Home | History | Annotate | Download | only in src
      1 // Copyright 2016 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 #include "src/code-stub-assembler.h"
      5 #include "src/code-factory.h"
      6 #include "src/frames-inl.h"
      7 #include "src/frames.h"
      8 #include "src/ic/handler-configuration.h"
      9 #include "src/ic/stub-cache.h"
     10 
     11 namespace v8 {
     12 namespace internal {
     13 
     14 using compiler::Node;
     15 
     16 CodeStubAssembler::CodeStubAssembler(Isolate* isolate, Zone* zone,
     17                                      const CallInterfaceDescriptor& descriptor,
     18                                      Code::Flags flags, const char* name,
     19                                      size_t result_size)
     20     : compiler::CodeAssembler(isolate, zone, descriptor, flags, name,
     21                               result_size) {}
     22 
     23 CodeStubAssembler::CodeStubAssembler(Isolate* isolate, Zone* zone,
     24                                      int parameter_count, Code::Flags flags,
     25                                      const char* name)
     26     : compiler::CodeAssembler(isolate, zone, parameter_count, flags, name) {}
     27 
     28 void CodeStubAssembler::Assert(ConditionBody codition_body, const char* message,
     29                                const char* file, int line) {
     30 #if defined(DEBUG)
     31   Label ok(this);
     32   Label not_ok(this, Label::kDeferred);
     33   if (message != nullptr && FLAG_code_comments) {
     34     Comment("[ Assert: %s", message);
     35   } else {
     36     Comment("[ Assert");
     37   }
     38   Node* condition = codition_body();
     39   DCHECK_NOT_NULL(condition);
     40   Branch(condition, &ok, &not_ok);
     41   Bind(&not_ok);
     42   if (message != nullptr) {
     43     char chars[1024];
     44     Vector<char> buffer(chars);
     45     if (file != nullptr) {
     46       SNPrintF(buffer, "CSA_ASSERT failed: %s [%s:%d]\n", message, file, line);
     47     } else {
     48       SNPrintF(buffer, "CSA_ASSERT failed: %s\n", message);
     49     }
     50     CallRuntime(
     51         Runtime::kGlobalPrint, SmiConstant(Smi::kZero),
     52         HeapConstant(factory()->NewStringFromAsciiChecked(&(buffer[0]))));
     53   }
     54   DebugBreak();
     55   Goto(&ok);
     56   Bind(&ok);
     57   Comment("] Assert");
     58 #endif
     59 }
     60 
     61 Node* CodeStubAssembler::NoContextConstant() { return NumberConstant(0); }
     62 
     63 #define HEAP_CONSTANT_ACCESSOR(rootName, name)     \
     64   Node* CodeStubAssembler::name##Constant() {      \
     65     return LoadRoot(Heap::k##rootName##RootIndex); \
     66   }
     67 HEAP_CONSTANT_LIST(HEAP_CONSTANT_ACCESSOR);
     68 #undef HEAP_CONSTANT_ACCESSOR
     69 
     70 #define HEAP_CONSTANT_TEST(rootName, name)         \
     71   Node* CodeStubAssembler::Is##name(Node* value) { \
     72     return WordEqual(value, name##Constant());     \
     73   }
     74 HEAP_CONSTANT_LIST(HEAP_CONSTANT_TEST);
     75 #undef HEAP_CONSTANT_TEST
     76 
     77 Node* CodeStubAssembler::HashSeed() {
     78   return LoadAndUntagToWord32Root(Heap::kHashSeedRootIndex);
     79 }
     80 
     81 Node* CodeStubAssembler::StaleRegisterConstant() {
     82   return LoadRoot(Heap::kStaleRegisterRootIndex);
     83 }
     84 
     85 Node* CodeStubAssembler::IntPtrOrSmiConstant(int value, ParameterMode mode) {
     86   if (mode == SMI_PARAMETERS) {
     87     return SmiConstant(Smi::FromInt(value));
     88   } else {
     89     DCHECK(mode == INTEGER_PARAMETERS || mode == INTPTR_PARAMETERS);
     90     return IntPtrConstant(value);
     91   }
     92 }
     93 
     94 Node* CodeStubAssembler::IntPtrAddFoldConstants(Node* left, Node* right) {
     95   int32_t left_constant;
     96   bool is_left_constant = ToInt32Constant(left, left_constant);
     97   int32_t right_constant;
     98   bool is_right_constant = ToInt32Constant(right, right_constant);
     99   if (is_left_constant) {
    100     if (is_right_constant) {
    101       return IntPtrConstant(left_constant + right_constant);
    102     }
    103     if (left_constant == 0) {
    104       return right;
    105     }
    106   } else if (is_right_constant) {
    107     if (right_constant == 0) {
    108       return left;
    109     }
    110   }
    111   return IntPtrAdd(left, right);
    112 }
    113 
    114 Node* CodeStubAssembler::IntPtrSubFoldConstants(Node* left, Node* right) {
    115   int32_t left_constant;
    116   bool is_left_constant = ToInt32Constant(left, left_constant);
    117   int32_t right_constant;
    118   bool is_right_constant = ToInt32Constant(right, right_constant);
    119   if (is_left_constant) {
    120     if (is_right_constant) {
    121       return IntPtrConstant(left_constant - right_constant);
    122     }
    123   } else if (is_right_constant) {
    124     if (right_constant == 0) {
    125       return left;
    126     }
    127   }
    128   return IntPtrSub(left, right);
    129 }
    130 
    131 Node* CodeStubAssembler::IntPtrRoundUpToPowerOfTwo32(Node* value) {
    132   Comment("IntPtrRoundUpToPowerOfTwo32");
    133   CSA_ASSERT(this, UintPtrLessThanOrEqual(value, IntPtrConstant(0x80000000u)));
    134   value = IntPtrSub(value, IntPtrConstant(1));
    135   for (int i = 1; i <= 16; i *= 2) {
    136     value = WordOr(value, WordShr(value, IntPtrConstant(i)));
    137   }
    138   return IntPtrAdd(value, IntPtrConstant(1));
    139 }
    140 
    141 Node* CodeStubAssembler::WordIsPowerOfTwo(Node* value) {
    142   // value && !(value & (value - 1))
    143   return WordEqual(
    144       Select(WordEqual(value, IntPtrConstant(0)), IntPtrConstant(1),
    145              WordAnd(value, IntPtrSub(value, IntPtrConstant(1))),
    146              MachineType::PointerRepresentation()),
    147       IntPtrConstant(0));
    148 }
    149 
    150 Node* CodeStubAssembler::Float64Round(Node* x) {
    151   Node* one = Float64Constant(1.0);
    152   Node* one_half = Float64Constant(0.5);
    153 
    154   Variable var_x(this, MachineRepresentation::kFloat64);
    155   Label return_x(this);
    156 
    157   // Round up {x} towards Infinity.
    158   var_x.Bind(Float64Ceil(x));
    159 
    160   GotoIf(Float64LessThanOrEqual(Float64Sub(var_x.value(), one_half), x),
    161          &return_x);
    162   var_x.Bind(Float64Sub(var_x.value(), one));
    163   Goto(&return_x);
    164 
    165   Bind(&return_x);
    166   return var_x.value();
    167 }
    168 
    169 Node* CodeStubAssembler::Float64Ceil(Node* x) {
    170   if (IsFloat64RoundUpSupported()) {
    171     return Float64RoundUp(x);
    172   }
    173 
    174   Node* one = Float64Constant(1.0);
    175   Node* zero = Float64Constant(0.0);
    176   Node* two_52 = Float64Constant(4503599627370496.0E0);
    177   Node* minus_two_52 = Float64Constant(-4503599627370496.0E0);
    178 
    179   Variable var_x(this, MachineRepresentation::kFloat64);
    180   Label return_x(this), return_minus_x(this);
    181   var_x.Bind(x);
    182 
    183   // Check if {x} is greater than zero.
    184   Label if_xgreaterthanzero(this), if_xnotgreaterthanzero(this);
    185   Branch(Float64GreaterThan(x, zero), &if_xgreaterthanzero,
    186          &if_xnotgreaterthanzero);
    187 
    188   Bind(&if_xgreaterthanzero);
    189   {
    190     // Just return {x} unless it's in the range ]0,2^52[.
    191     GotoIf(Float64GreaterThanOrEqual(x, two_52), &return_x);
    192 
    193     // Round positive {x} towards Infinity.
    194     var_x.Bind(Float64Sub(Float64Add(two_52, x), two_52));
    195     GotoUnless(Float64LessThan(var_x.value(), x), &return_x);
    196     var_x.Bind(Float64Add(var_x.value(), one));
    197     Goto(&return_x);
    198   }
    199 
    200   Bind(&if_xnotgreaterthanzero);
    201   {
    202     // Just return {x} unless it's in the range ]-2^52,0[
    203     GotoIf(Float64LessThanOrEqual(x, minus_two_52), &return_x);
    204     GotoUnless(Float64LessThan(x, zero), &return_x);
    205 
    206     // Round negated {x} towards Infinity and return the result negated.
    207     Node* minus_x = Float64Neg(x);
    208     var_x.Bind(Float64Sub(Float64Add(two_52, minus_x), two_52));
    209     GotoUnless(Float64GreaterThan(var_x.value(), minus_x), &return_minus_x);
    210     var_x.Bind(Float64Sub(var_x.value(), one));
    211     Goto(&return_minus_x);
    212   }
    213 
    214   Bind(&return_minus_x);
    215   var_x.Bind(Float64Neg(var_x.value()));
    216   Goto(&return_x);
    217 
    218   Bind(&return_x);
    219   return var_x.value();
    220 }
    221 
    222 Node* CodeStubAssembler::Float64Floor(Node* x) {
    223   if (IsFloat64RoundDownSupported()) {
    224     return Float64RoundDown(x);
    225   }
    226 
    227   Node* one = Float64Constant(1.0);
    228   Node* zero = Float64Constant(0.0);
    229   Node* two_52 = Float64Constant(4503599627370496.0E0);
    230   Node* minus_two_52 = Float64Constant(-4503599627370496.0E0);
    231 
    232   Variable var_x(this, MachineRepresentation::kFloat64);
    233   Label return_x(this), return_minus_x(this);
    234   var_x.Bind(x);
    235 
    236   // Check if {x} is greater than zero.
    237   Label if_xgreaterthanzero(this), if_xnotgreaterthanzero(this);
    238   Branch(Float64GreaterThan(x, zero), &if_xgreaterthanzero,
    239          &if_xnotgreaterthanzero);
    240 
    241   Bind(&if_xgreaterthanzero);
    242   {
    243     // Just return {x} unless it's in the range ]0,2^52[.
    244     GotoIf(Float64GreaterThanOrEqual(x, two_52), &return_x);
    245 
    246     // Round positive {x} towards -Infinity.
    247     var_x.Bind(Float64Sub(Float64Add(two_52, x), two_52));
    248     GotoUnless(Float64GreaterThan(var_x.value(), x), &return_x);
    249     var_x.Bind(Float64Sub(var_x.value(), one));
    250     Goto(&return_x);
    251   }
    252 
    253   Bind(&if_xnotgreaterthanzero);
    254   {
    255     // Just return {x} unless it's in the range ]-2^52,0[
    256     GotoIf(Float64LessThanOrEqual(x, minus_two_52), &return_x);
    257     GotoUnless(Float64LessThan(x, zero), &return_x);
    258 
    259     // Round negated {x} towards -Infinity and return the result negated.
    260     Node* minus_x = Float64Neg(x);
    261     var_x.Bind(Float64Sub(Float64Add(two_52, minus_x), two_52));
    262     GotoUnless(Float64LessThan(var_x.value(), minus_x), &return_minus_x);
    263     var_x.Bind(Float64Add(var_x.value(), one));
    264     Goto(&return_minus_x);
    265   }
    266 
    267   Bind(&return_minus_x);
    268   var_x.Bind(Float64Neg(var_x.value()));
    269   Goto(&return_x);
    270 
    271   Bind(&return_x);
    272   return var_x.value();
    273 }
    274 
    275 Node* CodeStubAssembler::Float64RoundToEven(Node* x) {
    276   if (IsFloat64RoundTiesEvenSupported()) {
    277     return Float64RoundTiesEven(x);
    278   }
    279   // See ES#sec-touint8clamp for details.
    280   Node* f = Float64Floor(x);
    281   Node* f_and_half = Float64Add(f, Float64Constant(0.5));
    282 
    283   Variable var_result(this, MachineRepresentation::kFloat64);
    284   Label return_f(this), return_f_plus_one(this), done(this);
    285 
    286   GotoIf(Float64LessThan(f_and_half, x), &return_f_plus_one);
    287   GotoIf(Float64LessThan(x, f_and_half), &return_f);
    288   {
    289     Node* f_mod_2 = Float64Mod(f, Float64Constant(2.0));
    290     Branch(Float64Equal(f_mod_2, Float64Constant(0.0)), &return_f,
    291            &return_f_plus_one);
    292   }
    293 
    294   Bind(&return_f);
    295   var_result.Bind(f);
    296   Goto(&done);
    297 
    298   Bind(&return_f_plus_one);
    299   var_result.Bind(Float64Add(f, Float64Constant(1.0)));
    300   Goto(&done);
    301 
    302   Bind(&done);
    303   return var_result.value();
    304 }
    305 
    306 Node* CodeStubAssembler::Float64Trunc(Node* x) {
    307   if (IsFloat64RoundTruncateSupported()) {
    308     return Float64RoundTruncate(x);
    309   }
    310 
    311   Node* one = Float64Constant(1.0);
    312   Node* zero = Float64Constant(0.0);
    313   Node* two_52 = Float64Constant(4503599627370496.0E0);
    314   Node* minus_two_52 = Float64Constant(-4503599627370496.0E0);
    315 
    316   Variable var_x(this, MachineRepresentation::kFloat64);
    317   Label return_x(this), return_minus_x(this);
    318   var_x.Bind(x);
    319 
    320   // Check if {x} is greater than 0.
    321   Label if_xgreaterthanzero(this), if_xnotgreaterthanzero(this);
    322   Branch(Float64GreaterThan(x, zero), &if_xgreaterthanzero,
    323          &if_xnotgreaterthanzero);
    324 
    325   Bind(&if_xgreaterthanzero);
    326   {
    327     if (IsFloat64RoundDownSupported()) {
    328       var_x.Bind(Float64RoundDown(x));
    329     } else {
    330       // Just return {x} unless it's in the range ]0,2^52[.
    331       GotoIf(Float64GreaterThanOrEqual(x, two_52), &return_x);
    332 
    333       // Round positive {x} towards -Infinity.
    334       var_x.Bind(Float64Sub(Float64Add(two_52, x), two_52));
    335       GotoUnless(Float64GreaterThan(var_x.value(), x), &return_x);
    336       var_x.Bind(Float64Sub(var_x.value(), one));
    337     }
    338     Goto(&return_x);
    339   }
    340 
    341   Bind(&if_xnotgreaterthanzero);
    342   {
    343     if (IsFloat64RoundUpSupported()) {
    344       var_x.Bind(Float64RoundUp(x));
    345       Goto(&return_x);
    346     } else {
    347       // Just return {x} unless its in the range ]-2^52,0[.
    348       GotoIf(Float64LessThanOrEqual(x, minus_two_52), &return_x);
    349       GotoUnless(Float64LessThan(x, zero), &return_x);
    350 
    351       // Round negated {x} towards -Infinity and return result negated.
    352       Node* minus_x = Float64Neg(x);
    353       var_x.Bind(Float64Sub(Float64Add(two_52, minus_x), two_52));
    354       GotoUnless(Float64GreaterThan(var_x.value(), minus_x), &return_minus_x);
    355       var_x.Bind(Float64Sub(var_x.value(), one));
    356       Goto(&return_minus_x);
    357     }
    358   }
    359 
    360   Bind(&return_minus_x);
    361   var_x.Bind(Float64Neg(var_x.value()));
    362   Goto(&return_x);
    363 
    364   Bind(&return_x);
    365   return var_x.value();
    366 }
    367 
    368 Node* CodeStubAssembler::SmiShiftBitsConstant() {
    369   return IntPtrConstant(kSmiShiftSize + kSmiTagSize);
    370 }
    371 
    372 Node* CodeStubAssembler::SmiFromWord32(Node* value) {
    373   value = ChangeInt32ToIntPtr(value);
    374   return BitcastWordToTaggedSigned(WordShl(value, SmiShiftBitsConstant()));
    375 }
    376 
    377 Node* CodeStubAssembler::SmiTag(Node* value) {
    378   int32_t constant_value;
    379   if (ToInt32Constant(value, constant_value) && Smi::IsValid(constant_value)) {
    380     return SmiConstant(Smi::FromInt(constant_value));
    381   }
    382   return BitcastWordToTaggedSigned(WordShl(value, SmiShiftBitsConstant()));
    383 }
    384 
    385 Node* CodeStubAssembler::SmiUntag(Node* value) {
    386   return WordSar(BitcastTaggedToWord(value), SmiShiftBitsConstant());
    387 }
    388 
    389 Node* CodeStubAssembler::SmiToWord32(Node* value) {
    390   Node* result = SmiUntag(value);
    391   if (Is64()) {
    392     result = TruncateInt64ToInt32(result);
    393   }
    394   return result;
    395 }
    396 
    397 Node* CodeStubAssembler::SmiToFloat64(Node* value) {
    398   return ChangeInt32ToFloat64(SmiToWord32(value));
    399 }
    400 
    401 Node* CodeStubAssembler::SmiAdd(Node* a, Node* b) {
    402   return BitcastWordToTaggedSigned(
    403       IntPtrAdd(BitcastTaggedToWord(a), BitcastTaggedToWord(b)));
    404 }
    405 
    406 Node* CodeStubAssembler::SmiSub(Node* a, Node* b) {
    407   return BitcastWordToTaggedSigned(
    408       IntPtrSub(BitcastTaggedToWord(a), BitcastTaggedToWord(b)));
    409 }
    410 
    411 Node* CodeStubAssembler::SmiEqual(Node* a, Node* b) {
    412   return WordEqual(BitcastTaggedToWord(a), BitcastTaggedToWord(b));
    413 }
    414 
    415 Node* CodeStubAssembler::SmiAbove(Node* a, Node* b) {
    416   return UintPtrGreaterThan(BitcastTaggedToWord(a), BitcastTaggedToWord(b));
    417 }
    418 
    419 Node* CodeStubAssembler::SmiAboveOrEqual(Node* a, Node* b) {
    420   return UintPtrGreaterThanOrEqual(BitcastTaggedToWord(a),
    421                                    BitcastTaggedToWord(b));
    422 }
    423 
    424 Node* CodeStubAssembler::SmiBelow(Node* a, Node* b) {
    425   return UintPtrLessThan(BitcastTaggedToWord(a), BitcastTaggedToWord(b));
    426 }
    427 
    428 Node* CodeStubAssembler::SmiLessThan(Node* a, Node* b) {
    429   return IntPtrLessThan(BitcastTaggedToWord(a), BitcastTaggedToWord(b));
    430 }
    431 
    432 Node* CodeStubAssembler::SmiLessThanOrEqual(Node* a, Node* b) {
    433   return IntPtrLessThanOrEqual(BitcastTaggedToWord(a), BitcastTaggedToWord(b));
    434 }
    435 
    436 Node* CodeStubAssembler::SmiMax(Node* a, Node* b) {
    437   return Select(SmiLessThan(a, b), b, a);
    438 }
    439 
    440 Node* CodeStubAssembler::SmiMin(Node* a, Node* b) {
    441   return Select(SmiLessThan(a, b), a, b);
    442 }
    443 
    444 Node* CodeStubAssembler::SmiMod(Node* a, Node* b) {
    445   Variable var_result(this, MachineRepresentation::kTagged);
    446   Label return_result(this, &var_result),
    447       return_minuszero(this, Label::kDeferred),
    448       return_nan(this, Label::kDeferred);
    449 
    450   // Untag {a} and {b}.
    451   a = SmiToWord32(a);
    452   b = SmiToWord32(b);
    453 
    454   // Return NaN if {b} is zero.
    455   GotoIf(Word32Equal(b, Int32Constant(0)), &return_nan);
    456 
    457   // Check if {a} is non-negative.
    458   Label if_aisnotnegative(this), if_aisnegative(this, Label::kDeferred);
    459   Branch(Int32LessThanOrEqual(Int32Constant(0), a), &if_aisnotnegative,
    460          &if_aisnegative);
    461 
    462   Bind(&if_aisnotnegative);
    463   {
    464     // Fast case, don't need to check any other edge cases.
    465     Node* r = Int32Mod(a, b);
    466     var_result.Bind(SmiFromWord32(r));
    467     Goto(&return_result);
    468   }
    469 
    470   Bind(&if_aisnegative);
    471   {
    472     if (SmiValuesAre32Bits()) {
    473       // Check if {a} is kMinInt and {b} is -1 (only relevant if the
    474       // kMinInt is actually representable as a Smi).
    475       Label join(this);
    476       GotoUnless(Word32Equal(a, Int32Constant(kMinInt)), &join);
    477       GotoIf(Word32Equal(b, Int32Constant(-1)), &return_minuszero);
    478       Goto(&join);
    479       Bind(&join);
    480     }
    481 
    482     // Perform the integer modulus operation.
    483     Node* r = Int32Mod(a, b);
    484 
    485     // Check if {r} is zero, and if so return -0, because we have to
    486     // take the sign of the left hand side {a}, which is negative.
    487     GotoIf(Word32Equal(r, Int32Constant(0)), &return_minuszero);
    488 
    489     // The remainder {r} can be outside the valid Smi range on 32bit
    490     // architectures, so we cannot just say SmiFromWord32(r) here.
    491     var_result.Bind(ChangeInt32ToTagged(r));
    492     Goto(&return_result);
    493   }
    494 
    495   Bind(&return_minuszero);
    496   var_result.Bind(MinusZeroConstant());
    497   Goto(&return_result);
    498 
    499   Bind(&return_nan);
    500   var_result.Bind(NanConstant());
    501   Goto(&return_result);
    502 
    503   Bind(&return_result);
    504   return var_result.value();
    505 }
    506 
    507 Node* CodeStubAssembler::SmiMul(Node* a, Node* b) {
    508   Variable var_result(this, MachineRepresentation::kTagged);
    509   Variable var_lhs_float64(this, MachineRepresentation::kFloat64),
    510       var_rhs_float64(this, MachineRepresentation::kFloat64);
    511   Label return_result(this, &var_result);
    512 
    513   // Both {a} and {b} are Smis. Convert them to integers and multiply.
    514   Node* lhs32 = SmiToWord32(a);
    515   Node* rhs32 = SmiToWord32(b);
    516   Node* pair = Int32MulWithOverflow(lhs32, rhs32);
    517 
    518   Node* overflow = Projection(1, pair);
    519 
    520   // Check if the multiplication overflowed.
    521   Label if_overflow(this, Label::kDeferred), if_notoverflow(this);
    522   Branch(overflow, &if_overflow, &if_notoverflow);
    523   Bind(&if_notoverflow);
    524   {
    525     // If the answer is zero, we may need to return -0.0, depending on the
    526     // input.
    527     Label answer_zero(this), answer_not_zero(this);
    528     Node* answer = Projection(0, pair);
    529     Node* zero = Int32Constant(0);
    530     Branch(WordEqual(answer, zero), &answer_zero, &answer_not_zero);
    531     Bind(&answer_not_zero);
    532     {
    533       var_result.Bind(ChangeInt32ToTagged(answer));
    534       Goto(&return_result);
    535     }
    536     Bind(&answer_zero);
    537     {
    538       Node* or_result = Word32Or(lhs32, rhs32);
    539       Label if_should_be_negative_zero(this), if_should_be_zero(this);
    540       Branch(Int32LessThan(or_result, zero), &if_should_be_negative_zero,
    541              &if_should_be_zero);
    542       Bind(&if_should_be_negative_zero);
    543       {
    544         var_result.Bind(MinusZeroConstant());
    545         Goto(&return_result);
    546       }
    547       Bind(&if_should_be_zero);
    548       {
    549         var_result.Bind(zero);
    550         Goto(&return_result);
    551       }
    552     }
    553   }
    554   Bind(&if_overflow);
    555   {
    556     var_lhs_float64.Bind(SmiToFloat64(a));
    557     var_rhs_float64.Bind(SmiToFloat64(b));
    558     Node* value = Float64Mul(var_lhs_float64.value(), var_rhs_float64.value());
    559     Node* result = AllocateHeapNumberWithValue(value);
    560     var_result.Bind(result);
    561     Goto(&return_result);
    562   }
    563 
    564   Bind(&return_result);
    565   return var_result.value();
    566 }
    567 
    568 Node* CodeStubAssembler::TaggedIsSmi(Node* a) {
    569   return WordEqual(WordAnd(BitcastTaggedToWord(a), IntPtrConstant(kSmiTagMask)),
    570                    IntPtrConstant(0));
    571 }
    572 
    573 Node* CodeStubAssembler::WordIsPositiveSmi(Node* a) {
    574   return WordEqual(WordAnd(a, IntPtrConstant(kSmiTagMask | kSmiSignMask)),
    575                    IntPtrConstant(0));
    576 }
    577 
    578 Node* CodeStubAssembler::WordIsWordAligned(Node* word) {
    579   return WordEqual(IntPtrConstant(0),
    580                    WordAnd(word, IntPtrConstant((1 << kPointerSizeLog2) - 1)));
    581 }
    582 
    583 void CodeStubAssembler::BranchIfSimd128Equal(Node* lhs, Node* lhs_map,
    584                                              Node* rhs, Node* rhs_map,
    585                                              Label* if_equal,
    586                                              Label* if_notequal) {
    587   Label if_mapsame(this), if_mapnotsame(this);
    588   Branch(WordEqual(lhs_map, rhs_map), &if_mapsame, &if_mapnotsame);
    589 
    590   Bind(&if_mapsame);
    591   {
    592     // Both {lhs} and {rhs} are Simd128Values with the same map, need special
    593     // handling for Float32x4 because of NaN comparisons.
    594     Label if_float32x4(this), if_notfloat32x4(this);
    595     Node* float32x4_map = HeapConstant(factory()->float32x4_map());
    596     Branch(WordEqual(lhs_map, float32x4_map), &if_float32x4, &if_notfloat32x4);
    597 
    598     Bind(&if_float32x4);
    599     {
    600       // Both {lhs} and {rhs} are Float32x4, compare the lanes individually
    601       // using a floating point comparison.
    602       for (int offset = Float32x4::kValueOffset - kHeapObjectTag;
    603            offset < Float32x4::kSize - kHeapObjectTag;
    604            offset += sizeof(float)) {
    605         // Load the floating point values for {lhs} and {rhs}.
    606         Node* lhs_value =
    607             Load(MachineType::Float32(), lhs, IntPtrConstant(offset));
    608         Node* rhs_value =
    609             Load(MachineType::Float32(), rhs, IntPtrConstant(offset));
    610 
    611         // Perform a floating point comparison.
    612         Label if_valueequal(this), if_valuenotequal(this);
    613         Branch(Float32Equal(lhs_value, rhs_value), &if_valueequal,
    614                &if_valuenotequal);
    615         Bind(&if_valuenotequal);
    616         Goto(if_notequal);
    617         Bind(&if_valueequal);
    618       }
    619 
    620       // All 4 lanes match, {lhs} and {rhs} considered equal.
    621       Goto(if_equal);
    622     }
    623 
    624     Bind(&if_notfloat32x4);
    625     {
    626       // For other Simd128Values we just perform a bitwise comparison.
    627       for (int offset = Simd128Value::kValueOffset - kHeapObjectTag;
    628            offset < Simd128Value::kSize - kHeapObjectTag;
    629            offset += kPointerSize) {
    630         // Load the word values for {lhs} and {rhs}.
    631         Node* lhs_value =
    632             Load(MachineType::Pointer(), lhs, IntPtrConstant(offset));
    633         Node* rhs_value =
    634             Load(MachineType::Pointer(), rhs, IntPtrConstant(offset));
    635 
    636         // Perform a bitwise word-comparison.
    637         Label if_valueequal(this), if_valuenotequal(this);
    638         Branch(WordEqual(lhs_value, rhs_value), &if_valueequal,
    639                &if_valuenotequal);
    640         Bind(&if_valuenotequal);
    641         Goto(if_notequal);
    642         Bind(&if_valueequal);
    643       }
    644 
    645       // Bitwise comparison succeeded, {lhs} and {rhs} considered equal.
    646       Goto(if_equal);
    647     }
    648   }
    649 
    650   Bind(&if_mapnotsame);
    651   Goto(if_notequal);
    652 }
    653 
    654 void CodeStubAssembler::BranchIfPrototypesHaveNoElements(
    655     Node* receiver_map, Label* definitely_no_elements,
    656     Label* possibly_elements) {
    657   Variable var_map(this, MachineRepresentation::kTagged);
    658   var_map.Bind(receiver_map);
    659   Label loop_body(this, &var_map);
    660   Node* empty_elements = LoadRoot(Heap::kEmptyFixedArrayRootIndex);
    661   Goto(&loop_body);
    662 
    663   Bind(&loop_body);
    664   {
    665     Node* map = var_map.value();
    666     Node* prototype = LoadMapPrototype(map);
    667     GotoIf(WordEqual(prototype, NullConstant()), definitely_no_elements);
    668     Node* prototype_map = LoadMap(prototype);
    669     // Pessimistically assume elements if a Proxy, Special API Object,
    670     // or JSValue wrapper is found on the prototype chain. After this
    671     // instance type check, it's not necessary to check for interceptors or
    672     // access checks.
    673     GotoIf(Int32LessThanOrEqual(LoadMapInstanceType(prototype_map),
    674                                 Int32Constant(LAST_CUSTOM_ELEMENTS_RECEIVER)),
    675            possibly_elements);
    676     GotoIf(WordNotEqual(LoadElements(prototype), empty_elements),
    677            possibly_elements);
    678     var_map.Bind(prototype_map);
    679     Goto(&loop_body);
    680   }
    681 }
    682 
    683 void CodeStubAssembler::BranchIfJSReceiver(Node* object, Label* if_true,
    684                                            Label* if_false) {
    685   GotoIf(TaggedIsSmi(object), if_false);
    686   STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
    687   Branch(Int32GreaterThanOrEqual(LoadInstanceType(object),
    688                                  Int32Constant(FIRST_JS_RECEIVER_TYPE)),
    689          if_true, if_false);
    690 }
    691 
    692 void CodeStubAssembler::BranchIfJSObject(Node* object, Label* if_true,
    693                                          Label* if_false) {
    694   GotoIf(TaggedIsSmi(object), if_false);
    695   STATIC_ASSERT(LAST_JS_OBJECT_TYPE == LAST_TYPE);
    696   Branch(Int32GreaterThanOrEqual(LoadInstanceType(object),
    697                                  Int32Constant(FIRST_JS_OBJECT_TYPE)),
    698          if_true, if_false);
    699 }
    700 
    701 void CodeStubAssembler::BranchIfFastJSArray(Node* object, Node* context,
    702                                             Label* if_true, Label* if_false) {
    703   // Bailout if receiver is a Smi.
    704   GotoIf(TaggedIsSmi(object), if_false);
    705 
    706   Node* map = LoadMap(object);
    707 
    708   // Bailout if instance type is not JS_ARRAY_TYPE.
    709   GotoIf(WordNotEqual(LoadMapInstanceType(map), Int32Constant(JS_ARRAY_TYPE)),
    710          if_false);
    711 
    712   Node* elements_kind = LoadMapElementsKind(map);
    713 
    714   // Bailout if receiver has slow elements.
    715   GotoUnless(IsFastElementsKind(elements_kind), if_false);
    716 
    717   // Check prototype chain if receiver does not have packed elements.
    718   GotoUnless(IsHoleyFastElementsKind(elements_kind), if_true);
    719 
    720   BranchIfPrototypesHaveNoElements(map, if_true, if_false);
    721 }
    722 
    723 Node* CodeStubAssembler::AllocateRawUnaligned(Node* size_in_bytes,
    724                                               AllocationFlags flags,
    725                                               Node* top_address,
    726                                               Node* limit_address) {
    727   Node* top = Load(MachineType::Pointer(), top_address);
    728   Node* limit = Load(MachineType::Pointer(), limit_address);
    729 
    730   // If there's not enough space, call the runtime.
    731   Variable result(this, MachineRepresentation::kTagged);
    732   Label runtime_call(this, Label::kDeferred), no_runtime_call(this);
    733   Label merge_runtime(this, &result);
    734 
    735   Node* new_top = IntPtrAdd(top, size_in_bytes);
    736   Branch(UintPtrGreaterThanOrEqual(new_top, limit), &runtime_call,
    737          &no_runtime_call);
    738 
    739   Bind(&runtime_call);
    740   Node* runtime_result;
    741   if (flags & kPretenured) {
    742     Node* runtime_flags = SmiConstant(
    743         Smi::FromInt(AllocateDoubleAlignFlag::encode(false) |
    744                      AllocateTargetSpace::encode(AllocationSpace::OLD_SPACE)));
    745     runtime_result =
    746         CallRuntime(Runtime::kAllocateInTargetSpace, NoContextConstant(),
    747                     SmiTag(size_in_bytes), runtime_flags);
    748   } else {
    749     runtime_result = CallRuntime(Runtime::kAllocateInNewSpace,
    750                                  NoContextConstant(), SmiTag(size_in_bytes));
    751   }
    752   result.Bind(runtime_result);
    753   Goto(&merge_runtime);
    754 
    755   // When there is enough space, return `top' and bump it up.
    756   Bind(&no_runtime_call);
    757   Node* no_runtime_result = top;
    758   StoreNoWriteBarrier(MachineType::PointerRepresentation(), top_address,
    759                       new_top);
    760   no_runtime_result = BitcastWordToTagged(
    761       IntPtrAdd(no_runtime_result, IntPtrConstant(kHeapObjectTag)));
    762   result.Bind(no_runtime_result);
    763   Goto(&merge_runtime);
    764 
    765   Bind(&merge_runtime);
    766   return result.value();
    767 }
    768 
    769 Node* CodeStubAssembler::AllocateRawAligned(Node* size_in_bytes,
    770                                             AllocationFlags flags,
    771                                             Node* top_address,
    772                                             Node* limit_address) {
    773   Node* top = Load(MachineType::Pointer(), top_address);
    774   Node* limit = Load(MachineType::Pointer(), limit_address);
    775   Variable adjusted_size(this, MachineType::PointerRepresentation());
    776   adjusted_size.Bind(size_in_bytes);
    777   if (flags & kDoubleAlignment) {
    778     // TODO(epertoso): Simd128 alignment.
    779     Label aligned(this), not_aligned(this), merge(this, &adjusted_size);
    780     Branch(WordAnd(top, IntPtrConstant(kDoubleAlignmentMask)), &not_aligned,
    781            &aligned);
    782 
    783     Bind(&not_aligned);
    784     Node* not_aligned_size =
    785         IntPtrAdd(size_in_bytes, IntPtrConstant(kPointerSize));
    786     adjusted_size.Bind(not_aligned_size);
    787     Goto(&merge);
    788 
    789     Bind(&aligned);
    790     Goto(&merge);
    791 
    792     Bind(&merge);
    793   }
    794 
    795   Variable address(this, MachineRepresentation::kTagged);
    796   address.Bind(AllocateRawUnaligned(adjusted_size.value(), kNone, top, limit));
    797 
    798   Label needs_filler(this), doesnt_need_filler(this),
    799       merge_address(this, &address);
    800   Branch(IntPtrEqual(adjusted_size.value(), size_in_bytes), &doesnt_need_filler,
    801          &needs_filler);
    802 
    803   Bind(&needs_filler);
    804   // Store a filler and increase the address by kPointerSize.
    805   // TODO(epertoso): this code assumes that we only align to kDoubleSize. Change
    806   // it when Simd128 alignment is supported.
    807   StoreNoWriteBarrier(MachineType::PointerRepresentation(), top,
    808                       LoadRoot(Heap::kOnePointerFillerMapRootIndex));
    809   address.Bind(BitcastWordToTagged(
    810       IntPtrAdd(address.value(), IntPtrConstant(kPointerSize))));
    811   Goto(&merge_address);
    812 
    813   Bind(&doesnt_need_filler);
    814   Goto(&merge_address);
    815 
    816   Bind(&merge_address);
    817   // Update the top.
    818   StoreNoWriteBarrier(MachineType::PointerRepresentation(), top_address,
    819                       IntPtrAdd(top, adjusted_size.value()));
    820   return address.value();
    821 }
    822 
    823 Node* CodeStubAssembler::Allocate(Node* size_in_bytes, AllocationFlags flags) {
    824   Comment("Allocate");
    825   bool const new_space = !(flags & kPretenured);
    826   Node* top_address = ExternalConstant(
    827       new_space
    828           ? ExternalReference::new_space_allocation_top_address(isolate())
    829           : ExternalReference::old_space_allocation_top_address(isolate()));
    830   Node* limit_address = ExternalConstant(
    831       new_space
    832           ? ExternalReference::new_space_allocation_limit_address(isolate())
    833           : ExternalReference::old_space_allocation_limit_address(isolate()));
    834 
    835 #ifdef V8_HOST_ARCH_32_BIT
    836   if (flags & kDoubleAlignment) {
    837     return AllocateRawAligned(size_in_bytes, flags, top_address, limit_address);
    838   }
    839 #endif
    840 
    841   return AllocateRawUnaligned(size_in_bytes, flags, top_address, limit_address);
    842 }
    843 
    844 Node* CodeStubAssembler::Allocate(int size_in_bytes, AllocationFlags flags) {
    845   return CodeStubAssembler::Allocate(IntPtrConstant(size_in_bytes), flags);
    846 }
    847 
    848 Node* CodeStubAssembler::InnerAllocate(Node* previous, Node* offset) {
    849   return BitcastWordToTagged(IntPtrAdd(previous, offset));
    850 }
    851 
    852 Node* CodeStubAssembler::InnerAllocate(Node* previous, int offset) {
    853   return InnerAllocate(previous, IntPtrConstant(offset));
    854 }
    855 
    856 Node* CodeStubAssembler::IsRegularHeapObjectSize(Node* size) {
    857   return UintPtrLessThanOrEqual(size,
    858                                 IntPtrConstant(kMaxRegularHeapObjectSize));
    859 }
    860 
    861 void CodeStubAssembler::BranchIfToBooleanIsTrue(Node* value, Label* if_true,
    862                                                 Label* if_false) {
    863   Label if_valueissmi(this), if_valueisnotsmi(this), if_valueisstring(this),
    864       if_valueisheapnumber(this), if_valueisother(this);
    865 
    866   // Fast check for Boolean {value}s (common case).
    867   GotoIf(WordEqual(value, BooleanConstant(true)), if_true);
    868   GotoIf(WordEqual(value, BooleanConstant(false)), if_false);
    869 
    870   // Check if {value} is a Smi or a HeapObject.
    871   Branch(TaggedIsSmi(value), &if_valueissmi, &if_valueisnotsmi);
    872 
    873   Bind(&if_valueissmi);
    874   {
    875     // The {value} is a Smi, only need to check against zero.
    876     BranchIfSmiEqual(value, SmiConstant(0), if_false, if_true);
    877   }
    878 
    879   Bind(&if_valueisnotsmi);
    880   {
    881     // The {value} is a HeapObject, load its map.
    882     Node* value_map = LoadMap(value);
    883 
    884     // Load the {value}s instance type.
    885     Node* value_instance_type = LoadMapInstanceType(value_map);
    886 
    887     // Dispatch based on the instance type; we distinguish all String instance
    888     // types, the HeapNumber type and everything else.
    889     GotoIf(Word32Equal(value_instance_type, Int32Constant(HEAP_NUMBER_TYPE)),
    890            &if_valueisheapnumber);
    891     Branch(IsStringInstanceType(value_instance_type), &if_valueisstring,
    892            &if_valueisother);
    893 
    894     Bind(&if_valueisstring);
    895     {
    896       // Load the string length field of the {value}.
    897       Node* value_length = LoadObjectField(value, String::kLengthOffset);
    898 
    899       // Check if the {value} is the empty string.
    900       BranchIfSmiEqual(value_length, SmiConstant(0), if_false, if_true);
    901     }
    902 
    903     Bind(&if_valueisheapnumber);
    904     {
    905       // Load the floating point value of {value}.
    906       Node* value_value = LoadObjectField(value, HeapNumber::kValueOffset,
    907                                           MachineType::Float64());
    908 
    909       // Check if the floating point {value} is neither 0.0, -0.0 nor NaN.
    910       Branch(Float64LessThan(Float64Constant(0.0), Float64Abs(value_value)),
    911              if_true, if_false);
    912     }
    913 
    914     Bind(&if_valueisother);
    915     {
    916       // Load the bit field from the {value}s map. The {value} is now either
    917       // Null or Undefined, which have the undetectable bit set (so we always
    918       // return false for those), or a Symbol or Simd128Value, whose maps never
    919       // have the undetectable bit set (so we always return true for those), or
    920       // a JSReceiver, which may or may not have the undetectable bit set.
    921       Node* value_map_bitfield = LoadMapBitField(value_map);
    922       Node* value_map_undetectable = Word32And(
    923           value_map_bitfield, Int32Constant(1 << Map::kIsUndetectable));
    924 
    925       // Check if the {value} is undetectable.
    926       Branch(Word32Equal(value_map_undetectable, Int32Constant(0)), if_true,
    927              if_false);
    928     }
    929   }
    930 }
    931 
    932 compiler::Node* CodeStubAssembler::LoadFromFrame(int offset, MachineType rep) {
    933   Node* frame_pointer = LoadFramePointer();
    934   return Load(rep, frame_pointer, IntPtrConstant(offset));
    935 }
    936 
    937 compiler::Node* CodeStubAssembler::LoadFromParentFrame(int offset,
    938                                                        MachineType rep) {
    939   Node* frame_pointer = LoadParentFramePointer();
    940   return Load(rep, frame_pointer, IntPtrConstant(offset));
    941 }
    942 
    943 Node* CodeStubAssembler::LoadBufferObject(Node* buffer, int offset,
    944                                           MachineType rep) {
    945   return Load(rep, buffer, IntPtrConstant(offset));
    946 }
    947 
    948 Node* CodeStubAssembler::LoadObjectField(Node* object, int offset,
    949                                          MachineType rep) {
    950   return Load(rep, object, IntPtrConstant(offset - kHeapObjectTag));
    951 }
    952 
    953 Node* CodeStubAssembler::LoadObjectField(Node* object, Node* offset,
    954                                          MachineType rep) {
    955   return Load(rep, object, IntPtrSub(offset, IntPtrConstant(kHeapObjectTag)));
    956 }
    957 
    958 Node* CodeStubAssembler::LoadAndUntagObjectField(Node* object, int offset) {
    959   if (Is64()) {
    960 #if V8_TARGET_LITTLE_ENDIAN
    961     offset += kPointerSize / 2;
    962 #endif
    963     return ChangeInt32ToInt64(
    964         LoadObjectField(object, offset, MachineType::Int32()));
    965   } else {
    966     return SmiToWord(LoadObjectField(object, offset, MachineType::AnyTagged()));
    967   }
    968 }
    969 
    970 Node* CodeStubAssembler::LoadAndUntagToWord32ObjectField(Node* object,
    971                                                          int offset) {
    972   if (Is64()) {
    973 #if V8_TARGET_LITTLE_ENDIAN
    974     offset += kPointerSize / 2;
    975 #endif
    976     return LoadObjectField(object, offset, MachineType::Int32());
    977   } else {
    978     return SmiToWord32(
    979         LoadObjectField(object, offset, MachineType::AnyTagged()));
    980   }
    981 }
    982 
    983 Node* CodeStubAssembler::LoadAndUntagSmi(Node* base, int index) {
    984   if (Is64()) {
    985 #if V8_TARGET_LITTLE_ENDIAN
    986     index += kPointerSize / 2;
    987 #endif
    988     return ChangeInt32ToInt64(
    989         Load(MachineType::Int32(), base, IntPtrConstant(index)));
    990   } else {
    991     return SmiToWord(
    992         Load(MachineType::AnyTagged(), base, IntPtrConstant(index)));
    993   }
    994 }
    995 
    996 Node* CodeStubAssembler::LoadAndUntagToWord32Root(
    997     Heap::RootListIndex root_index) {
    998   Node* roots_array_start =
    999       ExternalConstant(ExternalReference::roots_array_start(isolate()));
   1000   int index = root_index * kPointerSize;
   1001   if (Is64()) {
   1002 #if V8_TARGET_LITTLE_ENDIAN
   1003     index += kPointerSize / 2;
   1004 #endif
   1005     return Load(MachineType::Int32(), roots_array_start, IntPtrConstant(index));
   1006   } else {
   1007     return SmiToWord32(Load(MachineType::AnyTagged(), roots_array_start,
   1008                             IntPtrConstant(index)));
   1009   }
   1010 }
   1011 
   1012 Node* CodeStubAssembler::LoadHeapNumberValue(Node* object) {
   1013   return LoadObjectField(object, HeapNumber::kValueOffset,
   1014                          MachineType::Float64());
   1015 }
   1016 
   1017 Node* CodeStubAssembler::LoadMap(Node* object) {
   1018   return LoadObjectField(object, HeapObject::kMapOffset);
   1019 }
   1020 
   1021 Node* CodeStubAssembler::LoadInstanceType(Node* object) {
   1022   return LoadMapInstanceType(LoadMap(object));
   1023 }
   1024 
   1025 Node* CodeStubAssembler::HasInstanceType(Node* object,
   1026                                          InstanceType instance_type) {
   1027   return Word32Equal(LoadInstanceType(object), Int32Constant(instance_type));
   1028 }
   1029 
   1030 Node* CodeStubAssembler::LoadProperties(Node* object) {
   1031   return LoadObjectField(object, JSObject::kPropertiesOffset);
   1032 }
   1033 
   1034 Node* CodeStubAssembler::LoadElements(Node* object) {
   1035   return LoadObjectField(object, JSObject::kElementsOffset);
   1036 }
   1037 
   1038 Node* CodeStubAssembler::LoadJSArrayLength(Node* array) {
   1039   CSA_ASSERT(this, IsJSArray(array));
   1040   return LoadObjectField(array, JSArray::kLengthOffset);
   1041 }
   1042 
   1043 Node* CodeStubAssembler::LoadFixedArrayBaseLength(Node* array) {
   1044   return LoadObjectField(array, FixedArrayBase::kLengthOffset);
   1045 }
   1046 
   1047 Node* CodeStubAssembler::LoadAndUntagFixedArrayBaseLength(Node* array) {
   1048   return LoadAndUntagObjectField(array, FixedArrayBase::kLengthOffset);
   1049 }
   1050 
   1051 Node* CodeStubAssembler::LoadMapBitField(Node* map) {
   1052   CSA_SLOW_ASSERT(this, IsMap(map));
   1053   return LoadObjectField(map, Map::kBitFieldOffset, MachineType::Uint8());
   1054 }
   1055 
   1056 Node* CodeStubAssembler::LoadMapBitField2(Node* map) {
   1057   CSA_SLOW_ASSERT(this, IsMap(map));
   1058   return LoadObjectField(map, Map::kBitField2Offset, MachineType::Uint8());
   1059 }
   1060 
   1061 Node* CodeStubAssembler::LoadMapBitField3(Node* map) {
   1062   CSA_SLOW_ASSERT(this, IsMap(map));
   1063   return LoadObjectField(map, Map::kBitField3Offset, MachineType::Uint32());
   1064 }
   1065 
   1066 Node* CodeStubAssembler::LoadMapInstanceType(Node* map) {
   1067   return LoadObjectField(map, Map::kInstanceTypeOffset, MachineType::Uint8());
   1068 }
   1069 
   1070 Node* CodeStubAssembler::LoadMapElementsKind(Node* map) {
   1071   CSA_SLOW_ASSERT(this, IsMap(map));
   1072   Node* bit_field2 = LoadMapBitField2(map);
   1073   return DecodeWord32<Map::ElementsKindBits>(bit_field2);
   1074 }
   1075 
   1076 Node* CodeStubAssembler::LoadMapDescriptors(Node* map) {
   1077   CSA_SLOW_ASSERT(this, IsMap(map));
   1078   return LoadObjectField(map, Map::kDescriptorsOffset);
   1079 }
   1080 
   1081 Node* CodeStubAssembler::LoadMapPrototype(Node* map) {
   1082   CSA_SLOW_ASSERT(this, IsMap(map));
   1083   return LoadObjectField(map, Map::kPrototypeOffset);
   1084 }
   1085 
   1086 Node* CodeStubAssembler::LoadMapPrototypeInfo(Node* map,
   1087                                               Label* if_no_proto_info) {
   1088   CSA_ASSERT(this, IsMap(map));
   1089   Node* prototype_info =
   1090       LoadObjectField(map, Map::kTransitionsOrPrototypeInfoOffset);
   1091   GotoIf(TaggedIsSmi(prototype_info), if_no_proto_info);
   1092   GotoUnless(WordEqual(LoadMap(prototype_info),
   1093                        LoadRoot(Heap::kPrototypeInfoMapRootIndex)),
   1094              if_no_proto_info);
   1095   return prototype_info;
   1096 }
   1097 
   1098 Node* CodeStubAssembler::LoadMapInstanceSize(Node* map) {
   1099   CSA_SLOW_ASSERT(this, IsMap(map));
   1100   return ChangeUint32ToWord(
   1101       LoadObjectField(map, Map::kInstanceSizeOffset, MachineType::Uint8()));
   1102 }
   1103 
   1104 Node* CodeStubAssembler::LoadMapInobjectProperties(Node* map) {
   1105   CSA_SLOW_ASSERT(this, IsMap(map));
   1106   // See Map::GetInObjectProperties() for details.
