Home | History | Annotate | Download | only in gold
      1 // icf.cc -- Identical Code Folding.
      2 //
      3 // Copyright (C) 2009-2014 Free Software Foundation, Inc.
      4 // Written by Sriraman Tallam <tmsriram (at) google.com>.
      5 
      6 // This file is part of gold.
      7 
      8 // This program is free software; you can redistribute it and/or modify
      9 // it under the terms of the GNU General Public License as published by
     10 // the Free Software Foundation; either version 3 of the License, or
     11 // (at your option) any later version.
     12 
     13 // This program is distributed in the hope that it will be useful,
     14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
     15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     16 // GNU General Public License for more details.
     17 
     18 // You should have received a copy of the GNU General Public License
     19 // along with this program; if not, write to the Free Software
     20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
     21 // MA 02110-1301, USA.
     22 
     23 // Identical Code Folding Algorithm
     24 // ----------------------------------
     25 // Detecting identical functions is done here and the basic algorithm
     26 // is as follows.  A checksum is computed on each foldable section using
     27 // its contents and relocations.  If the symbol name corresponding to
     28 // a relocation is known it is used to compute the checksum.  If the
     29 // symbol name is not known the stringified name of the object and the
     30 // section number pointed to by the relocation is used.  The checksums
     31 // are stored as keys in a hash map and a section is identical to some
     32 // other section if its checksum is already present in the hash map.
     33 // Checksum collisions are handled by using a multimap and explicitly
     34 // checking the contents when two sections have the same checksum.
     35 //
     36 // However, two functions A and B with identical text but with
     37 // relocations pointing to different foldable sections can be identical if
     38 // the corresponding foldable sections to which their relocations point to
     39 // turn out to be identical.  Hence, this checksumming process must be
     40 // done repeatedly until convergence is obtained.  Here is an example for
     41 // the following case :
     42 //
     43 // int funcA ()               int funcB ()
     44 // {                          {
     45 //   return foo();              return goo();
     46 // }                          }
     47 //
     48 // The functions funcA and funcB are identical if functions foo() and
     49 // goo() are identical.
     50 //
     51 // Hence, as described above, we repeatedly do the checksumming,
     52 // assigning identical functions to the same group, until convergence is
     53 // obtained.  Now, we have two different ways to do this depending on how
     54 // we initialize.
     55 //
     56 // Algorithm I :
     57 // -----------
     58 // We can start with marking all functions as different and repeatedly do
     59 // the checksumming.  This has the advantage that we do not need to wait
     60 // for convergence. We can stop at any point and correctness will be
     61 // guaranteed although not all cases would have been found.  However, this
     62 // has a problem that some cases can never be found even if it is run until
     63 // convergence.  Here is an example with mutually recursive functions :
     64 //
     65 // int funcA (int a)            int funcB (int a)
     66 // {                            {
     67 //   if (a == 1)                  if (a == 1)
     68 //     return 1;                    return 1;
     69 //   return 1 + funcB(a - 1);     return 1 + funcA(a - 1);
     70 // }                            }
     71 //
     72 // In this example funcA and funcB are identical and one of them could be
     73 // folded into the other.  However, if we start with assuming that funcA
     74 // and funcB are not identical, the algorithm, even after it is run to
     75 // convergence, cannot detect that they are identical.  It should be noted
     76 // that even if the functions were self-recursive, Algorithm I cannot catch
     77 // that they are identical, at least as is.
     78 //
     79 // Algorithm II :
     80 // ------------
     81 // Here we start with marking all functions as identical and then repeat
     82 // the checksumming until convergence.  This can detect the above case
     83 // mentioned above.  It can detect all cases that Algorithm I can and more.
     84 // However, the caveat is that it has to be run to convergence.  It cannot
     85 // be stopped arbitrarily like Algorithm I as correctness cannot be
     86 // guaranteed.  Algorithm II is not implemented.
     87 //
     88 // Algorithm I is used because experiments show that about three
     89 // iterations are more than enough to achieve convergence. Algorithm I can
     90 // handle recursive calls if it is changed to use a special common symbol
     91 // for recursive relocs.  This seems to be the most common case that
     92 // Algorithm I could not catch as is.  Mutually recursive calls are not
     93 // frequent and Algorithm I wins because of its ability to be stopped
     94 // arbitrarily.
