722     /* Various simple 24-/32-bit absolute relocations.  */
    723     case R_MOV24B1:
    724     case R_MOVL1:
    725     case R_RELLONG:
    726       /* Get the address of the target of this branch.  */
    727       value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
    728       bfd_put_32 (abfd, value, data + dst_address);
    729       dst_address += 4;
    730       src_address += 4;
    731       break;
    732 
    733     /* Another 24-/32-bit absolute relocation.  */
    734     case R_JMPL1:
    735       /* Get the address of the target of this branch.  */
    736       value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
    737 
    738       value = ((value & 0x00ffffff)
    739 	       | (bfd_get_32 (abfd, data + src_address) & 0xff000000));
    740       bfd_put_32 (abfd, value, data + dst_address);
    741       dst_address += 4;
    742       src_address += 4;
    743       break;
    744 
    745       /* This is a 24-/32-bit absolute address in one of the following
    746 	 instructions:
    747 
    748 	   "band", "bclr", "biand", "bild", "bior", "bist", "bixor",
    749 	   "bld", "bnot", "bor", "bset", "bst", "btst", "bxor", "ldc.w",
    750 	   "stc.w" and "mov.[bwl]"
    751 
    752 	 We may relax this into an 16-bit absolute address if it's in
    753 	 the right range.  */
    754     case R_MOVL2:
    755       value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
    756       value = bfd_h8300_pad_address (abfd, value);
    757 
    758       /* Sanity check.  */
    759       if (value <= 0x7fff || value >= 0xffff8000u)
    760 	{
    761 	  /* Insert the 16-bit value into the proper location.  */
    762 	  bfd_put_16 (abfd, value, data + dst_address);
    763 
    764 	  /* Fix the opcode.  For all the instructions that belong to
    765 	     this relaxation, we simply need to turn off bit 0x20 in
    766 	     the previous byte.  */
    767 	  data[dst_address - 1] &= ~0x20;
    768 	  dst_address += 2;
    769 	  src_address += 4;
    770 	}
    771       else
    772 	{
    773 	  if (! ((*link_info->callbacks->reloc_overflow)
    774 		 (link_info, NULL,
    775 		  bfd_asymbol_name (*reloc->sym_ptr_ptr),
    776 		  reloc->howto->name, reloc->addend, input_section->owner,
    777 		  input_section, reloc->address)))
    778 	    abort ();
    779 	}
    780       break;
    781 
    782     /* A 16-bit absolute branch that is now an 8-bit pc-relative branch.  */
    783     case R_JMP2:
    784       /* Get the address of the target of this branch.  */
    785       value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
    786 
    787       /* Get the address of the next instruction.  */
    788       dot = (input_section->output_offset
    789 	     + dst_address
    790 	     + link_order->u.indirect.section->output_section->vma + 1);
    791 
    792       gap = value - dot;
    793 
    794       /* Sanity check.  */
    795       if (gap < -128 || gap > 126)
    796 	{
    797 	  if (! ((*link_info->callbacks->reloc_overflow)
    798 		 (link_info, NULL,
    799 		  bfd_asymbol_name (*reloc->sym_ptr_ptr),
    800 		  reloc->howto->name, reloc->addend, input_section->owner,
    801 		  input_section, reloc->address)))
    802 	    abort ();
    803 	}
    804 
    805       /* Now fix the instruction itself.  */
    806       switch (data[dst_address - 1])
    807 	{
    808 	case 0x5e:
    809 	  /* jsr -> bsr */
    810 	  bfd_put_8 (abfd, 0x55, data + dst_address - 1);
    811 	  break;
    812 	case 0x5a:
    813 	  /* jmp -> bra */
    814 	  bfd_put_8 (abfd, 0x40, data + dst_address - 1);
    815 	  break;
    816 
    817 	default:
    818 	  abort ();
    819 	}
    820 
    821       /* Write out the 8-bit value.  */
    822       bfd_put_8 (abfd, gap, data + dst_address);
    823 
    824       dst_address += 1;