   1107   STATIC_ASSERT(LAST_JS_OBJECT_TYPE == LAST_TYPE);
   1108   CSA_ASSERT(this,
   1109              Int32GreaterThanOrEqual(LoadMapInstanceType(map),
   1110                                      Int32Constant(FIRST_JS_OBJECT_TYPE)));
   1111   return ChangeUint32ToWord(LoadObjectField(
   1112       map, Map::kInObjectPropertiesOrConstructorFunctionIndexOffset,
   1113       MachineType::Uint8()));
   1114 }
   1115 
   1116 Node* CodeStubAssembler::LoadMapConstructorFunctionIndex(Node* map) {
   1117   CSA_SLOW_ASSERT(this, IsMap(map));
   1118   // See Map::GetConstructorFunctionIndex() for details.
   1119   STATIC_ASSERT(FIRST_PRIMITIVE_TYPE == FIRST_TYPE);
   1120   CSA_ASSERT(this, Int32LessThanOrEqual(LoadMapInstanceType(map),
   1121                                         Int32Constant(LAST_PRIMITIVE_TYPE)));
   1122   return ChangeUint32ToWord(LoadObjectField(
   1123       map, Map::kInObjectPropertiesOrConstructorFunctionIndexOffset,
   1124       MachineType::Uint8()));
   1125 }
   1126 
   1127 Node* CodeStubAssembler::LoadMapConstructor(Node* map) {
   1128   CSA_SLOW_ASSERT(this, IsMap(map));
   1129   Variable result(this, MachineRepresentation::kTagged);
   1130   result.Bind(LoadObjectField(map, Map::kConstructorOrBackPointerOffset));
   1131 
   1132   Label done(this), loop(this, &result);
   1133   Goto(&loop);
   1134   Bind(&loop);
   1135   {
   1136     GotoIf(TaggedIsSmi(result.value()), &done);
   1137     Node* is_map_type =
   1138         Word32Equal(LoadInstanceType(result.value()), Int32Constant(MAP_TYPE));
   1139     GotoUnless(is_map_type, &done);
   1140     result.Bind(
   1141         LoadObjectField(result.value(), Map::kConstructorOrBackPointerOffset));
   1142     Goto(&loop);
   1143   }
   1144   Bind(&done);
   1145   return result.value();
   1146 }
   1147 
   1148 Node* CodeStubAssembler::LoadNameHashField(Node* name) {
   1149   CSA_ASSERT(this, IsName(name));
   1150   return LoadObjectField(name, Name::kHashFieldOffset, MachineType::Uint32());
   1151 }
   1152 
   1153 Node* CodeStubAssembler::LoadNameHash(Node* name, Label* if_hash_not_computed) {
   1154   Node* hash_field = LoadNameHashField(name);
   1155   if (if_hash_not_computed != nullptr) {
   1156     GotoIf(Word32Equal(
   1157                Word32And(hash_field, Int32Constant(Name::kHashNotComputedMask)),
   1158                Int32Constant(0)),
   1159            if_hash_not_computed);
   1160   }
   1161   return Word32Shr(hash_field, Int32Constant(Name::kHashShift));
   1162 }
   1163 
   1164 Node* CodeStubAssembler::LoadStringLength(Node* object) {
   1165   CSA_ASSERT(this, IsString(object));
   1166   return LoadObjectField(object, String::kLengthOffset);
   1167 }
   1168 
   1169 Node* CodeStubAssembler::LoadJSValueValue(Node* object) {
   1170   CSA_ASSERT(this, IsJSValue(object));
   1171   return LoadObjectField(object, JSValue::kValueOffset);
   1172 }
   1173 
   1174 Node* CodeStubAssembler::LoadWeakCellValueUnchecked(Node* weak_cell) {
   1175   // TODO(ishell): fix callers.
   1176   return LoadObjectField(weak_cell, WeakCell::kValueOffset);
   1177 }
   1178 
   1179 Node* CodeStubAssembler::LoadWeakCellValue(Node* weak_cell, Label* if_cleared) {
   1180   CSA_ASSERT(this, IsWeakCell(weak_cell));
   1181   Node* value = LoadWeakCellValueUnchecked(weak_cell);
   1182   if (if_cleared != nullptr) {
   1183     GotoIf(WordEqual(value, IntPtrConstant(0)), if_cleared);
   1184   }
   1185   return value;
   1186 }
   1187 
   1188 Node* CodeStubAssembler::LoadFixedArrayElement(Node* object, Node* index_node,
   1189                                                int additional_offset,
   1190                                                ParameterMode parameter_mode) {
   1191   int32_t header_size =
   1192       FixedArray::kHeaderSize + additional_offset - kHeapObjectTag;
   1193   Node* offset = ElementOffsetFromIndex(index_node, FAST_HOLEY_ELEMENTS,
   1194                                         parameter_mode, header_size);
   1195   return Load(MachineType::AnyTagged(), object, offset);
   1196 }
   1197 
   1198 Node* CodeStubAssembler::LoadFixedTypedArrayElement(
   1199     Node* data_pointer, Node* index_node, ElementsKind elements_kind,
   1200     ParameterMode parameter_mode) {
   1201   Node* offset =
   1202       ElementOffsetFromIndex(index_node, elements_kind, parameter_mode, 0);
   1203   MachineType type;
   1204   switch (elements_kind) {
   1205     case UINT8_ELEMENTS: /* fall through */
   1206     case UINT8_CLAMPED_ELEMENTS:
   1207       type = MachineType::Uint8();
   1208       break;
   1209     case INT8_ELEMENTS:
   1210       type = MachineType::Int8();
   1211       break;
   1212     case UINT16_ELEMENTS:
   1213       type = MachineType::Uint16();
   1214       break;
   1215     case INT16_ELEMENTS:
   1216       type = MachineType::Int16();
   1217       break;
   1218     case UINT32_ELEMENTS:
   1219       type = MachineType::Uint32();
   1220       break;
   1221     case INT32_ELEMENTS:
   1222       type = MachineType::Int32();
   1223       break;
   1224     case FLOAT32_ELEMENTS:
   1225       type = MachineType::Float32();
   1226       break;
   1227     case FLOAT64_ELEMENTS:
   1228       type = MachineType::Float64();
   1229       break;
   1230     default:
   1231       UNREACHABLE();
   1232   }
   1233   return Load(type, data_pointer, offset);
   1234 }
   1235 
   1236 Node* CodeStubAssembler::LoadAndUntagToWord32FixedArrayElement(
   1237     Node* object, Node* index_node, int additional_offset,
   1238     ParameterMode parameter_mode) {
   1239   int32_t header_size =
   1240       FixedArray::kHeaderSize + additional_offset - kHeapObjectTag;
   1241 #if V8_TARGET_LITTLE_ENDIAN
   1242   if (Is64()) {
   1243     header_size += kPointerSize / 2;
   1244   }
   1245 #endif
   1246   Node* offset = ElementOffsetFromIndex(index_node, FAST_HOLEY_ELEMENTS,
   1247                                         parameter_mode, header_size);
   1248   if (Is64()) {
   1249     return Load(MachineType::Int32(), object, offset);
   1250   } else {
   1251     return SmiToWord32(Load(MachineType::AnyTagged(), object, offset));
   1252   }
   1253 }
   1254 
   1255 Node* CodeStubAssembler::LoadFixedDoubleArrayElement(
   1256     Node* object, Node* index_node, MachineType machine_type,
   1257     int additional_offset, ParameterMode parameter_mode, Label* if_hole) {
   1258   CSA_ASSERT(this, IsFixedDoubleArray(object));
   1259   int32_t header_size =
   1260       FixedDoubleArray::kHeaderSize + additional_offset - kHeapObjectTag;
   1261   Node* offset = ElementOffsetFromIndex(index_node, FAST_HOLEY_DOUBLE_ELEMENTS,
   1262                                         parameter_mode, header_size);
   1263   return LoadDoubleWithHoleCheck(object, offset, if_hole, machine_type);
   1264 }
   1265 
   1266 Node* CodeStubAssembler::LoadDoubleWithHoleCheck(Node* base, Node* offset,
   1267                                                  Label* if_hole,
   1268                                                  MachineType machine_type) {
   1269   if (if_hole) {
   1270     // TODO(ishell): Compare only the upper part for the hole once the
   1271     // compiler is able to fold addition of already complex |offset| with
   1272     // |kIeeeDoubleExponentWordOffset| into one addressing mode.
   1273     if (Is64()) {
   1274       Node* element = Load(MachineType::Uint64(), base, offset);
   1275       GotoIf(Word64Equal(element, Int64Constant(kHoleNanInt64)), if_hole);
   1276     } else {
   1277       Node* element_upper = Load(
   1278           MachineType::Uint32(), base,
   1279           IntPtrAdd(offset, IntPtrConstant(kIeeeDoubleExponentWordOffset)));
   1280       GotoIf(Word32Equal(element_upper, Int32Constant(kHoleNanUpper32)),
   1281              if_hole);
   1282     }
   1283   }
   1284   if (machine_type.IsNone()) {
   1285     // This means the actual value is not needed.
   1286     return nullptr;
   1287   }
   1288   return Load(machine_type, base, offset);
   1289 }
   1290 
   1291 Node* CodeStubAssembler::LoadContextElement(Node* context, int slot_index) {
   1292   int offset = Context::SlotOffset(slot_index);
   1293   return Load(MachineType::AnyTagged(), context, IntPtrConstant(offset));
   1294 }
   1295 
   1296 Node* CodeStubAssembler::LoadContextElement(Node* context, Node* slot_index) {
   1297   Node* offset =
   1298       IntPtrAdd(WordShl(slot_index, kPointerSizeLog2),
   1299                 IntPtrConstant(Context::kHeaderSize - kHeapObjectTag));
   1300   return Load(MachineType::AnyTagged(), context, offset);
   1301 }
   1302 
   1303 Node* CodeStubAssembler::StoreContextElement(Node* context, int slot_index,
   1304                                              Node* value) {
   1305   int offset = Context::SlotOffset(slot_index);
   1306   return Store(MachineRepresentation::kTagged, context, IntPtrConstant(offset),
   1307                value);
   1308 }
   1309 
   1310 Node* CodeStubAssembler::StoreContextElement(Node* context, Node* slot_index,
   1311                                              Node* value) {
   1312   Node* offset =
   1313       IntPtrAdd(WordShl(slot_index, kPointerSizeLog2),
   1314                 IntPtrConstant(Context::kHeaderSize - kHeapObjectTag));
   1315   return Store(MachineRepresentation::kTagged, context, offset, value);
   1316 }
   1317 
   1318 Node* CodeStubAssembler::LoadNativeContext(Node* context) {
   1319   return LoadContextElement(context, Context::NATIVE_CONTEXT_INDEX);
   1320 }
   1321 
   1322 Node* CodeStubAssembler::LoadJSArrayElementsMap(ElementsKind kind,
   1323                                                 Node* native_context) {
   1324   CSA_ASSERT(this, IsNativeContext(native_context));
   1325   return LoadFixedArrayElement(native_context,
   1326                                IntPtrConstant(Context::ArrayMapIndex(kind)));
   1327 }
   1328 
   1329 Node* CodeStubAssembler::StoreHeapNumberValue(Node* object, Node* value) {
   1330   return StoreObjectFieldNoWriteBarrier(object, HeapNumber::kValueOffset, value,
   1331                                         MachineRepresentation::kFloat64);
   1332 }
   1333 
   1334 Node* CodeStubAssembler::StoreObjectField(
   1335     Node* object, int offset, Node* value) {
   1336   return Store(MachineRepresentation::kTagged, object,
   1337                IntPtrConstant(offset - kHeapObjectTag), value);
   1338 }
   1339 
   1340 Node* CodeStubAssembler::StoreObjectField(Node* object, Node* offset,
   1341                                           Node* value) {
   1342   int const_offset;
   1343   if (ToInt32Constant(offset, const_offset)) {
   1344     return StoreObjectField(object, const_offset, value);
   1345   }
   1346   return Store(MachineRepresentation::kTagged, object,
   1347                IntPtrSub(offset, IntPtrConstant(kHeapObjectTag)), value);
   1348 }
   1349 
   1350 Node* CodeStubAssembler::StoreObjectFieldNoWriteBarrier(
   1351     Node* object, int offset, Node* value, MachineRepresentation rep) {
   1352   return StoreNoWriteBarrier(rep, object,
   1353                              IntPtrConstant(offset - kHeapObjectTag), value);
   1354 }
   1355 
   1356 Node* CodeStubAssembler::StoreObjectFieldNoWriteBarrier(
   1357     Node* object, Node* offset, Node* value, MachineRepresentation rep) {
   1358   int const_offset;
   1359   if (ToInt32Constant(offset, const_offset)) {
   1360     return StoreObjectFieldNoWriteBarrier(object, const_offset, value, rep);
   1361   }
   1362   return StoreNoWriteBarrier(
   1363       rep, object, IntPtrSub(offset, IntPtrConstant(kHeapObjectTag)), value);
   1364 }
   1365 
   1366 Node* CodeStubAssembler::StoreMapNoWriteBarrier(Node* object, Node* map) {
   1367   return StoreNoWriteBarrier(
   1368       MachineRepresentation::kTagged, object,
   1369       IntPtrConstant(HeapNumber::kMapOffset - kHeapObjectTag), map);
   1370 }
   1371 
   1372 Node* CodeStubAssembler::StoreObjectFieldRoot(Node* object, int offset,
   1373                                               Heap::RootListIndex root_index) {
   1374   if (Heap::RootIsImmortalImmovable(root_index)) {
   1375     return StoreObjectFieldNoWriteBarrier(object, offset, LoadRoot(root_index));
   1376   } else {
   1377     return StoreObjectField(object, offset, LoadRoot(root_index));
   1378   }
   1379 }
   1380 
   1381 Node* CodeStubAssembler::StoreFixedArrayElement(Node* object, Node* index_node,
   1382                                                 Node* value,
   1383                                                 WriteBarrierMode barrier_mode,
   1384                                                 ParameterMode parameter_mode) {
   1385   DCHECK(barrier_mode == SKIP_WRITE_BARRIER ||
   1386          barrier_mode == UPDATE_WRITE_BARRIER);
   1387   Node* offset =
   1388       ElementOffsetFromIndex(index_node, FAST_HOLEY_ELEMENTS, parameter_mode,
   1389                              FixedArray::kHeaderSize - kHeapObjectTag);
   1390   MachineRepresentation rep = MachineRepresentation::kTagged;
   1391   if (barrier_mode == SKIP_WRITE_BARRIER) {
   1392     return StoreNoWriteBarrier(rep, object, offset, value);
   1393   } else {
   1394     return Store(rep, object, offset, value);
   1395   }
   1396 }
   1397 
   1398 Node* CodeStubAssembler::StoreFixedDoubleArrayElement(
   1399     Node* object, Node* index_node, Node* value, ParameterMode parameter_mode) {
   1400   CSA_ASSERT(this, IsFixedDoubleArray(object));
   1401   Node* offset =
   1402       ElementOffsetFromIndex(index_node, FAST_DOUBLE_ELEMENTS, parameter_mode,
   1403                              FixedArray::kHeaderSize - kHeapObjectTag);
   1404   MachineRepresentation rep = MachineRepresentation::kFloat64;
   1405   return StoreNoWriteBarrier(rep, object, offset, value);
   1406 }
   1407 
   1408 Node* CodeStubAssembler::AllocateHeapNumber(MutableMode mode) {
   1409   Node* result = Allocate(HeapNumber::kSize, kNone);
   1410   Heap::RootListIndex heap_map_index =
   1411       mode == IMMUTABLE ? Heap::kHeapNumberMapRootIndex
   1412                         : Heap::kMutableHeapNumberMapRootIndex;
   1413   Node* map = LoadRoot(heap_map_index);
   1414   StoreMapNoWriteBarrier(result, map);
   1415   return result;
   1416 }
   1417 
   1418 Node* CodeStubAssembler::AllocateHeapNumberWithValue(Node* value,
   1419                                                      MutableMode mode) {
   1420   Node* result = AllocateHeapNumber(mode);
   1421   StoreHeapNumberValue(result, value);
   1422   return result;
   1423 }
   1424 
   1425 Node* CodeStubAssembler::AllocateSeqOneByteString(int length,
   1426                                                   AllocationFlags flags) {
   1427   Comment("AllocateSeqOneByteString");
   1428   Node* result = Allocate(SeqOneByteString::SizeFor(length), flags);
   1429   DCHECK(Heap::RootIsImmortalImmovable(Heap::kOneByteStringMapRootIndex));
   1430   StoreMapNoWriteBarrier(result, LoadRoot(Heap::kOneByteStringMapRootIndex));
   1431   StoreObjectFieldNoWriteBarrier(result, SeqOneByteString::kLengthOffset,
   1432                                  SmiConstant(Smi::FromInt(length)));
   1433   StoreObjectFieldNoWriteBarrier(result, SeqOneByteString::kHashFieldOffset,
   1434                                  IntPtrConstant(String::kEmptyHashField),
   1435                                  MachineRepresentation::kWord32);
   1436   return result;
   1437 }
   1438 
   1439 Node* CodeStubAssembler::AllocateSeqOneByteString(Node* context, Node* length,
   1440                                                   ParameterMode mode,
   1441                                                   AllocationFlags flags) {
   1442   Comment("AllocateSeqOneByteString");
   1443   Variable var_result(this, MachineRepresentation::kTagged);
   1444 
   1445   // Compute the SeqOneByteString size and check if it fits into new space.
   1446   Label if_sizeissmall(this), if_notsizeissmall(this, Label::kDeferred),
   1447       if_join(this);
   1448   Node* raw_size = GetArrayAllocationSize(
   1449       length, UINT8_ELEMENTS, mode,
   1450       SeqOneByteString::kHeaderSize + kObjectAlignmentMask);
   1451   Node* size = WordAnd(raw_size, IntPtrConstant(~kObjectAlignmentMask));
   1452   Branch(IntPtrLessThanOrEqual(size, IntPtrConstant(kMaxRegularHeapObjectSize)),
   1453          &if_sizeissmall, &if_notsizeissmall);
   1454 
   1455   Bind(&if_sizeissmall);
   1456   {
   1457     // Just allocate the SeqOneByteString in new space.
   1458     Node* result = Allocate(size, flags);
   1459     DCHECK(Heap::RootIsImmortalImmovable(Heap::kOneByteStringMapRootIndex));
   1460     StoreMapNoWriteBarrier(result, LoadRoot(Heap::kOneByteStringMapRootIndex));
   1461     StoreObjectFieldNoWriteBarrier(
   1462         result, SeqOneByteString::kLengthOffset,
   1463         mode == SMI_PARAMETERS ? length : SmiFromWord(length));
   1464     StoreObjectFieldNoWriteBarrier(result, SeqOneByteString::kHashFieldOffset,
   1465                                    IntPtrConstant(String::kEmptyHashField),
   1466                                    MachineRepresentation::kWord32);
   1467     var_result.Bind(result);
   1468     Goto(&if_join);
   1469   }
   1470 
   1471   Bind(&if_notsizeissmall);
   1472   {
   1473     // We might need to allocate in large object space, go to the runtime.
   1474     Node* result =
   1475         CallRuntime(Runtime::kAllocateSeqOneByteString, context,
   1476                     mode == SMI_PARAMETERS ? length : SmiFromWord(length));
   1477     var_result.Bind(result);
   1478     Goto(&if_join);
   1479   }
   1480 
   1481   Bind(&if_join);
   1482   return var_result.value();
   1483 }
   1484 
   1485 Node* CodeStubAssembler::AllocateSeqTwoByteString(int length,
   1486                                                   AllocationFlags flags) {
   1487   Comment("AllocateSeqTwoByteString");
   1488   Node* result = Allocate(SeqTwoByteString::SizeFor(length), flags);
   1489   DCHECK(Heap::RootIsImmortalImmovable(Heap::kStringMapRootIndex));
   1490   StoreMapNoWriteBarrier(result, LoadRoot(Heap::kStringMapRootIndex));
   1491   StoreObjectFieldNoWriteBarrier(result, SeqTwoByteString::kLengthOffset,
   1492                                  SmiConstant(Smi::FromInt(length)));
   1493   StoreObjectFieldNoWriteBarrier(result, SeqTwoByteString::kHashFieldOffset,
   1494                                  IntPtrConstant(String::kEmptyHashField),
   1495                                  MachineRepresentation::kWord32);
   1496   return result;
   1497 }
   1498 
   1499 Node* CodeStubAssembler::AllocateSeqTwoByteString(Node* context, Node* length,
   1500                                                   ParameterMode mode,
   1501                                                   AllocationFlags flags) {
   1502   Comment("AllocateSeqTwoByteString");
   1503   Variable var_result(this, MachineRepresentation::kTagged);
   1504 
   1505   // Compute the SeqTwoByteString size and check if it fits into new space.
   1506   Label if_sizeissmall(this), if_notsizeissmall(this, Label::kDeferred),
   1507       if_join(this);
   1508   Node* raw_size = GetArrayAllocationSize(
   1509       length, UINT16_ELEMENTS, mode,
   1510       SeqOneByteString::kHeaderSize + kObjectAlignmentMask);
   1511   Node* size = WordAnd(raw_size, IntPtrConstant(~kObjectAlignmentMask));
   1512   Branch(IntPtrLessThanOrEqual(size, IntPtrConstant(kMaxRegularHeapObjectSize)),
   1513          &if_sizeissmall, &if_notsizeissmall);
   1514 
   1515   Bind(&if_sizeissmall);
   1516   {
   1517     // Just allocate the SeqTwoByteString in new space.
   1518     Node* result = Allocate(size, flags);
   1519     DCHECK(Heap::RootIsImmortalImmovable(Heap::kStringMapRootIndex));
   1520     StoreMapNoWriteBarrier(result, LoadRoot(Heap::kStringMapRootIndex));
   1521     StoreObjectFieldNoWriteBarrier(
   1522         result, SeqTwoByteString::kLengthOffset,
   1523         mode == SMI_PARAMETERS ? length : SmiFromWord(length));
   1524     StoreObjectFieldNoWriteBarrier(result, SeqTwoByteString::kHashFieldOffset,
   1525                                    IntPtrConstant(String::kEmptyHashField),
   1526                                    MachineRepresentation::kWord32);
   1527     var_result.Bind(result);
   1528     Goto(&if_join);
   1529   }
   1530 
   1531   Bind(&if_notsizeissmall);
   1532   {
   1533     // We might need to allocate in large object space, go to the runtime.
   1534     Node* result =
   1535         CallRuntime(Runtime::kAllocateSeqTwoByteString, context,
   1536                     mode == SMI_PARAMETERS ? length : SmiFromWord(length));
   1537     var_result.Bind(result);
   1538     Goto(&if_join);
   1539   }
   1540 
   1541   Bind(&if_join);
   1542   return var_result.value();
   1543 }
   1544 
   1545 Node* CodeStubAssembler::AllocateSlicedString(
   1546     Heap::RootListIndex map_root_index, Node* length, Node* parent,
   1547     Node* offset) {
   1548   CSA_ASSERT(this, TaggedIsSmi(length));
   1549   Node* result = Allocate(SlicedString::kSize);
   1550   Node* map = LoadRoot(map_root_index);
   1551   DCHECK(Heap::RootIsImmortalImmovable(map_root_index));
   1552   StoreMapNoWriteBarrier(result, map);
   1553   StoreObjectFieldNoWriteBarrier(result, SlicedString::kLengthOffset, length,
   1554                                  MachineRepresentation::kTagged);
   1555   StoreObjectFieldNoWriteBarrier(result, SlicedString::kHashFieldOffset,
   1556                                  Int32Constant(String::kEmptyHashField),
   1557                                  MachineRepresentation::kWord32);
   1558   StoreObjectFieldNoWriteBarrier(result, SlicedString::kParentOffset, parent,
   1559                                  MachineRepresentation::kTagged);
   1560   StoreObjectFieldNoWriteBarrier(result, SlicedString::kOffsetOffset, offset,
   1561                                  MachineRepresentation::kTagged);
   1562   return result;
   1563 }
   1564 
   1565 Node* CodeStubAssembler::AllocateSlicedOneByteString(Node* length, Node* parent,
   1566                                                      Node* offset) {
   1567   return AllocateSlicedString(Heap::kSlicedOneByteStringMapRootIndex, length,
   1568                               parent, offset);
   1569 }
   1570 
   1571 Node* CodeStubAssembler::AllocateSlicedTwoByteString(Node* length, Node* parent,
   1572                                                      Node* offset) {
   1573   return AllocateSlicedString(Heap::kSlicedStringMapRootIndex, length, parent,
   1574                               offset);
   1575 }
   1576 
   1577 Node* CodeStubAssembler::AllocateConsString(Heap::RootListIndex map_root_index,
   1578                                             Node* length, Node* first,
   1579                                             Node* second,
   1580                                             AllocationFlags flags) {
   1581   CSA_ASSERT(this, TaggedIsSmi(length));
   1582   Node* result = Allocate(ConsString::kSize, flags);
   1583   Node* map = LoadRoot(map_root_index);
   1584   DCHECK(Heap::RootIsImmortalImmovable(map_root_index));
   1585   StoreMapNoWriteBarrier(result, map);
   1586   StoreObjectFieldNoWriteBarrier(result, ConsString::kLengthOffset, length,
   1587                                  MachineRepresentation::kTagged);
   1588   StoreObjectFieldNoWriteBarrier(result, ConsString::kHashFieldOffset,
   1589                                  Int32Constant(String::kEmptyHashField),
   1590                                  MachineRepresentation::kWord32);
   1591   bool const new_space = !(flags & kPretenured);
   1592   if (new_space) {
   1593     StoreObjectFieldNoWriteBarrier(result, ConsString::kFirstOffset, first,
   1594                                    MachineRepresentation::kTagged);
   1595     StoreObjectFieldNoWriteBarrier(result, ConsString::kSecondOffset, second,
   1596                                    MachineRepresentation::kTagged);
   1597   } else {
   1598     StoreObjectField(result, ConsString::kFirstOffset, first);
   1599     StoreObjectField(result, ConsString::kSecondOffset, second);
   1600   }
   1601   return result;
   1602 }
   1603 
   1604 Node* CodeStubAssembler::AllocateOneByteConsString(Node* length, Node* first,
   1605                                                    Node* second,
   1606                                                    AllocationFlags flags) {
   1607   return AllocateConsString(Heap::kConsOneByteStringMapRootIndex, length, first,
   1608                             second, flags);
   1609 }
   1610 
   1611 Node* CodeStubAssembler::AllocateTwoByteConsString(Node* length, Node* first,
   1612                                                    Node* second,
   1613                                                    AllocationFlags flags) {
   1614   return AllocateConsString(Heap::kConsStringMapRootIndex, length, first,
   1615                             second, flags);
   1616 }
   1617 
   1618 Node* CodeStubAssembler::NewConsString(Node* context, Node* length, Node* left,
   1619                                        Node* right, AllocationFlags flags) {
   1620   CSA_ASSERT(this, TaggedIsSmi(length));
   1621   // Added string can be a cons string.
   1622   Comment("Allocating ConsString");
   1623   Node* left_instance_type = LoadInstanceType(left);
   1624   Node* right_instance_type = LoadInstanceType(right);
   1625 
   1626   // Compute intersection and difference of instance types.
   1627   Node* anded_instance_types = WordAnd(left_instance_type, right_instance_type);
   1628   Node* xored_instance_types = WordXor(left_instance_type, right_instance_type);
   1629 
   1630   // We create a one-byte cons string if
   1631   // 1. both strings are one-byte, or
   1632   // 2. at least one of the strings is two-byte, but happens to contain only
   1633   //    one-byte characters.
   1634   // To do this, we check
   1635   // 1. if both strings are one-byte, or if the one-byte data hint is set in
   1636   //    both strings, or
   1637   // 2. if one of the strings has the one-byte data hint set and the other
   1638   //    string is one-byte.
   1639   STATIC_ASSERT(kOneByteStringTag != 0);
   1640   STATIC_ASSERT(kOneByteDataHintTag != 0);
   1641   Label one_byte_map(this);
   1642   Label two_byte_map(this);
   1643   Variable result(this, MachineRepresentation::kTagged);
   1644   Label done(this, &result);
   1645   GotoIf(WordNotEqual(
   1646              WordAnd(anded_instance_types,
   1647                      IntPtrConstant(kStringEncodingMask | kOneByteDataHintTag)),
   1648              IntPtrConstant(0)),
   1649          &one_byte_map);
   1650   Branch(WordNotEqual(WordAnd(xored_instance_types,
   1651                               IntPtrConstant(kStringEncodingMask |
   1652                                              kOneByteDataHintMask)),
   1653                       IntPtrConstant(kOneByteStringTag | kOneByteDataHintTag)),
   1654          &two_byte_map, &one_byte_map);
   1655 
   1656   Bind(&one_byte_map);
   1657   Comment("One-byte ConsString");
   1658   result.Bind(AllocateOneByteConsString(length, left, right, flags));
   1659   Goto(&done);
   1660 
   1661   Bind(&two_byte_map);
   1662   Comment("Two-byte ConsString");
   1663   result.Bind(AllocateTwoByteConsString(length, left, right, flags));
   1664   Goto(&done);
   1665 
   1666   Bind(&done);
   1667 
   1668   return result.value();
   1669 }
   1670 
   1671 Node* CodeStubAssembler::AllocateRegExpResult(Node* context, Node* length,
   1672                                               Node* index, Node* input) {
   1673   Node* const max_length =
   1674       SmiConstant(Smi::FromInt(JSArray::kInitialMaxFastElementArray));
   1675   CSA_ASSERT(this, SmiLessThanOrEqual(length, max_length));
   1676   USE(max_length);
   1677 
   1678   // Allocate the JSRegExpResult.
   1679   // TODO(jgruber): Fold JSArray and FixedArray allocations, then remove
   1680   // unneeded store of elements.
   1681   Node* const result = Allocate(JSRegExpResult::kSize);
   1682 
   1683   // TODO(jgruber): Store map as Heap constant?
   1684   Node* const native_context = LoadNativeContext(context);
   1685   Node* const map =
   1686       LoadContextElement(native_context, Context::REGEXP_RESULT_MAP_INDEX);
   1687   StoreMapNoWriteBarrier(result, map);
   1688 
   1689   // Initialize the header before allocating the elements.
   1690   Node* const empty_array = EmptyFixedArrayConstant();
   1691   DCHECK(Heap::RootIsImmortalImmovable(Heap::kEmptyFixedArrayRootIndex));
   1692   StoreObjectFieldNoWriteBarrier(result, JSArray::kPropertiesOffset,
   1693                                  empty_array);
   1694   StoreObjectFieldNoWriteBarrier(result, JSArray::kElementsOffset, empty_array);
   1695   StoreObjectFieldNoWriteBarrier(result, JSArray::kLengthOffset, length);
   1696 
   1697   StoreObjectFieldNoWriteBarrier(result, JSRegExpResult::kIndexOffset, index);
   1698   StoreObjectField(result, JSRegExpResult::kInputOffset, input);
   1699 
   1700   Node* const zero = IntPtrConstant(0);
   1701   Node* const length_intptr = SmiUntag(length);
   1702   const ElementsKind elements_kind = FAST_ELEMENTS;
   1703   const ParameterMode parameter_mode = INTPTR_PARAMETERS;
   1704 
   1705   Node* const elements =
   1706       AllocateFixedArray(elements_kind, length_intptr, parameter_mode);
   1707   StoreObjectField(result, JSArray::kElementsOffset, elements);
   1708 
   1709   // Fill in the elements with undefined.
   1710   FillFixedArrayWithValue(elements_kind, elements, zero, length_intptr,
   1711                           Heap::kUndefinedValueRootIndex, parameter_mode);
   1712 
   1713   return result;
   1714 }
   1715 
   1716 Node* CodeStubAssembler::AllocateNameDictionary(int at_least_space_for) {
   1717   return AllocateNameDictionary(IntPtrConstant(at_least_space_for));
   1718 }
   1719 
   1720 Node* CodeStubAssembler::AllocateNameDictionary(Node* at_least_space_for) {
   1721   CSA_ASSERT(this, UintPtrLessThanOrEqual(
   1722                        at_least_space_for,
   1723                        IntPtrConstant(NameDictionary::kMaxCapacity)));
   1724 
   1725   Node* capacity = HashTableComputeCapacity(at_least_space_for);
   1726   CSA_ASSERT(this, WordIsPowerOfTwo(capacity));
   1727 
   1728   Node* length = EntryToIndex<NameDictionary>(capacity);
   1729   Node* store_size =
   1730       IntPtrAddFoldConstants(WordShl(length, IntPtrConstant(kPointerSizeLog2)),
   1731                              IntPtrConstant(NameDictionary::kHeaderSize));
   1732 
   1733   Node* result = Allocate(store_size);
   1734   Comment("Initialize NameDictionary");
   1735   // Initialize FixedArray fields.
   1736   StoreObjectFieldRoot(result, FixedArray::kMapOffset,
   1737                        Heap::kHashTableMapRootIndex);
   1738   StoreObjectFieldNoWriteBarrier(result, FixedArray::kLengthOffset,
   1739                                  SmiFromWord(length));
   1740   // Initialized HashTable fields.
   1741   Node* zero = SmiConstant(0);
   1742   StoreFixedArrayElement(result, NameDictionary::kNumberOfElementsIndex, zero,
   1743                          SKIP_WRITE_BARRIER);
   1744   StoreFixedArrayElement(result, NameDictionary::kNumberOfDeletedElementsIndex,
   1745                          zero, SKIP_WRITE_BARRIER);
   1746   StoreFixedArrayElement(result, NameDictionary::kCapacityIndex,
   1747                          SmiTag(capacity), SKIP_WRITE_BARRIER);
   1748   // Initialize Dictionary fields.
   1749   Node* filler = LoadRoot(Heap::kUndefinedValueRootIndex);
   1750   StoreFixedArrayElement(result, NameDictionary::kMaxNumberKeyIndex, filler,
   1751                          SKIP_WRITE_BARRIER);
   1752   StoreFixedArrayElement(result, NameDictionary::kNextEnumerationIndexIndex,
   1753                          SmiConstant(PropertyDetails::kInitialIndex),
   1754                          SKIP_WRITE_BARRIER);
   1755 
   1756   // Initialize NameDictionary elements.
   1757   result = BitcastTaggedToWord(result);
   1758   Node* start_address = IntPtrAdd(
   1759       result, IntPtrConstant(NameDictionary::OffsetOfElementAt(
   1760                                  NameDictionary::kElementsStartIndex) -
   1761                              kHeapObjectTag));
   1762   Node* end_address = IntPtrAdd(
   1763       result,
   1764       IntPtrSubFoldConstants(store_size, IntPtrConstant(kHeapObjectTag)));
   1765   StoreFieldsNoWriteBarrier(start_address, end_address, filler);
   1766   return result;
   1767 }
   1768 
   1769 Node* CodeStubAssembler::AllocateJSObjectFromMap(Node* map, Node* properties,
   1770                                                  Node* elements) {
   1771   CSA_ASSERT(this, IsMap(map));
   1772   Node* size =
   1773       IntPtrMul(LoadMapInstanceSize(map), IntPtrConstant(kPointerSize));
   1774   CSA_ASSERT(this, IsRegularHeapObjectSize(size));
   1775   Node* object = Allocate(size);
   1776   StoreMapNoWriteBarrier(object, map);
   1777   InitializeJSObjectFromMap(object, map, size, properties, elements);
   1778   return object;
   1779 }
   1780 
   1781 void CodeStubAssembler::InitializeJSObjectFromMap(Node* object, Node* map,
   1782                                                   Node* size, Node* properties,
   1783                                                   Node* elements) {
   1784   // This helper assumes that the object is in new-space, as guarded by the
   1785   // check in AllocatedJSObjectFromMap.
   1786   if (properties == nullptr) {
   1787     CSA_ASSERT(this, Word32BinaryNot(IsDictionaryMap((map))));
   1788     StoreObjectFieldRoot(object, JSObject::kPropertiesOffset,
   1789                          Heap::kEmptyFixedArrayRootIndex);
   1790   } else {
   1791     StoreObjectFieldNoWriteBarrier(object, JSObject::kPropertiesOffset,
   1792                                    properties);
   1793   }
   1794   if (elements == nullptr) {
   1795     StoreObjectFieldRoot(object, JSObject::kElementsOffset,
   1796                          Heap::kEmptyFixedArrayRootIndex);
   1797   } else {
   1798     StoreObjectFieldNoWriteBarrier(object, JSObject::kElementsOffset, elements);
   1799   }
   1800   InitializeJSObjectBody(object, map, size, JSObject::kHeaderSize);
   1801 }
   1802 
   1803 void CodeStubAssembler::InitializeJSObjectBody(Node* object, Node* map,
   1804                                                Node* size, int start_offset) {
   1805   // TODO(cbruni): activate in-object slack tracking machinery.
   1806   Comment("InitializeJSObjectBody");
   1807   Node* filler = LoadRoot(Heap::kUndefinedValueRootIndex);
   1808   // Calculate the untagged field addresses.
   1809   Node* start_address =
   1810       IntPtrAdd(object, IntPtrConstant(start_offset - kHeapObjectTag));
   1811   Node* end_address =
   1812       IntPtrSub(IntPtrAdd(object, size), IntPtrConstant(kHeapObjectTag));
   1813   StoreFieldsNoWriteBarrier(start_address, end_address, filler);
   1814 }
   1815 
   1816 void CodeStubAssembler::StoreFieldsNoWriteBarrier(Node* start_address,
   1817                                                   Node* end_address,
   1818                                                   Node* value) {
   1819   Comment("StoreFieldsNoWriteBarrier");
   1820   CSA_ASSERT(this, WordIsWordAligned(start_address));
   1821   CSA_ASSERT(this, WordIsWordAligned(end_address));
   1822   BuildFastLoop(
   1823       MachineType::PointerRepresentation(), start_address, end_address,
   1824       [value](CodeStubAssembler* a, Node* current) {
   1825         a->StoreNoWriteBarrier(MachineRepresentation::kTagged, current, value);
   1826       },
   1827       kPointerSize, IndexAdvanceMode::kPost);
   1828 }
   1829 
   1830 Node* CodeStubAssembler::AllocateUninitializedJSArrayWithoutElements(
   1831     ElementsKind kind, Node* array_map, Node* length, Node* allocation_site) {
   1832   Comment("begin allocation of JSArray without elements");
   1833   int base_size = JSArray::kSize;
   1834   if (allocation_site != nullptr) {
   1835     base_size += AllocationMemento::kSize;
   1836   }
   1837 
   1838   Node* size = IntPtrConstant(base_size);
   1839   Node* array = AllocateUninitializedJSArray(kind, array_map, length,
   1840                                              allocation_site, size);
   1841   return array;
   1842 }
   1843 
   1844 std::pair<Node*, Node*>
   1845 CodeStubAssembler::AllocateUninitializedJSArrayWithElements(
   1846     ElementsKind kind, Node* array_map, Node* length, Node* allocation_site,
   1847     Node* capacity, ParameterMode capacity_mode) {
   1848   Comment("begin allocation of JSArray with elements");
   1849   int base_size = JSArray::kSize;
   1850 
   1851   if (allocation_site != nullptr) {
   1852     base_size += AllocationMemento::kSize;
   1853   }
   1854 
   1855   int elements_offset = base_size;
   1856 
   1857   // Compute space for elements
   1858   base_size += FixedArray::kHeaderSize;
   1859   Node* size = ElementOffsetFromIndex(capacity, kind, capacity_mode, base_size);
   1860 
   1861   Node* array = AllocateUninitializedJSArray(kind, array_map, length,
   1862                                              allocation_site, size);
   1863 
   1864   // The bitcast here is safe because InnerAllocate doesn't actually allocate.
   1865   Node* elements = InnerAllocate(BitcastTaggedToWord(array), elements_offset);
   1866   StoreObjectField(array, JSObject::kElementsOffset, elements);
   1867 
   1868   return {array, elements};
   1869 }
   1870 
   1871 Node* CodeStubAssembler::AllocateUninitializedJSArray(ElementsKind kind,
   1872                                                       Node* array_map,
   1873                                                       Node* length,
   1874                                                       Node* allocation_site,
   1875                                                       Node* size_in_bytes) {
   1876   Node* array = Allocate(size_in_bytes);
   1877 
   1878   Comment("write JSArray headers");
   1879   StoreMapNoWriteBarrier(array, array_map);
   1880 
   1881   StoreObjectFieldNoWriteBarrier(array, JSArray::kLengthOffset, length);
   1882 
   1883   StoreObjectFieldRoot(array, JSArray::kPropertiesOffset,
   1884                        Heap::kEmptyFixedArrayRootIndex);
   1885 
   1886   if (allocation_site != nullptr) {
   1887     InitializeAllocationMemento(array, JSArray::kSize, allocation_site);
   1888   }
   1889   return array;
   1890 }
   1891 
   1892 Node* CodeStubAssembler::AllocateJSArray(ElementsKind kind, Node* array_map,
   1893                                          Node* capacity, Node* length,
   1894                                          Node* allocation_site,
   1895                                          ParameterMode capacity_mode) {
   1896   bool is_double = IsFastDoubleElementsKind(kind);
   1897 
   1898   // Allocate both array and elements object, and initialize the JSArray.
   1899   Node *array, *elements;
   1900   std::tie(array, elements) = AllocateUninitializedJSArrayWithElements(
   1901       kind, array_map, length, allocation_site, capacity, capacity_mode);
   1902   // Setup elements object.
   1903   Heap* heap = isolate()->heap();
   1904   Handle<Map> elements_map(is_double ? heap->fixed_double_array_map()
   1905                                      : heap->fixed_array_map());
   1906   StoreMapNoWriteBarrier(elements, HeapConstant(elements_map));
   1907   StoreObjectFieldNoWriteBarrier(elements, FixedArray::kLengthOffset,
   1908                                  TagParameter(capacity, capacity_mode));
   1909 
   1910   // Fill in the elements with holes.
   1911   FillFixedArrayWithValue(
   1912       kind, elements, capacity_mode == SMI_PARAMETERS ? SmiConstant(Smi::kZero)
   1913                                                       : IntPtrConstant(0),
   1914       capacity, Heap::kTheHoleValueRootIndex, capacity_mode);
   1915 
   1916   return array;
   1917 }
   1918 
   1919 Node* CodeStubAssembler::AllocateFixedArray(ElementsKind kind,
   1920                                             Node* capacity_node,
   1921                                             ParameterMode mode,
   1922                                             AllocationFlags flags) {
   1923   CSA_ASSERT(this,
   1924              IntPtrGreaterThan(capacity_node, IntPtrOrSmiConstant(0, mode)));
   1925   Node* total_size = GetFixedArrayAllocationSize(capacity_node, kind, mode);
   1926 
   1927   // Allocate both array and elements object, and initialize the JSArray.