     95 //
     96 // Caveat with using function pointers :
     97 // ------------------------------------
     98 //
     99 // Programs using function pointer comparisons/checks should use function
    100 // folding with caution as the result of such comparisons could be different
    101 // when folding takes place.  This could lead to unexpected run-time
    102 // behaviour.
    103 //
    104 // Safe Folding :
    105 // ------------
    106 //
    107 // ICF in safe mode folds only ctors and dtors if their function pointers can
    108 // never be taken.  Also, for X86-64, safe folding uses the relocation
    109 // type to determine if a function's pointer is taken or not and only folds
    110 // functions whose pointers are definitely not taken.
    111 //
    112 // Caveat with safe folding :
    113 // ------------------------
    114 //
    115 // This applies only to x86_64.
    116 //
    117 // Position independent executables are created from PIC objects (compiled
    118 // with -fPIC) and/or PIE objects (compiled with -fPIE).  For PIE objects, the
    119 // relocation types for function pointer taken and a call are the same.
    120 // Now, it is not always possible to tell if an object used in the link of
    121 // a pie executable is a PIC object or a PIE object.  Hence, for pie
    122 // executables, using relocation types to disambiguate function pointers is
    123 // currently disabled.
    124 //
    125 // Further, it is not correct to use safe folding to build non-pie
    126 // executables using PIC/PIE objects.  PIC/PIE objects have different
    127 // relocation types for function pointers than non-PIC objects, and the
    128 // current implementation of safe folding does not handle those relocation
    129 // types.  Hence, if used, functions whose pointers are taken could still be
    130 // folded causing unpredictable run-time behaviour if the pointers were used
    131 // in comparisons.
    132 //
    133 //
    134 //
    135 // How to run  : --icf=[safe|all|none]
    136 // Optional parameters : --icf-iterations <num> --print-icf-sections
    137 //
    138 // Performance : Less than 20 % link-time overhead on industry strength
    139 // applications.  Up to 6 %  text size reductions.
    140 
    141 #include "gold.h"
    142 #include "object.h"
    143 #include "gc.h"
    144 #include "icf.h"
    145 #include "symtab.h"
    146 #include "libiberty.h"
    147 #include "demangle.h"
    148 #include "elfcpp.h"
    149 #include "int_encoding.h"
    150 
    151 namespace gold
    152 {
    153 
    154 // This function determines if a section or a group of identical
    155 // sections has unique contents.  Such unique sections or groups can be
    156 // declared final and need not be processed any further.
    157 // Parameters :
    158 // ID_SECTION : Vector mapping a section index to a Section_id pair.
    159 // IS_SECN_OR_GROUP_UNIQUE : To check if a section or a group of identical
    160 //                            sections is already known to be unique.
    161 // SECTION_CONTENTS : Contains the section's text and relocs to sections
    162 //                    that cannot be folded.   SECTION_CONTENTS are NULL
    163 //                    implies that this function is being called for the
    164 //                    first time before the first iteration of icf.
    165 
    166 static void
    167 preprocess_for_unique_sections(const std::vector<Section_id>& id_section,
    168                                std::vector<bool>* is_secn_or_group_unique,
    169                                std::vector<std::string>* section_contents)
    170 {
    171   Unordered_map<uint32_t, unsigned int> uniq_map;
    172   std::pair<Unordered_map<uint32_t, unsigned int>::iterator, bool>
    173     uniq_map_insert;
    174 
    175   for (unsigned int i = 0; i < id_section.size(); i++)
    176     {
    177       if ((*is_secn_or_group_unique)[i])
    178         continue;
    179 
    180       uint32_t cksum;
    181       Section_id secn = id_section[i];
    182       section_size_type plen;
    183       if (section_contents == NULL)
    184         {
    185           // Lock the object so we can read from it.  This is only called
    186           // single-threaded from queue_middle_tasks, so it is OK to lock.
    187           // Unfortunately we have no way to pass in a Task token.