    825       src_address += 3;
    826 
    827       break;
    828 
    829     /* A 16-bit pc-relative branch that is now an 8-bit pc-relative branch.  */
    830     case R_PCRWORD_B:
    831       /* Get the address of the target of this branch.  */
    832       value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
    833 
    834       /* Get the address of the instruction (not the reloc).  */
    835       dot = (input_section->output_offset
    836 	     + dst_address
    837 	     + link_order->u.indirect.section->output_section->vma - 1);
    838 
    839       gap = value - dot;
    840 
    841       /* Sanity check.  */
    842       if (gap < -128 || gap > 126)
    843 	{
    844 	  if (! ((*link_info->callbacks->reloc_overflow)
    845 		 (link_info, NULL,
    846 		  bfd_asymbol_name (*reloc->sym_ptr_ptr),
    847 		  reloc->howto->name, reloc->addend, input_section->owner,
    848 		  input_section, reloc->address)))
    849 	    abort ();
    850 	}
    851 
    852       /* Now fix the instruction.  */
    853       switch (data[dst_address - 2])
    854 	{
    855 	case 0x58:
    856 	  /* bCC:16 -> bCC:8 */
    857 	  /* Get the second byte of the original insn, which contains
    858 	     the condition code.  */
    859 	  tmp = data[dst_address - 1];
    860 
    861 	  /* Compute the fisrt byte of the relaxed instruction.  The
    862 	     original sequence 0x58 0xX0 is relaxed to 0x4X, where X
    863 	     represents the condition code.  */
    864 	  tmp &= 0xf0;
    865 	  tmp >>= 4;
    866 	  tmp |= 0x40;
    867 
    868 	  /* Write it.  */
    869 	  bfd_put_8 (abfd, tmp, data + dst_address - 2);
    870 	  break;
    871 
    872 	case 0x5c:
    873 	  /* bsr:16 -> bsr:8 */
    874 	  bfd_put_8 (abfd, 0x55, data + dst_address - 2);
    875 	  break;
    876 
    877 	default:
    878 	  abort ();
    879 	}
    880 
    881       /* Output the target.  */
    882       bfd_put_8 (abfd, gap, data + dst_address - 1);
    883 
    884       /* We don't advance dst_address -- the 8-bit reloc is applied at
    885 	 dst_address - 1, so the next insn should begin at dst_address.  */
    886       src_address += 2;
    887 
    888       break;
    889 
    890     /* Similarly for a 24-bit absolute that is now 8 bits.  */
    891     case R_JMPL2:
    892       /* Get the address of the target of this branch.  */
    893       value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
    894 
    895       /* Get the address of the instruction (not the reloc).  */
    896       dot = (input_section->output_offset
    897 	     + dst_address
    898 	     + link_order->u.indirect.section->output_section->vma + 2);
    899 
    900       gap = value - dot;
    901 
    902       /* Fix the instruction.  */
    903       switch (data[src_address])
    904 	{
    905 	case 0x5e:
    906 	  /* jsr -> bsr */
    907 	  bfd_put_8 (abfd, 0x55, data + dst_address);
    908 	  break;
    909 	case 0x5a:
    910 	  /* jmp ->bra */
    911 	  bfd_put_8 (abfd, 0x40, data + dst_address);
    912 	  break;
    913 	default:
    914 	  abort ();
    915 	}
    916 
    917       bfd_put_8 (abfd, gap, data + dst_address + 1);
    918       dst_address += 2;
    919       src_address += 4;
    920 
    921       break;
    922 
    923       /* This is a 16-bit absolute address in one of the following
    924 	 instructions:
    925 
    926 	   "band", "bclr", "biand", "bild", "bior", "bist", "bixor",
    927 	   "bld", "bnot", "bor", "bset", "bst", "btst", "bxor", and
    928 	   "mov.b"
    929 
    930 	 We may relax this into an 8-bit absolute address if it's in
    931 	 the right range.  */
    932     case R_MOV16B2:
    933       value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
    934 
    935       /* All instructions with R_H8_DIR16B2 start with 0x6a.  */