   1928   Node* array = Allocate(total_size, flags);
   1929   Heap* heap = isolate()->heap();
   1930   Handle<Map> map(IsFastDoubleElementsKind(kind)
   1931                       ? heap->fixed_double_array_map()
   1932                       : heap->fixed_array_map());
   1933   if (flags & kPretenured) {
   1934     StoreObjectField(array, JSObject::kMapOffset, HeapConstant(map));
   1935   } else {
   1936     StoreMapNoWriteBarrier(array, HeapConstant(map));
   1937   }
   1938   StoreObjectFieldNoWriteBarrier(array, FixedArray::kLengthOffset,
   1939                                  TagParameter(capacity_node, mode));
   1940   return array;
   1941 }
   1942 
   1943 void CodeStubAssembler::FillFixedArrayWithValue(
   1944     ElementsKind kind, Node* array, Node* from_node, Node* to_node,
   1945     Heap::RootListIndex value_root_index, ParameterMode mode) {
   1946   bool is_double = IsFastDoubleElementsKind(kind);
   1947   DCHECK(value_root_index == Heap::kTheHoleValueRootIndex ||
   1948          value_root_index == Heap::kUndefinedValueRootIndex);
   1949   DCHECK_IMPLIES(is_double, value_root_index == Heap::kTheHoleValueRootIndex);
   1950   STATIC_ASSERT(kHoleNanLower32 == kHoleNanUpper32);
   1951   Node* double_hole =
   1952       Is64() ? Int64Constant(kHoleNanInt64) : Int32Constant(kHoleNanLower32);
   1953   Node* value = LoadRoot(value_root_index);
   1954 
   1955   BuildFastFixedArrayForEach(
   1956       array, kind, from_node, to_node,
   1957       [value, is_double, double_hole](CodeStubAssembler* assembler, Node* array,
   1958                                       Node* offset) {
   1959         if (is_double) {
   1960           // Don't use doubles to store the hole double, since manipulating the
   1961           // signaling NaN used for the hole in C++, e.g. with bit_cast, will
   1962           // change its value on ia32 (the x87 stack is used to return values
   1963           // and stores to the stack silently clear the signalling bit).
   1964           //
   1965           // TODO(danno): When we have a Float32/Float64 wrapper class that
   1966           // preserves double bits during manipulation, remove this code/change
   1967           // this to an indexed Float64 store.
   1968           if (assembler->Is64()) {
   1969             assembler->StoreNoWriteBarrier(MachineRepresentation::kWord64,
   1970                                            array, offset, double_hole);
   1971           } else {
   1972             assembler->StoreNoWriteBarrier(MachineRepresentation::kWord32,
   1973                                            array, offset, double_hole);
   1974             assembler->StoreNoWriteBarrier(
   1975                 MachineRepresentation::kWord32, array,
   1976                 assembler->IntPtrAdd(offset,
   1977                                      assembler->IntPtrConstant(kPointerSize)),
   1978                 double_hole);
   1979           }
   1980         } else {
   1981           assembler->StoreNoWriteBarrier(MachineRepresentation::kTagged, array,
   1982                                          offset, value);
   1983         }
   1984       },
   1985       mode);
   1986 }
   1987 
   1988 void CodeStubAssembler::CopyFixedArrayElements(
   1989     ElementsKind from_kind, Node* from_array, ElementsKind to_kind,
   1990     Node* to_array, Node* element_count, Node* capacity,
   1991     WriteBarrierMode barrier_mode, ParameterMode mode) {
   1992   STATIC_ASSERT(FixedArray::kHeaderSize == FixedDoubleArray::kHeaderSize);
   1993   const int first_element_offset = FixedArray::kHeaderSize - kHeapObjectTag;
   1994   Comment("[ CopyFixedArrayElements");
   1995 
   1996   // Typed array elements are not supported.
   1997   DCHECK(!IsFixedTypedArrayElementsKind(from_kind));
   1998   DCHECK(!IsFixedTypedArrayElementsKind(to_kind));
   1999 
   2000   Label done(this);
   2001   bool from_double_elements = IsFastDoubleElementsKind(from_kind);
   2002   bool to_double_elements = IsFastDoubleElementsKind(to_kind);
   2003   bool element_size_matches =
   2004       Is64() ||
   2005       IsFastDoubleElementsKind(from_kind) == IsFastDoubleElementsKind(to_kind);
   2006   bool doubles_to_objects_conversion =
   2007       IsFastDoubleElementsKind(from_kind) && IsFastObjectElementsKind(to_kind);
   2008   bool needs_write_barrier =
   2009       doubles_to_objects_conversion || (barrier_mode == UPDATE_WRITE_BARRIER &&
   2010                                         IsFastObjectElementsKind(to_kind));
   2011   Node* double_hole =
   2012       Is64() ? Int64Constant(kHoleNanInt64) : Int32Constant(kHoleNanLower32);
   2013 
   2014   if (doubles_to_objects_conversion) {
   2015     // If the copy might trigger a GC, make sure that the FixedArray is
   2016     // pre-initialized with holes to make sure that it's always in a
   2017     // consistent state.
   2018     FillFixedArrayWithValue(to_kind, to_array, IntPtrOrSmiConstant(0, mode),
   2019                             capacity, Heap::kTheHoleValueRootIndex, mode);
   2020   } else if (element_count != capacity) {
   2021     FillFixedArrayWithValue(to_kind, to_array, element_count, capacity,
   2022                             Heap::kTheHoleValueRootIndex, mode);
   2023   }
   2024 
   2025   Node* limit_offset = ElementOffsetFromIndex(
   2026       IntPtrOrSmiConstant(0, mode), from_kind, mode, first_element_offset);
   2027   Variable var_from_offset(this, MachineType::PointerRepresentation());
   2028   var_from_offset.Bind(ElementOffsetFromIndex(element_count, from_kind, mode,
   2029                                               first_element_offset));
   2030   // This second variable is used only when the element sizes of source and
   2031   // destination arrays do not match.
   2032   Variable var_to_offset(this, MachineType::PointerRepresentation());
   2033   if (element_size_matches) {
   2034     var_to_offset.Bind(var_from_offset.value());
   2035   } else {
   2036     var_to_offset.Bind(ElementOffsetFromIndex(element_count, to_kind, mode,
   2037                                               first_element_offset));
   2038   }
   2039 
   2040   Variable* vars[] = {&var_from_offset, &var_to_offset};
   2041   Label decrement(this, 2, vars);
   2042 
   2043   Branch(WordEqual(var_from_offset.value(), limit_offset), &done, &decrement);
   2044 
   2045   Bind(&decrement);
   2046   {
   2047     Node* from_offset = IntPtrSub(
   2048         var_from_offset.value(),
   2049         IntPtrConstant(from_double_elements ? kDoubleSize : kPointerSize));
   2050     var_from_offset.Bind(from_offset);
   2051 
   2052     Node* to_offset;
   2053     if (element_size_matches) {
   2054       to_offset = from_offset;
   2055     } else {
   2056       to_offset = IntPtrSub(
   2057           var_to_offset.value(),
   2058           IntPtrConstant(to_double_elements ? kDoubleSize : kPointerSize));
   2059       var_to_offset.Bind(to_offset);
   2060     }
   2061 
   2062     Label next_iter(this), store_double_hole(this);
   2063     Label* if_hole;
   2064     if (doubles_to_objects_conversion) {
   2065       // The target elements array is already preinitialized with holes, so we
   2066       // can just proceed with the next iteration.
   2067       if_hole = &next_iter;
   2068     } else if (IsFastDoubleElementsKind(to_kind)) {
   2069       if_hole = &store_double_hole;
   2070     } else {
   2071       // In all the other cases don't check for holes and copy the data as is.
   2072       if_hole = nullptr;
   2073     }
   2074 
   2075     Node* value = LoadElementAndPrepareForStore(
   2076         from_array, var_from_offset.value(), from_kind, to_kind, if_hole);
   2077 
   2078     if (needs_write_barrier) {
   2079       Store(MachineRepresentation::kTagged, to_array, to_offset, value);
   2080     } else if (to_double_elements) {
   2081       StoreNoWriteBarrier(MachineRepresentation::kFloat64, to_array, to_offset,
   2082                           value);
   2083     } else {
   2084       StoreNoWriteBarrier(MachineRepresentation::kTagged, to_array, to_offset,
   2085                           value);
   2086     }
   2087     Goto(&next_iter);
   2088 
   2089     if (if_hole == &store_double_hole) {
   2090       Bind(&store_double_hole);
   2091       // Don't use doubles to store the hole double, since manipulating the
   2092       // signaling NaN used for the hole in C++, e.g. with bit_cast, will
   2093       // change its value on ia32 (the x87 stack is used to return values
   2094       // and stores to the stack silently clear the signalling bit).
   2095       //
   2096       // TODO(danno): When we have a Float32/Float64 wrapper class that
   2097       // preserves double bits during manipulation, remove this code/change
   2098       // this to an indexed Float64 store.
   2099       if (Is64()) {
   2100         StoreNoWriteBarrier(MachineRepresentation::kWord64, to_array, to_offset,
   2101                             double_hole);
   2102       } else {
   2103         StoreNoWriteBarrier(MachineRepresentation::kWord32, to_array, to_offset,
   2104                             double_hole);
   2105         StoreNoWriteBarrier(MachineRepresentation::kWord32, to_array,
   2106                             IntPtrAdd(to_offset, IntPtrConstant(kPointerSize)),
   2107                             double_hole);
   2108       }
   2109       Goto(&next_iter);
   2110     }
   2111 
   2112     Bind(&next_iter);
   2113     Node* compare = WordNotEqual(from_offset, limit_offset);
   2114     Branch(compare, &decrement, &done);
   2115   }
   2116 
   2117   Bind(&done);
   2118   IncrementCounter(isolate()->counters()->inlined_copied_elements(), 1);
   2119   Comment("] CopyFixedArrayElements");
   2120 }
   2121 
   2122 void CodeStubAssembler::CopyStringCharacters(
   2123     compiler::Node* from_string, compiler::Node* to_string,
   2124     compiler::Node* from_index, compiler::Node* to_index,
   2125     compiler::Node* character_count, String::Encoding from_encoding,
   2126     String::Encoding to_encoding, ParameterMode mode) {
   2127   bool from_one_byte = from_encoding == String::ONE_BYTE_ENCODING;
   2128   bool to_one_byte = to_encoding == String::ONE_BYTE_ENCODING;
   2129   DCHECK_IMPLIES(to_one_byte, from_one_byte);
   2130   Comment("CopyStringCharacters %s -> %s",
   2131           from_one_byte ? "ONE_BYTE_ENCODING" : "TWO_BYTE_ENCODING",
   2132           to_one_byte ? "ONE_BYTE_ENCODING" : "TWO_BYTE_ENCODING");
   2133 
   2134   ElementsKind from_kind = from_one_byte ? UINT8_ELEMENTS : UINT16_ELEMENTS;
   2135   ElementsKind to_kind = to_one_byte ? UINT8_ELEMENTS : UINT16_ELEMENTS;
   2136   STATIC_ASSERT(SeqOneByteString::kHeaderSize == SeqTwoByteString::kHeaderSize);
   2137   int header_size = SeqOneByteString::kHeaderSize - kHeapObjectTag;
   2138   Node* from_offset =
   2139       ElementOffsetFromIndex(from_index, from_kind, mode, header_size);
   2140   Node* to_offset =
   2141       ElementOffsetFromIndex(to_index, to_kind, mode, header_size);
   2142   Node* byte_count = ElementOffsetFromIndex(character_count, from_kind, mode);
   2143   Node* limit_offset = IntPtrAddFoldConstants(from_offset, byte_count);
   2144 
   2145   // Prepare the fast loop
   2146   MachineType type =
   2147       from_one_byte ? MachineType::Uint8() : MachineType::Uint16();
   2148   MachineRepresentation rep = to_one_byte ? MachineRepresentation::kWord8
   2149                                           : MachineRepresentation::kWord16;
   2150   int from_increment = 1 << ElementsKindToShiftSize(from_kind);
   2151   int to_increment = 1 << ElementsKindToShiftSize(to_kind);
   2152 
   2153   Variable current_to_offset(this, MachineType::PointerRepresentation());
   2154   VariableList vars({&current_to_offset}, zone());
   2155   current_to_offset.Bind(to_offset);
   2156   int to_index_constant = 0, from_index_constant = 0;
   2157   Smi* to_index_smi = nullptr;
   2158   Smi* from_index_smi = nullptr;
   2159   bool index_same = (from_encoding == to_encoding) &&
   2160                     (from_index == to_index ||
   2161                      (ToInt32Constant(from_index, from_index_constant) &&
   2162                       ToInt32Constant(to_index, to_index_constant) &&
   2163                       from_index_constant == to_index_constant) ||
   2164                      (ToSmiConstant(from_index, from_index_smi) &&
   2165                       ToSmiConstant(to_index, to_index_smi) &&
   2166                       to_index_smi == from_index_smi));
   2167   BuildFastLoop(vars, MachineType::PointerRepresentation(), from_offset,
   2168                 limit_offset,
   2169                 [from_string, to_string, &current_to_offset, to_increment, type,
   2170                  rep, index_same](CodeStubAssembler* assembler, Node* offset) {
   2171                   Node* value = assembler->Load(type, from_string, offset);
   2172                   assembler->StoreNoWriteBarrier(
   2173                       rep, to_string,
   2174                       index_same ? offset : current_to_offset.value(), value);
   2175                   if (!index_same) {
   2176                     current_to_offset.Bind(assembler->IntPtrAdd(
   2177                         current_to_offset.value(),
   2178                         assembler->IntPtrConstant(to_increment)));
   2179                   }
   2180                 },
   2181                 from_increment, IndexAdvanceMode::kPost);
   2182 }
   2183 
   2184 Node* CodeStubAssembler::LoadElementAndPrepareForStore(Node* array,
   2185                                                        Node* offset,
   2186                                                        ElementsKind from_kind,
   2187                                                        ElementsKind to_kind,
   2188                                                        Label* if_hole) {
   2189   if (IsFastDoubleElementsKind(from_kind)) {
   2190     Node* value =
   2191         LoadDoubleWithHoleCheck(array, offset, if_hole, MachineType::Float64());
   2192     if (!IsFastDoubleElementsKind(to_kind)) {
   2193       value = AllocateHeapNumberWithValue(value);
   2194     }
   2195     return value;
   2196 
   2197   } else {
   2198     Node* value = Load(MachineType::AnyTagged(), array, offset);
   2199     if (if_hole) {
   2200       GotoIf(WordEqual(value, TheHoleConstant()), if_hole);
   2201     }
   2202     if (IsFastDoubleElementsKind(to_kind)) {
   2203       if (IsFastSmiElementsKind(from_kind)) {
   2204         value = SmiToFloat64(value);
   2205       } else {
   2206         value = LoadHeapNumberValue(value);
   2207       }
   2208     }
   2209     return value;
   2210   }
   2211 }
   2212 
   2213 Node* CodeStubAssembler::CalculateNewElementsCapacity(Node* old_capacity,
   2214                                                       ParameterMode mode) {
   2215   Node* half_old_capacity = WordShr(old_capacity, IntPtrConstant(1));
   2216   Node* new_capacity = IntPtrAdd(half_old_capacity, old_capacity);
   2217   Node* unconditioned_result =
   2218       IntPtrAdd(new_capacity, IntPtrOrSmiConstant(16, mode));
   2219   if (mode == INTEGER_PARAMETERS || mode == INTPTR_PARAMETERS) {
   2220     return unconditioned_result;
   2221   } else {
   2222     int const kSmiShiftBits = kSmiShiftSize + kSmiTagSize;
   2223     return WordAnd(unconditioned_result,
   2224                    IntPtrConstant(static_cast<size_t>(-1) << kSmiShiftBits));
   2225   }
   2226 }
   2227 
   2228 Node* CodeStubAssembler::TryGrowElementsCapacity(Node* object, Node* elements,
   2229                                                  ElementsKind kind, Node* key,
   2230                                                  Label* bailout) {
   2231   Node* capacity = LoadFixedArrayBaseLength(elements);
   2232 
   2233   ParameterMode mode = OptimalParameterMode();
   2234   capacity = UntagParameter(capacity, mode);
   2235   key = UntagParameter(key, mode);
   2236 
   2237   return TryGrowElementsCapacity(object, elements, kind, key, capacity, mode,
   2238                                  bailout);
   2239 }
   2240 
   2241 Node* CodeStubAssembler::TryGrowElementsCapacity(Node* object, Node* elements,
   2242                                                  ElementsKind kind, Node* key,
   2243                                                  Node* capacity,
   2244                                                  ParameterMode mode,
   2245                                                  Label* bailout) {
   2246   Comment("TryGrowElementsCapacity");
   2247 
   2248   // If the gap growth is too big, fall back to the runtime.
   2249   Node* max_gap = IntPtrOrSmiConstant(JSObject::kMaxGap, mode);
   2250   Node* max_capacity = IntPtrAdd(capacity, max_gap);
   2251   GotoIf(UintPtrGreaterThanOrEqual(key, max_capacity), bailout);
   2252 
   2253   // Calculate the capacity of the new backing store.
   2254   Node* new_capacity = CalculateNewElementsCapacity(
   2255       IntPtrAdd(key, IntPtrOrSmiConstant(1, mode)), mode);
   2256   return GrowElementsCapacity(object, elements, kind, kind, capacity,
   2257                               new_capacity, mode, bailout);
   2258 }
   2259 
   2260 Node* CodeStubAssembler::GrowElementsCapacity(
   2261     Node* object, Node* elements, ElementsKind from_kind, ElementsKind to_kind,
   2262     Node* capacity, Node* new_capacity, ParameterMode mode, Label* bailout) {
   2263   Comment("[ GrowElementsCapacity");
   2264   // If size of the allocation for the new capacity doesn't fit in a page
   2265   // that we can bump-pointer allocate from, fall back to the runtime.
   2266   int max_size = FixedArrayBase::GetMaxLengthForNewSpaceAllocation(to_kind);
   2267   GotoIf(UintPtrGreaterThanOrEqual(new_capacity,
   2268                                    IntPtrOrSmiConstant(max_size, mode)),
   2269          bailout);
   2270 
   2271   // Allocate the new backing store.
   2272   Node* new_elements = AllocateFixedArray(to_kind, new_capacity, mode);
   2273 
   2274   // Copy the elements from the old elements store to the new.
   2275   // The size-check above guarantees that the |new_elements| is allocated
   2276   // in new space so we can skip the write barrier.
   2277   CopyFixedArrayElements(from_kind, elements, to_kind, new_elements, capacity,
   2278                          new_capacity, SKIP_WRITE_BARRIER, mode);
   2279 
   2280   StoreObjectField(object, JSObject::kElementsOffset, new_elements);
   2281   Comment("] GrowElementsCapacity");
   2282   return new_elements;
   2283 }
   2284 
   2285 void CodeStubAssembler::InitializeAllocationMemento(
   2286     compiler::Node* base_allocation, int base_allocation_size,
   2287     compiler::Node* allocation_site) {
   2288   StoreObjectFieldNoWriteBarrier(
   2289       base_allocation, AllocationMemento::kMapOffset + base_allocation_size,
   2290       HeapConstant(Handle<Map>(isolate()->heap()->allocation_memento_map())));
   2291   StoreObjectFieldNoWriteBarrier(
   2292       base_allocation,
   2293       AllocationMemento::kAllocationSiteOffset + base_allocation_size,
   2294       allocation_site);
   2295   if (FLAG_allocation_site_pretenuring) {
   2296     Node* count = LoadObjectField(allocation_site,
   2297                                   AllocationSite::kPretenureCreateCountOffset);
   2298     Node* incremented_count = SmiAdd(count, SmiConstant(Smi::FromInt(1)));
   2299     StoreObjectFieldNoWriteBarrier(allocation_site,
   2300                                    AllocationSite::kPretenureCreateCountOffset,
   2301                                    incremented_count);
   2302   }
   2303 }
   2304 
   2305 Node* CodeStubAssembler::TryTaggedToFloat64(Node* value,
   2306                                             Label* if_valueisnotnumber) {
   2307   Label out(this);
   2308   Variable var_result(this, MachineRepresentation::kFloat64);
   2309 
   2310   // Check if the {value} is a Smi or a HeapObject.
   2311   Label if_valueissmi(this), if_valueisnotsmi(this);
   2312   Branch(TaggedIsSmi(value), &if_valueissmi, &if_valueisnotsmi);
   2313 
   2314   Bind(&if_valueissmi);
   2315   {
   2316     // Convert the Smi {value}.
   2317     var_result.Bind(SmiToFloat64(value));
   2318     Goto(&out);
   2319   }
   2320 
   2321   Bind(&if_valueisnotsmi);
   2322   {
   2323     // Check if {value} is a HeapNumber.
   2324     Label if_valueisheapnumber(this);
   2325     Branch(IsHeapNumberMap(LoadMap(value)), &if_valueisheapnumber,
   2326            if_valueisnotnumber);
   2327 
   2328     Bind(&if_valueisheapnumber);
   2329     {
   2330       // Load the floating point value.
   2331       var_result.Bind(LoadHeapNumberValue(value));
   2332       Goto(&out);
   2333     }
   2334   }
   2335   Bind(&out);
   2336   return var_result.value();
   2337 }
   2338 
   2339 Node* CodeStubAssembler::TruncateTaggedToFloat64(Node* context, Node* value) {
   2340   // We might need to loop once due to ToNumber conversion.
   2341   Variable var_value(this, MachineRepresentation::kTagged),
   2342       var_result(this, MachineRepresentation::kFloat64);
   2343   Label loop(this, &var_value), done_loop(this, &var_result);
   2344   var_value.Bind(value);
   2345   Goto(&loop);
   2346   Bind(&loop);
   2347   {
   2348     Label if_valueisnotnumber(this, Label::kDeferred);
   2349 
   2350     // Load the current {value}.
   2351     value = var_value.value();
   2352 
   2353     // Convert {value} to Float64 if it is a number and convert it to a number
   2354     // otherwise.
   2355     Node* const result = TryTaggedToFloat64(value, &if_valueisnotnumber);
   2356     var_result.Bind(result);
   2357     Goto(&done_loop);
   2358 
   2359     Bind(&if_valueisnotnumber);
   2360     {
   2361       // Convert the {value} to a Number first.
   2362       Callable callable = CodeFactory::NonNumberToNumber(isolate());
   2363       var_value.Bind(CallStub(callable, context, value));
   2364       Goto(&loop);
   2365     }
   2366   }
   2367   Bind(&done_loop);
   2368   return var_result.value();
   2369 }
   2370 
   2371 Node* CodeStubAssembler::TruncateTaggedToWord32(Node* context, Node* value) {
   2372   // We might need to loop once due to ToNumber conversion.
   2373   Variable var_value(this, MachineRepresentation::kTagged),
   2374       var_result(this, MachineRepresentation::kWord32);
   2375   Label loop(this, &var_value), done_loop(this, &var_result);
   2376   var_value.Bind(value);
   2377   Goto(&loop);
   2378   Bind(&loop);
   2379   {
   2380     // Load the current {value}.
   2381     value = var_value.value();
   2382 
   2383     // Check if the {value} is a Smi or a HeapObject.
   2384     Label if_valueissmi(this), if_valueisnotsmi(this);
   2385     Branch(TaggedIsSmi(value), &if_valueissmi, &if_valueisnotsmi);
   2386 
   2387     Bind(&if_valueissmi);
   2388     {
   2389       // Convert the Smi {value}.
   2390       var_result.Bind(SmiToWord32(value));
   2391       Goto(&done_loop);
   2392     }
   2393 
   2394     Bind(&if_valueisnotsmi);
   2395     {
   2396       // Check if {value} is a HeapNumber.
   2397       Label if_valueisheapnumber(this),
   2398           if_valueisnotheapnumber(this, Label::kDeferred);
   2399       Branch(WordEqual(LoadMap(value), HeapNumberMapConstant()),
   2400              &if_valueisheapnumber, &if_valueisnotheapnumber);
   2401 
   2402       Bind(&if_valueisheapnumber);
   2403       {
   2404         // Truncate the floating point value.
   2405         var_result.Bind(TruncateHeapNumberValueToWord32(value));
   2406         Goto(&done_loop);
   2407       }
   2408 
   2409       Bind(&if_valueisnotheapnumber);
   2410       {
   2411         // Convert the {value} to a Number first.
   2412         Callable callable = CodeFactory::NonNumberToNumber(isolate());
   2413         var_value.Bind(CallStub(callable, context, value));
   2414         Goto(&loop);
   2415       }
   2416     }
   2417   }
   2418   Bind(&done_loop);
   2419   return var_result.value();
   2420 }
   2421 
   2422 Node* CodeStubAssembler::TruncateHeapNumberValueToWord32(Node* object) {
   2423   Node* value = LoadHeapNumberValue(object);
   2424   return TruncateFloat64ToWord32(value);
   2425 }
   2426 
   2427 Node* CodeStubAssembler::ChangeFloat64ToTagged(Node* value) {
   2428   Node* value32 = RoundFloat64ToInt32(value);
   2429   Node* value64 = ChangeInt32ToFloat64(value32);
   2430 
   2431   Label if_valueisint32(this), if_valueisheapnumber(this), if_join(this);
   2432 
   2433   Label if_valueisequal(this), if_valueisnotequal(this);
   2434   Branch(Float64Equal(value, value64), &if_valueisequal, &if_valueisnotequal);
   2435   Bind(&if_valueisequal);
   2436   {
   2437     GotoUnless(Word32Equal(value32, Int32Constant(0)), &if_valueisint32);
   2438     Branch(Int32LessThan(Float64ExtractHighWord32(value), Int32Constant(0)),
   2439            &if_valueisheapnumber, &if_valueisint32);
   2440   }
   2441   Bind(&if_valueisnotequal);
   2442   Goto(&if_valueisheapnumber);
   2443 
   2444   Variable var_result(this, MachineRepresentation::kTagged);
   2445   Bind(&if_valueisint32);
   2446   {
   2447     if (Is64()) {
   2448       Node* result = SmiTag(ChangeInt32ToInt64(value32));
   2449       var_result.Bind(result);
   2450       Goto(&if_join);
   2451     } else {
   2452       Node* pair = Int32AddWithOverflow(value32, value32);
   2453       Node* overflow = Projection(1, pair);
   2454       Label if_overflow(this, Label::kDeferred), if_notoverflow(this);
   2455       Branch(overflow, &if_overflow, &if_notoverflow);
   2456       Bind(&if_overflow);
   2457       Goto(&if_valueisheapnumber);
   2458       Bind(&if_notoverflow);
   2459       {
   2460         Node* result = Projection(0, pair);
   2461         var_result.Bind(result);
   2462         Goto(&if_join);
   2463       }
   2464     }
   2465   }
   2466   Bind(&if_valueisheapnumber);
   2467   {
   2468     Node* result = AllocateHeapNumberWithValue(value);
   2469     var_result.Bind(result);
   2470     Goto(&if_join);
   2471   }
   2472   Bind(&if_join);
   2473   return var_result.value();
   2474 }
   2475 
   2476 Node* CodeStubAssembler::ChangeInt32ToTagged(Node* value) {
   2477   if (Is64()) {
   2478     return SmiTag(ChangeInt32ToInt64(value));
   2479   }
   2480   Variable var_result(this, MachineRepresentation::kTagged);
   2481   Node* pair = Int32AddWithOverflow(value, value);
   2482   Node* overflow = Projection(1, pair);
   2483   Label if_overflow(this, Label::kDeferred), if_notoverflow(this),
   2484       if_join(this);
   2485   Branch(overflow, &if_overflow, &if_notoverflow);
   2486   Bind(&if_overflow);
   2487   {
   2488     Node* value64 = ChangeInt32ToFloat64(value);
   2489     Node* result = AllocateHeapNumberWithValue(value64);
   2490     var_result.Bind(result);
   2491   }
   2492   Goto(&if_join);
   2493   Bind(&if_notoverflow);
   2494   {
   2495     Node* result = Projection(0, pair);
   2496     var_result.Bind(result);
   2497   }
   2498   Goto(&if_join);
   2499   Bind(&if_join);
   2500   return var_result.value();
   2501 }
   2502 
   2503 Node* CodeStubAssembler::ChangeUint32ToTagged(Node* value) {
   2504   Label if_overflow(this, Label::kDeferred), if_not_overflow(this),
   2505       if_join(this);
   2506   Variable var_result(this, MachineRepresentation::kTagged);
   2507   // If {value} > 2^31 - 1, we need to store it in a HeapNumber.
   2508   Branch(Uint32LessThan(Int32Constant(Smi::kMaxValue), value), &if_overflow,
   2509          &if_not_overflow);
   2510 
   2511   Bind(&if_not_overflow);
   2512   {
   2513     if (Is64()) {
   2514       var_result.Bind(SmiTag(ChangeUint32ToUint64(value)));
   2515     } else {
   2516       // If tagging {value} results in an overflow, we need to use a HeapNumber
   2517       // to represent it.
   2518       Node* pair = Int32AddWithOverflow(value, value);
   2519       Node* overflow = Projection(1, pair);
   2520       GotoIf(overflow, &if_overflow);
   2521 
   2522       Node* result = Projection(0, pair);
   2523       var_result.Bind(result);
   2524     }
   2525   }
   2526   Goto(&if_join);
   2527 
   2528   Bind(&if_overflow);
   2529   {
   2530     Node* float64_value = ChangeUint32ToFloat64(value);
   2531     var_result.Bind(AllocateHeapNumberWithValue(float64_value));
   2532   }
   2533   Goto(&if_join);
   2534 
   2535   Bind(&if_join);
   2536   return var_result.value();
   2537 }
   2538 
   2539 Node* CodeStubAssembler::ToThisString(Node* context, Node* value,
   2540                                       char const* method_name) {
   2541   Variable var_value(this, MachineRepresentation::kTagged);
   2542   var_value.Bind(value);
   2543 
   2544   // Check if the {value} is a Smi or a HeapObject.
   2545   Label if_valueissmi(this, Label::kDeferred), if_valueisnotsmi(this),
   2546       if_valueisstring(this);
   2547   Branch(TaggedIsSmi(value), &if_valueissmi, &if_valueisnotsmi);
   2548   Bind(&if_valueisnotsmi);
   2549   {
   2550     // Load the instance type of the {value}.
   2551     Node* value_instance_type = LoadInstanceType(value);
   2552 
   2553     // Check if the {value} is already String.
   2554     Label if_valueisnotstring(this, Label::kDeferred);
   2555     Branch(IsStringInstanceType(value_instance_type), &if_valueisstring,
   2556            &if_valueisnotstring);
   2557     Bind(&if_valueisnotstring);
   2558     {
   2559       // Check if the {value} is null.
   2560       Label if_valueisnullorundefined(this, Label::kDeferred),
   2561           if_valueisnotnullorundefined(this, Label::kDeferred),
   2562           if_valueisnotnull(this, Label::kDeferred);
   2563       Branch(WordEqual(value, NullConstant()), &if_valueisnullorundefined,
   2564              &if_valueisnotnull);
   2565       Bind(&if_valueisnotnull);
   2566       {
   2567         // Check if the {value} is undefined.
   2568         Branch(WordEqual(value, UndefinedConstant()),
   2569                &if_valueisnullorundefined, &if_valueisnotnullorundefined);
   2570         Bind(&if_valueisnotnullorundefined);
   2571         {
   2572           // Convert the {value} to a String.
   2573           Callable callable = CodeFactory::ToString(isolate());
   2574           var_value.Bind(CallStub(callable, context, value));
   2575           Goto(&if_valueisstring);
   2576         }
   2577       }
   2578 
   2579       Bind(&if_valueisnullorundefined);
   2580       {
   2581         // The {value} is either null or undefined.
   2582         CallRuntime(Runtime::kThrowCalledOnNullOrUndefined, context,
   2583                     HeapConstant(factory()->NewStringFromAsciiChecked(
   2584                         method_name, TENURED)));
   2585         Goto(&if_valueisstring);  // Never reached.
   2586       }
   2587     }
   2588   }
   2589   Bind(&if_valueissmi);
   2590   {
   2591     // The {value} is a Smi, convert it to a String.
   2592     Callable callable = CodeFactory::NumberToString(isolate());
   2593     var_value.Bind(CallStub(callable, context, value));
   2594     Goto(&if_valueisstring);
   2595   }
   2596   Bind(&if_valueisstring);
   2597   return var_value.value();
   2598 }
   2599 
   2600 Node* CodeStubAssembler::ToThisValue(Node* context, Node* value,
   2601                                      PrimitiveType primitive_type,
   2602                                      char const* method_name) {
   2603   // We might need to loop once due to JSValue unboxing.
   2604   Variable var_value(this, MachineRepresentation::kTagged);
   2605   Label loop(this, &var_value), done_loop(this),
   2606       done_throw(this, Label::kDeferred);
   2607   var_value.Bind(value);
   2608   Goto(&loop);
   2609   Bind(&loop);
   2610   {
   2611     // Load the current {value}.
   2612     value = var_value.value();
   2613 
   2614     // Check if the {value} is a Smi or a HeapObject.
   2615     GotoIf(TaggedIsSmi(value), (primitive_type == PrimitiveType::kNumber)
   2616                                    ? &done_loop
   2617                                    : &done_throw);
   2618 
   2619     // Load the mape of the {value}.
   2620     Node* value_map = LoadMap(value);
   2621 
   2622     // Load the instance type of the {value}.
   2623     Node* value_instance_type = LoadMapInstanceType(value_map);
   2624 
   2625     // Check if {value} is a JSValue.
   2626     Label if_valueisvalue(this, Label::kDeferred), if_valueisnotvalue(this);
   2627     Branch(Word32Equal(value_instance_type, Int32Constant(JS_VALUE_TYPE)),
   2628            &if_valueisvalue, &if_valueisnotvalue);
   2629 
   2630     Bind(&if_valueisvalue);
   2631     {
   2632       // Load the actual value from the {value}.
   2633       var_value.Bind(LoadObjectField(value, JSValue::kValueOffset));
   2634       Goto(&loop);
   2635     }
   2636 
   2637     Bind(&if_valueisnotvalue);
   2638     {
   2639       switch (primitive_type) {
   2640         case PrimitiveType::kBoolean:
   2641           GotoIf(WordEqual(value_map, BooleanMapConstant()), &done_loop);
   2642           break;
   2643         case PrimitiveType::kNumber:
   2644           GotoIf(
   2645               Word32Equal(value_instance_type, Int32Constant(HEAP_NUMBER_TYPE)),
   2646               &done_loop);
   2647           break;
   2648         case PrimitiveType::kString:
   2649           GotoIf(IsStringInstanceType(value_instance_type), &done_loop);
   2650           break;
   2651         case PrimitiveType::kSymbol:
   2652           GotoIf(Word32Equal(value_instance_type, Int32Constant(SYMBOL_TYPE)),
   2653                  &done_loop);
   2654           break;
   2655       }
   2656       Goto(&done_throw);
   2657     }
   2658   }
   2659 
   2660   Bind(&done_throw);
   2661   {
   2662     // The {value} is not a compatible receiver for this method.
   2663     CallRuntime(Runtime::kThrowNotGeneric, context,
   2664                 HeapConstant(factory()->NewStringFromAsciiChecked(method_name,
   2665                                                                   TENURED)));
   2666     Goto(&done_loop);  // Never reached.
   2667   }
   2668 
   2669   Bind(&done_loop);
   2670   return var_value.value();
   2671 }
   2672 
   2673 Node* CodeStubAssembler::ThrowIfNotInstanceType(Node* context, Node* value,
   2674                                                 InstanceType instance_type,
   2675                                                 char const* method_name) {
   2676   Label out(this), throw_exception(this, Label::kDeferred);
   2677   Variable var_value_map(this, MachineRepresentation::kTagged);
   2678 
   2679   GotoIf(TaggedIsSmi(value), &throw_exception);
   2680 
   2681   // Load the instance type of the {value}.
   2682   var_value_map.Bind(LoadMap(value));
   2683   Node* const value_instance_type = LoadMapInstanceType(var_value_map.value());
   2684 
   2685   Branch(Word32Equal(value_instance_type, Int32Constant(instance_type)), &out,
   2686          &throw_exception);
   2687 
   2688   // The {value} is not a compatible receiver for this method.
   2689   Bind(&throw_exception);
   2690   CallRuntime(
   2691       Runtime::kThrowIncompatibleMethodReceiver, context,
   2692       HeapConstant(factory()->NewStringFromAsciiChecked(method_name, TENURED)),
   2693       value);
   2694   var_value_map.Bind(UndefinedConstant());
   2695   Goto(&out);  // Never reached.
   2696 
   2697   Bind(&out);
   2698   return var_value_map.value();
   2699 }
   2700 
   2701 Node* CodeStubAssembler::IsSpecialReceiverMap(Node* map) {
   2702   Node* is_special = IsSpecialReceiverInstanceType(LoadMapInstanceType(map));
   2703   uint32_t mask =
   2704       1 << Map::kHasNamedInterceptor | 1 << Map::kIsAccessCheckNeeded;
   2705   USE(mask);
   2706   // Interceptors or access checks imply special receiver.
   2707   CSA_ASSERT(this, Select(IsSetWord32(LoadMapBitField(map), mask), is_special,
   2708                           Int32Constant(1), MachineRepresentation::kWord32));
   2709   return is_special;
   2710 }
   2711 
   2712 Node* CodeStubAssembler::IsDictionaryMap(Node* map) {
   2713   CSA_SLOW_ASSERT(this, IsMap(map));
   2714   Node* bit_field3 = LoadMapBitField3(map);
   2715   return Word32NotEqual(IsSetWord32<Map::DictionaryMap>(bit_field3),
   2716                         Int32Constant(0));
   2717 }
   2718 
   2719 Node* CodeStubAssembler::IsCallableMap(Node* map) {
   2720   CSA_ASSERT(this, IsMap(map));
   2721   return Word32NotEqual(
   2722       Word32And(LoadMapBitField(map), Int32Constant(1 << Map::kIsCallable)),
   2723       Int32Constant(0));
   2724 }
   2725 
   2726 Node* CodeStubAssembler::IsSpecialReceiverInstanceType(Node* instance_type) {
   2727   STATIC_ASSERT(JS_GLOBAL_OBJECT_TYPE <= LAST_SPECIAL_RECEIVER_TYPE);
   2728   return Int32LessThanOrEqual(instance_type,
   2729                               Int32Constant(LAST_SPECIAL_RECEIVER_TYPE));
   2730 }
   2731 
   2732 Node* CodeStubAssembler::IsStringInstanceType(Node* instance_type) {
   2733   STATIC_ASSERT(INTERNALIZED_STRING_TYPE == FIRST_TYPE);
   2734   return Int32LessThan(instance_type, Int32Constant(FIRST_NONSTRING_TYPE));
   2735 }
   2736 
   2737 Node* CodeStubAssembler::IsJSReceiverInstanceType(Node* instance_type) {
   2738   STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
   2739   return Int32GreaterThanOrEqual(instance_type,
   2740                                  Int32Constant(FIRST_JS_RECEIVER_TYPE));
   2741 }
   2742 
   2743 Node* CodeStubAssembler::IsJSReceiver(Node* object) {
   2744   STATIC_ASSERT(LAST_JS_OBJECT_TYPE == LAST_TYPE);
   2745   return IsJSReceiverInstanceType(LoadInstanceType(object));
   2746 }
   2747 
   2748 Node* CodeStubAssembler::IsJSObject(Node* object) {
   2749   STATIC_ASSERT(LAST_JS_OBJECT_TYPE == LAST_TYPE);
   2750   return Int32GreaterThanOrEqual(LoadInstanceType(object),
   2751                                  Int32Constant(FIRST_JS_RECEIVER_TYPE));
   2752 }
   2753 
   2754 Node* CodeStubAssembler::IsJSGlobalProxy(Node* object) {
   2755   return Word32Equal(LoadInstanceType(object),
   2756                      Int32Constant(JS_GLOBAL_PROXY_TYPE));
   2757 }
   2758 
   2759 Node* CodeStubAssembler::IsMap(Node* map) {
   2760   return HasInstanceType(map, MAP_TYPE);
   2761 }
   2762 
   2763 Node* CodeStubAssembler::IsJSValue(Node* map) {
   2764   return HasInstanceType(map, JS_VALUE_TYPE);
   2765 }
   2766 
   2767 Node* CodeStubAssembler::IsJSArray(Node* object) {
   2768   return HasInstanceType(object, JS_ARRAY_TYPE);
   2769 }
   2770 
   2771 Node* CodeStubAssembler::IsWeakCell(Node* object) {
   2772   return HasInstanceType(object, WEAK_CELL_TYPE);
   2773 }
   2774 
   2775 Node* CodeStubAssembler::IsName(Node* object) {
   2776   return Int32LessThanOrEqual(LoadInstanceType(object),
   2777                               Int32Constant(LAST_NAME_TYPE));
   2778 }
   2779 
   2780 Node* CodeStubAssembler::IsString(Node* object) {
   2781   return Int32LessThanOrEqual(LoadInstanceType(object),
   2782                               Int32Constant(FIRST_NONSTRING_TYPE));
   2783 }
   2784 
   2785 Node* CodeStubAssembler::IsNativeContext(Node* object) {
   2786   return WordEqual(LoadMap(object), LoadRoot(Heap::kNativeContextMapRootIndex));
   2787 }
   2788 
   2789 Node* CodeStubAssembler::IsFixedDoubleArray(Node* object) {
   2790   return WordEqual(LoadMap(object), FixedDoubleArrayMapConstant());
   2791 }
   2792 
   2793 Node* CodeStubAssembler::IsHashTable(Node* object) {
   2794   return WordEqual(LoadMap(object), LoadRoot(Heap::kHashTableMapRootIndex));
   2795 }
   2796 
   2797 Node* CodeStubAssembler::IsDictionary(Node* object) {
   2798   return WordOr(IsHashTable(object), IsUnseededNumberDictionary(object));
   2799 }
   2800 
   2801 Node* CodeStubAssembler::IsUnseededNumberDictionary(Node* object) {
   2802   return WordEqual(LoadMap(object),
   2803                    LoadRoot(Heap::kUnseededNumberDictionaryMapRootIndex));
   2804 }
   2805 
   2806 Node* CodeStubAssembler::StringCharCodeAt(Node* string, Node* index) {
   2807   CSA_ASSERT(this, IsString(string));
   2808   // Translate the {index} into a Word.
   2809   index = SmiToWord(index);
   2810 
   2811   // We may need to loop in case of cons or sliced strings.
   2812   Variable var_index(this, MachineType::PointerRepresentation());
   2813   Variable var_result(this, MachineRepresentation::kWord32);
   2814   Variable var_string(this, MachineRepresentation::kTagged);
   2815   Variable* loop_vars[] = {&var_index, &var_string};
   2816   Label done_loop(this, &var_result), loop(this, 2, loop_vars);
   2817   var_string.Bind(string);
   2818   var_index.Bind(index);
   2819   Goto(&loop);
   2820   Bind(&loop);
   2821   {
   2822     // Load the current {index}.
   2823     index = var_index.value();
   2824 
   2825     // Load the current {string}.
   2826     string = var_string.value();
   2827 
   2828     // Load the instance type of the {string}.
   2829     Node* string_instance_type = LoadInstanceType(string);
   2830 
   2831     // Check if the {string} is a SeqString.
   2832     Label if_stringissequential(this), if_stringisnotsequential(this);
   2833     Branch(Word32Equal(Word32And(string_instance_type,
   2834                                  Int32Constant(kStringRepresentationMask)),
   2835                        Int32Constant(kSeqStringTag)),
   2836            &if_stringissequential, &if_stringisnotsequential);
   2837 
   2838     Bind(&if_stringissequential);
   2839     {
   2840       // Check if the {string} is a TwoByteSeqString or a OneByteSeqString.
   2841       Label if_stringistwobyte(this), if_stringisonebyte(this);
   2842       Branch(Word32Equal(Word32And(string_instance_type,
   2843                                    Int32Constant(kStringEncodingMask)),
   2844                          Int32Constant(kTwoByteStringTag)),
   2845              &if_stringistwobyte, &if_stringisonebyte);
   2846 
   2847       Bind(&if_stringisonebyte);
   2848       {
   2849         var_result.Bind(
   2850             Load(MachineType::Uint8(), string,
   2851                  IntPtrAdd(index, IntPtrConstant(SeqOneByteString::kHeaderSize -
   2852                                                  kHeapObjectTag))));
   2853         Goto(&done_loop);
   2854       }
   2855 
   2856       Bind(&if_stringistwobyte);
   2857       {
   2858         var_result.Bind(
   2859             Load(MachineType::Uint16(), string,
   2860                  IntPtrAdd(WordShl(index, IntPtrConstant(1)),
   2861                            IntPtrConstant(SeqTwoByteString::kHeaderSize -
   2862                                           kHeapObjectTag))));
   2863         Goto(&done_loop);
   2864       }
   2865     }
   2866 
   2867     Bind(&if_stringisnotsequential);
   2868     {
   2869       // Check if the {string} is a ConsString.
   2870       Label if_stringiscons(this), if_stringisnotcons(this);
   2871       Branch(Word32Equal(Word32And(string_instance_type,
   2872                                    Int32Constant(kStringRepresentationMask)),
   2873                          Int32Constant(kConsStringTag)),
   2874              &if_stringiscons, &if_stringisnotcons);
   2875 
   2876       Bind(&if_stringiscons);
   2877       {
   2878         // Check whether the right hand side is the empty string (i.e. if
   2879         // this is really a flat string in a cons string). If that is not
   2880         // the case we flatten the string first.
   2881         Label if_rhsisempty(this), if_rhsisnotempty(this, Label::kDeferred);
   2882         Node* rhs = LoadObjectField(string, ConsString::kSecondOffset);
   2883         Branch(WordEqual(rhs, EmptyStringConstant()), &if_rhsisempty,
   2884                &if_rhsisnotempty);
   2885 
   2886         Bind(&if_rhsisempty);
   2887         {
   2888           // Just operate on the left hand side of the {string}.
   2889           var_string.Bind(LoadObjectField(string, ConsString::kFirstOffset));
   2890           Goto(&loop);
   2891         }
   2892 
   2893         Bind(&if_rhsisnotempty);
   2894         {
   2895           // Flatten the {string} and lookup in the resulting string.