    188           const Task* dummy_task = reinterpret_cast<const Task*>(-1);
    189           Task_lock_obj<Object> tl(dummy_task, secn.first);
    190           const unsigned char* contents;
    191           contents = secn.first->section_contents(secn.second,
    192                                                   &plen,
    193                                                   false);
    194           cksum = xcrc32(contents, plen, 0xffffffff);
    195         }
    196       else
    197         {
    198           const unsigned char* contents_array = reinterpret_cast
    199             <const unsigned char*>((*section_contents)[i].c_str());
    200           cksum = xcrc32(contents_array, (*section_contents)[i].length(),
    201                          0xffffffff);
    202         }
    203       uniq_map_insert = uniq_map.insert(std::make_pair(cksum, i));
    204       if (uniq_map_insert.second)
    205         {
    206           (*is_secn_or_group_unique)[i] = true;
    207         }
    208       else
    209         {
    210           (*is_secn_or_group_unique)[i] = false;
    211           (*is_secn_or_group_unique)[uniq_map_insert.first->second] = false;
    212         }
    213     }
    214 }
    215 
    216 // This returns the buffer containing the section's contents, both
    217 // text and relocs.  Relocs are differentiated as those pointing to
    218 // sections that could be folded and those that cannot.  Only relocs
    219 // pointing to sections that could be folded are recomputed on
    220 // subsequent invocations of this function.
    221 // Parameters  :
    222 // FIRST_ITERATION    : true if it is the first invocation.
    223 // SECN               : Section for which contents are desired.
    224 // SECTION_NUM        : Unique section number of this section.
    225 // NUM_TRACKED_RELOCS : Vector reference to store the number of relocs
    226 //                      to ICF sections.
    227 // KEPT_SECTION_ID    : Vector which maps folded sections to kept sections.
    228 // SECTION_CONTENTS   : Store the section's text and relocs to non-ICF
    229 //                      sections.
    230 
    231 static std::string
    232 get_section_contents(bool first_iteration,
    233                      const Section_id& secn,
    234                      unsigned int section_num,
    235                      unsigned int* num_tracked_relocs,
    236                      Symbol_table* symtab,
    237                      const std::vector<unsigned int>& kept_section_id,
    238                      std::vector<std::string>* section_contents)
    239 {
    240   // Lock the object so we can read from it.  This is only called
    241   // single-threaded from queue_middle_tasks, so it is OK to lock.
    242   // Unfortunately we have no way to pass in a Task token.
    243   const Task* dummy_task = reinterpret_cast<const Task*>(-1);
    244   Task_lock_obj<Object> tl(dummy_task, secn.first);
    245 
    246   section_size_type plen;
    247   const unsigned char* contents = NULL;
    248   if (first_iteration)
    249     contents = secn.first->section_contents(secn.second, &plen, false);
    250 
    251   // The buffer to hold all the contents including relocs.  A checksum
    252   // is then computed on this buffer.
    253   std::string buffer;
    254   std::string icf_reloc_buffer;
    255 
    256   if (num_tracked_relocs)
    257     *num_tracked_relocs = 0;
    258 
    259   Icf::Reloc_info_list& reloc_info_list =
    260     symtab->icf()->reloc_info_list();
    261 
    262   Icf::Reloc_info_list::iterator it_reloc_info_list =
    263     reloc_info_list.find(secn);
    264 
    265   buffer.clear();
    266   icf_reloc_buffer.clear();
    267 
    268   // Process relocs and put them into the buffer.
    269 
    270   if (it_reloc_info_list != reloc_info_list.end())
    271     {
    272       Icf::Sections_reachable_info &v =
    273         (it_reloc_info_list->second).section_info;
    274       // Stores the information of the symbol pointed to by the reloc.
    275       const Icf::Symbol_info &s = (it_reloc_info_list->second).symbol_info;
    276       // Stores the addend and the symbol value.
    277       Icf::Addend_info &a = (it_reloc_info_list->second).addend_info;
    278       // Stores the offset of the reloc.
    279       const Icf::Offset_info &o = (it_reloc_info_list->second).offset_info;
    280       const Icf::Reloc_addend_size_info &reloc_addend_size_info =
    281         (it_reloc_info_list->second).reloc_addend_size_info;
    282       Icf::Sections_reachable_info::iterator it_v = v.begin();
    283       Icf::Symbol_info::const_iterator it_s = s.begin();
    284       Icf::Addend_info::iterator it_a = a.begin();
    285       Icf::Offset_info::const_iterator it_o = o.begin();
    286       Icf::Reloc_addend_size_info::const_iterator it_addend_size =
    287         reloc_addend_size_info.begin();
    288 
    289       for (; it_v != v.end(); ++it_v, ++it_s, ++it_a, ++it_o, ++it_addend_size)
    290         {
    291 	  if (first_iteration
    292 	      && it_v->first != NULL)
    293 	    {
    294 	      Symbol_location loc;
    295 	      loc.object = it_v->first;
    296 	      loc.shndx = it_v->second;
    297 	      loc.offset = convert_types<off_t, long long>(it_a->first
    298 							   + it_a->second);
    299 	      // Look through function descriptors
    300 	      parameters->target().function_location(&loc);
    301 	      if (loc.shndx != it_v->second)
    302 		{
    303 		  it_v->second = loc.shndx;
    304 		  // Modify symvalue/addend to the code entry.