    936       if (data[dst_address - 2] != 0x6a)
    937 	abort ();
    938 
    939       temp_code = data[src_address - 1];
    940 
    941       /* If this is a mov.b instruction, clear the lower nibble, which
    942 	 contains the source/destination register number.  */
    943       if ((temp_code & 0x10) != 0x10)
    944 	temp_code &= 0xf0;
    945 
    946       /* Fix up the opcode.  */
    947       switch (temp_code)
    948 	{
    949 	case 0x00:
    950 	  /* This is mov.b @aa:16,Rd.  */
    951 	  data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x20;
    952 	  break;
    953 	case 0x80:
    954 	  /* This is mov.b Rs,@aa:16.  */
    955 	  data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x30;
    956 	  break;
    957 	case 0x18:
    958 	  /* This is a bit-maniputation instruction that stores one
    959 	     bit into memory, one of "bclr", "bist", "bnot", "bset",
    960 	     and "bst".  */
    961 	  data[dst_address - 2] = 0x7f;
    962 	  break;
    963 	case 0x10:
    964 	  /* This is a bit-maniputation instruction that loads one bit
    965 	     from memory, one of "band", "biand", "bild", "bior",
    966 	     "bixor", "bld", "bor", "btst", and "bxor".  */
    967 	  data[dst_address - 2] = 0x7e;
    968 	  break;
    969 	default:
    970 	  abort ();
    971 	}
    972 
    973       bfd_put_8 (abfd, value & 0xff, data + dst_address - 1);
    974       src_address += 2;
    975       break;
    976 
    977       /* This is a 24-bit absolute address in one of the following
    978 	 instructions:
    979 
    980 	   "band", "bclr", "biand", "bild", "bior", "bist", "bixor",
    981 	   "bld", "bnot", "bor", "bset", "bst", "btst", "bxor", and
    982 	   "mov.b"
    983 
    984 	 We may relax this into an 8-bit absolute address if it's in
    985 	 the right range.  */
    986     case R_MOV24B2:
    987       value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
    988 
    989       /* All instructions with R_MOV24B2 start with 0x6a.  */
    990       if (data[dst_address - 2] != 0x6a)
    991 	abort ();
    992 
    993       temp_code = data[src_address - 1];
    994 
    995       /* If this is a mov.b instruction, clear the lower nibble, which
    996 	 contains the source/destination register number.  */
    997       if ((temp_code & 0x30) != 0x30)
    998 	temp_code &= 0xf0;
    999 
   1000       /* Fix up the opcode.  */
   1001       switch (temp_code)
   1002 	{
   1003 	case 0x20:
   1004 	  /* This is mov.b @aa:24/32,Rd.  */
   1005 	  data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x20;
   1006 	  break;
   1007 	case 0xa0:
   1008 	  /* This is mov.b Rs,@aa:24/32.  */
   1009 	  data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x30;
   1010 	  break;
   1011 	case 0x38:
   1012 	  /* This is a bit-maniputation instruction that stores one
   1013 	     bit into memory, one of "bclr", "bist", "bnot", "bset",
   1014 	     and "bst".  */
   1015 	  data[dst_address - 2] = 0x7f;
   1016 	  break;
   1017 	case 0x30:
   1018 	  /* This is a bit-maniputation instruction that loads one bit
   1019 	     from memory, one of "band", "biand", "bild", "bior",
   1020 	     "bixor", "bld", "bor", "btst", and "bxor".  */
   1021 	  data[dst_address - 2] = 0x7e;
   1022 	  break;
   1023 	default:
   1024 	  abort ();
   1025 	}
   1026 
   1027       bfd_put_8 (abfd, value & 0xff, data + dst_address - 1);
   1028       src_address += 4;
   1029       break;
   1030 
   1031     case R_BCC_INV:
   1032       /* Get the address of the target of this branch.  */
   1033       value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
   1034 
   1035       dot = (input_section->output_offset
   1036 	     + dst_address
   1037 	     + link_order->u.indirect.section->output_section->vma) + 1;
   1038 
   1039       gap = value - dot;
   1040 