   2896           var_string.Bind(CallRuntime(Runtime::kFlattenString,
   2897                                       NoContextConstant(), string));
   2898           Goto(&loop);
   2899         }
   2900       }
   2901 
   2902       Bind(&if_stringisnotcons);
   2903       {
   2904         // Check if the {string} is an ExternalString.
   2905         Label if_stringisexternal(this), if_stringisnotexternal(this);
   2906         Branch(Word32Equal(Word32And(string_instance_type,
   2907                                      Int32Constant(kStringRepresentationMask)),
   2908                            Int32Constant(kExternalStringTag)),
   2909                &if_stringisexternal, &if_stringisnotexternal);
   2910 
   2911         Bind(&if_stringisexternal);
   2912         {
   2913           // Check if the {string} is a short external string.
   2914           Label if_stringisnotshort(this),
   2915               if_stringisshort(this, Label::kDeferred);
   2916           Branch(Word32Equal(Word32And(string_instance_type,
   2917                                        Int32Constant(kShortExternalStringMask)),
   2918                              Int32Constant(0)),
   2919                  &if_stringisnotshort, &if_stringisshort);
   2920 
   2921           Bind(&if_stringisnotshort);
   2922           {
   2923             // Load the actual resource data from the {string}.
   2924             Node* string_resource_data =
   2925                 LoadObjectField(string, ExternalString::kResourceDataOffset,
   2926                                 MachineType::Pointer());
   2927 
   2928             // Check if the {string} is a TwoByteExternalString or a
   2929             // OneByteExternalString.
   2930             Label if_stringistwobyte(this), if_stringisonebyte(this);
   2931             Branch(Word32Equal(Word32And(string_instance_type,
   2932                                          Int32Constant(kStringEncodingMask)),
   2933                                Int32Constant(kTwoByteStringTag)),
   2934                    &if_stringistwobyte, &if_stringisonebyte);
   2935 
   2936             Bind(&if_stringisonebyte);
   2937             {
   2938               var_result.Bind(
   2939                   Load(MachineType::Uint8(), string_resource_data, index));
   2940               Goto(&done_loop);
   2941             }
   2942 
   2943             Bind(&if_stringistwobyte);
   2944             {
   2945               var_result.Bind(Load(MachineType::Uint16(), string_resource_data,
   2946                                    WordShl(index, IntPtrConstant(1))));
   2947               Goto(&done_loop);
   2948             }
   2949           }
   2950 
   2951           Bind(&if_stringisshort);
   2952           {
   2953             // The {string} might be compressed, call the runtime.
   2954             var_result.Bind(SmiToWord32(
   2955                 CallRuntime(Runtime::kExternalStringGetChar,
   2956                             NoContextConstant(), string, SmiTag(index))));
   2957             Goto(&done_loop);
   2958           }
   2959         }
   2960 
   2961         Bind(&if_stringisnotexternal);
   2962         {
   2963           // The {string} is a SlicedString, continue with its parent.
   2964           Node* string_offset =
   2965               LoadAndUntagObjectField(string, SlicedString::kOffsetOffset);
   2966           Node* string_parent =
   2967               LoadObjectField(string, SlicedString::kParentOffset);
   2968           var_index.Bind(IntPtrAdd(index, string_offset));
   2969           var_string.Bind(string_parent);
   2970           Goto(&loop);
   2971         }
   2972       }
   2973     }
   2974   }
   2975 
   2976   Bind(&done_loop);
   2977   return var_result.value();
   2978 }
   2979 
   2980 Node* CodeStubAssembler::StringFromCharCode(Node* code) {
   2981   Variable var_result(this, MachineRepresentation::kTagged);
   2982 
   2983   // Check if the {code} is a one-byte char code.
   2984   Label if_codeisonebyte(this), if_codeistwobyte(this, Label::kDeferred),
   2985       if_done(this);
   2986   Branch(Int32LessThanOrEqual(code, Int32Constant(String::kMaxOneByteCharCode)),
   2987          &if_codeisonebyte, &if_codeistwobyte);
   2988   Bind(&if_codeisonebyte);
   2989   {
   2990     // Load the isolate wide single character string cache.
   2991     Node* cache = LoadRoot(Heap::kSingleCharacterStringCacheRootIndex);
   2992 
   2993     // Check if we have an entry for the {code} in the single character string
   2994     // cache already.
   2995     Label if_entryisundefined(this, Label::kDeferred),
   2996         if_entryisnotundefined(this);
   2997     Node* entry = LoadFixedArrayElement(cache, code);
   2998     Branch(WordEqual(entry, UndefinedConstant()), &if_entryisundefined,
   2999            &if_entryisnotundefined);
   3000 
   3001     Bind(&if_entryisundefined);
   3002     {
   3003       // Allocate a new SeqOneByteString for {code} and store it in the {cache}.
   3004       Node* result = AllocateSeqOneByteString(1);
   3005       StoreNoWriteBarrier(
   3006           MachineRepresentation::kWord8, result,
   3007           IntPtrConstant(SeqOneByteString::kHeaderSize - kHeapObjectTag), code);
   3008       StoreFixedArrayElement(cache, code, result);
   3009       var_result.Bind(result);
   3010       Goto(&if_done);
   3011     }
   3012 
   3013     Bind(&if_entryisnotundefined);
   3014     {
   3015       // Return the entry from the {cache}.
   3016       var_result.Bind(entry);
   3017       Goto(&if_done);
   3018     }
   3019   }
   3020 
   3021   Bind(&if_codeistwobyte);
   3022   {
   3023     // Allocate a new SeqTwoByteString for {code}.
   3024     Node* result = AllocateSeqTwoByteString(1);
   3025     StoreNoWriteBarrier(
   3026         MachineRepresentation::kWord16, result,
   3027         IntPtrConstant(SeqTwoByteString::kHeaderSize - kHeapObjectTag), code);
   3028     var_result.Bind(result);
   3029     Goto(&if_done);
   3030   }
   3031 
   3032   Bind(&if_done);
   3033   return var_result.value();
   3034 }
   3035 
   3036 namespace {
   3037 
   3038 // A wrapper around CopyStringCharacters which determines the correct string
   3039 // encoding, allocates a corresponding sequential string, and then copies the
   3040 // given character range using CopyStringCharacters.
   3041 // |from_string| must be a sequential string. |from_index| and
   3042 // |character_count| must be Smis s.t.
   3043 // 0 <= |from_index| <= |from_index| + |character_count| < from_string.length.
   3044 Node* AllocAndCopyStringCharacters(CodeStubAssembler* a, Node* context,
   3045                                    Node* from, Node* from_instance_type,
   3046                                    Node* from_index, Node* character_count) {
   3047   typedef CodeStubAssembler::Label Label;
   3048   typedef CodeStubAssembler::Variable Variable;
   3049 
   3050   Label end(a), two_byte_sequential(a);
   3051   Variable var_result(a, MachineRepresentation::kTagged);
   3052 
   3053   Node* const smi_zero = a->SmiConstant(Smi::kZero);
   3054 
   3055   STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0);
   3056   a->GotoIf(a->Word32Equal(a->Word32And(from_instance_type,
   3057                                         a->Int32Constant(kStringEncodingMask)),
   3058                            a->Int32Constant(0)),
   3059             &two_byte_sequential);
   3060 
   3061   // The subject string is a sequential one-byte string.
   3062   {
   3063     Node* result =
   3064         a->AllocateSeqOneByteString(context, a->SmiToWord(character_count));
   3065     a->CopyStringCharacters(from, result, from_index, smi_zero, character_count,
   3066                             String::ONE_BYTE_ENCODING,
   3067                             String::ONE_BYTE_ENCODING,
   3068                             CodeStubAssembler::SMI_PARAMETERS);
   3069     var_result.Bind(result);
   3070 
   3071     a->Goto(&end);
   3072   }
   3073 
   3074   // The subject string is a sequential two-byte string.
   3075   a->Bind(&two_byte_sequential);
   3076   {
   3077     Node* result =
   3078         a->AllocateSeqTwoByteString(context, a->SmiToWord(character_count));
   3079     a->CopyStringCharacters(from, result, from_index, smi_zero, character_count,
   3080                             String::TWO_BYTE_ENCODING,
   3081                             String::TWO_BYTE_ENCODING,
   3082                             CodeStubAssembler::SMI_PARAMETERS);
   3083     var_result.Bind(result);
   3084 
   3085     a->Goto(&end);
   3086   }
   3087 
   3088   a->Bind(&end);
   3089   return var_result.value();
   3090 }
   3091 
   3092 }  // namespace
   3093 
   3094 Node* CodeStubAssembler::SubString(Node* context, Node* string, Node* from,
   3095                                    Node* to) {
   3096   Label end(this);
   3097   Label runtime(this);
   3098 
   3099   Variable var_instance_type(this, MachineRepresentation::kWord8);  // Int32.
   3100   Variable var_result(this, MachineRepresentation::kTagged);        // String.
   3101   Variable var_from(this, MachineRepresentation::kTagged);          // Smi.
   3102   Variable var_string(this, MachineRepresentation::kTagged);        // String.
   3103 
   3104   var_instance_type.Bind(Int32Constant(0));
   3105   var_string.Bind(string);
   3106   var_from.Bind(from);
   3107 
   3108   // Make sure first argument is a string.
   3109 
   3110   // Bailout if receiver is a Smi.
   3111   GotoIf(TaggedIsSmi(string), &runtime);
   3112 
   3113   // Load the instance type of the {string}.
   3114   Node* const instance_type = LoadInstanceType(string);
   3115   var_instance_type.Bind(instance_type);
   3116 
   3117   // Check if {string} is a String.
   3118   GotoUnless(IsStringInstanceType(instance_type), &runtime);
   3119 
   3120   // Make sure that both from and to are non-negative smis.
   3121 
   3122   GotoUnless(WordIsPositiveSmi(from), &runtime);
   3123   GotoUnless(WordIsPositiveSmi(to), &runtime);
   3124 
   3125   Node* const substr_length = SmiSub(to, from);
   3126   Node* const string_length = LoadStringLength(string);
   3127 
   3128   // Begin dispatching based on substring length.
   3129 
   3130   Label original_string_or_invalid_length(this);
   3131   GotoIf(SmiAboveOrEqual(substr_length, string_length),
   3132          &original_string_or_invalid_length);
   3133 
   3134   // A real substring (substr_length < string_length).
   3135 
   3136   Label single_char(this);
   3137   GotoIf(SmiEqual(substr_length, SmiConstant(Smi::FromInt(1))), &single_char);
   3138 
   3139   // TODO(jgruber): Add an additional case for substring of length == 0?
   3140 
   3141   // Deal with different string types: update the index if necessary
   3142   // and put the underlying string into var_string.
   3143 
   3144   // If the string is not indirect, it can only be sequential or external.
   3145   STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
   3146   STATIC_ASSERT(kIsIndirectStringMask != 0);
   3147   Label underlying_unpacked(this);
   3148   GotoIf(Word32Equal(
   3149              Word32And(instance_type, Int32Constant(kIsIndirectStringMask)),
   3150              Int32Constant(0)),
   3151          &underlying_unpacked);
   3152 
   3153   // The subject string is either a sliced or cons string.
   3154 
   3155   Label sliced_string(this);
   3156   GotoIf(Word32NotEqual(
   3157              Word32And(instance_type, Int32Constant(kSlicedNotConsMask)),
   3158              Int32Constant(0)),
   3159          &sliced_string);
   3160 
   3161   // Cons string.  Check whether it is flat, then fetch first part.
   3162   // Flat cons strings have an empty second part.
   3163   {
   3164     GotoIf(WordNotEqual(LoadObjectField(string, ConsString::kSecondOffset),
   3165                         EmptyStringConstant()),
   3166            &runtime);
   3167 
   3168     Node* first_string_part = LoadObjectField(string, ConsString::kFirstOffset);
   3169     var_string.Bind(first_string_part);
   3170     var_instance_type.Bind(LoadInstanceType(first_string_part));
   3171 
   3172     Goto(&underlying_unpacked);
   3173   }
   3174 
   3175   Bind(&sliced_string);
   3176   {
   3177     // Fetch parent and correct start index by offset.
   3178     Node* sliced_offset = LoadObjectField(string, SlicedString::kOffsetOffset);
   3179     var_from.Bind(SmiAdd(from, sliced_offset));
   3180 
   3181     Node* slice_parent = LoadObjectField(string, SlicedString::kParentOffset);
   3182     var_string.Bind(slice_parent);
   3183 
   3184     Node* slice_parent_instance_type = LoadInstanceType(slice_parent);
   3185     var_instance_type.Bind(slice_parent_instance_type);
   3186 
   3187     Goto(&underlying_unpacked);
   3188   }
   3189 
   3190   // The subject string can only be external or sequential string of either
   3191   // encoding at this point.
   3192   Label external_string(this);
   3193   Bind(&underlying_unpacked);
   3194   {
   3195     if (FLAG_string_slices) {
   3196       Label copy_routine(this);
   3197 
   3198       // Short slice.  Copy instead of slicing.
   3199       GotoIf(SmiLessThan(substr_length,
   3200                          SmiConstant(Smi::FromInt(SlicedString::kMinLength))),
   3201              &copy_routine);
   3202 
   3203       // Allocate new sliced string.
   3204 
   3205       Label two_byte_slice(this);
   3206       STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
   3207       STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
   3208 
   3209       Counters* counters = isolate()->counters();
   3210       IncrementCounter(counters->sub_string_native(), 1);
   3211 
   3212       GotoIf(Word32Equal(Word32And(var_instance_type.value(),
   3213                                    Int32Constant(kStringEncodingMask)),
   3214                          Int32Constant(0)),
   3215              &two_byte_slice);
   3216 
   3217       var_result.Bind(AllocateSlicedOneByteString(
   3218           substr_length, var_string.value(), var_from.value()));
   3219       Goto(&end);
   3220 
   3221       Bind(&two_byte_slice);
   3222 
   3223       var_result.Bind(AllocateSlicedTwoByteString(
   3224           substr_length, var_string.value(), var_from.value()));
   3225       Goto(&end);
   3226 
   3227       Bind(&copy_routine);
   3228     }
   3229 
   3230     // The subject string can only be external or sequential string of either
   3231     // encoding at this point.
   3232     STATIC_ASSERT(kExternalStringTag != 0);
   3233     STATIC_ASSERT(kSeqStringTag == 0);
   3234     GotoUnless(Word32Equal(Word32And(var_instance_type.value(),
   3235                                      Int32Constant(kExternalStringTag)),
   3236                            Int32Constant(0)),
   3237                &external_string);
   3238 
   3239     var_result.Bind(AllocAndCopyStringCharacters(
   3240         this, context, var_string.value(), var_instance_type.value(),
   3241         var_from.value(), substr_length));
   3242 
   3243     Counters* counters = isolate()->counters();
   3244     IncrementCounter(counters->sub_string_native(), 1);
   3245 
   3246     Goto(&end);
   3247   }
   3248 
   3249   // Handle external string.
   3250   Bind(&external_string);
   3251   {
   3252     // Rule out short external strings.
   3253     STATIC_ASSERT(kShortExternalStringTag != 0);
   3254     GotoIf(Word32NotEqual(Word32And(var_instance_type.value(),
   3255                                     Int32Constant(kShortExternalStringMask)),
   3256                           Int32Constant(0)),
   3257            &runtime);
   3258 
   3259     // Move the pointer so that offset-wise, it looks like a sequential string.
   3260     STATIC_ASSERT(SeqTwoByteString::kHeaderSize ==
   3261                   SeqOneByteString::kHeaderSize);
   3262 
   3263     Node* resource_data = LoadObjectField(var_string.value(),
   3264                                           ExternalString::kResourceDataOffset);
   3265     Node* const fake_sequential_string = IntPtrSub(
   3266         resource_data,
   3267         IntPtrConstant(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
   3268 
   3269     var_result.Bind(AllocAndCopyStringCharacters(
   3270         this, context, fake_sequential_string, var_instance_type.value(),
   3271         var_from.value(), substr_length));
   3272 
   3273     Counters* counters = isolate()->counters();
   3274     IncrementCounter(counters->sub_string_native(), 1);
   3275 
   3276     Goto(&end);
   3277   }
   3278 
   3279   // Substrings of length 1 are generated through CharCodeAt and FromCharCode.
   3280   Bind(&single_char);
   3281   {
   3282     Node* char_code = StringCharCodeAt(var_string.value(), var_from.value());
   3283     var_result.Bind(StringFromCharCode(char_code));
   3284     Goto(&end);
   3285   }
   3286 
   3287   Bind(&original_string_or_invalid_length);
   3288   {
   3289     // Longer than original string's length or negative: unsafe arguments.
   3290     GotoIf(SmiAbove(substr_length, string_length), &runtime);
   3291 
   3292     // Equal length - check if {from, to} == {0, str.length}.
   3293     GotoIf(SmiAbove(from, SmiConstant(Smi::kZero)), &runtime);
   3294 
   3295     // Return the original string (substr_length == string_length).
   3296 
   3297     Counters* counters = isolate()->counters();
   3298     IncrementCounter(counters->sub_string_native(), 1);
   3299 
   3300     var_result.Bind(string);
   3301     Goto(&end);
   3302   }
   3303 
   3304   // Fall back to a runtime call.
   3305   Bind(&runtime);
   3306   {
   3307     var_result.Bind(
   3308         CallRuntime(Runtime::kSubString, context, string, from, to));
   3309     Goto(&end);
   3310   }
   3311 
   3312   Bind(&end);
   3313   return var_result.value();
   3314 }
   3315 
   3316 Node* CodeStubAssembler::StringAdd(Node* context, Node* left, Node* right,
   3317                                    AllocationFlags flags) {
   3318   Label check_right(this);
   3319   Label runtime(this, Label::kDeferred);
   3320   Label cons(this);
   3321   Label non_cons(this);
   3322   Variable result(this, MachineRepresentation::kTagged);
   3323   Label done(this, &result);
   3324   Label done_native(this, &result);
   3325   Counters* counters = isolate()->counters();
   3326 
   3327   Node* left_length = LoadStringLength(left);
   3328   GotoIf(WordNotEqual(IntPtrConstant(0), left_length), &check_right);
   3329   result.Bind(right);
   3330   Goto(&done_native);
   3331 
   3332   Bind(&check_right);
   3333   Node* right_length = LoadStringLength(right);
   3334   GotoIf(WordNotEqual(IntPtrConstant(0), right_length), &cons);
   3335   result.Bind(left);
   3336   Goto(&done_native);
   3337 
   3338   Bind(&cons);
   3339   CSA_ASSERT(this, TaggedIsSmi(left_length));
   3340   CSA_ASSERT(this, TaggedIsSmi(right_length));
   3341   Node* new_length = SmiAdd(left_length, right_length);
   3342   GotoIf(UintPtrGreaterThanOrEqual(
   3343              new_length, SmiConstant(Smi::FromInt(String::kMaxLength))),
   3344          &runtime);
   3345 
   3346   GotoIf(IntPtrLessThan(new_length,
   3347                         SmiConstant(Smi::FromInt(ConsString::kMinLength))),
   3348          &non_cons);
   3349 
   3350   result.Bind(NewConsString(context, new_length, left, right, flags));
   3351   Goto(&done_native);
   3352 
   3353   Bind(&non_cons);
   3354 
   3355   Comment("Full string concatenate");
   3356   Node* left_instance_type = LoadInstanceType(left);
   3357   Node* right_instance_type = LoadInstanceType(right);
   3358   // Compute intersection and difference of instance types.
   3359 
   3360   Node* ored_instance_types = WordOr(left_instance_type, right_instance_type);
   3361   Node* xored_instance_types = WordXor(left_instance_type, right_instance_type);
   3362 
   3363   // Check if both strings have the same encoding and both are sequential.
   3364   GotoIf(WordNotEqual(
   3365              WordAnd(xored_instance_types, IntPtrConstant(kStringEncodingMask)),
   3366              IntPtrConstant(0)),
   3367          &runtime);
   3368   GotoIf(WordNotEqual(WordAnd(ored_instance_types,
   3369                               IntPtrConstant(kStringRepresentationMask)),
   3370                       IntPtrConstant(0)),
   3371          &runtime);
   3372 
   3373   Label two_byte(this);
   3374   GotoIf(WordEqual(
   3375              WordAnd(ored_instance_types, IntPtrConstant(kStringEncodingMask)),
   3376              IntPtrConstant(kTwoByteStringTag)),
   3377          &two_byte);
   3378   // One-byte sequential string case
   3379   Node* new_string =
   3380       AllocateSeqOneByteString(context, new_length, SMI_PARAMETERS);
   3381   CopyStringCharacters(left, new_string, SmiConstant(Smi::kZero),
   3382                        SmiConstant(Smi::kZero), left_length,
   3383                        String::ONE_BYTE_ENCODING, String::ONE_BYTE_ENCODING,
   3384                        SMI_PARAMETERS);
   3385   CopyStringCharacters(right, new_string, SmiConstant(Smi::kZero), left_length,
   3386                        right_length, String::ONE_BYTE_ENCODING,
   3387                        String::ONE_BYTE_ENCODING, SMI_PARAMETERS);
   3388   result.Bind(new_string);
   3389   Goto(&done_native);
   3390 
   3391   Bind(&two_byte);
   3392   {
   3393     // Two-byte sequential string case
   3394     new_string = AllocateSeqTwoByteString(context, new_length, SMI_PARAMETERS);
   3395     CopyStringCharacters(left, new_string, SmiConstant(Smi::kZero),
   3396                          SmiConstant(Smi::kZero), left_length,
   3397                          String::TWO_BYTE_ENCODING, String::TWO_BYTE_ENCODING,
   3398                          SMI_PARAMETERS);
   3399     CopyStringCharacters(right, new_string, SmiConstant(Smi::kZero),
   3400                          left_length, right_length, String::TWO_BYTE_ENCODING,
   3401                          String::TWO_BYTE_ENCODING, SMI_PARAMETERS);
   3402     result.Bind(new_string);
   3403     Goto(&done_native);
   3404   }
   3405 
   3406   Bind(&runtime);
   3407   {
   3408     result.Bind(CallRuntime(Runtime::kStringAdd, context, left, right));
   3409     Goto(&done);
   3410   }
   3411 
   3412   Bind(&done_native);
   3413   {
   3414     IncrementCounter(counters->string_add_native(), 1);
   3415     Goto(&done);
   3416   }
   3417 
   3418   Bind(&done);
   3419   return result.value();
   3420 }
   3421 
   3422 Node* CodeStubAssembler::StringIndexOfChar(Node* context, Node* string,
   3423                                            Node* needle_char, Node* from) {
   3424   CSA_ASSERT(this, IsString(string));
   3425   Variable var_result(this, MachineRepresentation::kTagged);
   3426 
   3427   Label out(this), runtime(this, Label::kDeferred);
   3428 
   3429   // Let runtime handle non-one-byte {needle_char}.
   3430 
   3431   Node* const one_byte_char_mask = IntPtrConstant(0xFF);
   3432   GotoUnless(WordEqual(WordAnd(needle_char, one_byte_char_mask), needle_char),
   3433              &runtime);
   3434 
   3435   // TODO(jgruber): Handle external and two-byte strings.
   3436 
   3437   Node* const one_byte_seq_mask = Int32Constant(
   3438       kIsIndirectStringMask | kExternalStringTag | kStringEncodingMask);
   3439   Node* const expected_masked = Int32Constant(kOneByteStringTag);
   3440 
   3441   Node* const string_instance_type = LoadInstanceType(string);
   3442   GotoUnless(Word32Equal(Word32And(string_instance_type, one_byte_seq_mask),
   3443                          expected_masked),
   3444              &runtime);
   3445 
   3446   // If we reach this, {string} is a non-indirect, non-external one-byte string.
   3447 
   3448   Node* const length = LoadStringLength(string);
   3449   Node* const search_range_length = SmiUntag(SmiSub(length, from));
   3450 
   3451   const int offset = SeqOneByteString::kHeaderSize - kHeapObjectTag;
   3452   Node* const begin = IntPtrConstant(offset);
   3453   Node* const cursor = IntPtrAdd(begin, SmiUntag(from));
   3454   Node* const end = IntPtrAdd(cursor, search_range_length);
   3455 
   3456   var_result.Bind(SmiConstant(Smi::FromInt(-1)));
   3457 
   3458   BuildFastLoop(MachineType::PointerRepresentation(), cursor, end,
   3459                 [string, needle_char, begin, &var_result, &out](
   3460                     CodeStubAssembler* csa, Node* cursor) {
   3461                   Label next(csa);
   3462                   Node* value = csa->Load(MachineType::Uint8(), string, cursor);
   3463                   csa->GotoUnless(csa->WordEqual(value, needle_char), &next);
   3464 
   3465                   // Found a match.
   3466                   Node* index = csa->SmiTag(csa->IntPtrSub(cursor, begin));
   3467                   var_result.Bind(index);
   3468                   csa->Goto(&out);
   3469 
   3470                   csa->Bind(&next);
   3471                 },
   3472                 1, IndexAdvanceMode::kPost);
   3473   Goto(&out);
   3474 
   3475   Bind(&runtime);
   3476   {
   3477     Node* const pattern = StringFromCharCode(needle_char);
   3478     Node* const result =
   3479         CallRuntime(Runtime::kStringIndexOf, context, string, pattern, from);
   3480     var_result.Bind(result);
   3481     Goto(&out);
   3482   }
   3483 
   3484   Bind(&out);
   3485   return var_result.value();
   3486 }
   3487 
   3488 Node* CodeStubAssembler::StringFromCodePoint(compiler::Node* codepoint,
   3489                                              UnicodeEncoding encoding) {
   3490   Variable var_result(this, MachineRepresentation::kTagged);
   3491   var_result.Bind(EmptyStringConstant());
   3492 
   3493   Label if_isword16(this), if_isword32(this), return_result(this);
   3494 
   3495   Branch(Uint32LessThan(codepoint, Int32Constant(0x10000)), &if_isword16,
   3496          &if_isword32);
   3497 
   3498   Bind(&if_isword16);
   3499   {
   3500     var_result.Bind(StringFromCharCode(codepoint));
   3501     Goto(&return_result);
   3502   }
   3503 
   3504   Bind(&if_isword32);
   3505   {
   3506     switch (encoding) {
   3507       case UnicodeEncoding::UTF16:
   3508         break;
   3509       case UnicodeEncoding::UTF32: {
   3510         // Convert UTF32 to UTF16 code units, and store as a 32 bit word.
   3511         Node* lead_offset = Int32Constant(0xD800 - (0x10000 >> 10));
   3512 
   3513         // lead = (codepoint >> 10) + LEAD_OFFSET
   3514         Node* lead =
   3515             Int32Add(WordShr(codepoint, Int32Constant(10)), lead_offset);
   3516 
   3517         // trail = (codepoint & 0x3FF) + 0xDC00;
   3518         Node* trail = Int32Add(Word32And(codepoint, Int32Constant(0x3FF)),
   3519                                Int32Constant(0xDC00));
   3520 
   3521         // codpoint = (trail << 16) | lead;
   3522         codepoint = Word32Or(WordShl(trail, Int32Constant(16)), lead);
   3523         break;
   3524       }
   3525     }
   3526 
   3527     Node* value = AllocateSeqTwoByteString(2);
   3528     StoreNoWriteBarrier(
   3529         MachineRepresentation::kWord32, value,
   3530         IntPtrConstant(SeqTwoByteString::kHeaderSize - kHeapObjectTag),
   3531         codepoint);
   3532     var_result.Bind(value);
   3533     Goto(&return_result);
   3534   }
   3535 
   3536   Bind(&return_result);
   3537   return var_result.value();
   3538 }
   3539 
   3540 Node* CodeStubAssembler::StringToNumber(Node* context, Node* input) {
   3541   Label runtime(this, Label::kDeferred);
   3542   Label end(this);
   3543 
   3544   Variable var_result(this, MachineRepresentation::kTagged);
   3545 
   3546   // Check if string has a cached array index.
   3547   Node* hash = LoadNameHashField(input);
   3548   Node* bit =
   3549       Word32And(hash, Int32Constant(String::kContainsCachedArrayIndexMask));
   3550   GotoIf(Word32NotEqual(bit, Int32Constant(0)), &runtime);
   3551 
   3552   var_result.Bind(
   3553       SmiTag(DecodeWordFromWord32<String::ArrayIndexValueBits>(hash)));
   3554   Goto(&end);
   3555 
   3556   Bind(&runtime);
   3557   {
   3558     var_result.Bind(CallRuntime(Runtime::kStringToNumber, context, input));
   3559     Goto(&end);
   3560   }
   3561 
   3562   Bind(&end);
   3563   return var_result.value();
   3564 }
   3565 
   3566 Node* CodeStubAssembler::NumberToString(compiler::Node* context,
   3567                                         compiler::Node* argument) {
   3568   Variable result(this, MachineRepresentation::kTagged);
   3569   Label runtime(this, Label::kDeferred);
   3570   Label smi(this);
   3571   Label done(this, &result);
   3572 
   3573   // Load the number string cache.
   3574   Node* number_string_cache = LoadRoot(Heap::kNumberStringCacheRootIndex);
   3575 
   3576   // Make the hash mask from the length of the number string cache. It
   3577   // contains two elements (number and string) for each cache entry.
   3578   Node* mask = LoadFixedArrayBaseLength(number_string_cache);
   3579   Node* one = IntPtrConstant(1);
   3580   mask = IntPtrSub(mask, one);
   3581 
   3582   GotoIf(TaggedIsSmi(argument), &smi);
   3583 
   3584   // Argument isn't smi, check to see if it's a heap-number.
   3585   Node* map = LoadMap(argument);
   3586   GotoUnless(WordEqual(map, HeapNumberMapConstant()), &runtime);
   3587 
   3588   // Make a hash from the two 32-bit values of the double.
   3589   Node* low =
   3590       LoadObjectField(argument, HeapNumber::kValueOffset, MachineType::Int32());
   3591   Node* high = LoadObjectField(argument, HeapNumber::kValueOffset + kIntSize,
   3592                                MachineType::Int32());
   3593   Node* hash = Word32Xor(low, high);
   3594   if (Is64()) hash = ChangeInt32ToInt64(hash);
   3595   hash = WordShl(hash, one);
   3596   Node* index = WordAnd(hash, SmiToWord(mask));
   3597 
   3598   // Cache entry's key must be a heap number
   3599   Node* number_key =
   3600       LoadFixedArrayElement(number_string_cache, index, 0, INTPTR_PARAMETERS);
   3601   GotoIf(TaggedIsSmi(number_key), &runtime);
   3602   map = LoadMap(number_key);
   3603   GotoUnless(WordEqual(map, HeapNumberMapConstant()), &runtime);
   3604 
   3605   // Cache entry's key must match the heap number value we're looking for.
   3606   Node* low_compare = LoadObjectField(number_key, HeapNumber::kValueOffset,
   3607                                       MachineType::Int32());
   3608   Node* high_compare = LoadObjectField(
   3609       number_key, HeapNumber::kValueOffset + kIntSize, MachineType::Int32());
   3610   GotoUnless(WordEqual(low, low_compare), &runtime);
   3611   GotoUnless(WordEqual(high, high_compare), &runtime);
   3612 
   3613   // Heap number match, return value fro cache entry.
   3614   IncrementCounter(isolate()->counters()->number_to_string_native(), 1);
   3615   result.Bind(LoadFixedArrayElement(number_string_cache, index, kPointerSize,
   3616                                     INTPTR_PARAMETERS));
   3617   Goto(&done);
   3618 
   3619   Bind(&runtime);
   3620   {
   3621     // No cache entry, go to the runtime.
   3622     result.Bind(CallRuntime(Runtime::kNumberToString, context, argument));
   3623   }
   3624   Goto(&done);
   3625 
   3626   Bind(&smi);
   3627   {
   3628     // Load the smi key, make sure it matches the smi we're looking for.
   3629     Node* smi_index = WordAnd(WordShl(argument, one), mask);
   3630     Node* smi_key = LoadFixedArrayElement(number_string_cache, smi_index, 0,
   3631                                           SMI_PARAMETERS);
   3632     GotoIf(WordNotEqual(smi_key, argument), &runtime);
   3633 
   3634     // Smi match, return value from cache entry.
   3635     IncrementCounter(isolate()->counters()->number_to_string_native(), 1);
   3636     result.Bind(LoadFixedArrayElement(number_string_cache, smi_index,
   3637                                       kPointerSize, SMI_PARAMETERS));
   3638     Goto(&done);
   3639   }
   3640 
   3641   Bind(&done);
   3642   return result.value();
   3643 }
   3644 
   3645 Node* CodeStubAssembler::ToName(Node* context, Node* value) {
   3646   typedef CodeStubAssembler::Label Label;
   3647   typedef CodeStubAssembler::Variable Variable;
   3648 
   3649   Label end(this);
   3650   Variable var_result(this, MachineRepresentation::kTagged);
   3651 
   3652   Label is_number(this);
   3653   GotoIf(TaggedIsSmi(value), &is_number);
   3654 
   3655   Label not_name(this);
   3656   Node* value_instance_type = LoadInstanceType(value);
   3657   STATIC_ASSERT(FIRST_NAME_TYPE == FIRST_TYPE);
   3658   GotoIf(Int32GreaterThan(value_instance_type, Int32Constant(LAST_NAME_TYPE)),
   3659          &not_name);
   3660 
   3661   var_result.Bind(value);
   3662   Goto(&end);
   3663 
   3664   Bind(&is_number);
   3665   {
   3666     Callable callable = CodeFactory::NumberToString(isolate());
   3667     var_result.Bind(CallStub(callable, context, value));
   3668     Goto(&end);
   3669   }
   3670 
   3671   Bind(&not_name);
   3672   {
   3673     GotoIf(Word32Equal(value_instance_type, Int32Constant(HEAP_NUMBER_TYPE)),
   3674            &is_number);
   3675 
   3676     Label not_oddball(this);
   3677     GotoIf(Word32NotEqual(value_instance_type, Int32Constant(ODDBALL_TYPE)),
   3678            &not_oddball);
   3679 
   3680     var_result.Bind(LoadObjectField(value, Oddball::kToStringOffset));
   3681     Goto(&end);
   3682 
   3683     Bind(&not_oddball);
   3684     {
   3685       var_result.Bind(CallRuntime(Runtime::kToName, context, value));
   3686       Goto(&end);
   3687     }
   3688   }
   3689 
   3690   Bind(&end);
   3691   return var_result.value();
   3692 }
   3693 
   3694 Node* CodeStubAssembler::NonNumberToNumber(Node* context, Node* input) {
   3695   // Assert input is a HeapObject (not smi or heap number)
   3696   CSA_ASSERT(this, Word32BinaryNot(TaggedIsSmi(input)));
   3697   CSA_ASSERT(this, Word32NotEqual(LoadMap(input), HeapNumberMapConstant()));
   3698 
   3699   // We might need to loop once here due to ToPrimitive conversions.
   3700   Variable var_input(this, MachineRepresentation::kTagged);
   3701   Variable var_result(this, MachineRepresentation::kTagged);
   3702   Label loop(this, &var_input);
   3703   Label end(this);
   3704   var_input.Bind(input);
   3705   Goto(&loop);
   3706   Bind(&loop);
   3707   {
   3708     // Load the current {input} value (known to be a HeapObject).
   3709     Node* input = var_input.value();
   3710 
   3711     // Dispatch on the {input} instance type.
   3712     Node* input_instance_type = LoadInstanceType(input);
   3713     Label if_inputisstring(this), if_inputisoddball(this),
   3714         if_inputisreceiver(this, Label::kDeferred),
   3715         if_inputisother(this, Label::kDeferred);
   3716     GotoIf(IsStringInstanceType(input_instance_type), &if_inputisstring);
   3717     GotoIf(Word32Equal(input_instance_type, Int32Constant(ODDBALL_TYPE)),
   3718            &if_inputisoddball);
   3719     Branch(IsJSReceiverInstanceType(input_instance_type), &if_inputisreceiver,
   3720            &if_inputisother);
   3721 
   3722     Bind(&if_inputisstring);
   3723     {
   3724       // The {input} is a String, use the fast stub to convert it to a Number.
   3725       var_result.Bind(StringToNumber(context, input));
   3726       Goto(&end);
   3727     }
   3728 
   3729     Bind(&if_inputisoddball);
   3730     {
   3731       // The {input} is an Oddball, we just need to load the Number value of it.
   3732       var_result.Bind(LoadObjectField(input, Oddball::kToNumberOffset));
   3733       Goto(&end);
   3734     }
   3735 
   3736     Bind(&if_inputisreceiver);
   3737     {
   3738       // The {input} is a JSReceiver, we need to convert it to a Primitive first
   3739       // using the ToPrimitive type conversion, preferably yielding a Number.
   3740       Callable callable = CodeFactory::NonPrimitiveToPrimitive(
   3741           isolate(), ToPrimitiveHint::kNumber);
   3742       Node* result = CallStub(callable, context, input);
   3743 
   3744       // Check if the {result} is already a Number.
   3745       Label if_resultisnumber(this), if_resultisnotnumber(this);
   3746       GotoIf(TaggedIsSmi(result), &if_resultisnumber);
   3747       Node* result_map = LoadMap(result);
   3748       Branch(WordEqual(result_map, HeapNumberMapConstant()), &if_resultisnumber,
   3749              &if_resultisnotnumber);
   3750 
   3751       Bind(&if_resultisnumber);
   3752       {
   3753         // The ToPrimitive conversion already gave us a Number, so we're done.
   3754         var_result.Bind(result);
   3755         Goto(&end);
   3756       }
   3757 
   3758       Bind(&if_resultisnotnumber);
   3759       {
   3760         // We now have a Primitive {result}, but it's not yet a Number.
   3761         var_input.Bind(result);
   3762         Goto(&loop);
   3763       }
   3764     }
   3765 
   3766     Bind(&if_inputisother);
   3767     {
   3768       // The {input} is something else (i.e. Symbol or Simd128Value), let the
   3769       // runtime figure out the correct exception.
   3770       // Note: We cannot tail call to the runtime here, as js-to-wasm
   3771       // trampolines also use this code currently, and they declare all
   3772       // outgoing parameters as untagged, while we would push a tagged
   3773       // object here.
   3774       var_result.Bind(CallRuntime(Runtime::kToNumber, context, input));
   3775       Goto(&end);
   3776     }
   3777   }
   3778 
   3779   Bind(&end);
   3780   return var_result.value();
   3781 }
   3782 
   3783 Node* CodeStubAssembler::ToNumber(Node* context, Node* input) {
   3784   Variable var_result(this, MachineRepresentation::kTagged);
   3785   Label end(this);
   3786 
   3787   Label not_smi(this, Label::kDeferred);
   3788   GotoUnless(TaggedIsSmi(input), &not_smi);
   3789   var_result.Bind(input);
   3790   Goto(&end);
   3791 
   3792   Bind(&not_smi);
   3793   {
   3794     Label not_heap_number(this, Label::kDeferred);
   3795     Node* input_map = LoadMap(input);
   3796     GotoIf(Word32NotEqual(input_map, HeapNumberMapConstant()),
   3797            &not_heap_number);
   3798 
   3799     var_result.Bind(input);
   3800     Goto(&end);
   3801 
   3802     Bind(&not_heap_number);
   3803     {
   3804       var_result.Bind(NonNumberToNumber(context, input));
   3805       Goto(&end);
   3806     }
   3807   }
   3808 
   3809   Bind(&end);
   3810   return var_result.value();
   3811 }
   3812 
   3813 Node* CodeStubAssembler::ToString(Node* context, Node* input) {
   3814   Label is_number(this);
   3815   Label runtime(this, Label::kDeferred);
   3816   Variable result(this, MachineRepresentation::kTagged);
   3817   Label done(this, &result);
   3818 
   3819   GotoIf(TaggedIsSmi(input), &is_number);
   3820 
   3821   Node* input_map = LoadMap(input);
   3822   Node* input_instance_type = LoadMapInstanceType(input_map);
   3823 
   3824   result.Bind(input);
   3825   GotoIf(IsStringInstanceType(input_instance_type), &done);
   3826 
   3827   Label not_heap_number(this);
   3828   Branch(WordNotEqual(input_map, HeapNumberMapConstant()), &not_heap_number,
   3829          &is_number);
   3830 
   3831   Bind(&is_number);
   3832   result.Bind(NumberToString(context, input));
   3833   Goto(&done);
   3834 
   3835   Bind(&not_heap_number);
   3836   {
   3837     GotoIf(Word32NotEqual(input_instance_type, Int32Constant(ODDBALL_TYPE)),
   3838            &runtime);
   3839     result.Bind(LoadObjectField(input, Oddball::kToStringOffset));
   3840     Goto(&done);
   3841   }
   3842 
   3843   Bind(&runtime);
   3844   {
   3845     result.Bind(CallRuntime(Runtime::kToString, context, input));
   3846     Goto(&done);
   3847   }
   3848 
   3849   Bind(&done);
   3850   return result.value();
   3851 }
   3852 
   3853 Node* CodeStubAssembler::FlattenString(Node* string) {
   3854   CSA_ASSERT(this, IsString(string));
   3855   Variable var_result(this, MachineRepresentation::kTagged);
   3856   var_result.Bind(string);
   3857 
   3858   Node* instance_type = LoadInstanceType(string);
   3859 
   3860   // Check if the {string} is not a ConsString (i.e. already flat).
   3861   Label is_cons(this, Label::kDeferred), is_flat_in_cons(this), end(this);
   3862   {
   3863     GotoUnless(Word32Equal(Word32And(instance_type,
   3864                                      Int32Constant(kStringRepresentationMask)),
   3865                            Int32Constant(kConsStringTag)),
   3866                &end);
   3867 
   3868     // Check whether the right hand side is the empty string (i.e. if
   3869     // this is really a flat string in a cons string).
   3870     Node* rhs = LoadObjectField(string, ConsString::kSecondOffset);
   3871     Branch(WordEqual(rhs, EmptyStringConstant()), &is_flat_in_cons, &is_cons);
   3872   }
   3873 
   3874   // Bail out to the runtime.
   3875   Bind(&is_cons);
   3876   {
   3877     var_result.Bind(
   3878         CallRuntime(Runtime::kFlattenString, NoContextConstant(), string));
   3879     Goto(&end);
   3880   }
   3881 
   3882   Bind(&is_flat_in_cons);
   3883   {
   3884     var_result.Bind(LoadObjectField(string, ConsString::kFirstOffset));
   3885     Goto(&end);
   3886   }
   3887 
   3888   Bind(&end);
   3889   return var_result.value();
   3890 }
   3891 
   3892 Node* CodeStubAssembler::JSReceiverToPrimitive(Node* context, Node* input) {
   3893   Label if_isreceiver(this, Label::kDeferred), if_isnotreceiver(this);
   3894   Variable result(this, MachineRepresentation::kTagged);
   3895   Label done(this, &result);
   3896 
   3897   BranchIfJSReceiver(input, &if_isreceiver, &if_isnotreceiver);
   3898 
   3899   Bind(&if_isreceiver);
   3900   {
   3901     // Convert {input} to a primitive first passing Number hint.
   3902     Callable callable = CodeFactory::NonPrimitiveToPrimitive(isolate());
   3903     result.Bind(CallStub(callable, context, input));
   3904     Goto(&done);
   3905   }
   3906 
   3907   Bind(&if_isnotreceiver);
   3908   {
   3909     result.Bind(input);
   3910     Goto(&done);
   3911   }
   3912 
   3913   Bind(&done);
   3914   return result.value();
   3915 }
   3916 
   3917 Node* CodeStubAssembler::ToInteger(Node* context, Node* input,
   3918                                    ToIntegerTruncationMode mode) {
   3919   // We might need to loop once for ToNumber conversion.
   3920   Variable var_arg(this, MachineRepresentation::kTagged);
   3921   Label loop(this, &var_arg), out(this);
   3922   var_arg.Bind(input);
   3923   Goto(&loop);
   3924   Bind(&loop);
   3925   {
   3926     // Shared entry points.
   3927     Label return_zero(this, Label::kDeferred);
   3928 
   3929     // Load the current {arg} value.
   3930     Node* arg = var_arg.value();
   3931 
   3932     // Check if {arg} is a Smi.
   3933     GotoIf(TaggedIsSmi(arg), &out);
   3934 
   3935     // Check if {arg} is a HeapNumber.
   3936     Label if_argisheapnumber(this),
   3937         if_argisnotheapnumber(this, Label::kDeferred);
   3938     Branch(WordEqual(LoadMap(arg), HeapNumberMapConstant()),
   3939            &if_argisheapnumber, &if_argisnotheapnumber);
   3940 
   3941     Bind(&if_argisheapnumber);
   3942     {
   3943       // Load the floating-point value of {arg}.
   3944       Node* arg_value = LoadHeapNumberValue(arg);
   3945 
   3946       // Check if {arg} is NaN.
   3947       GotoUnless(Float64Equal(arg_value, arg_value), &return_zero);
   3948 
   3949       // Truncate {arg} towards zero.
   3950       Node* value = Float64Trunc(arg_value);
   3951 
   3952       if (mode == kTruncateMinusZero) {
   3953         // Truncate -0.0 to 0.
   3954         GotoIf(Float64Equal(value, Float64Constant(0.0)), &return_zero);
   3955       }
   3956 
   3957       var_arg.Bind(ChangeFloat64ToTagged(value));
   3958       Goto(&out);
   3959     }
   3960 
   3961     Bind(&if_argisnotheapnumber);
   3962     {
   3963       // Need to convert {arg} to a Number first.