    305 		  it_a->first = loc.offset;
    306 		  it_a->second = 0;
    307 		}
    308 	    }
    309 
    310           // ADDEND_STR stores the symbol value and addend and offset,
    311           // each at most 16 hex digits long.  it_a points to a pair
    312           // where first is the symbol value and second is the
    313           // addend.
    314           char addend_str[50];
    315 
    316 	  // It would be nice if we could use format macros in inttypes.h
    317 	  // here but there are not in ISO/IEC C++ 1998.
    318           snprintf(addend_str, sizeof(addend_str), "%llx %llx %llux",
    319                    static_cast<long long>((*it_a).first),
    320 		   static_cast<long long>((*it_a).second),
    321 		   static_cast<unsigned long long>(*it_o));
    322 
    323 	  // If the symbol pointed to by the reloc is not in an ordinary
    324 	  // section or if the symbol type is not FROM_OBJECT, then the
    325 	  // object is NULL.
    326 	  if (it_v->first == NULL)
    327             {
    328 	      if (first_iteration)
    329                 {
    330 		  // If the symbol name is available, use it.
    331                   if ((*it_s) != NULL)
    332                       buffer.append((*it_s)->name());
    333                   // Append the addend.
    334                   buffer.append(addend_str);
    335                   buffer.append("@");
    336 		}
    337 	      continue;
    338 	    }
    339 
    340           Section_id reloc_secn(it_v->first, it_v->second);
    341 
    342           // If this reloc turns back and points to the same section,
    343           // like a recursive call, use a special symbol to mark this.
    344           if (reloc_secn.first == secn.first
    345               && reloc_secn.second == secn.second)
    346             {
    347               if (first_iteration)
    348                 {
    349                   buffer.append("R");
    350                   buffer.append(addend_str);
    351                   buffer.append("@");
    352                 }
    353               continue;
    354             }
    355           Icf::Uniq_secn_id_map& section_id_map =
    356             symtab->icf()->section_to_int_map();
    357           Icf::Uniq_secn_id_map::iterator section_id_map_it =
    358             section_id_map.find(reloc_secn);
    359           bool is_sym_preemptible = (*it_s != NULL
    360 				     && !(*it_s)->is_from_dynobj()
    361 				     && !(*it_s)->is_undefined()
    362 				     && (*it_s)->is_preemptible());
    363           if (!is_sym_preemptible
    364               && section_id_map_it != section_id_map.end())
    365             {
    366               // This is a reloc to a section that might be folded.
    367               if (num_tracked_relocs)
    368                 (*num_tracked_relocs)++;
    369 
    370               char kept_section_str[10];
    371               unsigned int secn_id = section_id_map_it->second;
    372               snprintf(kept_section_str, sizeof(kept_section_str), "%u",
    373                        kept_section_id[secn_id]);
    374               if (first_iteration)
    375                 {
    376                   buffer.append("ICF_R");
    377                   buffer.append(addend_str);
    378                 }
    379               icf_reloc_buffer.append(kept_section_str);
    380               // Append the addend.
    381               icf_reloc_buffer.append(addend_str);
    382               icf_reloc_buffer.append("@");
    383             }
    384           else
    385             {
    386               // This is a reloc to a section that cannot be folded.
    387               // Process it only in the first iteration.
    388               if (!first_iteration)
    389                 continue;
    390 
    391               uint64_t secn_flags = (it_v->first)->section_flags(it_v->second);
    392               // This reloc points to a merge section.  Hash the
    393               // contents of this section.