   1041       /* Sanity check.  */
   1042       if (gap < -128 || gap > 126)
   1043 	{
   1044 	  if (! ((*link_info->callbacks->reloc_overflow)
   1045 		 (link_info, NULL,
   1046 		  bfd_asymbol_name (*reloc->sym_ptr_ptr),
   1047 		  reloc->howto->name, reloc->addend, input_section->owner,
   1048 		  input_section, reloc->address)))
   1049 	    abort ();
   1050 	}
   1051 
   1052       /* Everything looks OK.  Fix the condition in the instruction, apply
   1053 	 the relocation, and update the src/dst address appropriately.  */
   1054 
   1055       bfd_put_8 (abfd, bfd_get_8 (abfd, data + dst_address - 1) ^ 1,
   1056 		 data + dst_address - 1);
   1057       bfd_put_8 (abfd, gap, data + dst_address);
   1058       dst_address++;
   1059       src_address++;
   1060 
   1061       /* All done.  */
   1062       break;
   1063 
   1064     case R_JMP_DEL:
   1065       src_address += 4;
   1066       break;
   1067 
   1068     /* An 8-bit memory indirect instruction (jmp/jsr).
   1069 
   1070        There's several things that need to be done to handle
   1071        this relocation.
   1072 
   1073        If this is a reloc against the absolute symbol, then
   1074        we should handle it just R_RELBYTE.  Likewise if it's
   1075        for a symbol with a value ge 0 and le 0xff.
   1076 
   1077        Otherwise it's a jump/call through the function vector,
   1078        and the linker is expected to set up the function vector
   1079        and put the right value into the jump/call instruction.  */
   1080     case R_MEM_INDIRECT:
   1081       {
   1082 	/* We need to find the symbol so we can determine it's
   1083 	   address in the function vector table.  */
   1084 	asymbol *symbol;
   1085 	const char *name;
   1086 	struct funcvec_hash_table *ftab;
   1087 	struct funcvec_hash_entry *h;
   1088 	struct h8300_coff_link_hash_table *htab;
   1089 	asection *vectors_sec;
   1090 
   1091 	if (link_info->output_bfd->xvec != abfd->xvec)
   1092 	  {
   1093 	    (*_bfd_error_handler)
   1094 	      (_("cannot handle R_MEM_INDIRECT reloc when using %s output"),
   1095 	       link_info->output_bfd->xvec->name);
   1096 
   1097 	    /* What else can we do?  This function doesn't allow return
   1098 	       of an error, and we don't want to call abort as that
   1099 	       indicates an internal error.  */
   1100 #ifndef EXIT_FAILURE
   1101 #define EXIT_FAILURE 1
   1102 #endif
   1103 	    xexit (EXIT_FAILURE);
   1104 	  }
   1105 	htab = h8300_coff_hash_table (link_info);
   1106 	vectors_sec = htab->vectors_sec;
   1107 
   1108 	/* First see if this is a reloc against the absolute symbol
   1109 	   or against a symbol with a nonnegative value <= 0xff.  */
   1110 	symbol = *(reloc->sym_ptr_ptr);
   1111 	value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
   1112 	if (symbol == bfd_abs_section_ptr->symbol
   1113 	    || value <= 0xff)
   1114 	  {
   1115 	    /* This should be handled in a manner very similar to
   1116 	       R_RELBYTES.   If the value is in range, then just slam
   1117 	       the value into the right location.  Else trigger a
   1118 	       reloc overflow callback.  */
   1119 	    if (value <= 0xff)
   1120 	      {
   1121 		bfd_put_8 (abfd, value, data + dst_address);
   1122 		dst_address += 1;
   1123 		src_address += 1;
   1124 	      }
   1125 	    else
   1126 	      {
   1127 		if (! ((*link_info->callbacks->reloc_overflow)
   1128 		       (link_info, NULL,
   1129 			bfd_asymbol_name (*reloc->sym_ptr_ptr),
   1130 			reloc->howto->name, reloc->addend, input_section->owner,
   1131 			input_section, reloc->address)))
   1132 		  abort ();
   1133 	      }
   1134 	    break;
   1135 	  }
   1136 
   1137 	/* This is a jump/call through a function vector, and we're
   1138 	   expected to create the function vector ourselves.