   3964       Callable callable = CodeFactory::NonNumberToNumber(isolate());
   3965       var_arg.Bind(CallStub(callable, context, arg));
   3966       Goto(&loop);
   3967     }
   3968 
   3969     Bind(&return_zero);
   3970     var_arg.Bind(SmiConstant(Smi::kZero));
   3971     Goto(&out);
   3972   }
   3973 
   3974   Bind(&out);
   3975   return var_arg.value();
   3976 }
   3977 
   3978 Node* CodeStubAssembler::DecodeWord32(Node* word32, uint32_t shift,
   3979                                       uint32_t mask) {
   3980   return Word32Shr(Word32And(word32, Int32Constant(mask)),
   3981                    static_cast<int>(shift));
   3982 }
   3983 
   3984 Node* CodeStubAssembler::DecodeWord(Node* word, uint32_t shift, uint32_t mask) {
   3985   return WordShr(WordAnd(word, IntPtrConstant(mask)), static_cast<int>(shift));
   3986 }
   3987 
   3988 void CodeStubAssembler::SetCounter(StatsCounter* counter, int value) {
   3989   if (FLAG_native_code_counters && counter->Enabled()) {
   3990     Node* counter_address = ExternalConstant(ExternalReference(counter));
   3991     StoreNoWriteBarrier(MachineRepresentation::kWord32, counter_address,
   3992                         Int32Constant(value));
   3993   }
   3994 }
   3995 
   3996 void CodeStubAssembler::IncrementCounter(StatsCounter* counter, int delta) {
   3997   DCHECK(delta > 0);
   3998   if (FLAG_native_code_counters && counter->Enabled()) {
   3999     Node* counter_address = ExternalConstant(ExternalReference(counter));
   4000     Node* value = Load(MachineType::Int32(), counter_address);
   4001     value = Int32Add(value, Int32Constant(delta));
   4002     StoreNoWriteBarrier(MachineRepresentation::kWord32, counter_address, value);
   4003   }
   4004 }
   4005 
   4006 void CodeStubAssembler::DecrementCounter(StatsCounter* counter, int delta) {
   4007   DCHECK(delta > 0);
   4008   if (FLAG_native_code_counters && counter->Enabled()) {
   4009     Node* counter_address = ExternalConstant(ExternalReference(counter));
   4010     Node* value = Load(MachineType::Int32(), counter_address);
   4011     value = Int32Sub(value, Int32Constant(delta));
   4012     StoreNoWriteBarrier(MachineRepresentation::kWord32, counter_address, value);
   4013   }
   4014 }
   4015 
   4016 void CodeStubAssembler::Use(Label* label) {
   4017   GotoIf(Word32Equal(Int32Constant(0), Int32Constant(1)), label);
   4018 }
   4019 
   4020 void CodeStubAssembler::TryToName(Node* key, Label* if_keyisindex,
   4021                                   Variable* var_index, Label* if_keyisunique,
   4022                                   Label* if_bailout) {
   4023   DCHECK_EQ(MachineType::PointerRepresentation(), var_index->rep());
   4024   Comment("TryToName");
   4025 
   4026   Label if_hascachedindex(this), if_keyisnotindex(this);
   4027   // Handle Smi and HeapNumber keys.
   4028   var_index->Bind(TryToIntptr(key, &if_keyisnotindex));
   4029   Goto(if_keyisindex);
   4030 
   4031   Bind(&if_keyisnotindex);
   4032   Node* key_instance_type = LoadInstanceType(key);
   4033   // Symbols are unique.
   4034   GotoIf(Word32Equal(key_instance_type, Int32Constant(SYMBOL_TYPE)),
   4035          if_keyisunique);
   4036   // Miss if |key| is not a String.
   4037   STATIC_ASSERT(FIRST_NAME_TYPE == FIRST_TYPE);
   4038   GotoUnless(IsStringInstanceType(key_instance_type), if_bailout);
   4039   // |key| is a String. Check if it has a cached array index.
   4040   Node* hash = LoadNameHashField(key);
   4041   Node* contains_index =
   4042       Word32And(hash, Int32Constant(Name::kContainsCachedArrayIndexMask));
   4043   GotoIf(Word32Equal(contains_index, Int32Constant(0)), &if_hascachedindex);
   4044   // No cached array index. If the string knows that it contains an index,
   4045   // then it must be an uncacheable index. Handle this case in the runtime.
   4046   Node* not_an_index =
   4047       Word32And(hash, Int32Constant(Name::kIsNotArrayIndexMask));
   4048   GotoIf(Word32Equal(not_an_index, Int32Constant(0)), if_bailout);
   4049   // Finally, check if |key| is internalized.
   4050   STATIC_ASSERT(kNotInternalizedTag != 0);
   4051   Node* not_internalized =
   4052       Word32And(key_instance_type, Int32Constant(kIsNotInternalizedMask));
   4053   GotoIf(Word32NotEqual(not_internalized, Int32Constant(0)), if_bailout);
   4054   Goto(if_keyisunique);
   4055 
   4056   Bind(&if_hascachedindex);
   4057   var_index->Bind(DecodeWordFromWord32<Name::ArrayIndexValueBits>(hash));
   4058   Goto(if_keyisindex);
   4059 }
   4060 
   4061 template <typename Dictionary>
   4062 Node* CodeStubAssembler::EntryToIndex(Node* entry, int field_index) {
   4063   Node* entry_index = IntPtrMul(entry, IntPtrConstant(Dictionary::kEntrySize));
   4064   return IntPtrAdd(entry_index, IntPtrConstant(Dictionary::kElementsStartIndex +
   4065                                                field_index));
   4066 }
   4067 
   4068 template Node* CodeStubAssembler::EntryToIndex<NameDictionary>(Node*, int);
   4069 template Node* CodeStubAssembler::EntryToIndex<GlobalDictionary>(Node*, int);
   4070 
   4071 Node* CodeStubAssembler::HashTableComputeCapacity(Node* at_least_space_for) {
   4072   Node* capacity = IntPtrRoundUpToPowerOfTwo32(
   4073       WordShl(at_least_space_for, IntPtrConstant(1)));
   4074   return IntPtrMax(capacity, IntPtrConstant(HashTableBase::kMinCapacity));
   4075 }
   4076 
   4077 Node* CodeStubAssembler::IntPtrMax(Node* left, Node* right) {
   4078   return Select(IntPtrGreaterThanOrEqual(left, right), left, right,
   4079                 MachineType::PointerRepresentation());
   4080 }
   4081 
   4082 template <typename Dictionary>
   4083 void CodeStubAssembler::NameDictionaryLookup(Node* dictionary,
   4084                                              Node* unique_name, Label* if_found,
   4085                                              Variable* var_name_index,
   4086                                              Label* if_not_found,
   4087                                              int inlined_probes) {
   4088   CSA_ASSERT(this, IsDictionary(dictionary));
   4089   DCHECK_EQ(MachineType::PointerRepresentation(), var_name_index->rep());
   4090   Comment("NameDictionaryLookup");
   4091 
   4092   Node* capacity = SmiUntag(LoadFixedArrayElement(
   4093       dictionary, IntPtrConstant(Dictionary::kCapacityIndex), 0,
   4094       INTPTR_PARAMETERS));
   4095   Node* mask = IntPtrSub(capacity, IntPtrConstant(1));
   4096   Node* hash = ChangeUint32ToWord(LoadNameHash(unique_name));
   4097 
   4098   // See Dictionary::FirstProbe().
   4099   Node* count = IntPtrConstant(0);
   4100   Node* entry = WordAnd(hash, mask);
   4101 
   4102   for (int i = 0; i < inlined_probes; i++) {
   4103     Node* index = EntryToIndex<Dictionary>(entry);
   4104     var_name_index->Bind(index);
   4105 
   4106     Node* current =
   4107         LoadFixedArrayElement(dictionary, index, 0, INTPTR_PARAMETERS);
   4108     GotoIf(WordEqual(current, unique_name), if_found);
   4109 
   4110     // See Dictionary::NextProbe().
   4111     count = IntPtrConstant(i + 1);
   4112     entry = WordAnd(IntPtrAdd(entry, count), mask);
   4113   }
   4114 
   4115   Node* undefined = UndefinedConstant();
   4116 
   4117   Variable var_count(this, MachineType::PointerRepresentation());
   4118   Variable var_entry(this, MachineType::PointerRepresentation());
   4119   Variable* loop_vars[] = {&var_count, &var_entry, var_name_index};
   4120   Label loop(this, 3, loop_vars);
   4121   var_count.Bind(count);
   4122   var_entry.Bind(entry);
   4123   Goto(&loop);
   4124   Bind(&loop);
   4125   {
   4126     Node* count = var_count.value();
   4127     Node* entry = var_entry.value();
   4128 
   4129     Node* index = EntryToIndex<Dictionary>(entry);
   4130     var_name_index->Bind(index);
   4131 
   4132     Node* current =
   4133         LoadFixedArrayElement(dictionary, index, 0, INTPTR_PARAMETERS);
   4134     GotoIf(WordEqual(current, undefined), if_not_found);
   4135     GotoIf(WordEqual(current, unique_name), if_found);
   4136 
   4137     // See Dictionary::NextProbe().
   4138     count = IntPtrAdd(count, IntPtrConstant(1));
   4139     entry = WordAnd(IntPtrAdd(entry, count), mask);
   4140 
   4141     var_count.Bind(count);
   4142     var_entry.Bind(entry);
   4143     Goto(&loop);
   4144   }
   4145 }
   4146 
   4147 // Instantiate template methods to workaround GCC compilation issue.
   4148 template void CodeStubAssembler::NameDictionaryLookup<NameDictionary>(
   4149     Node*, Node*, Label*, Variable*, Label*, int);
   4150 template void CodeStubAssembler::NameDictionaryLookup<GlobalDictionary>(
   4151     Node*, Node*, Label*, Variable*, Label*, int);
   4152 
   4153 Node* CodeStubAssembler::ComputeIntegerHash(Node* key, Node* seed) {
   4154   // See v8::internal::ComputeIntegerHash()
   4155   Node* hash = key;
   4156   hash = Word32Xor(hash, seed);
   4157   hash = Int32Add(Word32Xor(hash, Int32Constant(0xffffffff)),
   4158                   Word32Shl(hash, Int32Constant(15)));
   4159   hash = Word32Xor(hash, Word32Shr(hash, Int32Constant(12)));
   4160   hash = Int32Add(hash, Word32Shl(hash, Int32Constant(2)));
   4161   hash = Word32Xor(hash, Word32Shr(hash, Int32Constant(4)));
   4162   hash = Int32Mul(hash, Int32Constant(2057));
   4163   hash = Word32Xor(hash, Word32Shr(hash, Int32Constant(16)));
   4164   return Word32And(hash, Int32Constant(0x3fffffff));
   4165 }
   4166 
   4167 template <typename Dictionary>
   4168 void CodeStubAssembler::NumberDictionaryLookup(Node* dictionary,
   4169                                                Node* intptr_index,
   4170                                                Label* if_found,
   4171                                                Variable* var_entry,
   4172                                                Label* if_not_found) {
   4173   CSA_ASSERT(this, IsDictionary(dictionary));
   4174   DCHECK_EQ(MachineType::PointerRepresentation(), var_entry->rep());
   4175   Comment("NumberDictionaryLookup");
   4176 
   4177   Node* capacity = SmiUntag(LoadFixedArrayElement(
   4178       dictionary, IntPtrConstant(Dictionary::kCapacityIndex), 0,
   4179       INTPTR_PARAMETERS));
   4180   Node* mask = IntPtrSub(capacity, IntPtrConstant(1));
   4181 
   4182   Node* int32_seed;
   4183   if (Dictionary::ShapeT::UsesSeed) {
   4184     int32_seed = HashSeed();
   4185   } else {
   4186     int32_seed = Int32Constant(kZeroHashSeed);
   4187   }
   4188   Node* hash = ChangeUint32ToWord(ComputeIntegerHash(intptr_index, int32_seed));
   4189   Node* key_as_float64 = RoundIntPtrToFloat64(intptr_index);
   4190 
   4191   // See Dictionary::FirstProbe().
   4192   Node* count = IntPtrConstant(0);
   4193   Node* entry = WordAnd(hash, mask);
   4194 
   4195   Node* undefined = UndefinedConstant();
   4196   Node* the_hole = TheHoleConstant();
   4197 
   4198   Variable var_count(this, MachineType::PointerRepresentation());
   4199   Variable* loop_vars[] = {&var_count, var_entry};
   4200   Label loop(this, 2, loop_vars);
   4201   var_count.Bind(count);
   4202   var_entry->Bind(entry);
   4203   Goto(&loop);
   4204   Bind(&loop);
   4205   {
   4206     Node* count = var_count.value();
   4207     Node* entry = var_entry->value();
   4208 
   4209     Node* index = EntryToIndex<Dictionary>(entry);
   4210     Node* current =
   4211         LoadFixedArrayElement(dictionary, index, 0, INTPTR_PARAMETERS);
   4212     GotoIf(WordEqual(current, undefined), if_not_found);
   4213     Label next_probe(this);
   4214     {
   4215       Label if_currentissmi(this), if_currentisnotsmi(this);
   4216       Branch(TaggedIsSmi(current), &if_currentissmi, &if_currentisnotsmi);
   4217       Bind(&if_currentissmi);
   4218       {
   4219         Node* current_value = SmiUntag(current);
   4220         Branch(WordEqual(current_value, intptr_index), if_found, &next_probe);
   4221       }
   4222       Bind(&if_currentisnotsmi);
   4223       {
   4224         GotoIf(WordEqual(current, the_hole), &next_probe);
   4225         // Current must be the Number.
   4226         Node* current_value = LoadHeapNumberValue(current);
   4227         Branch(Float64Equal(current_value, key_as_float64), if_found,
   4228                &next_probe);
   4229       }
   4230     }
   4231 
   4232     Bind(&next_probe);
   4233     // See Dictionary::NextProbe().
   4234     count = IntPtrAdd(count, IntPtrConstant(1));
   4235     entry = WordAnd(IntPtrAdd(entry, count), mask);
   4236 
   4237     var_count.Bind(count);
   4238     var_entry->Bind(entry);
   4239     Goto(&loop);
   4240   }
   4241 }
   4242 
   4243 void CodeStubAssembler::DescriptorLookupLinear(Node* unique_name,
   4244                                                Node* descriptors, Node* nof,
   4245                                                Label* if_found,
   4246                                                Variable* var_name_index,
   4247                                                Label* if_not_found) {
   4248   Node* first_inclusive = IntPtrConstant(DescriptorArray::ToKeyIndex(0));
   4249   Node* factor = IntPtrConstant(DescriptorArray::kDescriptorSize);
   4250   Node* last_exclusive = IntPtrAdd(first_inclusive, IntPtrMul(nof, factor));
   4251 
   4252   BuildFastLoop(
   4253       MachineType::PointerRepresentation(), last_exclusive, first_inclusive,
   4254       [descriptors, unique_name, if_found, var_name_index](
   4255           CodeStubAssembler* assembler, Node* name_index) {
   4256         Node* candidate_name = assembler->LoadFixedArrayElement(
   4257             descriptors, name_index, 0, INTPTR_PARAMETERS);
   4258         var_name_index->Bind(name_index);
   4259         assembler->GotoIf(assembler->WordEqual(candidate_name, unique_name),
   4260                           if_found);
   4261       },
   4262       -DescriptorArray::kDescriptorSize, IndexAdvanceMode::kPre);
   4263   Goto(if_not_found);
   4264 }
   4265 
   4266 void CodeStubAssembler::TryLookupProperty(
   4267     Node* object, Node* map, Node* instance_type, Node* unique_name,
   4268     Label* if_found_fast, Label* if_found_dict, Label* if_found_global,
   4269     Variable* var_meta_storage, Variable* var_name_index, Label* if_not_found,
   4270     Label* if_bailout) {
   4271   DCHECK_EQ(MachineRepresentation::kTagged, var_meta_storage->rep());
   4272   DCHECK_EQ(MachineType::PointerRepresentation(), var_name_index->rep());
   4273 
   4274   Label if_objectisspecial(this);
   4275   STATIC_ASSERT(JS_GLOBAL_OBJECT_TYPE <= LAST_SPECIAL_RECEIVER_TYPE);
   4276   GotoIf(Int32LessThanOrEqual(instance_type,
   4277                               Int32Constant(LAST_SPECIAL_RECEIVER_TYPE)),
   4278          &if_objectisspecial);
   4279 
   4280   uint32_t mask =
   4281       1 << Map::kHasNamedInterceptor | 1 << Map::kIsAccessCheckNeeded;
   4282   CSA_ASSERT(this, Word32BinaryNot(IsSetWord32(LoadMapBitField(map), mask)));
   4283   USE(mask);
   4284 
   4285   Node* bit_field3 = LoadMapBitField3(map);
   4286   Label if_isfastmap(this), if_isslowmap(this);
   4287   Branch(IsSetWord32<Map::DictionaryMap>(bit_field3), &if_isslowmap,
   4288          &if_isfastmap);
   4289   Bind(&if_isfastmap);
   4290   {
   4291     Comment("DescriptorArrayLookup");
   4292     Node* nof =
   4293         DecodeWordFromWord32<Map::NumberOfOwnDescriptorsBits>(bit_field3);
   4294     // Bail out to the runtime for large numbers of own descriptors. The stub
   4295     // only does linear search, which becomes too expensive in that case.
   4296     {
   4297       static const int32_t kMaxLinear = 210;
   4298       GotoIf(UintPtrGreaterThan(nof, IntPtrConstant(kMaxLinear)), if_bailout);
   4299     }
   4300     Node* descriptors = LoadMapDescriptors(map);
   4301     var_meta_storage->Bind(descriptors);
   4302 
   4303     DescriptorLookupLinear(unique_name, descriptors, nof, if_found_fast,
   4304                            var_name_index, if_not_found);
   4305   }
   4306   Bind(&if_isslowmap);
   4307   {
   4308     Node* dictionary = LoadProperties(object);
   4309     var_meta_storage->Bind(dictionary);
   4310 
   4311     NameDictionaryLookup<NameDictionary>(dictionary, unique_name, if_found_dict,
   4312                                          var_name_index, if_not_found);
   4313   }
   4314   Bind(&if_objectisspecial);
   4315   {
   4316     // Handle global object here and other special objects in runtime.
   4317     GotoUnless(Word32Equal(instance_type, Int32Constant(JS_GLOBAL_OBJECT_TYPE)),
   4318                if_bailout);
   4319 
   4320     // Handle interceptors and access checks in runtime.
   4321     Node* bit_field = LoadMapBitField(map);
   4322     Node* mask = Int32Constant(1 << Map::kHasNamedInterceptor |
   4323                                1 << Map::kIsAccessCheckNeeded);
   4324     GotoIf(Word32NotEqual(Word32And(bit_field, mask), Int32Constant(0)),
   4325            if_bailout);
   4326 
   4327     Node* dictionary = LoadProperties(object);
   4328     var_meta_storage->Bind(dictionary);
   4329 
   4330     NameDictionaryLookup<GlobalDictionary>(
   4331         dictionary, unique_name, if_found_global, var_name_index, if_not_found);
   4332   }
   4333 }
   4334 
   4335 void CodeStubAssembler::TryHasOwnProperty(compiler::Node* object,
   4336                                           compiler::Node* map,
   4337                                           compiler::Node* instance_type,
   4338                                           compiler::Node* unique_name,
   4339                                           Label* if_found, Label* if_not_found,
   4340                                           Label* if_bailout) {
   4341   Comment("TryHasOwnProperty");
   4342   Variable var_meta_storage(this, MachineRepresentation::kTagged);
   4343   Variable var_name_index(this, MachineType::PointerRepresentation());
   4344 
   4345   Label if_found_global(this);
   4346   TryLookupProperty(object, map, instance_type, unique_name, if_found, if_found,
   4347                     &if_found_global, &var_meta_storage, &var_name_index,
   4348                     if_not_found, if_bailout);
   4349   Bind(&if_found_global);
   4350   {
   4351     Variable var_value(this, MachineRepresentation::kTagged);
   4352     Variable var_details(this, MachineRepresentation::kWord32);
   4353     // Check if the property cell is not deleted.
   4354     LoadPropertyFromGlobalDictionary(var_meta_storage.value(),
   4355                                      var_name_index.value(), &var_value,
   4356                                      &var_details, if_not_found);
   4357     Goto(if_found);
   4358   }
   4359 }
   4360 
   4361 void CodeStubAssembler::LoadPropertyFromFastObject(Node* object, Node* map,
   4362                                                    Node* descriptors,
   4363                                                    Node* name_index,
   4364                                                    Variable* var_details,
   4365                                                    Variable* var_value) {
   4366   DCHECK_EQ(MachineRepresentation::kWord32, var_details->rep());
   4367   DCHECK_EQ(MachineRepresentation::kTagged, var_value->rep());
   4368   Comment("[ LoadPropertyFromFastObject");
   4369 
   4370   const int name_to_details_offset =
   4371       (DescriptorArray::kDescriptorDetails - DescriptorArray::kDescriptorKey) *
   4372       kPointerSize;
   4373   const int name_to_value_offset =
   4374       (DescriptorArray::kDescriptorValue - DescriptorArray::kDescriptorKey) *
   4375       kPointerSize;
   4376 
   4377   Node* details = LoadAndUntagToWord32FixedArrayElement(descriptors, name_index,
   4378                                                         name_to_details_offset);
   4379   var_details->Bind(details);
   4380 
   4381   Node* location = DecodeWord32<PropertyDetails::LocationField>(details);
   4382 
   4383   Label if_in_field(this), if_in_descriptor(this), done(this);
   4384   Branch(Word32Equal(location, Int32Constant(kField)), &if_in_field,
   4385          &if_in_descriptor);
   4386   Bind(&if_in_field);
   4387   {
   4388     Node* field_index =
   4389         DecodeWordFromWord32<PropertyDetails::FieldIndexField>(details);
   4390     Node* representation =
   4391         DecodeWord32<PropertyDetails::RepresentationField>(details);
   4392 
   4393     Node* inobject_properties = LoadMapInobjectProperties(map);
   4394 
   4395     Label if_inobject(this), if_backing_store(this);
   4396     Variable var_double_value(this, MachineRepresentation::kFloat64);
   4397     Label rebox_double(this, &var_double_value);
   4398     Branch(UintPtrLessThan(field_index, inobject_properties), &if_inobject,
   4399            &if_backing_store);
   4400     Bind(&if_inobject);
   4401     {
   4402       Comment("if_inobject");
   4403       Node* field_offset =
   4404           IntPtrMul(IntPtrSub(LoadMapInstanceSize(map),
   4405                               IntPtrSub(inobject_properties, field_index)),
   4406                     IntPtrConstant(kPointerSize));
   4407 
   4408       Label if_double(this), if_tagged(this);
   4409       Branch(Word32NotEqual(representation,
   4410                             Int32Constant(Representation::kDouble)),
   4411              &if_tagged, &if_double);
   4412       Bind(&if_tagged);
   4413       {
   4414         var_value->Bind(LoadObjectField(object, field_offset));
   4415         Goto(&done);
   4416       }
   4417       Bind(&if_double);
   4418       {
   4419         if (FLAG_unbox_double_fields) {
   4420           var_double_value.Bind(
   4421               LoadObjectField(object, field_offset, MachineType::Float64()));
   4422         } else {
   4423           Node* mutable_heap_number = LoadObjectField(object, field_offset);
   4424           var_double_value.Bind(LoadHeapNumberValue(mutable_heap_number));
   4425         }
   4426         Goto(&rebox_double);
   4427       }
   4428     }
   4429     Bind(&if_backing_store);
   4430     {
   4431       Comment("if_backing_store");
   4432       Node* properties = LoadProperties(object);
   4433       field_index = IntPtrSub(field_index, inobject_properties);
   4434       Node* value = LoadFixedArrayElement(properties, field_index);
   4435 
   4436       Label if_double(this), if_tagged(this);
   4437       Branch(Word32NotEqual(representation,
   4438                             Int32Constant(Representation::kDouble)),
   4439              &if_tagged, &if_double);
   4440       Bind(&if_tagged);
   4441       {
   4442         var_value->Bind(value);
   4443         Goto(&done);
   4444       }
   4445       Bind(&if_double);
   4446       {
   4447         var_double_value.Bind(LoadHeapNumberValue(value));
   4448         Goto(&rebox_double);
   4449       }
   4450     }
   4451     Bind(&rebox_double);
   4452     {
   4453       Comment("rebox_double");
   4454       Node* heap_number = AllocateHeapNumberWithValue(var_double_value.value());
   4455       var_value->Bind(heap_number);
   4456       Goto(&done);
   4457     }
   4458   }
   4459   Bind(&if_in_descriptor);
   4460   {
   4461     Node* value =
   4462         LoadFixedArrayElement(descriptors, name_index, name_to_value_offset);
   4463     var_value->Bind(value);
   4464     Goto(&done);
   4465   }
   4466   Bind(&done);
   4467 
   4468   Comment("] LoadPropertyFromFastObject");
   4469 }
   4470 
   4471 void CodeStubAssembler::LoadPropertyFromNameDictionary(Node* dictionary,
   4472                                                        Node* name_index,
   4473                                                        Variable* var_details,
   4474                                                        Variable* var_value) {
   4475   Comment("LoadPropertyFromNameDictionary");
   4476   CSA_ASSERT(this, IsDictionary(dictionary));
   4477   const int name_to_details_offset =
   4478       (NameDictionary::kEntryDetailsIndex - NameDictionary::kEntryKeyIndex) *
   4479       kPointerSize;
   4480   const int name_to_value_offset =
   4481       (NameDictionary::kEntryValueIndex - NameDictionary::kEntryKeyIndex) *
   4482       kPointerSize;
   4483 
   4484   Node* details = LoadAndUntagToWord32FixedArrayElement(dictionary, name_index,
   4485                                                         name_to_details_offset);
   4486 
   4487   var_details->Bind(details);
   4488   var_value->Bind(
   4489       LoadFixedArrayElement(dictionary, name_index, name_to_value_offset));
   4490 
   4491   Comment("] LoadPropertyFromNameDictionary");
   4492 }
   4493 
   4494 void CodeStubAssembler::LoadPropertyFromGlobalDictionary(Node* dictionary,
   4495                                                          Node* name_index,
   4496                                                          Variable* var_details,
   4497                                                          Variable* var_value,
   4498                                                          Label* if_deleted) {
   4499   Comment("[ LoadPropertyFromGlobalDictionary");
   4500   CSA_ASSERT(this, IsDictionary(dictionary));
   4501 
   4502   const int name_to_value_offset =
   4503       (GlobalDictionary::kEntryValueIndex - GlobalDictionary::kEntryKeyIndex) *
   4504       kPointerSize;
   4505 
   4506   Node* property_cell =
   4507       LoadFixedArrayElement(dictionary, name_index, name_to_value_offset);
   4508 
   4509   Node* value = LoadObjectField(property_cell, PropertyCell::kValueOffset);
   4510   GotoIf(WordEqual(value, TheHoleConstant()), if_deleted);
   4511 
   4512   var_value->Bind(value);
   4513 
   4514   Node* details = LoadAndUntagToWord32ObjectField(property_cell,
   4515                                                   PropertyCell::kDetailsOffset);
   4516   var_details->Bind(details);
   4517 
   4518   Comment("] LoadPropertyFromGlobalDictionary");
   4519 }
   4520 
   4521 // |value| is the property backing store's contents, which is either a value
   4522 // or an accessor pair, as specified by |details|.
   4523 // Returns either the original value, or the result of the getter call.
   4524 Node* CodeStubAssembler::CallGetterIfAccessor(Node* value, Node* details,
   4525                                               Node* context, Node* receiver,
   4526                                               Label* if_bailout) {
   4527   Variable var_value(this, MachineRepresentation::kTagged);
   4528   var_value.Bind(value);
   4529   Label done(this);
   4530 
   4531   Node* kind = DecodeWord32<PropertyDetails::KindField>(details);
   4532   GotoIf(Word32Equal(kind, Int32Constant(kData)), &done);
   4533 
   4534   // Accessor case.
   4535   {
   4536     Node* accessor_pair = value;
   4537     GotoIf(Word32Equal(LoadInstanceType(accessor_pair),
   4538                        Int32Constant(ACCESSOR_INFO_TYPE)),
   4539            if_bailout);
   4540     CSA_ASSERT(this, HasInstanceType(accessor_pair, ACCESSOR_PAIR_TYPE));
   4541     Node* getter = LoadObjectField(accessor_pair, AccessorPair::kGetterOffset);
   4542     Node* getter_map = LoadMap(getter);
   4543     Node* instance_type = LoadMapInstanceType(getter_map);
   4544     // FunctionTemplateInfo getters are not supported yet.
   4545     GotoIf(
   4546         Word32Equal(instance_type, Int32Constant(FUNCTION_TEMPLATE_INFO_TYPE)),
   4547         if_bailout);
   4548 
   4549     // Return undefined if the {getter} is not callable.
   4550     var_value.Bind(UndefinedConstant());
   4551     GotoUnless(IsCallableMap(getter_map), &done);
   4552 
   4553     // Call the accessor.
   4554     Callable callable = CodeFactory::Call(isolate());
   4555     Node* result = CallJS(callable, context, getter, receiver);
   4556     var_value.Bind(result);
   4557     Goto(&done);
   4558   }
   4559 
   4560   Bind(&done);
   4561   return var_value.value();
   4562 }
   4563 
   4564 void CodeStubAssembler::TryGetOwnProperty(
   4565     Node* context, Node* receiver, Node* object, Node* map, Node* instance_type,
   4566     Node* unique_name, Label* if_found_value, Variable* var_value,
   4567     Label* if_not_found, Label* if_bailout) {
   4568   DCHECK_EQ(MachineRepresentation::kTagged, var_value->rep());
   4569   Comment("TryGetOwnProperty");
   4570 
   4571   Variable var_meta_storage(this, MachineRepresentation::kTagged);
   4572   Variable var_entry(this, MachineType::PointerRepresentation());
   4573 
   4574   Label if_found_fast(this), if_found_dict(this), if_found_global(this);
   4575 
   4576   Variable var_details(this, MachineRepresentation::kWord32);
   4577   Variable* vars[] = {var_value, &var_details};
   4578   Label if_found(this, 2, vars);
   4579 
   4580   TryLookupProperty(object, map, instance_type, unique_name, &if_found_fast,
   4581                     &if_found_dict, &if_found_global, &var_meta_storage,
   4582                     &var_entry, if_not_found, if_bailout);
   4583   Bind(&if_found_fast);
   4584   {
   4585     Node* descriptors = var_meta_storage.value();
   4586     Node* name_index = var_entry.value();
   4587 
   4588     LoadPropertyFromFastObject(object, map, descriptors, name_index,
   4589                                &var_details, var_value);
   4590     Goto(&if_found);
   4591   }
   4592   Bind(&if_found_dict);
   4593   {
   4594     Node* dictionary = var_meta_storage.value();
   4595     Node* entry = var_entry.value();
   4596     LoadPropertyFromNameDictionary(dictionary, entry, &var_details, var_value);
   4597     Goto(&if_found);
   4598   }
   4599   Bind(&if_found_global);
   4600   {
   4601     Node* dictionary = var_meta_storage.value();
   4602     Node* entry = var_entry.value();
   4603 
   4604     LoadPropertyFromGlobalDictionary(dictionary, entry, &var_details, var_value,
   4605                                      if_not_found);
   4606     Goto(&if_found);
   4607   }
   4608   // Here we have details and value which could be an accessor.
   4609   Bind(&if_found);
   4610   {
   4611     Node* value = CallGetterIfAccessor(var_value->value(), var_details.value(),
   4612                                        context, receiver, if_bailout);
   4613     var_value->Bind(value);
   4614     Goto(if_found_value);
   4615   }
   4616 }
   4617 
   4618 void CodeStubAssembler::TryLookupElement(Node* object, Node* map,
   4619                                          Node* instance_type,
   4620                                          Node* intptr_index, Label* if_found,
   4621                                          Label* if_not_found,
   4622                                          Label* if_bailout) {
   4623   // Handle special objects in runtime.
   4624   GotoIf(Int32LessThanOrEqual(instance_type,
   4625                               Int32Constant(LAST_SPECIAL_RECEIVER_TYPE)),
   4626          if_bailout);
   4627 
   4628   Node* elements_kind = LoadMapElementsKind(map);
   4629 
   4630   // TODO(verwaest): Support other elements kinds as well.
   4631   Label if_isobjectorsmi(this), if_isdouble(this), if_isdictionary(this),
   4632       if_isfaststringwrapper(this), if_isslowstringwrapper(this), if_oob(this);
   4633   // clang-format off
   4634   int32_t values[] = {
   4635       // Handled by {if_isobjectorsmi}.
   4636       FAST_SMI_ELEMENTS, FAST_HOLEY_SMI_ELEMENTS, FAST_ELEMENTS,
   4637           FAST_HOLEY_ELEMENTS,
   4638       // Handled by {if_isdouble}.
   4639       FAST_DOUBLE_ELEMENTS, FAST_HOLEY_DOUBLE_ELEMENTS,
   4640       // Handled by {if_isdictionary}.
   4641       DICTIONARY_ELEMENTS,
   4642       // Handled by {if_isfaststringwrapper}.
   4643       FAST_STRING_WRAPPER_ELEMENTS,
   4644       // Handled by {if_isslowstringwrapper}.
   4645       SLOW_STRING_WRAPPER_ELEMENTS,
   4646       // Handled by {if_not_found}.
   4647       NO_ELEMENTS,
   4648   };
   4649   Label* labels[] = {
   4650       &if_isobjectorsmi, &if_isobjectorsmi, &if_isobjectorsmi,
   4651           &if_isobjectorsmi,
   4652       &if_isdouble, &if_isdouble,
   4653       &if_isdictionary,
   4654       &if_isfaststringwrapper,
   4655       &if_isslowstringwrapper,
   4656       if_not_found,
   4657   };
   4658   // clang-format on
   4659   STATIC_ASSERT(arraysize(values) == arraysize(labels));
   4660   Switch(elements_kind, if_bailout, values, labels, arraysize(values));
   4661 
   4662   Bind(&if_isobjectorsmi);
   4663   {
   4664     Node* elements = LoadElements(object);
   4665     Node* length = LoadAndUntagFixedArrayBaseLength(elements);
   4666 
   4667     GotoUnless(UintPtrLessThan(intptr_index, length), &if_oob);
   4668 
   4669     Node* element =
   4670         LoadFixedArrayElement(elements, intptr_index, 0, INTPTR_PARAMETERS);
   4671     Node* the_hole = TheHoleConstant();
   4672     Branch(WordEqual(element, the_hole), if_not_found, if_found);
   4673   }
   4674   Bind(&if_isdouble);
   4675   {
   4676     Node* elements = LoadElements(object);
   4677     Node* length = LoadAndUntagFixedArrayBaseLength(elements);
   4678 
   4679     GotoUnless(UintPtrLessThan(intptr_index, length), &if_oob);
   4680 
   4681     // Check if the element is a double hole, but don't load it.
   4682     LoadFixedDoubleArrayElement(elements, intptr_index, MachineType::None(), 0,
   4683                                 INTPTR_PARAMETERS, if_not_found);
   4684     Goto(if_found);
   4685   }
   4686   Bind(&if_isdictionary);
   4687   {
   4688     // Negative keys must be converted to property names.
   4689     GotoIf(IntPtrLessThan(intptr_index, IntPtrConstant(0)), if_bailout);
   4690 
   4691     Variable var_entry(this, MachineType::PointerRepresentation());
   4692     Node* elements = LoadElements(object);
   4693     NumberDictionaryLookup<SeededNumberDictionary>(
   4694         elements, intptr_index, if_found, &var_entry, if_not_found);
   4695   }
   4696   Bind(&if_isfaststringwrapper);
   4697   {
   4698     CSA_ASSERT(this, HasInstanceType(object, JS_VALUE_TYPE));
   4699     Node* string = LoadJSValueValue(object);
   4700     CSA_ASSERT(this, IsStringInstanceType(LoadInstanceType(string)));
   4701     Node* length = LoadStringLength(string);
   4702     GotoIf(UintPtrLessThan(intptr_index, SmiUntag(length)), if_found);
   4703     Goto(&if_isobjectorsmi);
   4704   }
   4705   Bind(&if_isslowstringwrapper);
   4706   {
   4707     CSA_ASSERT(this, HasInstanceType(object, JS_VALUE_TYPE));
   4708     Node* string = LoadJSValueValue(object);
   4709     CSA_ASSERT(this, IsStringInstanceType(LoadInstanceType(string)));
   4710     Node* length = LoadStringLength(string);
   4711     GotoIf(UintPtrLessThan(intptr_index, SmiUntag(length)), if_found);
   4712     Goto(&if_isdictionary);
   4713   }
   4714   Bind(&if_oob);
   4715   {
   4716     // Positive OOB indices mean "not found", negative indices must be
   4717     // converted to property names.
   4718     GotoIf(IntPtrLessThan(intptr_index, IntPtrConstant(0)), if_bailout);
   4719     Goto(if_not_found);
   4720   }
   4721 }
   4722 
   4723 // Instantiate template methods to workaround GCC compilation issue.
   4724 template void CodeStubAssembler::NumberDictionaryLookup<SeededNumberDictionary>(
   4725     Node*, Node*, Label*, Variable*, Label*);
   4726 template void CodeStubAssembler::NumberDictionaryLookup<
   4727     UnseededNumberDictionary>(Node*, Node*, Label*, Variable*, Label*);
   4728 
   4729 void CodeStubAssembler::TryPrototypeChainLookup(
   4730     Node* receiver, Node* key, LookupInHolder& lookup_property_in_holder,
   4731     LookupInHolder& lookup_element_in_holder, Label* if_end,
   4732     Label* if_bailout) {
   4733   // Ensure receiver is JSReceiver, otherwise bailout.
   4734   Label if_objectisnotsmi(this);
   4735   Branch(TaggedIsSmi(receiver), if_bailout, &if_objectisnotsmi);
   4736   Bind(&if_objectisnotsmi);
   4737 
   4738   Node* map = LoadMap(receiver);
   4739   Node* instance_type = LoadMapInstanceType(map);
   4740   {
   4741     Label if_objectisreceiver(this);
   4742     STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
   4743     STATIC_ASSERT(FIRST_JS_RECEIVER_TYPE == JS_PROXY_TYPE);
   4744     Branch(
   4745         Int32GreaterThan(instance_type, Int32Constant(FIRST_JS_RECEIVER_TYPE)),
   4746         &if_objectisreceiver, if_bailout);
   4747     Bind(&if_objectisreceiver);
   4748   }
   4749 
   4750   Variable var_index(this, MachineType::PointerRepresentation());
   4751 
   4752   Label if_keyisindex(this), if_iskeyunique(this);
   4753   TryToName(key, &if_keyisindex, &var_index, &if_iskeyunique, if_bailout);
   4754 
   4755   Bind(&if_iskeyunique);
   4756   {
   4757     Variable var_holder(this, MachineRepresentation::kTagged);
   4758     Variable var_holder_map(this, MachineRepresentation::kTagged);
   4759     Variable var_holder_instance_type(this, MachineRepresentation::kWord8);
   4760 
   4761     Variable* merged_variables[] = {&var_holder, &var_holder_map,
   4762                                     &var_holder_instance_type};
   4763     Label loop(this, arraysize(merged_variables), merged_variables);
   4764     var_holder.Bind(receiver);
   4765     var_holder_map.Bind(map);
   4766     var_holder_instance_type.Bind(instance_type);
   4767     Goto(&loop);
   4768     Bind(&loop);
   4769     {
   4770       Node* holder_map = var_holder_map.value();
   4771       Node* holder_instance_type = var_holder_instance_type.value();
   4772 
   4773       Label next_proto(this);
   4774       lookup_property_in_holder(receiver, var_holder.value(), holder_map,
   4775                                 holder_instance_type, key, &next_proto,
   4776                                 if_bailout);
   4777       Bind(&next_proto);
   4778 
   4779       // Bailout if it can be an integer indexed exotic case.
   4780       GotoIf(
   4781           Word32Equal(holder_instance_type, Int32Constant(JS_TYPED_ARRAY_TYPE)),
   4782           if_bailout);
   4783 
   4784       Node* proto = LoadMapPrototype(holder_map);
   4785 
   4786       Label if_not_null(this);
   4787       Branch(WordEqual(proto, NullConstant()), if_end, &if_not_null);
   4788       Bind(&if_not_null);
   4789 
   4790       Node* map = LoadMap(proto);
   4791       Node* instance_type = LoadMapInstanceType(map);
   4792 
   4793       var_holder.Bind(proto);
   4794       var_holder_map.Bind(map);
   4795       var_holder_instance_type.Bind(instance_type);
   4796       Goto(&loop);
   4797     }
   4798   }
   4799   Bind(&if_keyisindex);
   4800   {
   4801     Variable var_holder(this, MachineRepresentation::kTagged);
   4802     Variable var_holder_map(this, MachineRepresentation::kTagged);
   4803     Variable var_holder_instance_type(this, MachineRepresentation::kWord8);
   4804 
   4805     Variable* merged_variables[] = {&var_holder, &var_holder_map,
   4806                                     &var_holder_instance_type};
   4807     Label loop(this, arraysize(merged_variables), merged_variables);
   4808     var_holder.Bind(receiver);
   4809     var_holder_map.Bind(map);
   4810     var_holder_instance_type.Bind(instance_type);
   4811     Goto(&loop);
   4812     Bind(&loop);
   4813     {
   4814       Label next_proto(this);
   4815       lookup_element_in_holder(receiver, var_holder.value(),
   4816                                var_holder_map.value(),
   4817                                var_holder_instance_type.value(),
   4818                                var_index.value(), &next_proto, if_bailout);
   4819       Bind(&next_proto);
   4820 
   4821       Node* proto = LoadMapPrototype(var_holder_map.value());
   4822 
   4823       Label if_not_null(this);
   4824       Branch(WordEqual(proto, NullConstant()), if_end, &if_not_null);
   4825       Bind(&if_not_null);
   4826 
   4827       Node* map = LoadMap(proto);
   4828       Node* instance_type = LoadMapInstanceType(map);
   4829 
   4830       var_holder.Bind(proto);
   4831       var_holder_map.Bind(map);
   4832       var_holder_instance_type.Bind(instance_type);
   4833       Goto(&loop);
   4834     }
   4835   }
   4836 }
   4837 
   4838 Node* CodeStubAssembler::OrdinaryHasInstance(Node* context, Node* callable,
   4839                                              Node* object) {
   4840   Variable var_result(this, MachineRepresentation::kTagged);
   4841   Label return_false(this), return_true(this),
   4842       return_runtime(this, Label::kDeferred), return_result(this);
   4843 
   4844   // Goto runtime if {object} is a Smi.
   4845   GotoIf(TaggedIsSmi(object), &return_runtime);
   4846 
   4847   // Load map of {object}.
   4848   Node* object_map = LoadMap(object);
   4849 
   4850   // Lookup the {callable} and {object} map in the global instanceof cache.
   4851   // Note: This is safe because we clear the global instanceof cache whenever
   4852   // we change the prototype of any object.
   4853   Node* instanceof_cache_function =
   4854       LoadRoot(Heap::kInstanceofCacheFunctionRootIndex);
   4855   Node* instanceof_cache_map = LoadRoot(Heap::kInstanceofCacheMapRootIndex);
   4856   {
   4857     Label instanceof_cache_miss(this);
   4858     GotoUnless(WordEqual(instanceof_cache_function, callable),
   4859                &instanceof_cache_miss);
   4860     GotoUnless(WordEqual(instanceof_cache_map, object_map),
   4861                &instanceof_cache_miss);
   4862     var_result.Bind(LoadRoot(Heap::kInstanceofCacheAnswerRootIndex));
   4863     Goto(&return_result);
   4864     Bind(&instanceof_cache_miss);
   4865   }
   4866 
   4867   // Goto runtime if {callable} is a Smi.
   4868   GotoIf(TaggedIsSmi(callable), &return_runtime);
   4869 
   4870   // Load map of {callable}.
   4871   Node* callable_map = LoadMap(callable);
   4872 
   4873   // Goto runtime if {callable} is not a JSFunction.
   4874   Node* callable_instance_type = LoadMapInstanceType(callable_map);
   4875   GotoUnless(
   4876       Word32Equal(callable_instance_type, Int32Constant(JS_FUNCTION_TYPE)),
   4877       &return_runtime);
   4878 
   4879   // Goto runtime if {callable} is not a constructor or has
   4880   // a non-instance "prototype".
   4881   Node* callable_bitfield = LoadMapBitField(callable_map);
   4882   GotoUnless(
   4883       Word32Equal(Word32And(callable_bitfield,
   4884                             Int32Constant((1 << Map::kHasNonInstancePrototype) |
   4885                                           (1 << Map::kIsConstructor))),
   4886                   Int32Constant(1 << Map::kIsConstructor)),
   4887       &return_runtime);
   4888 
   4889   // Get the "prototype" (or initial map) of the {callable}.
   4890   Node* callable_prototype =
   4891       LoadObjectField(callable, JSFunction::kPrototypeOrInitialMapOffset);
   4892   {
   4893     Variable var_callable_prototype(this, MachineRepresentation::kTagged);
   4894     Label callable_prototype_valid(this);
   4895     var_callable_prototype.Bind(callable_prototype);
   4896 
   4897     // Resolve the "prototype" if the {callable} has an initial map.  Afterwards
   4898     // the {callable_prototype} will be either the JSReceiver prototype object
   4899     // or the hole value, which means that no instances of the {callable} were
   4900     // created so far and hence we should return false.
   4901     Node* callable_prototype_instance_type =
   4902         LoadInstanceType(callable_prototype);
   4903     GotoUnless(
   4904         Word32Equal(callable_prototype_instance_type, Int32Constant(MAP_TYPE)),
   4905         &callable_prototype_valid);
   4906     var_callable_prototype.Bind(
   4907         LoadObjectField(callable_prototype, Map::kPrototypeOffset));
   4908     Goto(&callable_prototype_valid);
   4909     Bind(&callable_prototype_valid);
   4910     callable_prototype = var_callable_prototype.value();
   4911   }
   4912 
   4913   // Update the global instanceof cache with the current {object} map and
   4914   // {callable}.  The cached answer will be set when it is known below.
   4915   StoreRoot(Heap::kInstanceofCacheFunctionRootIndex, callable);
   4916   StoreRoot(Heap::kInstanceofCacheMapRootIndex, object_map);
   4917 
   4918   // Loop through the prototype chain looking for the {callable} prototype.
   4919   Variable var_object_map(this, MachineRepresentation::kTagged);
   4920   var_object_map.Bind(object_map);
   4921   Label loop(this, &var_object_map);
   4922   Goto(&loop);
   4923   Bind(&loop);
   4924   {
   4925     Node* object_map = var_object_map.value();
   4926 
   4927     // Check if the current {object} needs to be access checked.
   4928     Node* object_bitfield = LoadMapBitField(object_map);
   4929     GotoUnless(
   4930         Word32Equal(Word32And(object_bitfield,
   4931                               Int32Constant(1 << Map::kIsAccessCheckNeeded)),
   4932                     Int32Constant(0)),
   4933         &return_runtime);
   4934 
   4935     // Check if the current {object} is a proxy.