    394               if ((secn_flags & elfcpp::SHF_MERGE) != 0
    395 		  && parameters->target().can_icf_inline_merge_sections())
    396                 {
    397                   uint64_t entsize =
    398                     (it_v->first)->section_entsize(it_v->second);
    399 		  long long offset = it_a->first;
    400 
    401                   unsigned long long addend = it_a->second;
    402                   // Ignoring the addend when it is a negative value.  See the
    403                   // comments in Merged_symbol_value::Value in object.h.
    404                   if (addend < 0xffffff00)
    405                     offset = offset + addend;
    406 
    407 		  // For SHT_REL relocation sections, the addend is stored in the
    408 		  // text section at the relocation offset.
    409 		  uint64_t reloc_addend_value = 0;
    410                   const unsigned char* reloc_addend_ptr =
    411 		    contents + static_cast<unsigned long long>(*it_o);
    412 		  switch(*it_addend_size)
    413 		    {
    414 		      case 0:
    415 		        {
    416                           break;
    417                         }
    418                       case 1:
    419                         {
    420                           reloc_addend_value =
    421                             read_from_pointer<8>(reloc_addend_ptr);
    422 			  break;
    423                         }
    424                       case 2:
    425                         {
    426                           reloc_addend_value =
    427                             read_from_pointer<16>(reloc_addend_ptr);
    428 			  break;
    429                         }
    430                       case 4:
    431                         {
    432                           reloc_addend_value =
    433                             read_from_pointer<32>(reloc_addend_ptr);
    434 			  break;
    435                         }
    436                       case 8:
    437                         {
    438                           reloc_addend_value =
    439                             read_from_pointer<64>(reloc_addend_ptr);
    440 			  break;
    441                         }
    442 		      default:
    443 		        gold_unreachable();
    444 		    }
    445 		  offset = offset + reloc_addend_value;
    446 
    447                   section_size_type secn_len;
    448                   const unsigned char* str_contents =
    449                   (it_v->first)->section_contents(it_v->second,
    450                                                   &secn_len,
    451                                                   false) + offset;
    452                   if ((secn_flags & elfcpp::SHF_STRINGS) != 0)
    453                     {
    454                       // String merge section.
    455                       const char* str_char =
    456                         reinterpret_cast<const char*>(str_contents);
    457                       switch(entsize)
    458                         {
    459                         case 1:
    460                           {
    461                             buffer.append(str_char);
    462                             break;
    463                           }
    464                         case 2:
    465                           {
    466                             const uint16_t* ptr_16 =
    467                               reinterpret_cast<const uint16_t*>(str_char);
    468                             unsigned int strlen_16 = 0;
    469                             // Find the NULL character.
    470                             while(*(ptr_16 + strlen_16) != 0)
    471                                 strlen_16++;
    472                             buffer.append(str_char, strlen_16 * 2);
    473                           }
    474                           break;
    475                         case 4:
    476                           {
    477                             const uint32_t* ptr_32 =
    478                               reinterpret_cast<const uint32_t*>(str_char);
    479                             unsigned int strlen_32 = 0;
    480                             // Find the NULL character.
    481                             while(*(ptr_32 + strlen_32) != 0)
    482                                 strlen_32++;
    483                             buffer.append(str_char, strlen_32 * 4);
    484                           }
    485                           break;
    486                         default:
    487                           gold_unreachable();
    488                         }
    489                     }
    490                   else
    491                     {
    492                       // Use the entsize to determine the length.
    493                       buffer.append(reinterpret_cast<const
    494                                                      char*>(str_contents),
    495                                     entsize);
    496                     }
    497 		  buffer.append("@");
    498                 }
    499               else if ((*it_s) != NULL)
    500                 {
    501                   // If symbol name is available use that.
    502                   buffer.append((*it_s)->name());
    503                   // Append the addend.
    504                   buffer.append(addend_str);
    505                   buffer.append("@");
    506                 }
    507               else
    508                 {
    509                   // Symbol name is not available, like for a local symbol,
    510                   // use object and section id.
    511                   buffer.append(it_v->first->name());
    512                   char secn_id[10];
    513                   snprintf(secn_id, sizeof(secn_id), "%u",it_v->second);
    514                   buffer.append(secn_id);
    515                   // Append the addend.
    516                   buffer.append(addend_str);
    517                   buffer.append("@");
    518                 }
    519             }
    520         }
    521     }
    522 
    523   if (first_iteration)
    524     {
    525       buffer.append("Contents = ");
    526       buffer.append(reinterpret_cast<const char*>(contents), plen);
    527       // Store the section contents that dont change to avoid recomputing
    528       // during the next call to this function.