   1139 
   1140 	   First look up this symbol in the linker hash table -- we need
   1141 	   the derived linker symbol which holds this symbol's index
   1142 	   in the function vector.  */
   1143 	name = symbol->name;
   1144 	if (symbol->flags & BSF_LOCAL)
   1145 	  {
   1146 	    char *new_name = bfd_malloc ((bfd_size_type) strlen (name) + 10);
   1147 
   1148 	    if (new_name == NULL)
   1149 	      abort ();
   1150 
   1151 	    sprintf (new_name, "%s_%08x", name, symbol->section->id);
   1152 	    name = new_name;
   1153 	  }
   1154 
   1155 	ftab = htab->funcvec_hash_table;
   1156 	h = funcvec_hash_lookup (ftab, name, FALSE, FALSE);
   1157 
   1158 	/* This shouldn't ever happen.  If it does that means we've got
   1159 	   data corruption of some kind.  Aborting seems like a reasonable
   1160 	   thing to do here.  */
   1161 	if (h == NULL || vectors_sec == NULL)
   1162 	  abort ();
   1163 
   1164 	/* Place the address of the function vector entry into the
   1165 	   reloc's address.  */
   1166 	bfd_put_8 (abfd,
   1167 		   vectors_sec->output_offset + h->offset,
   1168 		   data + dst_address);
   1169 
   1170 	dst_address++;
   1171 	src_address++;
   1172 
   1173 	/* Now create an entry in the function vector itself.  */
   1174 	switch (bfd_get_mach (input_section->owner))
   1175 	  {
   1176 	  case bfd_mach_h8300:
   1177 	  case bfd_mach_h8300hn:
   1178 	  case bfd_mach_h8300sn:
   1179 	    bfd_put_16 (abfd,
   1180 			bfd_coff_reloc16_get_value (reloc,
   1181 						    link_info,
   1182 						    input_section),
   1183 			vectors_sec->contents + h->offset);
   1184 	    break;
   1185 	  case bfd_mach_h8300h:
   1186 	  case bfd_mach_h8300s:
   1187 	    bfd_put_32 (abfd,
   1188 			bfd_coff_reloc16_get_value (reloc,
   1189 						    link_info,
   1190 						    input_section),
   1191 			vectors_sec->contents + h->offset);
   1192 	    break;
   1193 	  default:
   1194 	    abort ();
   1195 	  }
   1196 
   1197 	/* Gross.  We've already written the contents of the vector section
   1198 	   before we get here...  So we write it again with the new data.  */
   1199 	bfd_set_section_contents (vectors_sec->output_section->owner,
   1200 				  vectors_sec->output_section,
   1201 				  vectors_sec->contents,
   1202 				  (file_ptr) vectors_sec->output_offset,
   1203 				  vectors_sec->size);
   1204 	break;
   1205       }
   1206 
   1207     default:
   1208       abort ();
   1209       break;
   1210 
   1211     }
   1212 
   1213   *src_ptr = src_address;
   1214   *dst_ptr = dst_address;
   1215 }
   1216 
   1217 /* Routine for the h8300 linker.
   1218 
   1219    This routine is necessary to handle the special R_MEM_INDIRECT
   1220    relocs on the h8300.  It's responsible for generating a vectors
   1221    section and attaching it to an input bfd as well as sizing
   1222    the vectors section.  It also creates our vectors hash table.