   4936     Node* object_instance_type = LoadMapInstanceType(object_map);
   4937     GotoIf(Word32Equal(object_instance_type, Int32Constant(JS_PROXY_TYPE)),
   4938            &return_runtime);
   4939 
   4940     // Check the current {object} prototype.
   4941     Node* object_prototype = LoadMapPrototype(object_map);
   4942     GotoIf(WordEqual(object_prototype, NullConstant()), &return_false);
   4943     GotoIf(WordEqual(object_prototype, callable_prototype), &return_true);
   4944 
   4945     // Continue with the prototype.
   4946     var_object_map.Bind(LoadMap(object_prototype));
   4947     Goto(&loop);
   4948   }
   4949 
   4950   Bind(&return_true);
   4951   StoreRoot(Heap::kInstanceofCacheAnswerRootIndex, BooleanConstant(true));
   4952   var_result.Bind(BooleanConstant(true));
   4953   Goto(&return_result);
   4954 
   4955   Bind(&return_false);
   4956   StoreRoot(Heap::kInstanceofCacheAnswerRootIndex, BooleanConstant(false));
   4957   var_result.Bind(BooleanConstant(false));
   4958   Goto(&return_result);
   4959 
   4960   Bind(&return_runtime);
   4961   {
   4962     // Invalidate the global instanceof cache.
   4963     StoreRoot(Heap::kInstanceofCacheFunctionRootIndex, SmiConstant(0));
   4964     // Fallback to the runtime implementation.
   4965     var_result.Bind(
   4966         CallRuntime(Runtime::kOrdinaryHasInstance, context, callable, object));
   4967   }
   4968   Goto(&return_result);
   4969 
   4970   Bind(&return_result);
   4971   return var_result.value();
   4972 }
   4973 
   4974 compiler::Node* CodeStubAssembler::ElementOffsetFromIndex(Node* index_node,
   4975                                                           ElementsKind kind,
   4976                                                           ParameterMode mode,
   4977                                                           int base_size) {
   4978   int element_size_shift = ElementsKindToShiftSize(kind);
   4979   int element_size = 1 << element_size_shift;
   4980   int const kSmiShiftBits = kSmiShiftSize + kSmiTagSize;
   4981   intptr_t index = 0;
   4982   bool constant_index = false;
   4983   if (mode == SMI_PARAMETERS) {
   4984     element_size_shift -= kSmiShiftBits;
   4985     Smi* smi_index;
   4986     constant_index = ToSmiConstant(index_node, smi_index);
   4987     if (constant_index) index = smi_index->value();
   4988     index_node = BitcastTaggedToWord(index_node);
   4989   } else if (mode == INTEGER_PARAMETERS) {
   4990     int32_t temp = 0;
   4991     constant_index = ToInt32Constant(index_node, temp);
   4992     index = static_cast<intptr_t>(temp);
   4993   } else {
   4994     DCHECK(mode == INTPTR_PARAMETERS);
   4995     constant_index = ToIntPtrConstant(index_node, index);
   4996   }
   4997   if (constant_index) {
   4998     return IntPtrConstant(base_size + element_size * index);
   4999   }
   5000   if (Is64() && mode == INTEGER_PARAMETERS) {
   5001     index_node = ChangeInt32ToInt64(index_node);
   5002   }
   5003 
   5004   Node* shifted_index =
   5005       (element_size_shift == 0)
   5006           ? index_node
   5007           : ((element_size_shift > 0)
   5008                  ? WordShl(index_node, IntPtrConstant(element_size_shift))
   5009                  : WordShr(index_node, IntPtrConstant(-element_size_shift)));
   5010   return IntPtrAddFoldConstants(IntPtrConstant(base_size), shifted_index);
   5011 }
   5012 
   5013 compiler::Node* CodeStubAssembler::LoadTypeFeedbackVectorForStub() {
   5014   Node* function =
   5015       LoadFromParentFrame(JavaScriptFrameConstants::kFunctionOffset);
   5016   Node* literals = LoadObjectField(function, JSFunction::kLiteralsOffset);
   5017   return LoadObjectField(literals, LiteralsArray::kFeedbackVectorOffset);
   5018 }
   5019 
   5020 void CodeStubAssembler::UpdateFeedback(compiler::Node* feedback,
   5021                                        compiler::Node* type_feedback_vector,
   5022                                        compiler::Node* slot_id) {
   5023   // This method is used for binary op and compare feedback. These
   5024   // vector nodes are initialized with a smi 0, so we can simply OR
   5025   // our new feedback in place.
   5026   // TODO(interpreter): Consider passing the feedback as Smi already to avoid
   5027   // the tagging completely.
   5028   Node* previous_feedback =
   5029       LoadFixedArrayElement(type_feedback_vector, slot_id);
   5030   Node* combined_feedback = SmiOr(previous_feedback, SmiFromWord32(feedback));
   5031   StoreFixedArrayElement(type_feedback_vector, slot_id, combined_feedback,
   5032                          SKIP_WRITE_BARRIER);
   5033 }
   5034 
   5035 compiler::Node* CodeStubAssembler::LoadReceiverMap(compiler::Node* receiver) {
   5036   Variable var_receiver_map(this, MachineRepresentation::kTagged);
   5037   Label load_smi_map(this, Label::kDeferred), load_receiver_map(this),
   5038       if_result(this);
   5039 
   5040   Branch(TaggedIsSmi(receiver), &load_smi_map, &load_receiver_map);
   5041   Bind(&load_smi_map);
   5042   {
   5043     var_receiver_map.Bind(LoadRoot(Heap::kHeapNumberMapRootIndex));
   5044     Goto(&if_result);
   5045   }
   5046   Bind(&load_receiver_map);
   5047   {
   5048     var_receiver_map.Bind(LoadMap(receiver));
   5049     Goto(&if_result);
   5050   }
   5051   Bind(&if_result);
   5052   return var_receiver_map.value();
   5053 }
   5054 
   5055 compiler::Node* CodeStubAssembler::TryMonomorphicCase(
   5056     compiler::Node* slot, compiler::Node* vector, compiler::Node* receiver_map,
   5057     Label* if_handler, Variable* var_handler, Label* if_miss) {
   5058   Comment("TryMonomorphicCase");
   5059   DCHECK_EQ(MachineRepresentation::kTagged, var_handler->rep());
   5060 
   5061   // TODO(ishell): add helper class that hides offset computations for a series
   5062   // of loads.
   5063   int32_t header_size = FixedArray::kHeaderSize - kHeapObjectTag;
   5064   // Adding |header_size| with a separate IntPtrAdd rather than passing it
   5065   // into ElementOffsetFromIndex() allows it to be folded into a single
   5066   // [base, index, offset] indirect memory access on x64.
   5067   Node* offset =
   5068       ElementOffsetFromIndex(slot, FAST_HOLEY_ELEMENTS, SMI_PARAMETERS);
   5069   Node* feedback = Load(MachineType::AnyTagged(), vector,
   5070                         IntPtrAdd(offset, IntPtrConstant(header_size)));
   5071 
   5072   // Try to quickly handle the monomorphic case without knowing for sure
   5073   // if we have a weak cell in feedback. We do know it's safe to look
   5074   // at WeakCell::kValueOffset.
   5075   GotoIf(WordNotEqual(receiver_map, LoadWeakCellValueUnchecked(feedback)),
   5076          if_miss);
   5077 
   5078   Node* handler =
   5079       Load(MachineType::AnyTagged(), vector,
   5080            IntPtrAdd(offset, IntPtrConstant(header_size + kPointerSize)));
   5081 
   5082   var_handler->Bind(handler);
   5083   Goto(if_handler);
   5084   return feedback;
   5085 }
   5086 
   5087 void CodeStubAssembler::HandlePolymorphicCase(
   5088     compiler::Node* receiver_map, compiler::Node* feedback, Label* if_handler,
   5089     Variable* var_handler, Label* if_miss, int unroll_count) {
   5090   Comment("HandlePolymorphicCase");
   5091   DCHECK_EQ(MachineRepresentation::kTagged, var_handler->rep());
   5092 
   5093   // Iterate {feedback} array.
   5094   const int kEntrySize = 2;
   5095 
   5096   for (int i = 0; i < unroll_count; i++) {
   5097     Label next_entry(this);
   5098     Node* cached_map = LoadWeakCellValue(LoadFixedArrayElement(
   5099         feedback, IntPtrConstant(i * kEntrySize), 0, INTPTR_PARAMETERS));
   5100     GotoIf(WordNotEqual(receiver_map, cached_map), &next_entry);
   5101 
   5102     // Found, now call handler.
   5103     Node* handler = LoadFixedArrayElement(
   5104         feedback, IntPtrConstant(i * kEntrySize + 1), 0, INTPTR_PARAMETERS);
   5105     var_handler->Bind(handler);
   5106     Goto(if_handler);
   5107 
   5108     Bind(&next_entry);
   5109   }
   5110 
   5111   // Loop from {unroll_count}*kEntrySize to {length}.
   5112   Node* init = IntPtrConstant(unroll_count * kEntrySize);
   5113   Node* length = LoadAndUntagFixedArrayBaseLength(feedback);
   5114   BuildFastLoop(
   5115       MachineType::PointerRepresentation(), init, length,
   5116       [receiver_map, feedback, if_handler, var_handler](CodeStubAssembler* csa,
   5117                                                         Node* index) {
   5118         Node* cached_map = csa->LoadWeakCellValue(
   5119             csa->LoadFixedArrayElement(feedback, index, 0, INTPTR_PARAMETERS));
   5120 
   5121         Label next_entry(csa);
   5122         csa->GotoIf(csa->WordNotEqual(receiver_map, cached_map), &next_entry);
   5123 
   5124         // Found, now call handler.
   5125         Node* handler = csa->LoadFixedArrayElement(
   5126             feedback, index, kPointerSize, INTPTR_PARAMETERS);
   5127         var_handler->Bind(handler);
   5128         csa->Goto(if_handler);
   5129 
   5130         csa->Bind(&next_entry);
   5131       },
   5132       kEntrySize, IndexAdvanceMode::kPost);
   5133   // The loop falls through if no handler was found.
   5134   Goto(if_miss);
   5135 }
   5136 
   5137 void CodeStubAssembler::HandleKeyedStorePolymorphicCase(
   5138     compiler::Node* receiver_map, compiler::Node* feedback, Label* if_handler,
   5139     Variable* var_handler, Label* if_transition_handler,
   5140     Variable* var_transition_map_cell, Label* if_miss) {
   5141   DCHECK_EQ(MachineRepresentation::kTagged, var_handler->rep());
   5142   DCHECK_EQ(MachineRepresentation::kTagged, var_transition_map_cell->rep());
   5143 
   5144   const int kEntrySize = 3;
   5145 
   5146   Node* init = IntPtrConstant(0);
   5147   Node* length = LoadAndUntagFixedArrayBaseLength(feedback);
   5148   BuildFastLoop(
   5149       MachineType::PointerRepresentation(), init, length,
   5150       [receiver_map, feedback, if_handler, var_handler, if_transition_handler,
   5151        var_transition_map_cell](CodeStubAssembler* csa, Node* index) {
   5152         Node* cached_map = csa->LoadWeakCellValue(
   5153             csa->LoadFixedArrayElement(feedback, index, 0, INTPTR_PARAMETERS));
   5154         Label next_entry(csa);
   5155         csa->GotoIf(csa->WordNotEqual(receiver_map, cached_map), &next_entry);
   5156 
   5157         Node* maybe_transition_map_cell = csa->LoadFixedArrayElement(
   5158             feedback, index, kPointerSize, INTPTR_PARAMETERS);
   5159 
   5160         var_handler->Bind(csa->LoadFixedArrayElement(
   5161             feedback, index, 2 * kPointerSize, INTPTR_PARAMETERS));
   5162         csa->GotoIf(
   5163             csa->WordEqual(maybe_transition_map_cell,
   5164                            csa->LoadRoot(Heap::kUndefinedValueRootIndex)),
   5165             if_handler);
   5166         var_transition_map_cell->Bind(maybe_transition_map_cell);
   5167         csa->Goto(if_transition_handler);
   5168 
   5169         csa->Bind(&next_entry);
   5170       },
   5171       kEntrySize, IndexAdvanceMode::kPost);
   5172   // The loop falls through if no handler was found.
   5173   Goto(if_miss);
   5174 }
   5175 
   5176 compiler::Node* CodeStubAssembler::StubCachePrimaryOffset(compiler::Node* name,
   5177                                                           compiler::Node* map) {
   5178   // See v8::internal::StubCache::PrimaryOffset().
   5179   STATIC_ASSERT(StubCache::kCacheIndexShift == Name::kHashShift);
   5180   // Compute the hash of the name (use entire hash field).
   5181   Node* hash_field = LoadNameHashField(name);
   5182   CSA_ASSERT(this,
   5183              Word32Equal(Word32And(hash_field,
   5184                                    Int32Constant(Name::kHashNotComputedMask)),
   5185                          Int32Constant(0)));
   5186 
   5187   // Using only the low bits in 64-bit mode is unlikely to increase the
   5188   // risk of collision even if the heap is spread over an area larger than
   5189   // 4Gb (and not at all if it isn't).
   5190   Node* hash = Int32Add(hash_field, map);
   5191   // Base the offset on a simple combination of name and map.
   5192   hash = Word32Xor(hash, Int32Constant(StubCache::kPrimaryMagic));
   5193   uint32_t mask = (StubCache::kPrimaryTableSize - 1)
   5194                   << StubCache::kCacheIndexShift;
   5195   return ChangeUint32ToWord(Word32And(hash, Int32Constant(mask)));
   5196 }
   5197 
   5198 compiler::Node* CodeStubAssembler::StubCacheSecondaryOffset(
   5199     compiler::Node* name, compiler::Node* seed) {
   5200   // See v8::internal::StubCache::SecondaryOffset().
   5201 
   5202   // Use the seed from the primary cache in the secondary cache.
   5203   Node* hash = Int32Sub(seed, name);
   5204   hash = Int32Add(hash, Int32Constant(StubCache::kSecondaryMagic));
   5205   int32_t mask = (StubCache::kSecondaryTableSize - 1)
   5206                  << StubCache::kCacheIndexShift;
   5207   return ChangeUint32ToWord(Word32And(hash, Int32Constant(mask)));
   5208 }
   5209 
   5210 enum CodeStubAssembler::StubCacheTable : int {
   5211   kPrimary = static_cast<int>(StubCache::kPrimary),
   5212   kSecondary = static_cast<int>(StubCache::kSecondary)
   5213 };
   5214 
   5215 void CodeStubAssembler::TryProbeStubCacheTable(
   5216     StubCache* stub_cache, StubCacheTable table_id,
   5217     compiler::Node* entry_offset, compiler::Node* name, compiler::Node* map,
   5218     Label* if_handler, Variable* var_handler, Label* if_miss) {
   5219   StubCache::Table table = static_cast<StubCache::Table>(table_id);
   5220 #ifdef DEBUG
   5221   if (FLAG_test_secondary_stub_cache && table == StubCache::kPrimary) {
   5222     Goto(if_miss);
   5223     return;
   5224   } else if (FLAG_test_primary_stub_cache && table == StubCache::kSecondary) {
   5225     Goto(if_miss);
   5226     return;
   5227   }
   5228 #endif
   5229   // The {table_offset} holds the entry offset times four (due to masking
   5230   // and shifting optimizations).
   5231   const int kMultiplier = sizeof(StubCache::Entry) >> Name::kHashShift;
   5232   entry_offset = IntPtrMul(entry_offset, IntPtrConstant(kMultiplier));
   5233 
   5234   // Check that the key in the entry matches the name.
   5235   Node* key_base =
   5236       ExternalConstant(ExternalReference(stub_cache->key_reference(table)));
   5237   Node* entry_key = Load(MachineType::Pointer(), key_base, entry_offset);
   5238   GotoIf(WordNotEqual(name, entry_key), if_miss);
   5239 
   5240   // Get the map entry from the cache.
   5241   DCHECK_EQ(kPointerSize * 2, stub_cache->map_reference(table).address() -
   5242                                   stub_cache->key_reference(table).address());
   5243   Node* entry_map =
   5244       Load(MachineType::Pointer(), key_base,
   5245            IntPtrAdd(entry_offset, IntPtrConstant(kPointerSize * 2)));
   5246   GotoIf(WordNotEqual(map, entry_map), if_miss);
   5247 
   5248   DCHECK_EQ(kPointerSize, stub_cache->value_reference(table).address() -
   5249                               stub_cache->key_reference(table).address());
   5250   Node* handler = Load(MachineType::TaggedPointer(), key_base,
   5251                        IntPtrAdd(entry_offset, IntPtrConstant(kPointerSize)));
   5252 
   5253   // We found the handler.
   5254   var_handler->Bind(handler);
   5255   Goto(if_handler);
   5256 }
   5257 
   5258 void CodeStubAssembler::TryProbeStubCache(
   5259     StubCache* stub_cache, compiler::Node* receiver, compiler::Node* name,
   5260     Label* if_handler, Variable* var_handler, Label* if_miss) {
   5261   Label try_secondary(this), miss(this);
   5262 
   5263   Counters* counters = isolate()->counters();
   5264   IncrementCounter(counters->megamorphic_stub_cache_probes(), 1);
   5265 
   5266   // Check that the {receiver} isn't a smi.
   5267   GotoIf(TaggedIsSmi(receiver), &miss);
   5268 
   5269   Node* receiver_map = LoadMap(receiver);
   5270 
   5271   // Probe the primary table.
   5272   Node* primary_offset = StubCachePrimaryOffset(name, receiver_map);
   5273   TryProbeStubCacheTable(stub_cache, kPrimary, primary_offset, name,
   5274                          receiver_map, if_handler, var_handler, &try_secondary);
   5275 
   5276   Bind(&try_secondary);
   5277   {
   5278     // Probe the secondary table.
   5279     Node* secondary_offset = StubCacheSecondaryOffset(name, primary_offset);
   5280     TryProbeStubCacheTable(stub_cache, kSecondary, secondary_offset, name,
   5281                            receiver_map, if_handler, var_handler, &miss);
   5282   }
   5283 
   5284   Bind(&miss);
   5285   {
   5286     IncrementCounter(counters->megamorphic_stub_cache_misses(), 1);
   5287     Goto(if_miss);
   5288   }
   5289 }
   5290 
   5291 Node* CodeStubAssembler::TryToIntptr(Node* key, Label* miss) {
   5292   Variable var_intptr_key(this, MachineType::PointerRepresentation());
   5293   Label done(this, &var_intptr_key), key_is_smi(this);
   5294   GotoIf(TaggedIsSmi(key), &key_is_smi);
   5295   // Try to convert a heap number to a Smi.
   5296   GotoUnless(WordEqual(LoadMap(key), HeapNumberMapConstant()), miss);
   5297   {
   5298     Node* value = LoadHeapNumberValue(key);
   5299     Node* int_value = RoundFloat64ToInt32(value);
   5300     GotoUnless(Float64Equal(value, ChangeInt32ToFloat64(int_value)), miss);
   5301     var_intptr_key.Bind(ChangeInt32ToIntPtr(int_value));
   5302     Goto(&done);
   5303   }
   5304 
   5305   Bind(&key_is_smi);
   5306   {
   5307     var_intptr_key.Bind(SmiUntag(key));
   5308     Goto(&done);
   5309   }
   5310 
   5311   Bind(&done);
   5312   return var_intptr_key.value();
   5313 }
   5314 
   5315 void CodeStubAssembler::EmitFastElementsBoundsCheck(Node* object,
   5316                                                     Node* elements,
   5317                                                     Node* intptr_index,
   5318                                                     Node* is_jsarray_condition,
   5319                                                     Label* miss) {
   5320   Variable var_length(this, MachineType::PointerRepresentation());
   5321   Comment("Fast elements bounds check");
   5322   Label if_array(this), length_loaded(this, &var_length);
   5323   GotoIf(is_jsarray_condition, &if_array);
   5324   {
   5325     var_length.Bind(SmiUntag(LoadFixedArrayBaseLength(elements)));
   5326     Goto(&length_loaded);
   5327   }
   5328   Bind(&if_array);
   5329   {
   5330     var_length.Bind(SmiUntag(LoadJSArrayLength(object)));
   5331     Goto(&length_loaded);
   5332   }
   5333   Bind(&length_loaded);
   5334   GotoUnless(UintPtrLessThan(intptr_index, var_length.value()), miss);
   5335 }
   5336 
   5337 void CodeStubAssembler::EmitElementLoad(Node* object, Node* elements,
   5338                                         Node* elements_kind, Node* intptr_index,
   5339                                         Node* is_jsarray_condition,
   5340                                         Label* if_hole, Label* rebox_double,
   5341                                         Variable* var_double_value,
   5342                                         Label* unimplemented_elements_kind,
   5343                                         Label* out_of_bounds, Label* miss) {
   5344   Label if_typed_array(this), if_fast_packed(this), if_fast_holey(this),
   5345       if_fast_double(this), if_fast_holey_double(this), if_nonfast(this),
   5346       if_dictionary(this);
   5347   GotoIf(
   5348       IntPtrGreaterThan(elements_kind, IntPtrConstant(LAST_FAST_ELEMENTS_KIND)),
   5349       &if_nonfast);
   5350 
   5351   EmitFastElementsBoundsCheck(object, elements, intptr_index,
   5352                               is_jsarray_condition, out_of_bounds);
   5353   int32_t kinds[] = {// Handled by if_fast_packed.
   5354                      FAST_SMI_ELEMENTS, FAST_ELEMENTS,
   5355                      // Handled by if_fast_holey.
   5356                      FAST_HOLEY_SMI_ELEMENTS, FAST_HOLEY_ELEMENTS,
   5357                      // Handled by if_fast_double.
   5358                      FAST_DOUBLE_ELEMENTS,
   5359                      // Handled by if_fast_holey_double.
   5360                      FAST_HOLEY_DOUBLE_ELEMENTS};
   5361   Label* labels[] = {// FAST_{SMI,}_ELEMENTS
   5362                      &if_fast_packed, &if_fast_packed,
   5363                      // FAST_HOLEY_{SMI,}_ELEMENTS
   5364                      &if_fast_holey, &if_fast_holey,
   5365                      // FAST_DOUBLE_ELEMENTS
   5366                      &if_fast_double,
   5367                      // FAST_HOLEY_DOUBLE_ELEMENTS
   5368                      &if_fast_holey_double};
   5369   Switch(elements_kind, unimplemented_elements_kind, kinds, labels,
   5370          arraysize(kinds));
   5371 
   5372   Bind(&if_fast_packed);
   5373   {
   5374     Comment("fast packed elements");
   5375     Return(LoadFixedArrayElement(elements, intptr_index, 0, INTPTR_PARAMETERS));
   5376   }
   5377 
   5378   Bind(&if_fast_holey);
   5379   {
   5380     Comment("fast holey elements");
   5381     Node* element =
   5382         LoadFixedArrayElement(elements, intptr_index, 0, INTPTR_PARAMETERS);
   5383     GotoIf(WordEqual(element, TheHoleConstant()), if_hole);
   5384     Return(element);
   5385   }
   5386 
   5387   Bind(&if_fast_double);
   5388   {
   5389     Comment("packed double elements");
   5390     var_double_value->Bind(LoadFixedDoubleArrayElement(
   5391         elements, intptr_index, MachineType::Float64(), 0, INTPTR_PARAMETERS));
   5392     Goto(rebox_double);
   5393   }
   5394 
   5395   Bind(&if_fast_holey_double);
   5396   {
   5397     Comment("holey double elements");
   5398     Node* value = LoadFixedDoubleArrayElement(elements, intptr_index,
   5399                                               MachineType::Float64(), 0,
   5400                                               INTPTR_PARAMETERS, if_hole);
   5401     var_double_value->Bind(value);
   5402     Goto(rebox_double);
   5403   }
   5404 
   5405   Bind(&if_nonfast);
   5406   {
   5407     STATIC_ASSERT(LAST_ELEMENTS_KIND == LAST_FIXED_TYPED_ARRAY_ELEMENTS_KIND);
   5408     GotoIf(IntPtrGreaterThanOrEqual(
   5409                elements_kind,
   5410                IntPtrConstant(FIRST_FIXED_TYPED_ARRAY_ELEMENTS_KIND)),
   5411            &if_typed_array);
   5412     GotoIf(IntPtrEqual(elements_kind, IntPtrConstant(DICTIONARY_ELEMENTS)),
   5413            &if_dictionary);
   5414     Goto(unimplemented_elements_kind);
   5415   }
   5416 
   5417   Bind(&if_dictionary);
   5418   {
   5419     Comment("dictionary elements");
   5420     GotoIf(IntPtrLessThan(intptr_index, IntPtrConstant(0)), out_of_bounds);
   5421     Variable var_entry(this, MachineType::PointerRepresentation());
   5422     Label if_found(this);
   5423     NumberDictionaryLookup<SeededNumberDictionary>(
   5424         elements, intptr_index, &if_found, &var_entry, if_hole);
   5425     Bind(&if_found);
   5426     // Check that the value is a data property.
   5427     Node* details_index = EntryToIndex<SeededNumberDictionary>(
   5428         var_entry.value(), SeededNumberDictionary::kEntryDetailsIndex);
   5429     Node* details = SmiToWord32(
   5430         LoadFixedArrayElement(elements, details_index, 0, INTPTR_PARAMETERS));
   5431     Node* kind = DecodeWord32<PropertyDetails::KindField>(details);
   5432     // TODO(jkummerow): Support accessors without missing?
   5433     GotoUnless(Word32Equal(kind, Int32Constant(kData)), miss);
   5434     // Finally, load the value.
   5435     Node* value_index = EntryToIndex<SeededNumberDictionary>(
   5436         var_entry.value(), SeededNumberDictionary::kEntryValueIndex);
   5437     Return(LoadFixedArrayElement(elements, value_index, 0, INTPTR_PARAMETERS));
   5438   }
   5439 
   5440   Bind(&if_typed_array);
   5441   {
   5442     Comment("typed elements");
   5443     // Check if buffer has been neutered.
   5444     Node* buffer = LoadObjectField(object, JSArrayBufferView::kBufferOffset);
   5445     Node* bitfield = LoadObjectField(buffer, JSArrayBuffer::kBitFieldOffset,
   5446                                      MachineType::Uint32());
   5447     Node* neutered_bit =
   5448         Word32And(bitfield, Int32Constant(JSArrayBuffer::WasNeutered::kMask));
   5449     GotoUnless(Word32Equal(neutered_bit, Int32Constant(0)), miss);
   5450 
   5451     // Bounds check.
   5452     Node* length =
   5453         SmiUntag(LoadObjectField(object, JSTypedArray::kLengthOffset));
   5454     GotoUnless(UintPtrLessThan(intptr_index, length), out_of_bounds);
   5455 
   5456     // Backing store = external_pointer + base_pointer.
   5457     Node* external_pointer =
   5458         LoadObjectField(elements, FixedTypedArrayBase::kExternalPointerOffset,
   5459                         MachineType::Pointer());
   5460     Node* base_pointer =
   5461         LoadObjectField(elements, FixedTypedArrayBase::kBasePointerOffset);
   5462     Node* backing_store = IntPtrAdd(external_pointer, base_pointer);
   5463 
   5464     Label uint8_elements(this), int8_elements(this), uint16_elements(this),
   5465         int16_elements(this), uint32_elements(this), int32_elements(this),
   5466         float32_elements(this), float64_elements(this);
   5467     Label* elements_kind_labels[] = {
   5468         &uint8_elements,  &uint8_elements,   &int8_elements,
   5469         &uint16_elements, &int16_elements,   &uint32_elements,
   5470         &int32_elements,  &float32_elements, &float64_elements};
   5471     int32_t elements_kinds[] = {
   5472         UINT8_ELEMENTS,  UINT8_CLAMPED_ELEMENTS, INT8_ELEMENTS,
   5473         UINT16_ELEMENTS, INT16_ELEMENTS,         UINT32_ELEMENTS,
   5474         INT32_ELEMENTS,  FLOAT32_ELEMENTS,       FLOAT64_ELEMENTS};
   5475     const size_t kTypedElementsKindCount =
   5476         LAST_FIXED_TYPED_ARRAY_ELEMENTS_KIND -
   5477         FIRST_FIXED_TYPED_ARRAY_ELEMENTS_KIND + 1;
   5478     DCHECK_EQ(kTypedElementsKindCount, arraysize(elements_kinds));
   5479     DCHECK_EQ(kTypedElementsKindCount, arraysize(elements_kind_labels));
   5480     Switch(elements_kind, miss, elements_kinds, elements_kind_labels,
   5481            kTypedElementsKindCount);
   5482     Bind(&uint8_elements);
   5483     {
   5484       Comment("UINT8_ELEMENTS");  // Handles UINT8_CLAMPED_ELEMENTS too.
   5485       Return(SmiTag(Load(MachineType::Uint8(), backing_store, intptr_index)));
   5486     }
   5487     Bind(&int8_elements);
   5488     {
   5489       Comment("INT8_ELEMENTS");
   5490       Return(SmiTag(Load(MachineType::Int8(), backing_store, intptr_index)));
   5491     }
   5492     Bind(&uint16_elements);
   5493     {
   5494       Comment("UINT16_ELEMENTS");
   5495       Node* index = WordShl(intptr_index, IntPtrConstant(1));
   5496       Return(SmiTag(Load(MachineType::Uint16(), backing_store, index)));
   5497     }
   5498     Bind(&int16_elements);
   5499     {
   5500       Comment("INT16_ELEMENTS");
   5501       Node* index = WordShl(intptr_index, IntPtrConstant(1));
   5502       Return(SmiTag(Load(MachineType::Int16(), backing_store, index)));
   5503     }
   5504     Bind(&uint32_elements);
   5505     {
   5506       Comment("UINT32_ELEMENTS");
   5507       Node* index = WordShl(intptr_index, IntPtrConstant(2));
   5508       Node* element = Load(MachineType::Uint32(), backing_store, index);
   5509       Return(ChangeUint32ToTagged(element));
   5510     }
   5511     Bind(&int32_elements);
   5512     {
   5513       Comment("INT32_ELEMENTS");
   5514       Node* index = WordShl(intptr_index, IntPtrConstant(2));
   5515       Node* element = Load(MachineType::Int32(), backing_store, index);
   5516       Return(ChangeInt32ToTagged(element));
   5517     }
   5518     Bind(&float32_elements);
   5519     {
   5520       Comment("FLOAT32_ELEMENTS");
   5521       Node* index = WordShl(intptr_index, IntPtrConstant(2));
   5522       Node* element = Load(MachineType::Float32(), backing_store, index);
   5523       var_double_value->Bind(ChangeFloat32ToFloat64(element));
   5524       Goto(rebox_double);
   5525     }
   5526     Bind(&float64_elements);
   5527     {
   5528       Comment("FLOAT64_ELEMENTS");
   5529       Node* index = WordShl(intptr_index, IntPtrConstant(3));
   5530       Node* element = Load(MachineType::Float64(), backing_store, index);
   5531       var_double_value->Bind(element);
   5532       Goto(rebox_double);
   5533     }
   5534   }
   5535 }
   5536 
   5537 void CodeStubAssembler::HandleLoadICHandlerCase(
   5538     const LoadICParameters* p, Node* handler, Label* miss,
   5539     ElementSupport support_elements) {
   5540   Comment("have_handler");
   5541   Variable var_holder(this, MachineRepresentation::kTagged);
   5542   var_holder.Bind(p->receiver);
   5543   Variable var_smi_handler(this, MachineRepresentation::kTagged);
   5544   var_smi_handler.Bind(handler);
   5545 
   5546   Variable* vars[] = {&var_holder, &var_smi_handler};
   5547   Label if_smi_handler(this, 2, vars);
   5548   Label try_proto_handler(this), call_handler(this);
   5549 
   5550   Branch(TaggedIsSmi(handler), &if_smi_handler, &try_proto_handler);
   5551 
   5552   // |handler| is a Smi, encoding what to do. See SmiHandler methods
   5553   // for the encoding format.
   5554   Bind(&if_smi_handler);
   5555   {
   5556     HandleLoadICSmiHandlerCase(p, var_holder.value(), var_smi_handler.value(),
   5557                                miss, support_elements);
   5558   }
   5559 
   5560   Bind(&try_proto_handler);
   5561   {
   5562     GotoIf(IsCodeMap(LoadMap(handler)), &call_handler);
   5563     HandleLoadICProtoHandler(p, handler, &var_holder, &var_smi_handler,
   5564                              &if_smi_handler, miss);
   5565   }
   5566 
   5567   Bind(&call_handler);
   5568   {
   5569     typedef LoadWithVectorDescriptor Descriptor;
   5570     TailCallStub(Descriptor(isolate()), handler, p->context,
   5571                  Arg(Descriptor::kReceiver, p->receiver),
   5572                  Arg(Descriptor::kName, p->name),
   5573                  Arg(Descriptor::kSlot, p->slot),
   5574                  Arg(Descriptor::kVector, p->vector));
   5575   }
   5576 }
   5577 
   5578 void CodeStubAssembler::HandleLoadICSmiHandlerCase(
   5579     const LoadICParameters* p, Node* holder, Node* smi_handler, Label* miss,
   5580     ElementSupport support_elements) {
   5581   Variable var_double_value(this, MachineRepresentation::kFloat64);
   5582   Label rebox_double(this, &var_double_value);
   5583 
   5584   Node* handler_word = SmiUntag(smi_handler);
   5585   Node* handler_kind = DecodeWord<LoadHandler::KindBits>(handler_word);
   5586   if (support_elements == kSupportElements) {
   5587     Label property(this);
   5588     GotoUnless(
   5589         WordEqual(handler_kind, IntPtrConstant(LoadHandler::kForElements)),
   5590         &property);
   5591 
   5592     Comment("element_load");
   5593     Node* intptr_index = TryToIntptr(p->name, miss);
   5594     Node* elements = LoadElements(holder);
   5595     Node* is_jsarray_condition =
   5596         IsSetWord<LoadHandler::IsJsArrayBits>(handler_word);
   5597     Node* elements_kind =
   5598         DecodeWord<LoadHandler::ElementsKindBits>(handler_word);
   5599     Label if_hole(this), unimplemented_elements_kind(this);
   5600     Label* out_of_bounds = miss;
   5601     EmitElementLoad(holder, elements, elements_kind, intptr_index,
   5602                     is_jsarray_condition, &if_hole, &rebox_double,
   5603                     &var_double_value, &unimplemented_elements_kind,
   5604                     out_of_bounds, miss);
   5605 
   5606     Bind(&unimplemented_elements_kind);
   5607     {
   5608       // Smi handlers should only be installed for supported elements kinds.
   5609       // Crash if we get here.
   5610       DebugBreak();
   5611       Goto(miss);
   5612     }
   5613 
   5614     Bind(&if_hole);
   5615     {
   5616       Comment("convert hole");
   5617       GotoUnless(IsSetWord<LoadHandler::ConvertHoleBits>(handler_word), miss);
   5618       Node* protector_cell = LoadRoot(Heap::kArrayProtectorRootIndex);
   5619       DCHECK(isolate()->heap()->array_protector()->IsPropertyCell());
   5620       GotoUnless(
   5621           WordEqual(LoadObjectField(protector_cell, PropertyCell::kValueOffset),
   5622                     SmiConstant(Smi::FromInt(Isolate::kProtectorValid))),
   5623           miss);
   5624       Return(UndefinedConstant());
   5625     }
   5626 
   5627     Bind(&property);
   5628     Comment("property_load");
   5629   }
   5630 
   5631   Label constant(this), field(this);
   5632   Branch(WordEqual(handler_kind, IntPtrConstant(LoadHandler::kForFields)),
   5633          &field, &constant);
   5634 
   5635   Bind(&field);
   5636   {
   5637     Comment("field_load");
   5638     Node* offset = DecodeWord<LoadHandler::FieldOffsetBits>(handler_word);
   5639 
   5640     Label inobject(this), out_of_object(this);
   5641     Branch(IsSetWord<LoadHandler::IsInobjectBits>(handler_word), &inobject,
   5642            &out_of_object);
   5643 
   5644     Bind(&inobject);
   5645     {
   5646       Label is_double(this);
   5647       GotoIf(IsSetWord<LoadHandler::IsDoubleBits>(handler_word), &is_double);
   5648       Return(LoadObjectField(holder, offset));
   5649 
   5650       Bind(&is_double);
   5651       if (FLAG_unbox_double_fields) {
   5652         var_double_value.Bind(
   5653             LoadObjectField(holder, offset, MachineType::Float64()));
   5654       } else {
   5655         Node* mutable_heap_number = LoadObjectField(holder, offset);
   5656         var_double_value.Bind(LoadHeapNumberValue(mutable_heap_number));
   5657       }
   5658       Goto(&rebox_double);
   5659     }
   5660 
   5661     Bind(&out_of_object);
   5662     {
   5663       Label is_double(this);
   5664       Node* properties = LoadProperties(holder);
   5665       Node* value = LoadObjectField(properties, offset);
   5666       GotoIf(IsSetWord<LoadHandler::IsDoubleBits>(handler_word), &is_double);
   5667       Return(value);
   5668 
   5669       Bind(&is_double);
   5670       var_double_value.Bind(LoadHeapNumberValue(value));
   5671       Goto(&rebox_double);
   5672     }
   5673 
   5674     Bind(&rebox_double);
   5675     Return(AllocateHeapNumberWithValue(var_double_value.value()));
   5676   }
   5677 
   5678   Bind(&constant);
   5679   {
   5680     Comment("constant_load");
   5681     Node* descriptors = LoadMapDescriptors(LoadMap(holder));
   5682     Node* descriptor =
   5683         DecodeWord<LoadHandler::DescriptorValueIndexBits>(handler_word);
   5684     CSA_ASSERT(this,
   5685                UintPtrLessThan(descriptor,
   5686                                LoadAndUntagFixedArrayBaseLength(descriptors)));
   5687     Node* value =
   5688         LoadFixedArrayElement(descriptors, descriptor, 0, INTPTR_PARAMETERS);
   5689 
   5690     Label if_accessor_info(this);
   5691     GotoIf(IsSetWord<LoadHandler::IsAccessorInfoBits>(handler_word),
   5692            &if_accessor_info);
   5693     Return(value);
   5694 
   5695     Bind(&if_accessor_info);
   5696     Callable callable = CodeFactory::ApiGetter(isolate());
   5697     TailCallStub(callable, p->context, p->receiver, holder, value);
   5698   }
   5699 }
   5700 
   5701 void CodeStubAssembler::HandleLoadICProtoHandler(
   5702     const LoadICParameters* p, Node* handler, Variable* var_holder,
   5703     Variable* var_smi_handler, Label* if_smi_handler, Label* miss) {
   5704   DCHECK_EQ(MachineRepresentation::kTagged, var_holder->rep());
   5705   DCHECK_EQ(MachineRepresentation::kTagged, var_smi_handler->rep());
   5706 
   5707   // IC dispatchers rely on these assumptions to be held.
   5708   STATIC_ASSERT(FixedArray::kLengthOffset == LoadHandler::kHolderCellOffset);
   5709   DCHECK_EQ(FixedArray::OffsetOfElementAt(LoadHandler::kSmiHandlerIndex),
   5710             LoadHandler::kSmiHandlerOffset);
   5711   DCHECK_EQ(FixedArray::OffsetOfElementAt(LoadHandler::kValidityCellIndex),
   5712             LoadHandler::kValidityCellOffset);
   5713 
   5714   // Both FixedArray and Tuple3 handlers have validity cell at the same offset.
   5715   Label validity_cell_check_done(this);
   5716   Node* validity_cell =
   5717       LoadObjectField(handler, LoadHandler::kValidityCellOffset);
   5718   GotoIf(WordEqual(validity_cell, IntPtrConstant(0)),
   5719          &validity_cell_check_done);
   5720   Node* cell_value = LoadObjectField(validity_cell, Cell::kValueOffset);
   5721   GotoIf(WordNotEqual(cell_value,
   5722                       SmiConstant(Smi::FromInt(Map::kPrototypeChainValid))),
   5723          miss);
   5724   Goto(&validity_cell_check_done);
   5725 
   5726   Bind(&validity_cell_check_done);
   5727   Node* smi_handler = LoadObjectField(handler, LoadHandler::kSmiHandlerOffset);
   5728   CSA_ASSERT(this, TaggedIsSmi(smi_handler));
   5729   Node* handler_flags = SmiUntag(smi_handler);
   5730 
   5731   Label check_prototypes(this);
   5732   GotoUnless(
   5733       IsSetWord<LoadHandler::DoNegativeLookupOnReceiverBits>(handler_flags),
   5734       &check_prototypes);
   5735   {
   5736     CSA_ASSERT(this, Word32BinaryNot(
   5737                          HasInstanceType(p->receiver, JS_GLOBAL_OBJECT_TYPE)));
   5738     // We have a dictionary receiver, do a negative lookup check.
   5739     NameDictionaryNegativeLookup(p->receiver, p->name, miss);
   5740     Goto(&check_prototypes);
   5741   }
   5742 
   5743   Bind(&check_prototypes);
   5744   Node* maybe_holder_cell =
   5745       LoadObjectField(handler, LoadHandler::kHolderCellOffset);
   5746   Label array_handler(this), tuple_handler(this);
   5747   Branch(TaggedIsSmi(maybe_holder_cell), &array_handler, &tuple_handler);
   5748 
   5749   Bind(&tuple_handler);
   5750   {
   5751     Label load_existent(this);
   5752     GotoIf(WordNotEqual(maybe_holder_cell, NullConstant()), &load_existent);
   5753     // This is a handler for a load of a non-existent value.
   5754     Return(UndefinedConstant());
   5755 
   5756     Bind(&load_existent);
   5757     Node* holder = LoadWeakCellValue(maybe_holder_cell);
   5758     // The |holder| is guaranteed to be alive at this point since we passed
   5759     // both the receiver map check and the validity cell check.
   5760     CSA_ASSERT(this, WordNotEqual(holder, IntPtrConstant(0)));
   5761 
   5762     var_holder->Bind(holder);
   5763     var_smi_handler->Bind(smi_handler);
   5764     Goto(if_smi_handler);
   5765   }
   5766 
   5767   Bind(&array_handler);
   5768   {
   5769     typedef LoadICProtoArrayDescriptor Descriptor;
   5770     LoadICProtoArrayStub stub(isolate());
   5771     Node* target = HeapConstant(stub.GetCode());
   5772     TailCallStub(Descriptor(isolate()), target, p->context,
   5773                  Arg(Descriptor::kReceiver, p->receiver),
   5774                  Arg(Descriptor::kName, p->name),
   5775                  Arg(Descriptor::kSlot, p->slot),
   5776                  Arg(Descriptor::kVector, p->vector),
   5777                  Arg(Descriptor::kHandler, handler));
   5778   }
   5779 }
   5780 
   5781 void CodeStubAssembler::LoadICProtoArray(const LoadICParameters* p,
   5782                                          Node* handler) {
   5783   Label miss(this);
   5784   CSA_ASSERT(this, Word32BinaryNot(TaggedIsSmi(handler)));
   5785   CSA_ASSERT(this, IsFixedArrayMap(LoadMap(handler)));
   5786 
   5787   Node* smi_handler = LoadObjectField(handler, LoadHandler::kSmiHandlerOffset);
   5788   Node* handler_flags = SmiUntag(smi_handler);
   5789 
   5790   Node* handler_length = LoadAndUntagFixedArrayBaseLength(handler);
   5791 
   5792   Node* holder = EmitLoadICProtoArrayCheck(p, handler, handler_length,
   5793                                            handler_flags, &miss);
   5794 
   5795   HandleLoadICSmiHandlerCase(p, holder, smi_handler, &miss, kOnlyProperties);
   5796 
   5797   Bind(&miss);
   5798   {
   5799     TailCallRuntime(Runtime::kLoadIC_Miss, p->context, p->receiver, p->name,
   5800                     p->slot, p->vector);
   5801   }
   5802 }
   5803 
   5804 Node* CodeStubAssembler::EmitLoadICProtoArrayCheck(const LoadICParameters* p,
   5805                                                    Node* handler,
   5806                                                    Node* handler_length,
   5807                                                    Node* handler_flags,
   5808                                                    Label* miss) {
   5809   Variable start_index(this, MachineType::PointerRepresentation());
   5810   start_index.Bind(IntPtrConstant(LoadHandler::kFirstPrototypeIndex));
   5811 
   5812   Label can_access(this);
   5813   GotoUnless(IsSetWord<LoadHandler::DoAccessCheckOnReceiverBits>(handler_flags),
   5814              &can_access);
   5815   {
   5816     // Skip this entry of a handler.
   5817     start_index.Bind(IntPtrConstant(LoadHandler::kFirstPrototypeIndex + 1));
   5818 
   5819     int offset =
   5820         FixedArray::OffsetOfElementAt(LoadHandler::kFirstPrototypeIndex);
   5821     Node* expected_native_context =
   5822         LoadWeakCellValue(LoadObjectField(handler, offset), miss);
   5823     CSA_ASSERT(this, IsNativeContext(expected_native_context));
   5824 
   5825     Node* native_context = LoadNativeContext(p->context);
   5826     GotoIf(WordEqual(expected_native_context, native_context), &can_access);
   5827     // If the receiver is not a JSGlobalProxy then we miss.
   5828     GotoUnless(IsJSGlobalProxy(p->receiver), miss);
   5829     // For JSGlobalProxy receiver try to compare security tokens of current
   5830     // and expected native contexts.
   5831     Node* expected_token = LoadContextElement(expected_native_context,
   5832                                               Context::SECURITY_TOKEN_INDEX);
   5833     Node* current_token =
   5834         LoadContextElement(native_context, Context::SECURITY_TOKEN_INDEX);
   5835     Branch(WordEqual(expected_token, current_token), &can_access, miss);
   5836   }
   5837   Bind(&can_access);
   5838 
   5839   BuildFastLoop(
   5840       MachineType::PointerRepresentation(), start_index.value(), handler_length,
   5841       [this, p, handler, miss](CodeStubAssembler*, Node* current) {
   5842         Node* prototype_cell =
   5843             LoadFixedArrayElement(handler, current, 0, INTPTR_PARAMETERS);
   5844         CheckPrototype(prototype_cell, p->name, miss);
   5845       },
   5846       1, IndexAdvanceMode::kPost);
   5847 
   5848   Node* maybe_holder_cell = LoadFixedArrayElement(
   5849       handler, IntPtrConstant(LoadHandler::kHolderCellIndex), 0,
   5850       INTPTR_PARAMETERS);
   5851   Label load_existent(this);
   5852   GotoIf(WordNotEqual(maybe_holder_cell, NullConstant()), &load_existent);
   5853   // This is a handler for a load of a non-existent value.