    529       (*section_contents)[section_num] = buffer;
    530     }
    531   else
    532     {
    533       gold_assert(buffer.empty());
    534       // Reuse the contents computed in the previous iteration.
    535       buffer.append((*section_contents)[section_num]);
    536     }
    537 
    538   buffer.append(icf_reloc_buffer);
    539   return buffer;
    540 }
    541 
    542 // This function computes a checksum on each section to detect and form
    543 // groups of identical sections.  The first iteration does this for all
    544 // sections.
    545 // Further iterations do this only for the kept sections from each group to
    546 // determine if larger groups of identical sections could be formed.  The
    547 // first section in each group is the kept section for that group.
    548 //
    549 // CRC32 is the checksumming algorithm and can have collisions.  That is,
    550 // two sections with different contents can have the same checksum. Hence,
    551 // a multimap is used to maintain more than one group of checksum
    552 // identical sections.  A section is added to a group only after its
    553 // contents are explicitly compared with the kept section of the group.
    554 //
    555 // Parameters  :
    556 // ITERATION_NUM           : Invocation instance of this function.
    557 // NUM_TRACKED_RELOCS : Vector reference to store the number of relocs
    558 //                      to ICF sections.
    559 // KEPT_SECTION_ID    : Vector which maps folded sections to kept sections.
    560 // ID_SECTION         : Vector mapping a section to an unique integer.
    561 // IS_SECN_OR_GROUP_UNIQUE : To check if a section or a group of identical
    562 //                            sections is already known to be unique.
    563 // SECTION_CONTENTS   : Store the section's text and relocs to non-ICF
    564 //                      sections.
    565 
    566 static bool
    567 match_sections(unsigned int iteration_num,
    568                Symbol_table* symtab,
    569                std::vector<unsigned int>* num_tracked_relocs,
    570                std::vector<unsigned int>* kept_section_id,
    571                const std::vector<Section_id>& id_section,
    572                std::vector<bool>* is_secn_or_group_unique,
    573                std::vector<std::string>* section_contents)
    574 {
    575   Unordered_multimap<uint32_t, unsigned int> section_cksum;
    576   std::pair<Unordered_multimap<uint32_t, unsigned int>::iterator,
    577             Unordered_multimap<uint32_t, unsigned int>::iterator> key_range;
    578   bool converged = true;
    579 
    580   if (iteration_num == 1)
    581     preprocess_for_unique_sections(id_section,
    582                                    is_secn_or_group_unique,
    583                                    NULL);
    584   else
    585     preprocess_for_unique_sections(id_section,
    586                                    is_secn_or_group_unique,
    587                                    section_contents);
    588 
    589   std::vector<std::string> full_section_contents;
    590 
    591   for (unsigned int i = 0; i < id_section.size(); i++)
    592     {
    593       full_section_contents.push_back("");
    594       if ((*is_secn_or_group_unique)[i])
    595         continue;
    596 
    597       Section_id secn = id_section[i];
    598       std::string this_secn_contents;
    599       uint32_t cksum;
    600       if (iteration_num == 1)
    601         {
    602           unsigned int num_relocs = 0;
    603           this_secn_contents = get_section_contents(true, secn, i, &num_relocs,
    604                                                     symtab, (*kept_section_id),
    605                                                     section_contents);
    606           (*num_tracked_relocs)[i] = num_relocs;
    607         }
    608       else
    609         {
    610           if ((*kept_section_id)[i] != i)
    611             {
    612               // This section is already folded into something.  See
    613               // if it should point to a different kept section.
    614               unsigned int kept_section = (*kept_section_id)[i];
    615               if (kept_section != (*kept_section_id)[kept_section])
    616                 {
    617                   (*kept_section_id)[i] = (*kept_section_id)[kept_section];
    618                 }
    619               continue;
    620             }
    621           this_secn_contents = get_section_contents(false, secn, i, NULL,
    622                                                     symtab, (*kept_section_id),
    623                                                     section_contents);
    624         }
    625 
    626       const unsigned char* this_secn_contents_array =
    627             reinterpret_cast<const unsigned char*>(this_secn_contents.c_str());
    628       cksum = xcrc32(this_secn_contents_array, this_secn_contents.length(),
    629                      0xffffffff);
    630       size_t count = section_cksum.count(cksum);
    631 
    632       if (count == 0)
    633         {
    634           // Start a group with this cksum.