   1223 
   1224    It uses the generic linker routines to actually add the symbols.
   1225    from this BFD to the bfd linker hash table.  It may add a few
   1226    selected static symbols to the bfd linker hash table.  */
   1227 
   1228 static bfd_boolean
   1229 h8300_bfd_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
   1230 {
   1231   asection *sec;
   1232   struct funcvec_hash_table *funcvec_hash_table;
   1233   bfd_size_type amt;
   1234   struct h8300_coff_link_hash_table *htab;
   1235 
   1236   /* Add the symbols using the generic code.  */
   1237   _bfd_generic_link_add_symbols (abfd, info);
   1238 
   1239   if (info->output_bfd->xvec != abfd->xvec)
   1240     return TRUE;
   1241 
   1242   htab = h8300_coff_hash_table (info);
   1243 
   1244   /* If we haven't created a vectors section, do so now.  */
   1245   if (!htab->vectors_sec)
   1246     {
   1247       flagword flags;
   1248 
   1249       /* Make sure the appropriate flags are set, including SEC_IN_MEMORY.  */
   1250       flags = (SEC_ALLOC | SEC_LOAD
   1251 	       | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_READONLY);
   1252       htab->vectors_sec = bfd_make_section_with_flags (abfd, ".vectors",
   1253 						       flags);
   1254 
   1255       /* If the section wasn't created, or we couldn't set the flags,
   1256 	 quit quickly now, rather than dying a painful death later.  */
   1257       if (!htab->vectors_sec)
   1258 	return FALSE;
   1259 
   1260       /* Also create the vector hash table.  */
   1261       amt = sizeof (struct funcvec_hash_table);
   1262       funcvec_hash_table = (struct funcvec_hash_table *) bfd_alloc (abfd, amt);
   1263 
   1264       if (!funcvec_hash_table)
   1265 	return FALSE;
   1266 
   1267       /* And initialize the funcvec hash table.  */
   1268       if (!funcvec_hash_table_init (funcvec_hash_table, abfd,
   1269 				    funcvec_hash_newfunc,
   1270 				    sizeof (struct funcvec_hash_entry)))
   1271 	{
   1272 	  bfd_release (abfd, funcvec_hash_table);
   1273 	  return FALSE;
   1274 	}
   1275 
   1276       /* Store away a pointer to the funcvec hash table.  */
   1277       htab->funcvec_hash_table = funcvec_hash_table;
   1278     }
   1279 
   1280   /* Load up the function vector hash table.  */
   1281   funcvec_hash_table = htab->funcvec_hash_table;
   1282 
   1283   /* Now scan the relocs for all the sections in this bfd; create
   1284      additional space in the .vectors section as needed.  */
   1285   for (sec = abfd->sections; sec; sec = sec->next)
   1286     {
   1287       long reloc_size, reloc_count, i;
   1288       asymbol **symbols;
   1289       arelent **relocs;
   1290 
   1291       /* Suck in the relocs, symbols & canonicalize them.  */
   1292       reloc_size = bfd_get_reloc_upper_bound (abfd, sec);
   1293       if (reloc_size <= 0)
   1294 	continue;
   1295 
   1296       relocs = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
   1297       if (!relocs)
   1298 	return FALSE;
   1299 
   1300       /* The symbols should have been read in by _bfd_generic link_add_symbols
   1301 	 call abovec, so we can cheat and use the pointer to them that was
   1302 	 saved in the above call.  */
   1303       symbols = _bfd_generic_link_get_symbols(abfd);
   1304       reloc_count = bfd_canonicalize_reloc (abfd, sec, relocs, symbols);
   1305       if (reloc_count <= 0)
   1306 	{
   1307 	  free (relocs);
   1308 	  continue;
   1309 	}
   1310 
   1311       /* Now walk through all the relocations in this section.  */
   1312       for (i = 0; i < reloc_count; i++)
   1313 	{
   1314 	  arelent *reloc = relocs[i];
   1315 	  asymbol *symbol = *(reloc->sym_ptr_ptr);