   5854   Return(UndefinedConstant());
   5855 
   5856   Bind(&load_existent);
   5857   Node* holder = LoadWeakCellValue(maybe_holder_cell);
   5858   // The |holder| is guaranteed to be alive at this point since we passed
   5859   // the receiver map check, the validity cell check and the prototype chain
   5860   // check.
   5861   CSA_ASSERT(this, WordNotEqual(holder, IntPtrConstant(0)));
   5862   return holder;
   5863 }
   5864 
   5865 void CodeStubAssembler::CheckPrototype(Node* prototype_cell, Node* name,
   5866                                        Label* miss) {
   5867   Node* maybe_prototype = LoadWeakCellValue(prototype_cell, miss);
   5868 
   5869   Label done(this);
   5870   Label if_property_cell(this), if_dictionary_object(this);
   5871 
   5872   // |maybe_prototype| is either a PropertyCell or a slow-mode prototype.
   5873   Branch(WordEqual(LoadMap(maybe_prototype),
   5874                    LoadRoot(Heap::kGlobalPropertyCellMapRootIndex)),
   5875          &if_property_cell, &if_dictionary_object);
   5876 
   5877   Bind(&if_dictionary_object);
   5878   {
   5879     CSA_ASSERT(this, IsDictionaryMap(LoadMap(maybe_prototype)));
   5880     NameDictionaryNegativeLookup(maybe_prototype, name, miss);
   5881     Goto(&done);
   5882   }
   5883 
   5884   Bind(&if_property_cell);
   5885   {
   5886     // Ensure the property cell still contains the hole.
   5887     Node* value = LoadObjectField(maybe_prototype, PropertyCell::kValueOffset);
   5888     GotoIf(WordNotEqual(value, LoadRoot(Heap::kTheHoleValueRootIndex)), miss);
   5889     Goto(&done);
   5890   }
   5891 
   5892   Bind(&done);
   5893 }
   5894 
   5895 void CodeStubAssembler::NameDictionaryNegativeLookup(Node* object, Node* name,
   5896                                                      Label* miss) {
   5897   CSA_ASSERT(this, IsDictionaryMap(LoadMap(object)));
   5898   Node* properties = LoadProperties(object);
   5899   // Ensure the property does not exist in a dictionary-mode object.
   5900   Variable var_name_index(this, MachineType::PointerRepresentation());
   5901   Label done(this);
   5902   NameDictionaryLookup<NameDictionary>(properties, name, miss, &var_name_index,
   5903                                        &done);
   5904   Bind(&done);
   5905 }
   5906 
   5907 void CodeStubAssembler::LoadIC(const LoadICParameters* p) {
   5908   Variable var_handler(this, MachineRepresentation::kTagged);
   5909   // TODO(ishell): defer blocks when it works.
   5910   Label if_handler(this, &var_handler), try_polymorphic(this),
   5911       try_megamorphic(this /*, Label::kDeferred*/),
   5912       miss(this /*, Label::kDeferred*/);
   5913 
   5914   Node* receiver_map = LoadReceiverMap(p->receiver);
   5915 
   5916   // Check monomorphic case.
   5917   Node* feedback =
   5918       TryMonomorphicCase(p->slot, p->vector, receiver_map, &if_handler,
   5919                          &var_handler, &try_polymorphic);
   5920   Bind(&if_handler);
   5921   {
   5922     HandleLoadICHandlerCase(p, var_handler.value(), &miss);
   5923   }
   5924 
   5925   Bind(&try_polymorphic);
   5926   {
   5927     // Check polymorphic case.
   5928     Comment("LoadIC_try_polymorphic");
   5929     GotoUnless(WordEqual(LoadMap(feedback), FixedArrayMapConstant()),
   5930                &try_megamorphic);
   5931     HandlePolymorphicCase(receiver_map, feedback, &if_handler, &var_handler,
   5932                           &miss, 2);
   5933   }
   5934 
   5935   Bind(&try_megamorphic);
   5936   {
   5937     // Check megamorphic case.
   5938     GotoUnless(
   5939         WordEqual(feedback, LoadRoot(Heap::kmegamorphic_symbolRootIndex)),
   5940         &miss);
   5941 
   5942     TryProbeStubCache(isolate()->load_stub_cache(), p->receiver, p->name,
   5943                       &if_handler, &var_handler, &miss);
   5944   }
   5945   Bind(&miss);
   5946   {
   5947     TailCallRuntime(Runtime::kLoadIC_Miss, p->context, p->receiver, p->name,
   5948                     p->slot, p->vector);
   5949   }
   5950 }
   5951 
   5952 void CodeStubAssembler::KeyedLoadIC(const LoadICParameters* p) {
   5953   Variable var_handler(this, MachineRepresentation::kTagged);
   5954   // TODO(ishell): defer blocks when it works.
   5955   Label if_handler(this, &var_handler), try_polymorphic(this),
   5956       try_megamorphic(this /*, Label::kDeferred*/),
   5957       try_polymorphic_name(this /*, Label::kDeferred*/),
   5958       miss(this /*, Label::kDeferred*/);
   5959 
   5960   Node* receiver_map = LoadReceiverMap(p->receiver);
   5961 
   5962   // Check monomorphic case.
   5963   Node* feedback =
   5964       TryMonomorphicCase(p->slot, p->vector, receiver_map, &if_handler,
   5965                          &var_handler, &try_polymorphic);
   5966   Bind(&if_handler);
   5967   {
   5968     HandleLoadICHandlerCase(p, var_handler.value(), &miss, kSupportElements);
   5969   }
   5970 
   5971   Bind(&try_polymorphic);
   5972   {
   5973     // Check polymorphic case.
   5974     Comment("KeyedLoadIC_try_polymorphic");
   5975     GotoUnless(WordEqual(LoadMap(feedback), FixedArrayMapConstant()),
   5976                &try_megamorphic);
   5977     HandlePolymorphicCase(receiver_map, feedback, &if_handler, &var_handler,
   5978                           &miss, 2);
   5979   }
   5980 
   5981   Bind(&try_megamorphic);
   5982   {
   5983     // Check megamorphic case.
   5984     Comment("KeyedLoadIC_try_megamorphic");
   5985     GotoUnless(
   5986         WordEqual(feedback, LoadRoot(Heap::kmegamorphic_symbolRootIndex)),
   5987         &try_polymorphic_name);
   5988     // TODO(jkummerow): Inline this? Or some of it?
   5989     TailCallStub(CodeFactory::KeyedLoadIC_Megamorphic(isolate()), p->context,
   5990                  p->receiver, p->name, p->slot, p->vector);
   5991   }
   5992   Bind(&try_polymorphic_name);
   5993   {
   5994     // We might have a name in feedback, and a fixed array in the next slot.
   5995     Comment("KeyedLoadIC_try_polymorphic_name");
   5996     GotoUnless(WordEqual(feedback, p->name), &miss);
   5997     // If the name comparison succeeded, we know we have a fixed array with
   5998     // at least one map/handler pair.
   5999     Node* offset = ElementOffsetFromIndex(
   6000         p->slot, FAST_HOLEY_ELEMENTS, SMI_PARAMETERS,
   6001         FixedArray::kHeaderSize + kPointerSize - kHeapObjectTag);
   6002     Node* array = Load(MachineType::AnyTagged(), p->vector, offset);
   6003     HandlePolymorphicCase(receiver_map, array, &if_handler, &var_handler, &miss,
   6004                           1);
   6005   }
   6006   Bind(&miss);
   6007   {
   6008     Comment("KeyedLoadIC_miss");
   6009     TailCallRuntime(Runtime::kKeyedLoadIC_Miss, p->context, p->receiver,
   6010                     p->name, p->slot, p->vector);
   6011   }
   6012 }
   6013 
   6014 void CodeStubAssembler::KeyedLoadICGeneric(const LoadICParameters* p) {
   6015   Variable var_index(this, MachineType::PointerRepresentation());
   6016   Variable var_details(this, MachineRepresentation::kWord32);
   6017   Variable var_value(this, MachineRepresentation::kTagged);
   6018   Label if_index(this), if_unique_name(this), if_element_hole(this),
   6019       if_oob(this), slow(this), stub_cache_miss(this),
   6020       if_property_dictionary(this), if_found_on_receiver(this);
   6021 
   6022   Node* receiver = p->receiver;
   6023   GotoIf(TaggedIsSmi(receiver), &slow);
   6024   Node* receiver_map = LoadMap(receiver);
   6025   Node* instance_type = LoadMapInstanceType(receiver_map);
   6026   // Receivers requiring non-standard element accesses (interceptors, access
   6027   // checks, strings and string wrappers, proxies) are handled in the runtime.
   6028   GotoIf(Int32LessThanOrEqual(instance_type,
   6029                               Int32Constant(LAST_CUSTOM_ELEMENTS_RECEIVER)),
   6030          &slow);
   6031 
   6032   Node* key = p->name;
   6033   TryToName(key, &if_index, &var_index, &if_unique_name, &slow);
   6034 
   6035   Bind(&if_index);
   6036   {
   6037     Comment("integer index");
   6038     Node* index = var_index.value();
   6039     Node* elements = LoadElements(receiver);
   6040     Node* elements_kind = LoadMapElementsKind(receiver_map);
   6041     Node* is_jsarray_condition =
   6042         Word32Equal(instance_type, Int32Constant(JS_ARRAY_TYPE));
   6043     Variable var_double_value(this, MachineRepresentation::kFloat64);
   6044     Label rebox_double(this, &var_double_value);
   6045 
   6046     // Unimplemented elements kinds fall back to a runtime call.
   6047     Label* unimplemented_elements_kind = &slow;
   6048     IncrementCounter(isolate()->counters()->ic_keyed_load_generic_smi(), 1);
   6049     EmitElementLoad(receiver, elements, elements_kind, index,
   6050                     is_jsarray_condition, &if_element_hole, &rebox_double,
   6051                     &var_double_value, unimplemented_elements_kind, &if_oob,
   6052                     &slow);
   6053 
   6054     Bind(&rebox_double);
   6055     Return(AllocateHeapNumberWithValue(var_double_value.value()));
   6056   }
   6057 
   6058   Bind(&if_oob);
   6059   {
   6060     Comment("out of bounds");
   6061     Node* index = var_index.value();
   6062     // Negative keys can't take the fast OOB path.
   6063     GotoIf(IntPtrLessThan(index, IntPtrConstant(0)), &slow);
   6064     // Positive OOB indices are effectively the same as hole loads.
   6065     Goto(&if_element_hole);
   6066   }
   6067 
   6068   Bind(&if_element_hole);
   6069   {
   6070     Comment("found the hole");
   6071     Label return_undefined(this);
   6072     BranchIfPrototypesHaveNoElements(receiver_map, &return_undefined, &slow);
   6073 
   6074     Bind(&return_undefined);
   6075     Return(UndefinedConstant());
   6076   }
   6077 
   6078   Node* properties = nullptr;
   6079   Bind(&if_unique_name);
   6080   {
   6081     Comment("key is unique name");
   6082     // Check if the receiver has fast or slow properties.
   6083     properties = LoadProperties(receiver);
   6084     Node* properties_map = LoadMap(properties);
   6085     GotoIf(WordEqual(properties_map, LoadRoot(Heap::kHashTableMapRootIndex)),
   6086            &if_property_dictionary);
   6087 
   6088     // Try looking up the property on the receiver; if unsuccessful, look
   6089     // for a handler in the stub cache.
   6090     Comment("DescriptorArray lookup");
   6091 
   6092     // Skip linear search if there are too many descriptors.
   6093     // TODO(jkummerow): Consider implementing binary search.
   6094     // See also TryLookupProperty() which has the same limitation.
   6095     const int32_t kMaxLinear = 210;
   6096     Label stub_cache(this);
   6097     Node* bitfield3 = LoadMapBitField3(receiver_map);
   6098     Node* nof =
   6099         DecodeWordFromWord32<Map::NumberOfOwnDescriptorsBits>(bitfield3);
   6100     GotoIf(UintPtrGreaterThan(nof, IntPtrConstant(kMaxLinear)), &stub_cache);
   6101     Node* descriptors = LoadMapDescriptors(receiver_map);
   6102     Variable var_name_index(this, MachineType::PointerRepresentation());
   6103     Label if_descriptor_found(this);
   6104     DescriptorLookupLinear(key, descriptors, nof, &if_descriptor_found,
   6105                            &var_name_index, &stub_cache);
   6106 
   6107     Bind(&if_descriptor_found);
   6108     {
   6109       LoadPropertyFromFastObject(receiver, receiver_map, descriptors,
   6110                                  var_name_index.value(), &var_details,
   6111                                  &var_value);
   6112       Goto(&if_found_on_receiver);
   6113     }
   6114 
   6115     Bind(&stub_cache);
   6116     {
   6117       Comment("stub cache probe for fast property load");
   6118       Variable var_handler(this, MachineRepresentation::kTagged);
   6119       Label found_handler(this, &var_handler), stub_cache_miss(this);
   6120       TryProbeStubCache(isolate()->load_stub_cache(), receiver, key,
   6121                         &found_handler, &var_handler, &stub_cache_miss);
   6122       Bind(&found_handler);
   6123       { HandleLoadICHandlerCase(p, var_handler.value(), &slow); }
   6124 
   6125       Bind(&stub_cache_miss);
   6126       {
   6127         Comment("KeyedLoadGeneric_miss");
   6128         TailCallRuntime(Runtime::kKeyedLoadIC_Miss, p->context, p->receiver,
   6129                         p->name, p->slot, p->vector);
   6130       }
   6131     }
   6132   }
   6133 
   6134   Bind(&if_property_dictionary);
   6135   {
   6136     Comment("dictionary property load");
   6137     // We checked for LAST_CUSTOM_ELEMENTS_RECEIVER before, which rules out
   6138     // seeing global objects here (which would need special handling).
   6139 
   6140     Variable var_name_index(this, MachineType::PointerRepresentation());
   6141     Label dictionary_found(this, &var_name_index);
   6142     NameDictionaryLookup<NameDictionary>(properties, key, &dictionary_found,
   6143                                          &var_name_index, &slow);
   6144     Bind(&dictionary_found);
   6145     {
   6146       LoadPropertyFromNameDictionary(properties, var_name_index.value(),
   6147                                      &var_details, &var_value);
   6148       Goto(&if_found_on_receiver);
   6149     }
   6150   }
   6151 
   6152   Bind(&if_found_on_receiver);
   6153   {
   6154     Node* value = CallGetterIfAccessor(var_value.value(), var_details.value(),
   6155                                        p->context, receiver, &slow);
   6156     IncrementCounter(isolate()->counters()->ic_keyed_load_generic_symbol(), 1);
   6157     Return(value);
   6158   }
   6159 
   6160   Bind(&slow);
   6161   {
   6162     Comment("KeyedLoadGeneric_slow");
   6163     IncrementCounter(isolate()->counters()->ic_keyed_load_generic_slow(), 1);
   6164     // TODO(jkummerow): Should we use the GetProperty TF stub instead?
   6165     TailCallRuntime(Runtime::kKeyedGetProperty, p->context, p->receiver,
   6166                     p->name);
   6167   }
   6168 }
   6169 
   6170 void CodeStubAssembler::HandleStoreFieldAndReturn(Node* handler_word,
   6171                                                   Node* holder,
   6172                                                   Representation representation,
   6173                                                   Node* value, Node* transition,
   6174                                                   Label* miss) {
   6175   bool transition_to_field = transition != nullptr;
   6176   Node* prepared_value = PrepareValueForWrite(value, representation, miss);
   6177 
   6178   if (transition_to_field) {
   6179     Label storage_extended(this);
   6180     GotoUnless(IsSetWord<StoreHandler::ExtendStorageBits>(handler_word),
   6181                &storage_extended);
   6182     Comment("[ Extend storage");
   6183     ExtendPropertiesBackingStore(holder);
   6184     Comment("] Extend storage");
   6185     Goto(&storage_extended);
   6186 
   6187     Bind(&storage_extended);
   6188   }
   6189 
   6190   Node* offset = DecodeWord<StoreHandler::FieldOffsetBits>(handler_word);
   6191   Label if_inobject(this), if_out_of_object(this);
   6192   Branch(IsSetWord<StoreHandler::IsInobjectBits>(handler_word), &if_inobject,
   6193          &if_out_of_object);
   6194 
   6195   Bind(&if_inobject);
   6196   {
   6197     StoreNamedField(holder, offset, true, representation, prepared_value,
   6198                     transition_to_field);
   6199     if (transition_to_field) {
   6200       StoreObjectField(holder, JSObject::kMapOffset, transition);
   6201     }
   6202     Return(value);
   6203   }
   6204 
   6205   Bind(&if_out_of_object);
   6206   {
   6207     StoreNamedField(holder, offset, false, representation, prepared_value,
   6208                     transition_to_field);
   6209     if (transition_to_field) {
   6210       StoreObjectField(holder, JSObject::kMapOffset, transition);
   6211     }
   6212     Return(value);
   6213   }
   6214 }
   6215 
   6216 void CodeStubAssembler::HandleStoreICSmiHandlerCase(Node* handler_word,
   6217                                                     Node* holder, Node* value,
   6218                                                     Node* transition,
   6219                                                     Label* miss) {
   6220   Comment(transition ? "transitioning field store" : "field store");
   6221 
   6222 #ifdef DEBUG
   6223   Node* handler_kind = DecodeWord<StoreHandler::KindBits>(handler_word);
   6224   if (transition) {
   6225     CSA_ASSERT(
   6226         this,
   6227         WordOr(WordEqual(handler_kind,
   6228                          IntPtrConstant(StoreHandler::kTransitionToField)),
   6229                WordEqual(handler_kind,
   6230                          IntPtrConstant(StoreHandler::kTransitionToConstant))));
   6231   } else {
   6232     CSA_ASSERT(this, WordEqual(handler_kind,
   6233                                IntPtrConstant(StoreHandler::kStoreField)));
   6234   }
   6235 #endif
   6236 
   6237   Node* field_representation =
   6238       DecodeWord<StoreHandler::FieldRepresentationBits>(handler_word);
   6239 
   6240   Label if_smi_field(this), if_double_field(this), if_heap_object_field(this),
   6241       if_tagged_field(this);
   6242 
   6243   GotoIf(WordEqual(field_representation, IntPtrConstant(StoreHandler::kTagged)),
   6244          &if_tagged_field);
   6245   GotoIf(WordEqual(field_representation,
   6246                    IntPtrConstant(StoreHandler::kHeapObject)),
   6247          &if_heap_object_field);
   6248   GotoIf(WordEqual(field_representation, IntPtrConstant(StoreHandler::kDouble)),
   6249          &if_double_field);
   6250   CSA_ASSERT(this, WordEqual(field_representation,
   6251                              IntPtrConstant(StoreHandler::kSmi)));
   6252   Goto(&if_smi_field);
   6253 
   6254   Bind(&if_tagged_field);
   6255   {
   6256     Comment("store tagged field");
   6257     HandleStoreFieldAndReturn(handler_word, holder, Representation::Tagged(),
   6258                               value, transition, miss);
   6259   }
   6260 
   6261   Bind(&if_double_field);
   6262   {
   6263     Comment("store double field");
   6264     HandleStoreFieldAndReturn(handler_word, holder, Representation::Double(),
   6265                               value, transition, miss);
   6266   }
   6267 
   6268   Bind(&if_heap_object_field);
   6269   {
   6270     Comment("store heap object field");
   6271     // Generate full field type check here and then store value as Tagged.
   6272     Node* prepared_value =
   6273         PrepareValueForWrite(value, Representation::HeapObject(), miss);
   6274     Node* value_index_in_descriptor =
   6275         DecodeWord<StoreHandler::DescriptorValueIndexBits>(handler_word);
   6276     Node* descriptors =
   6277         LoadMapDescriptors(transition ? transition : LoadMap(holder));
   6278     Node* maybe_field_type = LoadFixedArrayElement(
   6279         descriptors, value_index_in_descriptor, 0, INTPTR_PARAMETERS);
   6280     Label do_store(this);
   6281     GotoIf(TaggedIsSmi(maybe_field_type), &do_store);
   6282     // Check that value type matches the field type.
   6283     {
   6284       Node* field_type = LoadWeakCellValue(maybe_field_type, miss);
   6285       Branch(WordEqual(LoadMap(prepared_value), field_type), &do_store, miss);
   6286     }
   6287     Bind(&do_store);
   6288     HandleStoreFieldAndReturn(handler_word, holder, Representation::Tagged(),
   6289                               prepared_value, transition, miss);
   6290   }
   6291 
   6292   Bind(&if_smi_field);
   6293   {
   6294     Comment("store smi field");
   6295     HandleStoreFieldAndReturn(handler_word, holder, Representation::Smi(),
   6296                               value, transition, miss);
   6297   }
   6298 }
   6299 
   6300 void CodeStubAssembler::HandleStoreICHandlerCase(const StoreICParameters* p,
   6301                                                  Node* handler, Label* miss) {
   6302   Label if_smi_handler(this);
   6303   Label try_proto_handler(this), call_handler(this);
   6304 
   6305   Branch(TaggedIsSmi(handler), &if_smi_handler, &try_proto_handler);
   6306 
   6307   // |handler| is a Smi, encoding what to do. See SmiHandler methods
   6308   // for the encoding format.
   6309   Bind(&if_smi_handler);
   6310   {
   6311     Node* holder = p->receiver;
   6312     Node* handler_word = SmiUntag(handler);
   6313 
   6314     // Handle non-transitioning field stores.
   6315     HandleStoreICSmiHandlerCase(handler_word, holder, p->value, nullptr, miss);
   6316   }
   6317 
   6318   Bind(&try_proto_handler);
   6319   {
   6320     GotoIf(IsCodeMap(LoadMap(handler)), &call_handler);
   6321     HandleStoreICProtoHandler(p, handler, miss);
   6322   }
   6323 
   6324   // |handler| is a heap object. Must be code, call it.
   6325   Bind(&call_handler);
   6326   {
   6327     StoreWithVectorDescriptor descriptor(isolate());
   6328     TailCallStub(descriptor, handler, p->context, p->receiver, p->name,
   6329                  p->value, p->slot, p->vector);
   6330   }
   6331 }
   6332 
   6333 void CodeStubAssembler::HandleStoreICProtoHandler(const StoreICParameters* p,
   6334                                                   Node* handler, Label* miss) {
   6335   // IC dispatchers rely on these assumptions to be held.
   6336   STATIC_ASSERT(FixedArray::kLengthOffset ==
   6337                 StoreHandler::kTransitionCellOffset);
   6338   DCHECK_EQ(FixedArray::OffsetOfElementAt(StoreHandler::kSmiHandlerIndex),
   6339             StoreHandler::kSmiHandlerOffset);
   6340   DCHECK_EQ(FixedArray::OffsetOfElementAt(StoreHandler::kValidityCellIndex),
   6341             StoreHandler::kValidityCellOffset);
   6342 
   6343   // Both FixedArray and Tuple3 handlers have validity cell at the same offset.
   6344   Label validity_cell_check_done(this);
   6345   Node* validity_cell =
   6346       LoadObjectField(handler, StoreHandler::kValidityCellOffset);
   6347   GotoIf(WordEqual(validity_cell, IntPtrConstant(0)),
   6348          &validity_cell_check_done);
   6349   Node* cell_value = LoadObjectField(validity_cell, Cell::kValueOffset);
   6350   GotoIf(WordNotEqual(cell_value,
   6351                       SmiConstant(Smi::FromInt(Map::kPrototypeChainValid))),
   6352          miss);
   6353   Goto(&validity_cell_check_done);
   6354 
   6355   Bind(&validity_cell_check_done);
   6356   Node* smi_handler = LoadObjectField(handler, StoreHandler::kSmiHandlerOffset);
   6357   CSA_ASSERT(this, TaggedIsSmi(smi_handler));
   6358 
   6359   Node* maybe_transition_cell =
   6360       LoadObjectField(handler, StoreHandler::kTransitionCellOffset);
   6361   Label array_handler(this), tuple_handler(this);
   6362   Branch(TaggedIsSmi(maybe_transition_cell), &array_handler, &tuple_handler);
   6363 
   6364   Variable var_transition(this, MachineRepresentation::kTagged);
   6365   Label if_transition(this), if_transition_to_constant(this);
   6366   Bind(&tuple_handler);
   6367   {
   6368     Node* transition = LoadWeakCellValue(maybe_transition_cell, miss);
   6369     var_transition.Bind(transition);
   6370     Goto(&if_transition);
   6371   }
   6372 
   6373   Bind(&array_handler);
   6374   {
   6375     Node* length = SmiUntag(maybe_transition_cell);
   6376     BuildFastLoop(MachineType::PointerRepresentation(),
   6377                   IntPtrConstant(StoreHandler::kFirstPrototypeIndex), length,
   6378                   [this, p, handler, miss](CodeStubAssembler*, Node* current) {
   6379                     Node* prototype_cell = LoadFixedArrayElement(
   6380                         handler, current, 0, INTPTR_PARAMETERS);
   6381                     CheckPrototype(prototype_cell, p->name, miss);
   6382                   },
   6383                   1, IndexAdvanceMode::kPost);
   6384 
   6385     Node* maybe_transition_cell = LoadFixedArrayElement(
   6386         handler, IntPtrConstant(StoreHandler::kTransitionCellIndex), 0,
   6387         INTPTR_PARAMETERS);
   6388     Node* transition = LoadWeakCellValue(maybe_transition_cell, miss);
   6389     var_transition.Bind(transition);
   6390     Goto(&if_transition);
   6391   }
   6392 
   6393   Bind(&if_transition);
   6394   {
   6395     Node* holder = p->receiver;
   6396     Node* transition = var_transition.value();
   6397     Node* handler_word = SmiUntag(smi_handler);
   6398 
   6399     GotoIf(IsSetWord32<Map::Deprecated>(LoadMapBitField3(transition)), miss);
   6400 
   6401     Node* handler_kind = DecodeWord<StoreHandler::KindBits>(handler_word);
   6402     GotoIf(WordEqual(handler_kind,
   6403                      IntPtrConstant(StoreHandler::kTransitionToConstant)),
   6404            &if_transition_to_constant);
   6405 
   6406     // Handle transitioning field stores.
   6407     HandleStoreICSmiHandlerCase(handler_word, holder, p->value, transition,
   6408                                 miss);
   6409 
   6410     Bind(&if_transition_to_constant);
   6411     {
   6412       // Check that constant matches value.
   6413       Node* value_index_in_descriptor =
   6414           DecodeWord<StoreHandler::DescriptorValueIndexBits>(handler_word);
   6415       Node* descriptors = LoadMapDescriptors(transition);
   6416       Node* constant = LoadFixedArrayElement(
   6417           descriptors, value_index_in_descriptor, 0, INTPTR_PARAMETERS);
   6418       GotoIf(WordNotEqual(p->value, constant), miss);
   6419 
   6420       StoreObjectField(p->receiver, JSObject::kMapOffset, transition);
   6421       Return(p->value);
   6422     }
   6423   }
   6424 }
   6425 
   6426 void CodeStubAssembler::StoreIC(const StoreICParameters* p) {
   6427   Variable var_handler(this, MachineRepresentation::kTagged);
   6428   // TODO(ishell): defer blocks when it works.
   6429   Label if_handler(this, &var_handler), try_polymorphic(this),
   6430       try_megamorphic(this /*, Label::kDeferred*/),
   6431       miss(this /*, Label::kDeferred*/);
   6432 
   6433   Node* receiver_map = LoadReceiverMap(p->receiver);
   6434 
   6435   // Check monomorphic case.
   6436   Node* feedback =
   6437       TryMonomorphicCase(p->slot, p->vector, receiver_map, &if_handler,
   6438                          &var_handler, &try_polymorphic);
   6439   Bind(&if_handler);
   6440   {
   6441     Comment("StoreIC_if_handler");
   6442     HandleStoreICHandlerCase(p, var_handler.value(), &miss);
   6443   }
   6444 
   6445   Bind(&try_polymorphic);
   6446   {
   6447     // Check polymorphic case.
   6448     Comment("StoreIC_try_polymorphic");
   6449     GotoUnless(
   6450         WordEqual(LoadMap(feedback), LoadRoot(Heap::kFixedArrayMapRootIndex)),
   6451         &try_megamorphic);
   6452     HandlePolymorphicCase(receiver_map, feedback, &if_handler, &var_handler,
   6453                           &miss, 2);
   6454   }
   6455 
   6456   Bind(&try_megamorphic);
   6457   {
   6458     // Check megamorphic case.
   6459     GotoUnless(
   6460         WordEqual(feedback, LoadRoot(Heap::kmegamorphic_symbolRootIndex)),
   6461         &miss);
   6462 
   6463     TryProbeStubCache(isolate()->store_stub_cache(), p->receiver, p->name,
   6464                       &if_handler, &var_handler, &miss);
   6465   }
   6466   Bind(&miss);
   6467   {
   6468     TailCallRuntime(Runtime::kStoreIC_Miss, p->context, p->value, p->slot,
   6469                     p->vector, p->receiver, p->name);
   6470   }
   6471 }
   6472 
   6473 void CodeStubAssembler::KeyedStoreIC(const StoreICParameters* p,
   6474                                      LanguageMode language_mode) {
   6475   Variable var_handler(this, MachineRepresentation::kTagged);
   6476   // This is to make |miss| label see the var_handler bound on all paths.
   6477   var_handler.Bind(IntPtrConstant(0));
   6478 
   6479   // TODO(ishell): defer blocks when it works.
   6480   Label if_handler(this, &var_handler), try_polymorphic(this),
   6481       try_megamorphic(this /*, Label::kDeferred*/),
   6482       try_polymorphic_name(this /*, Label::kDeferred*/),
   6483       miss(this /*, Label::kDeferred*/);
   6484 
   6485   Node* receiver_map = LoadReceiverMap(p->receiver);
   6486 
   6487   // Check monomorphic case.
   6488   Node* feedback =
   6489       TryMonomorphicCase(p->slot, p->vector, receiver_map, &if_handler,
   6490                          &var_handler, &try_polymorphic);
   6491   Bind(&if_handler);
   6492   {
   6493     Comment("KeyedStoreIC_if_handler");
   6494     HandleStoreICHandlerCase(p, var_handler.value(), &miss);
   6495   }
   6496 
   6497   Bind(&try_polymorphic);
   6498   {
   6499     // CheckPolymorphic case.
   6500     Comment("KeyedStoreIC_try_polymorphic");
   6501     GotoUnless(
   6502         WordEqual(LoadMap(feedback), LoadRoot(Heap::kFixedArrayMapRootIndex)),
   6503         &try_megamorphic);
   6504     Label if_transition_handler(this);
   6505     Variable var_transition_map_cell(this, MachineRepresentation::kTagged);
   6506     HandleKeyedStorePolymorphicCase(receiver_map, feedback, &if_handler,
   6507                                     &var_handler, &if_transition_handler,
   6508                                     &var_transition_map_cell, &miss);
   6509     Bind(&if_transition_handler);
   6510     Comment("KeyedStoreIC_polymorphic_transition");
   6511     Node* transition_map =
   6512         LoadWeakCellValue(var_transition_map_cell.value(), &miss);
   6513     StoreTransitionDescriptor descriptor(isolate());
   6514     TailCallStub(descriptor, var_handler.value(), p->context, p->receiver,
   6515                  p->name, transition_map, p->value, p->slot, p->vector);
   6516   }
   6517 
   6518   Bind(&try_megamorphic);
   6519   {
   6520     // Check megamorphic case.
   6521     Comment("KeyedStoreIC_try_megamorphic");
   6522     GotoUnless(
   6523         WordEqual(feedback, LoadRoot(Heap::kmegamorphic_symbolRootIndex)),
   6524         &try_polymorphic_name);
   6525     TailCallStub(
   6526         CodeFactory::KeyedStoreIC_Megamorphic(isolate(), language_mode),
   6527         p->context, p->receiver, p->name, p->value, p->slot, p->vector);
   6528   }
   6529 
   6530   Bind(&try_polymorphic_name);
   6531   {
   6532     // We might have a name in feedback, and a fixed array in the next slot.
   6533     Comment("KeyedStoreIC_try_polymorphic_name");
   6534     GotoUnless(WordEqual(feedback, p->name), &miss);
   6535     // If the name comparison succeeded, we know we have a FixedArray with
   6536     // at least one map/handler pair.
   6537     Node* offset = ElementOffsetFromIndex(
   6538         p->slot, FAST_HOLEY_ELEMENTS, SMI_PARAMETERS,
   6539         FixedArray::kHeaderSize + kPointerSize - kHeapObjectTag);
   6540     Node* array = Load(MachineType::AnyTagged(), p->vector, offset);
   6541     HandlePolymorphicCase(receiver_map, array, &if_handler, &var_handler, &miss,
   6542                           1);
   6543   }
   6544 
   6545   Bind(&miss);
   6546   {
   6547     Comment("KeyedStoreIC_miss");
   6548     TailCallRuntime(Runtime::kKeyedStoreIC_Miss, p->context, p->value, p->slot,
   6549                     p->vector, p->receiver, p->name);
   6550   }
   6551 }
   6552 
   6553 void CodeStubAssembler::LoadGlobalIC(const LoadICParameters* p) {
   6554   Label try_handler(this), miss(this);
   6555   Node* weak_cell =
   6556       LoadFixedArrayElement(p->vector, p->slot, 0, SMI_PARAMETERS);
   6557   CSA_ASSERT(this, HasInstanceType(weak_cell, WEAK_CELL_TYPE));
   6558 
   6559   // Load value or try handler case if the {weak_cell} is cleared.
   6560   Node* property_cell = LoadWeakCellValue(weak_cell, &try_handler);
   6561   CSA_ASSERT(this, HasInstanceType(property_cell, PROPERTY_CELL_TYPE));
   6562 
   6563   Node* value = LoadObjectField(property_cell, PropertyCell::kValueOffset);
   6564   GotoIf(WordEqual(value, TheHoleConstant()), &miss);
   6565   Return(value);
   6566 
   6567   Bind(&try_handler);
   6568   {
   6569     Node* handler =
   6570         LoadFixedArrayElement(p->vector, p->slot, kPointerSize, SMI_PARAMETERS);
   6571     GotoIf(WordEqual(handler, LoadRoot(Heap::kuninitialized_symbolRootIndex)),
   6572            &miss);
   6573 
   6574     // In this case {handler} must be a Code object.
   6575     CSA_ASSERT(this, HasInstanceType(handler, CODE_TYPE));
   6576     LoadWithVectorDescriptor descriptor(isolate());
   6577     Node* native_context = LoadNativeContext(p->context);
   6578     Node* receiver =
   6579         LoadContextElement(native_context, Context::EXTENSION_INDEX);
   6580     Node* fake_name = IntPtrConstant(0);
   6581     TailCallStub(descriptor, handler, p->context, receiver, fake_name, p->slot,
   6582                  p->vector);
   6583   }
   6584   Bind(&miss);
   6585   {
   6586     TailCallRuntime(Runtime::kLoadGlobalIC_Miss, p->context, p->slot,
   6587                     p->vector);
   6588   }
   6589 }
   6590 
   6591 void CodeStubAssembler::ExtendPropertiesBackingStore(compiler::Node* object) {
   6592   Node* properties = LoadProperties(object);
   6593   Node* length = LoadFixedArrayBaseLength(properties);
   6594 
   6595   ParameterMode mode = OptimalParameterMode();
   6596   length = UntagParameter(length, mode);
   6597 
   6598   Node* delta = IntPtrOrSmiConstant(JSObject::kFieldsAdded, mode);
   6599   Node* new_capacity = IntPtrAdd(length, delta);
   6600 
   6601   // Grow properties array.
   6602   ElementsKind kind = FAST_ELEMENTS;
   6603   DCHECK(kMaxNumberOfDescriptors + JSObject::kFieldsAdded <
   6604          FixedArrayBase::GetMaxLengthForNewSpaceAllocation(kind));
   6605   // The size of a new properties backing store is guaranteed to be small
   6606   // enough that the new backing store will be allocated in new space.
   6607   CSA_ASSERT(this, UintPtrLessThan(new_capacity,
   6608                                    IntPtrConstant(kMaxNumberOfDescriptors +
   6609                                                   JSObject::kFieldsAdded)));
   6610 
   6611   Node* new_properties = AllocateFixedArray(kind, new_capacity, mode);
   6612 
   6613   FillFixedArrayWithValue(kind, new_properties, length, new_capacity,
   6614                           Heap::kUndefinedValueRootIndex, mode);
   6615 
   6616   // |new_properties| is guaranteed to be in new space, so we can skip
   6617   // the write barrier.
   6618   CopyFixedArrayElements(kind, properties, new_properties, length,
   6619                          SKIP_WRITE_BARRIER, mode);
   6620 
   6621   StoreObjectField(object, JSObject::kPropertiesOffset, new_properties);
   6622 }
   6623 
   6624 Node* CodeStubAssembler::PrepareValueForWrite(Node* value,
   6625                                               Representation representation,
   6626                                               Label* bailout) {
   6627   if (representation.IsDouble()) {
   6628     value = TryTaggedToFloat64(value, bailout);
   6629   } else if (representation.IsHeapObject()) {
   6630     // Field type is checked by the handler, here we only check if the value
   6631     // is a heap object.
   6632     GotoIf(TaggedIsSmi(value), bailout);
   6633   } else if (representation.IsSmi()) {
   6634     GotoUnless(TaggedIsSmi(value), bailout);
   6635   } else {
   6636     DCHECK(representation.IsTagged());
   6637   }
   6638   return value;
   6639 }
   6640 
   6641 void CodeStubAssembler::StoreNamedField(Node* object, FieldIndex index,
   6642                                         Representation representation,
   6643                                         Node* value, bool transition_to_field) {
   6644   DCHECK_EQ(index.is_double(), representation.IsDouble());
   6645 
   6646   StoreNamedField(object, IntPtrConstant(index.offset()), index.is_inobject(),
   6647                   representation, value, transition_to_field);
   6648 }
   6649 
   6650 void CodeStubAssembler::StoreNamedField(Node* object, Node* offset,
   6651                                         bool is_inobject,
   6652                                         Representation representation,
   6653                                         Node* value, bool transition_to_field) {
   6654   bool store_value_as_double = representation.IsDouble();
   6655   Node* property_storage = object;
   6656   if (!is_inobject) {
   6657     property_storage = LoadProperties(object);
   6658   }
   6659 
   6660   if (representation.IsDouble()) {
   6661     if (!FLAG_unbox_double_fields || !is_inobject) {
   6662       if (transition_to_field) {
   6663         Node* heap_number = AllocateHeapNumberWithValue(value, MUTABLE);
   6664         // Store the new mutable heap number into the object.
   6665         value = heap_number;
   6666         store_value_as_double = false;
   6667       } else {
   6668         // Load the heap number.
   6669         property_storage = LoadObjectField(property_storage, offset);
   6670         // Store the double value into it.
   6671         offset = IntPtrConstant(HeapNumber::kValueOffset);
   6672       }
   6673     }
   6674   }
   6675 
   6676   if (store_value_as_double) {
   6677     StoreObjectFieldNoWriteBarrier(property_storage, offset, value,
   6678                                    MachineRepresentation::kFloat64);
   6679   } else if (representation.IsSmi()) {
   6680     StoreObjectFieldNoWriteBarrier(property_storage, offset, value);
   6681   } else {
   6682     StoreObjectField(property_storage, offset, value);
   6683   }
   6684 }
   6685 
   6686 Node* CodeStubAssembler::EmitKeyedSloppyArguments(Node* receiver, Node* key,
   6687                                                   Node* value, Label* bailout) {
   6688   // Mapped arguments are actual arguments. Unmapped arguments are values added
   6689   // to the arguments object after it was created for the call. Mapped arguments
   6690   // are stored in the context at indexes given by elements[key + 2]. Unmapped
   6691   // arguments are stored as regular indexed properties in the arguments array,
   6692   // held at elements[1]. See NewSloppyArguments() in runtime.cc for a detailed
   6693   // look at argument object construction.
   6694   //
   6695   // The sloppy arguments elements array has a special format:
   6696   //
   6697   // 0: context
   6698   // 1: unmapped arguments array
   6699   // 2: mapped_index0,
   6700   // 3: mapped_index1,
   6701   // ...
   6702   //
   6703   // length is 2 + min(number_of_actual_arguments, number_of_formal_arguments).
   6704   // If key + 2 >= elements.length then attempt to look in the unmapped
   6705   // arguments array (given by elements[1]) and return the value at key, missing
   6706   // to the runtime if the unmapped arguments array is not a fixed array or if
   6707   // key >= unmapped_arguments_array.length.
   6708   //
   6709   // Otherwise, t = elements[key + 2]. If t is the hole, then look up the value
   6710   // in the unmapped arguments array, as described above. Otherwise, t is a Smi
   6711   // index into the context array given at elements[0]. Return the value at
   6712   // context[t].
   6713 
   6714   bool is_load = value == nullptr;
   6715 
   6716   GotoUnless(TaggedIsSmi(key), bailout);
   6717   key = SmiUntag(key);
   6718   GotoIf(IntPtrLessThan(key, IntPtrConstant(0)), bailout);
   6719 
   6720   Node* elements = LoadElements(receiver);
   6721   Node* elements_length = LoadAndUntagFixedArrayBaseLength(elements);
   6722 
   6723   Variable var_result(this, MachineRepresentation::kTagged);
   6724   if (!is_load) {
   6725     var_result.Bind(value);
   6726   }
   6727   Label if_mapped(this), if_unmapped(this), end(this, &var_result);
   6728   Node* intptr_two = IntPtrConstant(2);
   6729   Node* adjusted_length = IntPtrSub(elements_length, intptr_two);
   6730 
   6731   GotoIf(UintPtrGreaterThanOrEqual(key, adjusted_length), &if_unmapped);
   6732 
   6733   Node* mapped_index = LoadFixedArrayElement(
   6734       elements, IntPtrAdd(key, intptr_two), 0, INTPTR_PARAMETERS);
   6735   Branch(WordEqual(mapped_index, TheHoleConstant()), &if_unmapped, &if_mapped);
   6736 
   6737   Bind(&if_mapped);
   6738   {
   6739     CSA_ASSERT(this, TaggedIsSmi(mapped_index));
   6740     mapped_index = SmiUntag(mapped_index);
   6741     Node* the_context = LoadFixedArrayElement(elements, IntPtrConstant(0), 0,
   6742                                               INTPTR_PARAMETERS);
   6743     // Assert that we can use LoadFixedArrayElement/StoreFixedArrayElement
   6744     // methods for accessing Context.
   6745     STATIC_ASSERT(Context::kHeaderSize == FixedArray::kHeaderSize);
   6746     DCHECK_EQ(Context::SlotOffset(0) + kHeapObjectTag,
   6747               FixedArray::OffsetOfElementAt(0));
   6748     if (is_load) {
   6749       Node* result = LoadFixedArrayElement(the_context, mapped_index, 0,
   6750                                            INTPTR_PARAMETERS);
   6751       CSA_ASSERT(this, WordNotEqual(result, TheHoleConstant()));
   6752       var_result.Bind(result);
   6753     } else {
   6754       StoreFixedArrayElement(the_context, mapped_index, value,
   6755                              UPDATE_WRITE_BARRIER, INTPTR_PARAMETERS);
   6756     }
   6757     Goto(&end);
   6758   }
   6759 
   6760   Bind(&if_unmapped);
   6761   {
   6762     Node* backing_store = LoadFixedArrayElement(elements, IntPtrConstant(1), 0,
   6763                                                 INTPTR_PARAMETERS);
   6764     GotoIf(WordNotEqual(LoadMap(backing_store), FixedArrayMapConstant()),
   6765            bailout);
   6766 
   6767     Node* backing_store_length =
   6768         LoadAndUntagFixedArrayBaseLength(backing_store);
   6769     GotoIf(UintPtrGreaterThanOrEqual(key, backing_store_length), bailout);
   6770 
   6771     // The key falls into unmapped range.
   6772     if (is_load) {
   6773       Node* result =
   6774           LoadFixedArrayElement(backing_store, key, 0, INTPTR_PARAMETERS);
   6775       GotoIf(WordEqual(result, TheHoleConstant()), bailout);
   6776       var_result.Bind(result);
   6777     } else {
   6778       StoreFixedArrayElement(backing_store, key, value, UPDATE_WRITE_BARRIER,
   6779                              INTPTR_PARAMETERS);
   6780     }
   6781     Goto(&end);
   6782   }
   6783 
   6784   Bind(&end);
   6785   return var_result.value();
   6786 }
   6787 
   6788 Node* CodeStubAssembler::LoadScriptContext(Node* context, int context_index) {
   6789   Node* native_context = LoadNativeContext(context);
   6790   Node* script_context_table =
   6791       LoadContextElement(native_context, Context::SCRIPT_CONTEXT_TABLE_INDEX);
   6792 
   6793   int offset =
   6794       ScriptContextTable::GetContextOffset(context_index) - kHeapObjectTag;
   6795   return Load(MachineType::AnyTagged(), script_context_table,
   6796               IntPtrConstant(offset));
   6797 }
   6798 
   6799 namespace {
   6800 
   6801 // Converts typed array elements kind to a machine representations.