    635           section_cksum.insert(std::make_pair(cksum, i));
    636           full_section_contents[i] = this_secn_contents;
    637         }
    638       else
    639         {
    640           key_range = section_cksum.equal_range(cksum);
    641           Unordered_multimap<uint32_t, unsigned int>::iterator it;
    642           // Search all the groups with this cksum for a match.
    643           for (it = key_range.first; it != key_range.second; ++it)
    644             {
    645               unsigned int kept_section = it->second;
    646               if (full_section_contents[kept_section].length()
    647                   != this_secn_contents.length())
    648                   continue;
    649               if (memcmp(full_section_contents[kept_section].c_str(),
    650                          this_secn_contents.c_str(),
    651                          this_secn_contents.length()) != 0)
    652                   continue;
    653               (*kept_section_id)[i] = kept_section;
    654               converged = false;
    655               break;
    656             }
    657           if (it == key_range.second)
    658             {
    659               // Create a new group for this cksum.
    660               section_cksum.insert(std::make_pair(cksum, i));
    661               full_section_contents[i] = this_secn_contents;
    662             }
    663         }
    664       // If there are no relocs to foldable sections do not process
    665       // this section any further.
    666       if (iteration_num == 1 && (*num_tracked_relocs)[i] == 0)
    667         (*is_secn_or_group_unique)[i] = true;
    668     }
    669 
    670   return converged;
    671 }
    672 
    673 // During safe icf (--icf=safe), only fold functions that are ctors or dtors.
    674 // This function returns true if the section name is that of a ctor or a dtor.
    675 
    676 static bool
    677 is_function_ctor_or_dtor(const std::string& section_name)
    678 {
    679   const char* mangled_func_name = strrchr(section_name.c_str(), '.');
    680   gold_assert(mangled_func_name != NULL);
    681   if ((is_prefix_of("._ZN", mangled_func_name)
    682        || is_prefix_of("._ZZ", mangled_func_name))
    683       && (is_gnu_v3_mangled_ctor(mangled_func_name + 1)
    684           || is_gnu_v3_mangled_dtor(mangled_func_name + 1)))
    685     {
    686       return true;
    687     }
    688   return false;
    689 }
    690 
    691 // This is the main ICF function called in gold.cc.  This does the
    692 // initialization and calls match_sections repeatedly (twice by default)
    693 // which computes the crc checksums and detects identical functions.
    694 
    695 void
    696 Icf::find_identical_sections(const Input_objects* input_objects,
    697                              Symbol_table* symtab)
    698 {
    699   unsigned int section_num = 0;
    700   std::vector<unsigned int> num_tracked_relocs;
    701   std::vector<bool> is_secn_or_group_unique;
    702   std::vector<std::string> section_contents;
    703   const Target& target = parameters->target();
    704 
    705   // Decide which sections are possible candidates first.
    706 
    707   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
    708        p != input_objects->relobj_end();
    709        ++p)
    710     {
    711       // Lock the object so we can read from it.  This is only called
    712       // single-threaded from queue_middle_tasks, so it is OK to lock.
    713       // Unfortunately we have no way to pass in a Task token.
    714       const Task* dummy_task = reinterpret_cast<const Task*>(-1);
    715       Task_lock_obj<Object> tl(dummy_task, *p);
    716 
    717       for (unsigned int i = 0;i < (*p)->shnum(); ++i)
    718         {
    719 	  const std::string section_name = (*p)->section_name(i);
    720           if (!is_section_foldable_candidate(section_name))
    721             continue;
    722           if (!(*p)->is_section_included(i))
    723             continue;
    724           if (parameters->options().gc_sections()
    725               && symtab->gc()->is_section_garbage(*p, i))
    726               continue;
    727 	  // With --icf=safe, check if the mangled function name is a ctor
    728 	  // or a dtor.  The mangled function name can be obtained from the
    729 	  // section name by stripping the section prefix.