   1316 	  const char *name;
   1317 
   1318 	  /* We've got an indirect reloc.  See if we need to add it
   1319 	     to the function vector table.   At this point, we have
   1320 	     to add a new entry for each unique symbol referenced
   1321 	     by an R_MEM_INDIRECT relocation except for a reloc
   1322 	     against the absolute section symbol.  */
   1323 	  if (reloc->howto->type == R_MEM_INDIRECT
   1324 	      && symbol != bfd_abs_section_ptr->symbol)
   1325 
   1326 	    {
   1327 	      struct funcvec_hash_table *ftab;
   1328 	      struct funcvec_hash_entry *h;
   1329 
   1330 	      name = symbol->name;
   1331 	      if (symbol->flags & BSF_LOCAL)
   1332 		{
   1333 		  char *new_name;
   1334 
   1335 		  new_name = bfd_malloc ((bfd_size_type) strlen (name) + 10);
   1336 		  if (new_name == NULL)
   1337 		    abort ();
   1338 
   1339 		  sprintf (new_name, "%s_%08x", name, symbol->section->id);
   1340 		  name = new_name;
   1341 		}
   1342 
   1343 	      /* Look this symbol up in the function vector hash table.  */
   1344 	      ftab = htab->funcvec_hash_table;
   1345 	      h = funcvec_hash_lookup (ftab, name, FALSE, FALSE);
   1346 
   1347 	      /* If this symbol isn't already in the hash table, add
   1348 		 it and bump up the size of the hash table.  */
   1349 	      if (h == NULL)
   1350 		{
   1351 		  h = funcvec_hash_lookup (ftab, name, TRUE, TRUE);
   1352 		  if (h == NULL)
   1353 		    {
   1354 		      free (relocs);
   1355 		      return FALSE;
   1356 		    }
   1357 
   1358 		  /* Bump the size of the vectors section.  Each vector
   1359 		     takes 2 bytes on the h8300 and 4 bytes on the h8300h.  */
   1360 		  switch (bfd_get_mach (abfd))
   1361 		    {
   1362 		    case bfd_mach_h8300:
   1363 		    case bfd_mach_h8300hn:
   1364 		    case bfd_mach_h8300sn:
   1365 		      htab->vectors_sec->size += 2;
   1366 		      break;
   1367 		    case bfd_mach_h8300h:
   1368 		    case bfd_mach_h8300s:
   1369 		      htab->vectors_sec->size += 4;
   1370 		      break;
   1371 		    default:
   1372 		      abort ();
   1373 		    }
   1374 		}
   1375 	    }
   1376 	}
   1377 
   1378       /* We're done with the relocations, release them.  */
   1379       free (relocs);
   1380     }
   1381 
   1382   /* Now actually allocate some space for the function vector.  It's
   1383      wasteful to do this more than once, but this is easier.  */
   1384   sec = htab->vectors_sec;
   1385   if (sec->size != 0)
   1386     {
   1387       /* Free the old contents.  */
   1388       if (sec->contents)
   1389 	free (sec->contents);
   1390 
   1391       /* Allocate new contents.  */
   1392       sec->contents = bfd_malloc (sec->size);
   1393     }
   1394 
   1395   return TRUE;
   1396 }
   1397 
   1398 #define coff_reloc16_extra_cases h8300_reloc16_extra_cases
   1399 #define coff_reloc16_estimate h8300_reloc16_estimate
   1400 #define coff_bfd_link_add_symbols h8300_bfd_link_add_symbols
   1401 #define coff_bfd_link_hash_table_create h8300_coff_link_hash_table_create
   1402 
   1403 #define COFF_LONG_FILENAMES
   1404 
   1405 #ifndef bfd_pe_print_pdata
   1406 #define bfd_pe_print_pdata	NULL
   1407 #endif
   1408 
   1409 #include "coffcode.h"
   1410 
   1411 #undef coff_bfd_get_relocated_section_contents
   1412 #undef coff_bfd_relax_section
   1413 #define coff_bfd_get_relocated_section_contents \
   1414   bfd_coff_reloc16_get_relocated_section_contents
   1415 #define coff_bfd_relax_section bfd_coff_reloc16_relax_section
   1416 
   1417 CREATE_BIG_COFF_TARGET_VEC (h8300_coff_vec, "coff-h8300", BFD_IS_RELAXABLE, 0, '_', NULL, COFF_SWAP_TABLE)
   1418