    730 	  if (parameters->options().icf_safe_folding()
    731               && !is_function_ctor_or_dtor(section_name)
    732 	      && (!target.can_check_for_function_pointers()
    733                   || section_has_function_pointers(*p, i)))
    734             {
    735 	      continue;
    736             }
    737           this->id_section_.push_back(Section_id(*p, i));
    738           this->section_id_[Section_id(*p, i)] = section_num;
    739           this->kept_section_id_.push_back(section_num);
    740           num_tracked_relocs.push_back(0);
    741           is_secn_or_group_unique.push_back(false);
    742           section_contents.push_back("");
    743           section_num++;
    744         }
    745     }
    746 
    747   unsigned int num_iterations = 0;
    748 
    749   // Default number of iterations to run ICF is 2.
    750   unsigned int max_iterations = (parameters->options().icf_iterations() > 0)
    751                             ? parameters->options().icf_iterations()
    752                             : 2;
    753 
    754   bool converged = false;
    755 
    756   while (!converged && (num_iterations < max_iterations))
    757     {
    758       num_iterations++;
    759       converged = match_sections(num_iterations, symtab,
    760                                  &num_tracked_relocs, &this->kept_section_id_,
    761                                  this->id_section_, &is_secn_or_group_unique,
    762                                  &section_contents);
    763     }
    764 
    765   if (parameters->options().print_icf_sections())
    766     {
    767       if (converged)
    768         gold_info(_("%s: ICF Converged after %u iteration(s)"),
    769                   program_name, num_iterations);
    770       else
    771         gold_info(_("%s: ICF stopped after %u iteration(s)"),
    772                   program_name, num_iterations);
    773     }
    774 
    775   // Unfold --keep-unique symbols.
    776   for (options::String_set::const_iterator p =
    777 	 parameters->options().keep_unique_begin();
    778        p != parameters->options().keep_unique_end();
    779        ++p)
    780     {
    781       const char* name = p->c_str();
    782       Symbol* sym = symtab->lookup(name);
    783       if (sym == NULL)
    784 	{
    785 	  gold_warning(_("Could not find symbol %s to unfold\n"), name);
    786 	}
    787       else if (sym->source() == Symbol::FROM_OBJECT
    788                && !sym->object()->is_dynamic())
    789         {
    790           Object* obj = sym->object();
    791           bool is_ordinary;
    792           unsigned int shndx = sym->shndx(&is_ordinary);
    793           if (is_ordinary)
    794             {
    795 	      this->unfold_section(obj, shndx);
    796             }
    797         }
    798 
    799     }
    800 
    801   this->icf_ready();
    802 }
    803 
    804 // Unfolds the section denoted by OBJ and SHNDX if folded.
    805 
    806 void
    807 Icf::unfold_section(Object* obj, unsigned int shndx)
    808 {
    809   Section_id secn(obj, shndx);
    810   Uniq_secn_id_map::iterator it = this->section_id_.find(secn);
    811   if (it == this->section_id_.end())
    812     return;
    813   unsigned int section_num = it->second;
    814   unsigned int kept_section_id = this->kept_section_id_[section_num];
    815   if (kept_section_id != section_num)
    816     this->kept_section_id_[section_num] = section_num;
    817 }
    818 
    819 // This function determines if the section corresponding to the
    820 // given object and index is folded based on if the kept section
    821 // is different from this section.
    822 
    823 bool
    824 Icf::is_section_folded(Object* obj, unsigned int shndx)
    825 {
    826   Section_id secn(obj, shndx);
    827   Uniq_secn_id_map::iterator it = this->section_id_.find(secn);
    828   if (it == this->section_id_.end())
    829     return false;
    830   unsigned int section_num = it->second;
    831   unsigned int kept_section_id = this->kept_section_id_[section_num];
    832   return kept_section_id != section_num;
    833 }
    834 
    835 // This function returns the folded section for the given section.
    836 
    837 Section_id
    838 Icf::get_folded_section(Object* dup_obj, unsigned int dup_shndx)
    839 {
    840   Section_id dup_secn(dup_obj, dup_shndx);
    841   Uniq_secn_id_map::iterator it = this->section_id_.find(dup_secn);
    842   gold_assert(it != this->section_id_.end());
    843   unsigned int section_num = it->second;
    844   unsigned int kept_section_id = this->kept_section_id_[section_num];
    845   Section_id folded_section = this->id_section_[kept_section_id];
    846   return folded_section;
    847 }
    848 
    849 } // End of namespace gold.
    850