   6802 MachineRepresentation ElementsKindToMachineRepresentation(ElementsKind kind) {
   6803   switch (kind) {
   6804     case UINT8_CLAMPED_ELEMENTS:
   6805     case UINT8_ELEMENTS:
   6806     case INT8_ELEMENTS:
   6807       return MachineRepresentation::kWord8;
   6808     case UINT16_ELEMENTS:
   6809     case INT16_ELEMENTS:
   6810       return MachineRepresentation::kWord16;
   6811     case UINT32_ELEMENTS:
   6812     case INT32_ELEMENTS:
   6813       return MachineRepresentation::kWord32;
   6814     case FLOAT32_ELEMENTS:
   6815       return MachineRepresentation::kFloat32;
   6816     case FLOAT64_ELEMENTS:
   6817       return MachineRepresentation::kFloat64;
   6818     default:
   6819       UNREACHABLE();
   6820       return MachineRepresentation::kNone;
   6821   }
   6822 }
   6823 
   6824 }  // namespace
   6825 
   6826 void CodeStubAssembler::StoreElement(Node* elements, ElementsKind kind,
   6827                                      Node* index, Node* value,
   6828                                      ParameterMode mode) {
   6829   if (IsFixedTypedArrayElementsKind(kind)) {
   6830     if (kind == UINT8_CLAMPED_ELEMENTS) {
   6831       CSA_ASSERT(this,
   6832                  Word32Equal(value, Word32And(Int32Constant(0xff), value)));
   6833     }
   6834     Node* offset = ElementOffsetFromIndex(index, kind, mode, 0);
   6835     MachineRepresentation rep = ElementsKindToMachineRepresentation(kind);
   6836     StoreNoWriteBarrier(rep, elements, offset, value);
   6837     return;
   6838   }
   6839 
   6840   WriteBarrierMode barrier_mode =
   6841       IsFastSmiElementsKind(kind) ? SKIP_WRITE_BARRIER : UPDATE_WRITE_BARRIER;
   6842   if (IsFastDoubleElementsKind(kind)) {
   6843     // Make sure we do not store signalling NaNs into double arrays.
   6844     value = Float64SilenceNaN(value);
   6845     StoreFixedDoubleArrayElement(elements, index, value, mode);
   6846   } else {
   6847     StoreFixedArrayElement(elements, index, value, barrier_mode, mode);
   6848   }
   6849 }
   6850 
   6851 Node* CodeStubAssembler::Int32ToUint8Clamped(Node* int32_value) {
   6852   Label done(this);
   6853   Node* int32_zero = Int32Constant(0);
   6854   Node* int32_255 = Int32Constant(255);
   6855   Variable var_value(this, MachineRepresentation::kWord32);
   6856   var_value.Bind(int32_value);
   6857   GotoIf(Uint32LessThanOrEqual(int32_value, int32_255), &done);
   6858   var_value.Bind(int32_zero);
   6859   GotoIf(Int32LessThan(int32_value, int32_zero), &done);
   6860   var_value.Bind(int32_255);
   6861   Goto(&done);
   6862   Bind(&done);
   6863   return var_value.value();
   6864 }
   6865 
   6866 Node* CodeStubAssembler::Float64ToUint8Clamped(Node* float64_value) {
   6867   Label done(this);
   6868   Variable var_value(this, MachineRepresentation::kWord32);
   6869   var_value.Bind(Int32Constant(0));
   6870   GotoIf(Float64LessThanOrEqual(float64_value, Float64Constant(0.0)), &done);
   6871   var_value.Bind(Int32Constant(255));
   6872   GotoIf(Float64LessThanOrEqual(Float64Constant(255.0), float64_value), &done);
   6873   {
   6874     Node* rounded_value = Float64RoundToEven(float64_value);
   6875     var_value.Bind(TruncateFloat64ToWord32(rounded_value));
   6876     Goto(&done);
   6877   }
   6878   Bind(&done);
   6879   return var_value.value();
   6880 }
   6881 
   6882 Node* CodeStubAssembler::PrepareValueForWriteToTypedArray(
   6883     Node* input, ElementsKind elements_kind, Label* bailout) {
   6884   DCHECK(IsFixedTypedArrayElementsKind(elements_kind));
   6885 
   6886   MachineRepresentation rep;
   6887   switch (elements_kind) {
   6888     case UINT8_ELEMENTS:
   6889     case INT8_ELEMENTS:
   6890     case UINT16_ELEMENTS:
   6891     case INT16_ELEMENTS:
   6892     case UINT32_ELEMENTS:
   6893     case INT32_ELEMENTS:
   6894     case UINT8_CLAMPED_ELEMENTS:
   6895       rep = MachineRepresentation::kWord32;
   6896       break;
   6897     case FLOAT32_ELEMENTS:
   6898       rep = MachineRepresentation::kFloat32;
   6899       break;
   6900     case FLOAT64_ELEMENTS:
   6901       rep = MachineRepresentation::kFloat64;
   6902       break;
   6903     default:
   6904       UNREACHABLE();
   6905       return nullptr;
   6906   }
   6907 
   6908   Variable var_result(this, rep);
   6909   Label done(this, &var_result), if_smi(this);
   6910   GotoIf(TaggedIsSmi(input), &if_smi);
   6911   // Try to convert a heap number to a Smi.
   6912   GotoUnless(IsHeapNumberMap(LoadMap(input)), bailout);
   6913   {
   6914     Node* value = LoadHeapNumberValue(input);
   6915     if (rep == MachineRepresentation::kWord32) {
   6916       if (elements_kind == UINT8_CLAMPED_ELEMENTS) {
   6917         value = Float64ToUint8Clamped(value);
   6918       } else {
   6919         value = TruncateFloat64ToWord32(value);
   6920       }
   6921     } else if (rep == MachineRepresentation::kFloat32) {
   6922       value = TruncateFloat64ToFloat32(value);
   6923     } else {
   6924       DCHECK_EQ(MachineRepresentation::kFloat64, rep);
   6925     }
   6926     var_result.Bind(value);
   6927     Goto(&done);
   6928   }
   6929 
   6930   Bind(&if_smi);
   6931   {
   6932     Node* value = SmiToWord32(input);
   6933     if (rep == MachineRepresentation::kFloat32) {
   6934       value = RoundInt32ToFloat32(value);
   6935     } else if (rep == MachineRepresentation::kFloat64) {
   6936       value = ChangeInt32ToFloat64(value);
   6937     } else {
   6938       DCHECK_EQ(MachineRepresentation::kWord32, rep);
   6939       if (elements_kind == UINT8_CLAMPED_ELEMENTS) {
   6940         value = Int32ToUint8Clamped(value);
   6941       }
   6942     }
   6943     var_result.Bind(value);
   6944     Goto(&done);
   6945   }
   6946 
   6947   Bind(&done);
   6948   return var_result.value();
   6949 }
   6950 
   6951 void CodeStubAssembler::EmitElementStore(Node* object, Node* key, Node* value,
   6952                                          bool is_jsarray,
   6953                                          ElementsKind elements_kind,
   6954                                          KeyedAccessStoreMode store_mode,
   6955                                          Label* bailout) {
   6956   Node* elements = LoadElements(object);
   6957   if (IsFastSmiOrObjectElementsKind(elements_kind) &&
   6958       store_mode != STORE_NO_TRANSITION_HANDLE_COW) {
   6959     // Bailout in case of COW elements.
   6960     GotoIf(WordNotEqual(LoadMap(elements),
   6961                         LoadRoot(Heap::kFixedArrayMapRootIndex)),
   6962            bailout);
   6963   }
   6964   // TODO(ishell): introduce TryToIntPtrOrSmi() and use OptimalParameterMode().
   6965   ParameterMode parameter_mode = INTPTR_PARAMETERS;
   6966   key = TryToIntptr(key, bailout);
   6967 
   6968   if (IsFixedTypedArrayElementsKind(elements_kind)) {
   6969     Label done(this);
   6970     // TODO(ishell): call ToNumber() on value and don't bailout but be careful
   6971     // to call it only once if we decide to bailout because of bounds checks.
   6972 
   6973     value = PrepareValueForWriteToTypedArray(value, elements_kind, bailout);
   6974 
   6975     // There must be no allocations between the buffer load and
   6976     // and the actual store to backing store, because GC may decide that
   6977     // the buffer is not alive or move the elements.
   6978     // TODO(ishell): introduce DisallowHeapAllocationCode scope here.
   6979 
   6980     // Check if buffer has been neutered.
   6981     Node* buffer = LoadObjectField(object, JSArrayBufferView::kBufferOffset);
   6982     Node* bitfield = LoadObjectField(buffer, JSArrayBuffer::kBitFieldOffset,
   6983                                      MachineType::Uint32());
   6984     Node* neutered_bit =
   6985         Word32And(bitfield, Int32Constant(JSArrayBuffer::WasNeutered::kMask));
   6986     GotoUnless(Word32Equal(neutered_bit, Int32Constant(0)), bailout);
   6987 
   6988     // Bounds check.
   6989     Node* length = UntagParameter(
   6990         LoadObjectField(object, JSTypedArray::kLengthOffset), parameter_mode);
   6991 
   6992     if (store_mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS) {
   6993       // Skip the store if we write beyond the length.
   6994       GotoUnless(IntPtrLessThan(key, length), &done);
   6995       // ... but bailout if the key is negative.
   6996     } else {
   6997       DCHECK_EQ(STANDARD_STORE, store_mode);
   6998     }
   6999     GotoUnless(UintPtrLessThan(key, length), bailout);
   7000 
   7001     // Backing store = external_pointer + base_pointer.
   7002     Node* external_pointer =
   7003         LoadObjectField(elements, FixedTypedArrayBase::kExternalPointerOffset,
   7004                         MachineType::Pointer());
   7005     Node* base_pointer =
   7006         LoadObjectField(elements, FixedTypedArrayBase::kBasePointerOffset);
   7007     Node* backing_store = IntPtrAdd(external_pointer, base_pointer);
   7008     StoreElement(backing_store, elements_kind, key, value, parameter_mode);
   7009     Goto(&done);
   7010 
   7011     Bind(&done);
   7012     return;
   7013   }
   7014   DCHECK(IsFastSmiOrObjectElementsKind(elements_kind) ||
   7015          IsFastDoubleElementsKind(elements_kind));
   7016 
   7017   Node* length = is_jsarray ? LoadObjectField(object, JSArray::kLengthOffset)
   7018                             : LoadFixedArrayBaseLength(elements);
   7019   length = UntagParameter(length, parameter_mode);
   7020 
   7021   // In case value is stored into a fast smi array, assure that the value is
   7022   // a smi before manipulating the backing store. Otherwise the backing store
   7023   // may be left in an invalid state.
   7024   if (IsFastSmiElementsKind(elements_kind)) {
   7025     GotoUnless(TaggedIsSmi(value), bailout);
   7026   } else if (IsFastDoubleElementsKind(elements_kind)) {
   7027     value = TryTaggedToFloat64(value, bailout);
   7028   }
   7029 
   7030   if (IsGrowStoreMode(store_mode)) {
   7031     elements = CheckForCapacityGrow(object, elements, elements_kind, length,
   7032                                     key, parameter_mode, is_jsarray, bailout);
   7033   } else {
   7034     GotoUnless(UintPtrLessThan(key, length), bailout);
   7035 
   7036     if ((store_mode == STORE_NO_TRANSITION_HANDLE_COW) &&
   7037         IsFastSmiOrObjectElementsKind(elements_kind)) {
   7038       elements = CopyElementsOnWrite(object, elements, elements_kind, length,
   7039                                      parameter_mode, bailout);
   7040     }
   7041   }
   7042   StoreElement(elements, elements_kind, key, value, parameter_mode);
   7043 }
   7044 
   7045 Node* CodeStubAssembler::CheckForCapacityGrow(Node* object, Node* elements,
   7046                                               ElementsKind kind, Node* length,
   7047                                               Node* key, ParameterMode mode,
   7048                                               bool is_js_array,
   7049                                               Label* bailout) {
   7050   Variable checked_elements(this, MachineRepresentation::kTagged);
   7051   Label grow_case(this), no_grow_case(this), done(this);
   7052 
   7053   Node* condition;
   7054   if (IsHoleyElementsKind(kind)) {
   7055     condition = UintPtrGreaterThanOrEqual(key, length);
   7056   } else {
   7057     condition = WordEqual(key, length);
   7058   }
   7059   Branch(condition, &grow_case, &no_grow_case);
   7060 
   7061   Bind(&grow_case);
   7062   {
   7063     Node* current_capacity =
   7064         UntagParameter(LoadFixedArrayBaseLength(elements), mode);
   7065 
   7066     checked_elements.Bind(elements);
   7067 
   7068     Label fits_capacity(this);
   7069     GotoIf(UintPtrLessThan(key, current_capacity), &fits_capacity);
   7070     {
   7071       Node* new_elements = TryGrowElementsCapacity(
   7072           object, elements, kind, key, current_capacity, mode, bailout);
   7073 
   7074       checked_elements.Bind(new_elements);
   7075       Goto(&fits_capacity);
   7076     }
   7077     Bind(&fits_capacity);
   7078 
   7079     if (is_js_array) {
   7080       Node* new_length = IntPtrAdd(key, IntPtrOrSmiConstant(1, mode));
   7081       StoreObjectFieldNoWriteBarrier(object, JSArray::kLengthOffset,
   7082                                      TagParameter(new_length, mode));
   7083     }
   7084     Goto(&done);
   7085   }
   7086 
   7087   Bind(&no_grow_case);
   7088   {
   7089     GotoUnless(UintPtrLessThan(key, length), bailout);
   7090     checked_elements.Bind(elements);
   7091     Goto(&done);
   7092   }
   7093 
   7094   Bind(&done);
   7095   return checked_elements.value();
   7096 }
   7097 
   7098 Node* CodeStubAssembler::CopyElementsOnWrite(Node* object, Node* elements,
   7099                                              ElementsKind kind, Node* length,
   7100                                              ParameterMode mode,
   7101                                              Label* bailout) {
   7102   Variable new_elements_var(this, MachineRepresentation::kTagged);
   7103   Label done(this);
   7104 
   7105   new_elements_var.Bind(elements);
   7106   GotoUnless(
   7107       WordEqual(LoadMap(elements), LoadRoot(Heap::kFixedCOWArrayMapRootIndex)),
   7108       &done);
   7109   {
   7110     Node* capacity = UntagParameter(LoadFixedArrayBaseLength(elements), mode);
   7111     Node* new_elements = GrowElementsCapacity(object, elements, kind, kind,
   7112                                               length, capacity, mode, bailout);
   7113 
   7114     new_elements_var.Bind(new_elements);
   7115     Goto(&done);
   7116   }
   7117 
   7118   Bind(&done);
   7119   return new_elements_var.value();
   7120 }
   7121 
   7122 void CodeStubAssembler::TransitionElementsKind(
   7123     compiler::Node* object, compiler::Node* map, ElementsKind from_kind,
   7124     ElementsKind to_kind, bool is_jsarray, Label* bailout) {
   7125   DCHECK(!IsFastHoleyElementsKind(from_kind) ||
   7126          IsFastHoleyElementsKind(to_kind));
   7127   if (AllocationSite::GetMode(from_kind, to_kind) == TRACK_ALLOCATION_SITE) {
   7128     TrapAllocationMemento(object, bailout);
   7129   }
   7130 
   7131   if (!IsSimpleMapChangeTransition(from_kind, to_kind)) {
   7132     Comment("Non-simple map transition");
   7133     Node* elements = LoadElements(object);
   7134 
   7135     Node* empty_fixed_array =
   7136         HeapConstant(isolate()->factory()->empty_fixed_array());
   7137 
   7138     Label done(this);
   7139     GotoIf(WordEqual(elements, empty_fixed_array), &done);
   7140 
   7141     // TODO(ishell): Use OptimalParameterMode().
   7142     ParameterMode mode = INTPTR_PARAMETERS;
   7143     Node* elements_length = SmiUntag(LoadFixedArrayBaseLength(elements));
   7144     Node* array_length =
   7145         is_jsarray ? SmiUntag(LoadObjectField(object, JSArray::kLengthOffset))
   7146                    : elements_length;
   7147 
   7148     GrowElementsCapacity(object, elements, from_kind, to_kind, array_length,
   7149                          elements_length, mode, bailout);
   7150     Goto(&done);
   7151     Bind(&done);
   7152   }
   7153 
   7154   StoreObjectField(object, JSObject::kMapOffset, map);
   7155 }
   7156 
   7157 void CodeStubAssembler::TrapAllocationMemento(Node* object,
   7158                                               Label* memento_found) {
   7159   Comment("[ TrapAllocationMemento");
   7160   Label no_memento_found(this);
   7161   Label top_check(this), map_check(this);
   7162 
   7163   Node* new_space_top_address = ExternalConstant(
   7164       ExternalReference::new_space_allocation_top_address(isolate()));
   7165   const int kMementoMapOffset = JSArray::kSize;
   7166   const int kMementoLastWordOffset =
   7167       kMementoMapOffset + AllocationMemento::kSize - kPointerSize;
   7168 
   7169   // Bail out if the object is not in new space.
   7170   Node* object_page = PageFromAddress(object);
   7171   {
   7172     Node* page_flags = Load(MachineType::IntPtr(), object_page,
   7173                             IntPtrConstant(Page::kFlagsOffset));
   7174     GotoIf(WordEqual(WordAnd(page_flags,
   7175                              IntPtrConstant(MemoryChunk::kIsInNewSpaceMask)),
   7176                      IntPtrConstant(0)),
   7177            &no_memento_found);
   7178   }
   7179 
   7180   Node* memento_last_word = IntPtrAdd(
   7181       object, IntPtrConstant(kMementoLastWordOffset - kHeapObjectTag));
   7182   Node* memento_last_word_page = PageFromAddress(memento_last_word);
   7183 
   7184   Node* new_space_top = Load(MachineType::Pointer(), new_space_top_address);
   7185   Node* new_space_top_page = PageFromAddress(new_space_top);
   7186 
   7187   // If the object is in new space, we need to check whether respective
   7188   // potential memento object is on the same page as the current top.
   7189   GotoIf(WordEqual(memento_last_word_page, new_space_top_page), &top_check);
   7190 
   7191   // The object is on a different page than allocation top. Bail out if the
   7192   // object sits on the page boundary as no memento can follow and we cannot
   7193   // touch the memory following it.
   7194   Branch(WordEqual(object_page, memento_last_word_page), &map_check,
   7195          &no_memento_found);
   7196 
   7197   // If top is on the same page as the current object, we need to check whether
   7198   // we are below top.
   7199   Bind(&top_check);
   7200   {
   7201     Branch(UintPtrGreaterThanOrEqual(memento_last_word, new_space_top),
   7202            &no_memento_found, &map_check);
   7203   }
   7204 
   7205   // Memento map check.
   7206   Bind(&map_check);
   7207   {
   7208     Node* memento_map = LoadObjectField(object, kMementoMapOffset);
   7209     Branch(
   7210         WordEqual(memento_map, LoadRoot(Heap::kAllocationMementoMapRootIndex)),
   7211         memento_found, &no_memento_found);
   7212   }
   7213   Bind(&no_memento_found);
   7214   Comment("] TrapAllocationMemento");
   7215 }
   7216 
   7217 Node* CodeStubAssembler::PageFromAddress(Node* address) {
   7218   return WordAnd(address, IntPtrConstant(~Page::kPageAlignmentMask));
   7219 }
   7220 
   7221 Node* CodeStubAssembler::EnumLength(Node* map) {
   7222   CSA_ASSERT(this, IsMap(map));
   7223   Node* bitfield_3 = LoadMapBitField3(map);
   7224   Node* enum_length = DecodeWordFromWord32<Map::EnumLengthBits>(bitfield_3);
   7225   return SmiTag(enum_length);
   7226 }
   7227 
   7228 void CodeStubAssembler::CheckEnumCache(Node* receiver, Label* use_cache,
   7229                                        Label* use_runtime) {
   7230   Variable current_js_object(this, MachineRepresentation::kTagged);
   7231   current_js_object.Bind(receiver);
   7232 
   7233   Variable current_map(this, MachineRepresentation::kTagged);
   7234   current_map.Bind(LoadMap(current_js_object.value()));
   7235 
   7236   // These variables are updated in the loop below.
   7237   Variable* loop_vars[2] = {&current_js_object, &current_map};
   7238   Label loop(this, 2, loop_vars), next(this);
   7239 
   7240   // Check if the enum length field is properly initialized, indicating that
   7241   // there is an enum cache.
   7242   {
   7243     Node* invalid_enum_cache_sentinel =
   7244         SmiConstant(Smi::FromInt(kInvalidEnumCacheSentinel));
   7245     Node* enum_length = EnumLength(current_map.value());
   7246     Branch(WordEqual(enum_length, invalid_enum_cache_sentinel), use_runtime,
   7247            &loop);
   7248   }
   7249 
   7250   // Check that there are no elements. |current_js_object| contains
   7251   // the current JS object we've reached through the prototype chain.
   7252   Bind(&loop);
   7253   {
   7254     Label if_elements(this), if_no_elements(this);
   7255     Node* elements = LoadElements(current_js_object.value());
   7256     Node* empty_fixed_array = LoadRoot(Heap::kEmptyFixedArrayRootIndex);
   7257     // Check that there are no elements.
   7258     Branch(WordEqual(elements, empty_fixed_array), &if_no_elements,
   7259            &if_elements);
   7260     Bind(&if_elements);
   7261     {
   7262       // Second chance, the object may be using the empty slow element
   7263       // dictionary.
   7264       Node* slow_empty_dictionary =
   7265           LoadRoot(Heap::kEmptySlowElementDictionaryRootIndex);
   7266       Branch(WordNotEqual(elements, slow_empty_dictionary), use_runtime,
   7267              &if_no_elements);
   7268     }
   7269 
   7270     Bind(&if_no_elements);
   7271     {
   7272       // Update map prototype.
   7273       current_js_object.Bind(LoadMapPrototype(current_map.value()));
   7274       Branch(WordEqual(current_js_object.value(), NullConstant()), use_cache,
   7275              &next);
   7276     }
   7277   }
   7278 
   7279   Bind(&next);
   7280   {
   7281     // For all objects but the receiver, check that the cache is empty.
   7282     current_map.Bind(LoadMap(current_js_object.value()));
   7283     Node* enum_length = EnumLength(current_map.value());
   7284     Node* zero_constant = SmiConstant(Smi::kZero);
   7285     Branch(WordEqual(enum_length, zero_constant), &loop, use_runtime);
   7286   }
   7287 }
   7288 
   7289 Node* CodeStubAssembler::CreateAllocationSiteInFeedbackVector(
   7290     Node* feedback_vector, Node* slot) {
   7291   Node* size = IntPtrConstant(AllocationSite::kSize);
   7292   Node* site = Allocate(size, CodeStubAssembler::kPretenured);
   7293 
   7294   // Store the map
   7295   StoreObjectFieldRoot(site, AllocationSite::kMapOffset,
   7296                        Heap::kAllocationSiteMapRootIndex);
   7297   Node* kind = SmiConstant(Smi::FromInt(GetInitialFastElementsKind()));
   7298   StoreObjectFieldNoWriteBarrier(site, AllocationSite::kTransitionInfoOffset,
   7299                                  kind);
   7300 
   7301   // Unlike literals, constructed arrays don't have nested sites
   7302   Node* zero = IntPtrConstant(0);
   7303   StoreObjectFieldNoWriteBarrier(site, AllocationSite::kNestedSiteOffset, zero);
   7304 
   7305   // Pretenuring calculation field.
   7306   StoreObjectFieldNoWriteBarrier(site, AllocationSite::kPretenureDataOffset,
   7307                                  zero);
   7308 
   7309   // Pretenuring memento creation count field.
   7310   StoreObjectFieldNoWriteBarrier(
   7311       site, AllocationSite::kPretenureCreateCountOffset, zero);
   7312 
   7313   // Store an empty fixed array for the code dependency.
   7314   StoreObjectFieldRoot(site, AllocationSite::kDependentCodeOffset,
   7315                        Heap::kEmptyFixedArrayRootIndex);
   7316 
   7317   // Link the object to the allocation site list
   7318   Node* site_list = ExternalConstant(
   7319       ExternalReference::allocation_sites_list_address(isolate()));
   7320   Node* next_site = LoadBufferObject(site_list, 0);
   7321 
   7322   // TODO(mvstanton): This is a store to a weak pointer, which we may want to
   7323   // mark as such in order to skip the write barrier, once we have a unified
   7324   // system for weakness. For now we decided to keep it like this because having
   7325   // an initial write barrier backed store makes this pointer strong until the
   7326   // next GC, and allocation sites are designed to survive several GCs anyway.
   7327   StoreObjectField(site, AllocationSite::kWeakNextOffset, next_site);
   7328   StoreNoWriteBarrier(MachineRepresentation::kTagged, site_list, site);
   7329 
   7330   StoreFixedArrayElement(feedback_vector, slot, site, UPDATE_WRITE_BARRIER,
   7331                          CodeStubAssembler::SMI_PARAMETERS);
   7332   return site;
   7333 }
   7334 
   7335 Node* CodeStubAssembler::CreateWeakCellInFeedbackVector(Node* feedback_vector,
   7336                                                         Node* slot,
   7337                                                         Node* value) {
   7338   Node* size = IntPtrConstant(WeakCell::kSize);
   7339   Node* cell = Allocate(size, CodeStubAssembler::kPretenured);
   7340 
   7341   // Initialize the WeakCell.
   7342   StoreObjectFieldRoot(cell, WeakCell::kMapOffset, Heap::kWeakCellMapRootIndex);
   7343   StoreObjectField(cell, WeakCell::kValueOffset, value);
   7344   StoreObjectFieldRoot(cell, WeakCell::kNextOffset,
   7345                        Heap::kTheHoleValueRootIndex);
   7346 
   7347   // Store the WeakCell in the feedback vector.
   7348   StoreFixedArrayElement(feedback_vector, slot, cell, UPDATE_WRITE_BARRIER,
   7349                          CodeStubAssembler::SMI_PARAMETERS);
   7350   return cell;
   7351 }
   7352 
   7353 void CodeStubAssembler::BuildFastLoop(
   7354     const CodeStubAssembler::VariableList& vars,
   7355     MachineRepresentation index_rep, Node* start_index, Node* end_index,
   7356     std::function<void(CodeStubAssembler* assembler, Node* index)> body,
   7357     int increment, IndexAdvanceMode mode) {
   7358   Variable var(this, index_rep);
   7359   VariableList vars_copy(vars, zone());
   7360   vars_copy.Add(&var, zone());
   7361   var.Bind(start_index);
   7362   Label loop(this, vars_copy);
   7363   Label after_loop(this);
   7364   // Introduce an explicit second check of the termination condition before the
   7365   // loop that helps turbofan generate better code. If there's only a single
   7366   // check, then the CodeStubAssembler forces it to be at the beginning of the
   7367   // loop requiring a backwards branch at the end of the loop (it's not possible
   7368   // to force the loop header check at the end of the loop and branch forward to
   7369   // it from the pre-header). The extra branch is slower in the case that the
   7370   // loop actually iterates.
   7371   Branch(WordEqual(var.value(), end_index), &after_loop, &loop);
   7372   Bind(&loop);
   7373   {
   7374     if (mode == IndexAdvanceMode::kPre) {
   7375       var.Bind(IntPtrAdd(var.value(), IntPtrConstant(increment)));
   7376     }
   7377     body(this, var.value());
   7378     if (mode == IndexAdvanceMode::kPost) {
   7379       var.Bind(IntPtrAdd(var.value(), IntPtrConstant(increment)));
   7380     }
   7381     Branch(WordNotEqual(var.value(), end_index), &loop, &after_loop);
   7382   }
   7383   Bind(&after_loop);
   7384 }
   7385 
   7386 void CodeStubAssembler::BuildFastFixedArrayForEach(
   7387     compiler::Node* fixed_array, ElementsKind kind,
   7388     compiler::Node* first_element_inclusive,
   7389     compiler::Node* last_element_exclusive,
   7390     std::function<void(CodeStubAssembler* assembler,
   7391                        compiler::Node* fixed_array, compiler::Node* offset)>
   7392         body,
   7393     ParameterMode mode, ForEachDirection direction) {
   7394   STATIC_ASSERT(FixedArray::kHeaderSize == FixedDoubleArray::kHeaderSize);
   7395   int32_t first_val;
   7396   bool constant_first = ToInt32Constant(first_element_inclusive, first_val);
   7397   int32_t last_val;
   7398   bool constent_last = ToInt32Constant(last_element_exclusive, last_val);
   7399   if (constant_first && constent_last) {
   7400     int delta = last_val - first_val;
   7401     DCHECK(delta >= 0);
   7402     if (delta <= kElementLoopUnrollThreshold) {
   7403       if (direction == ForEachDirection::kForward) {
   7404         for (int i = first_val; i < last_val; ++i) {
   7405           Node* index = IntPtrConstant(i);
   7406           Node* offset =
   7407               ElementOffsetFromIndex(index, kind, INTPTR_PARAMETERS,
   7408                                      FixedArray::kHeaderSize - kHeapObjectTag);
   7409           body(this, fixed_array, offset);
   7410         }
   7411       } else {
   7412         for (int i = last_val - 1; i >= first_val; --i) {
   7413           Node* index = IntPtrConstant(i);
   7414           Node* offset =
   7415               ElementOffsetFromIndex(index, kind, INTPTR_PARAMETERS,
   7416                                      FixedArray::kHeaderSize - kHeapObjectTag);
   7417           body(this, fixed_array, offset);
   7418         }
   7419       }
   7420       return;
   7421     }
   7422   }
   7423 
   7424   Node* start =
   7425       ElementOffsetFromIndex(first_element_inclusive, kind, mode,
   7426                              FixedArray::kHeaderSize - kHeapObjectTag);
   7427   Node* limit =
   7428       ElementOffsetFromIndex(last_element_exclusive, kind, mode,
   7429                              FixedArray::kHeaderSize - kHeapObjectTag);
   7430   if (direction == ForEachDirection::kReverse) std::swap(start, limit);
   7431 
   7432   int increment = IsFastDoubleElementsKind(kind) ? kDoubleSize : kPointerSize;
   7433   BuildFastLoop(
   7434       MachineType::PointerRepresentation(), start, limit,
   7435       [fixed_array, body](CodeStubAssembler* assembler, Node* offset) {
   7436         body(assembler, fixed_array, offset);
   7437       },
   7438       direction == ForEachDirection::kReverse ? -increment : increment,
   7439       direction == ForEachDirection::kReverse ? IndexAdvanceMode::kPre
   7440                                               : IndexAdvanceMode::kPost);
   7441 }
   7442 
   7443 void CodeStubAssembler::BranchIfNumericRelationalComparison(
   7444     RelationalComparisonMode mode, compiler::Node* lhs, compiler::Node* rhs,
   7445     Label* if_true, Label* if_false) {
   7446   typedef compiler::Node Node;
   7447 
   7448   Label end(this);
   7449   Variable result(this, MachineRepresentation::kTagged);
   7450 
   7451   // Shared entry for floating point comparison.
   7452   Label do_fcmp(this);
   7453   Variable var_fcmp_lhs(this, MachineRepresentation::kFloat64),
   7454       var_fcmp_rhs(this, MachineRepresentation::kFloat64);
   7455 
   7456   // Check if the {lhs} is a Smi or a HeapObject.
   7457   Label if_lhsissmi(this), if_lhsisnotsmi(this);
   7458   Branch(TaggedIsSmi(lhs), &if_lhsissmi, &if_lhsisnotsmi);
   7459 
   7460   Bind(&if_lhsissmi);
   7461   {
   7462     // Check if {rhs} is a Smi or a HeapObject.
   7463     Label if_rhsissmi(this), if_rhsisnotsmi(this);
   7464     Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi);
   7465 
   7466     Bind(&if_rhsissmi);
   7467     {
   7468       // Both {lhs} and {rhs} are Smi, so just perform a fast Smi comparison.
   7469       switch (mode) {
   7470         case kLessThan:
   7471           BranchIfSmiLessThan(lhs, rhs, if_true, if_false);
   7472           break;
   7473         case kLessThanOrEqual:
   7474           BranchIfSmiLessThanOrEqual(lhs, rhs, if_true, if_false);
   7475           break;
   7476         case kGreaterThan:
   7477           BranchIfSmiLessThan(rhs, lhs, if_true, if_false);
   7478           break;
   7479         case kGreaterThanOrEqual:
   7480           BranchIfSmiLessThanOrEqual(rhs, lhs, if_true, if_false);
   7481           break;
   7482       }
   7483     }
   7484 
   7485     Bind(&if_rhsisnotsmi);
   7486     {
   7487       CSA_ASSERT(this, WordEqual(LoadMap(rhs), HeapNumberMapConstant()));
   7488       // Convert the {lhs} and {rhs} to floating point values, and
   7489       // perform a floating point comparison.
   7490       var_fcmp_lhs.Bind(SmiToFloat64(lhs));
   7491       var_fcmp_rhs.Bind(LoadHeapNumberValue(rhs));
   7492       Goto(&do_fcmp);
   7493     }
   7494   }
   7495 
   7496   Bind(&if_lhsisnotsmi);
   7497   {
   7498     CSA_ASSERT(this, WordEqual(LoadMap(lhs), HeapNumberMapConstant()));
   7499 
   7500     // Check if {rhs} is a Smi or a HeapObject.
   7501     Label if_rhsissmi(this), if_rhsisnotsmi(this);
   7502     Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi);
   7503 
   7504     Bind(&if_rhsissmi);
   7505     {
   7506       // Convert the {lhs} and {rhs} to floating point values, and
   7507       // perform a floating point comparison.
   7508       var_fcmp_lhs.Bind(LoadHeapNumberValue(lhs));
   7509       var_fcmp_rhs.Bind(SmiToFloat64(rhs));
   7510       Goto(&do_fcmp);
   7511     }
   7512 
   7513     Bind(&if_rhsisnotsmi);
   7514     {
   7515       CSA_ASSERT(this, WordEqual(LoadMap(rhs), HeapNumberMapConstant()));
   7516 
   7517       // Convert the {lhs} and {rhs} to floating point values, and
   7518       // perform a floating point comparison.
   7519       var_fcmp_lhs.Bind(LoadHeapNumberValue(lhs));
   7520       var_fcmp_rhs.Bind(LoadHeapNumberValue(rhs));
   7521       Goto(&do_fcmp);
   7522     }
   7523   }
   7524 
   7525   Bind(&do_fcmp);
   7526   {
   7527     // Load the {lhs} and {rhs} floating point values.
   7528     Node* lhs = var_fcmp_lhs.value();
   7529     Node* rhs = var_fcmp_rhs.value();
   7530 
   7531     // Perform a fast floating point comparison.
   7532     switch (mode) {
   7533       case kLessThan:
   7534         Branch(Float64LessThan(lhs, rhs), if_true, if_false);
   7535         break;
   7536       case kLessThanOrEqual:
   7537         Branch(Float64LessThanOrEqual(lhs, rhs), if_true, if_false);
   7538         break;
   7539       case kGreaterThan:
   7540         Branch(Float64GreaterThan(lhs, rhs), if_true, if_false);
   7541         break;
   7542       case kGreaterThanOrEqual:
   7543         Branch(Float64GreaterThanOrEqual(lhs, rhs), if_true, if_false);
   7544         break;
   7545     }
   7546   }
   7547 }
   7548 
   7549 void CodeStubAssembler::GotoUnlessNumberLessThan(compiler::Node* lhs,
   7550                                                  compiler::Node* rhs,
   7551                                                  Label* if_false) {
   7552   Label if_true(this);
   7553   BranchIfNumericRelationalComparison(kLessThan, lhs, rhs, &if_true, if_false);
   7554   Bind(&if_true);
   7555 }
   7556 
   7557 compiler::Node* CodeStubAssembler::RelationalComparison(
   7558     RelationalComparisonMode mode, compiler::Node* lhs, compiler::Node* rhs,
   7559     compiler::Node* context) {
   7560   typedef compiler::Node Node;
   7561 
   7562   Label return_true(this), return_false(this), end(this);
   7563   Variable result(this, MachineRepresentation::kTagged);
   7564 
   7565   // Shared entry for floating point comparison.
   7566   Label do_fcmp(this);
   7567   Variable var_fcmp_lhs(this, MachineRepresentation::kFloat64),
   7568       var_fcmp_rhs(this, MachineRepresentation::kFloat64);
   7569 
   7570   // We might need to loop several times due to ToPrimitive and/or ToNumber
   7571   // conversions.
   7572   Variable var_lhs(this, MachineRepresentation::kTagged),
   7573       var_rhs(this, MachineRepresentation::kTagged);
   7574   Variable* loop_vars[2] = {&var_lhs, &var_rhs};
   7575   Label loop(this, 2, loop_vars);
   7576   var_lhs.Bind(lhs);
   7577   var_rhs.Bind(rhs);
   7578   Goto(&loop);
   7579   Bind(&loop);
   7580   {
   7581     // Load the current {lhs} and {rhs} values.
   7582     lhs = var_lhs.value();
   7583     rhs = var_rhs.value();
   7584 
   7585     // Check if the {lhs} is a Smi or a HeapObject.
   7586     Label if_lhsissmi(this), if_lhsisnotsmi(this);
   7587     Branch(TaggedIsSmi(lhs), &if_lhsissmi, &if_lhsisnotsmi);
   7588 
   7589     Bind(&if_lhsissmi);
   7590     {
   7591       // Check if {rhs} is a Smi or a HeapObject.
   7592       Label if_rhsissmi(this), if_rhsisnotsmi(this);
   7593       Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi);
   7594 
   7595       Bind(&if_rhsissmi);
   7596       {
   7597         // Both {lhs} and {rhs} are Smi, so just perform a fast Smi comparison.
   7598         switch (mode) {
   7599           case kLessThan:
   7600             BranchIfSmiLessThan(lhs, rhs, &return_true, &return_false);
   7601             break;
   7602           case kLessThanOrEqual:
   7603             BranchIfSmiLessThanOrEqual(lhs, rhs, &return_true, &return_false);
   7604             break;
   7605           case kGreaterThan:
   7606             BranchIfSmiLessThan(rhs, lhs, &return_true, &return_false);
   7607             break;
   7608           case kGreaterThanOrEqual:
   7609             BranchIfSmiLessThanOrEqual(rhs, lhs, &return_true, &return_false);
   7610             break;
   7611         }
   7612       }
   7613 
   7614       Bind(&if_rhsisnotsmi);
   7615       {
   7616         // Load the map of {rhs}.
   7617         Node* rhs_map = LoadMap(rhs);
   7618 
   7619         // Check if the {rhs} is a HeapNumber.
   7620         Label if_rhsisnumber(this), if_rhsisnotnumber(this, Label::kDeferred);
   7621         Branch(IsHeapNumberMap(rhs_map), &if_rhsisnumber, &if_rhsisnotnumber);
   7622 
   7623         Bind(&if_rhsisnumber);
   7624         {
   7625           // Convert the {lhs} and {rhs} to floating point values, and
   7626           // perform a floating point comparison.
   7627           var_fcmp_lhs.Bind(SmiToFloat64(lhs));
   7628           var_fcmp_rhs.Bind(LoadHeapNumberValue(rhs));
   7629           Goto(&do_fcmp);
   7630         }
   7631 
   7632         Bind(&if_rhsisnotnumber);
   7633         {
   7634           // Convert the {rhs} to a Number; we don't need to perform the
   7635           // dedicated ToPrimitive(rhs, hint Number) operation, as the
   7636           // ToNumber(rhs) will by itself already invoke ToPrimitive with
   7637           // a Number hint.
   7638           Callable callable = CodeFactory::NonNumberToNumber(isolate());
   7639           var_rhs.Bind(CallStub(callable, context, rhs));
   7640           Goto(&loop);
   7641         }
   7642       }
   7643     }
   7644 
   7645     Bind(&if_lhsisnotsmi);
   7646     {
   7647       // Load the HeapNumber map for later comparisons.
   7648       Node* number_map = HeapNumberMapConstant();
   7649 
   7650       // Load the map of {lhs}.
   7651       Node* lhs_map = LoadMap(lhs);
   7652 
   7653       // Check if {rhs} is a Smi or a HeapObject.
   7654       Label if_rhsissmi(this), if_rhsisnotsmi(this);
   7655       Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi);
   7656 
   7657       Bind(&if_rhsissmi);
   7658       {
   7659         // Check if the {lhs} is a HeapNumber.
   7660         Label if_lhsisnumber(this), if_lhsisnotnumber(this, Label::kDeferred);
   7661         Branch(WordEqual(lhs_map, number_map), &if_lhsisnumber,
   7662                &if_lhsisnotnumber);
   7663 
   7664         Bind(&if_lhsisnumber);
   7665         {
   7666           // Convert the {lhs} and {rhs} to floating point values, and
   7667           // perform a floating point comparison.
   7668           var_fcmp_lhs.Bind(LoadHeapNumberValue(lhs));
   7669           var_fcmp_rhs.Bind(SmiToFloat64(rhs));
   7670           Goto(&do_fcmp);
   7671         }
   7672 
   7673         Bind(&if_lhsisnotnumber);
   7674         {
   7675           // Convert the {lhs} to a Number; we don't need to perform the
   7676           // dedicated ToPrimitive(lhs, hint Number) operation, as the
   7677           // ToNumber(lhs) will by itself already invoke ToPrimitive with
   7678           // a Number hint.
   7679           Callable callable = CodeFactory::NonNumberToNumber(isolate());
   7680           var_lhs.Bind(CallStub(callable, context, lhs));
   7681           Goto(&loop);
   7682         }
   7683       }
   7684 
   7685       Bind(&if_rhsisnotsmi);
   7686       {
   7687         // Load the map of {rhs}.
   7688         Node* rhs_map = LoadMap(rhs);
   7689 
   7690         // Check if {lhs} is a HeapNumber.
   7691         Label if_lhsisnumber(this), if_lhsisnotnumber(this);
   7692         Branch(WordEqual(lhs_map, number_map), &if_lhsisnumber,
   7693                &if_lhsisnotnumber);
   7694 
   7695         Bind(&if_lhsisnumber);
   7696         {
   7697           // Check if {rhs} is also a HeapNumber.
   7698           Label if_rhsisnumber(this), if_rhsisnotnumber(this, Label::kDeferred);
   7699           Branch(WordEqual(lhs_map, rhs_map), &if_rhsisnumber,
   7700                  &if_rhsisnotnumber);
   7701 
   7702           Bind(&if_rhsisnumber);
   7703           {
   7704             // Convert the {lhs} and {rhs} to floating point values, and
   7705             // perform a floating point comparison.
   7706             var_fcmp_lhs.Bind(LoadHeapNumberValue(lhs));
   7707             var_fcmp_rhs.Bind(LoadHeapNumberValue(rhs));
   7708             Goto(&do_fcmp);
   7709           }
   7710 
   7711           Bind(&if_rhsisnotnumber);
   7712           {
   7713             // Convert the {rhs} to a Number; we don't need to perform
   7714             // dedicated ToPrimitive(rhs, hint Number) operation, as the
   7715             // ToNumber(rhs) will by itself already invoke ToPrimitive with
   7716             // a Number hint.
   7717             Callable callable = CodeFactory::NonNumberToNumber(isolate());
   7718             var_rhs.Bind(CallStub(callable, context, rhs));
   7719             Goto(&loop);
   7720           }
   7721         }
   7722 
   7723         Bind(&if_lhsisnotnumber);
   7724         {
   7725           // Load the instance type of {lhs}.
   7726           Node* lhs_instance_type = LoadMapInstanceType(lhs_map);
   7727 
   7728           // Check if {lhs} is a String.
   7729           Label if_lhsisstring(this), if_lhsisnotstring(this, Label::kDeferred);
   7730           Branch(IsStringInstanceType(lhs_instance_type), &if_lhsisstring,
   7731                  &if_lhsisnotstring);
   7732 
   7733           Bind(&if_lhsisstring);
   7734           {
   7735             // Load the instance type of {rhs}.
   7736             Node* rhs_instance_type = LoadMapInstanceType(rhs_map);
   7737 
   7738             // Check if {rhs} is also a String.
   7739             Label if_rhsisstring(this, Label::kDeferred),
   7740                 if_rhsisnotstring(this, Label::kDeferred);
   7741             Branch(IsStringInstanceType(rhs_instance_type), &if_rhsisstring,
   7742                    &if_rhsisnotstring);
   7743 
   7744             Bind(&if_rhsisstring);
   7745             {
   7746               // Both {lhs} and {rhs} are strings.
   7747               switch (mode) {
   7748                 case kLessThan:
   7749                   result.Bind(CallStub(CodeFactory::StringLessThan(isolate()),
   7750                                        context, lhs, rhs));
   7751                   Goto(&end);
   7752                   break;
   7753                 case kLessThanOrEqual:
   7754                   result.Bind(
   7755                       CallStub(CodeFactory::StringLessThanOrEqual(isolate()),
   7756                                context, lhs, rhs));
   7757                   Goto(&end);
   7758                   break;
   7759                 case kGreaterThan:
   7760                   result.Bind(
   7761                       CallStub(CodeFactory::StringGreaterThan(isolate()),
   7762                                context, lhs, rhs));
   7763                   Goto(&end);
   7764                   break;
   7765                 case kGreaterThanOrEqual:
   7766                   result.Bind(
   7767                       CallStub(CodeFactory::StringGreaterThanOrEqual(isolate()),
   7768                                context, lhs, rhs));
   7769                   Goto(&end);
   7770                   break;
   7771               }
   7772             }
   7773 
   7774             Bind(&if_rhsisnotstring);
   7775             {
   7776               // The {lhs} is a String, while {rhs} is neither a Number nor a
   7777               // String, so we need to call ToPrimitive(rhs, hint Number) if
   7778               // {rhs} is a receiver or ToNumber(lhs) and ToNumber(rhs) in the
   7779               // other cases.
   7780               STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
   7781               Label if_rhsisreceiver(this, Label::kDeferred),
   7782                   if_rhsisnotreceiver(this, Label::kDeferred);
   7783               Branch(IsJSReceiverInstanceType(rhs_instance_type),
   7784                      &if_rhsisreceiver, &if_rhsisnotreceiver);
   7785 
   7786               Bind(&if_rhsisreceiver);
   7787               {
   7788                 // Convert {rhs} to a primitive first passing Number hint.
   7789                 Callable callable = CodeFactory::NonPrimitiveToPrimitive(
   7790                     isolate(), ToPrimitiveHint::kNumber);
   7791                 var_rhs.Bind(CallStub(callable, context, rhs));
   7792                 Goto(&loop);
   7793               }
   7794 
   7795               Bind(&if_rhsisnotreceiver);
   7796               {
   7797                 // Convert both {lhs} and {rhs} to Number.
   7798                 Callable callable = CodeFactory::ToNumber(isolate());
   7799                 var_lhs.Bind(CallStub(callable, context, lhs));
   7800                 var_rhs.Bind(CallStub(callable, context, rhs));
   7801                 Goto(&loop);
   7802               }
   7803             }
   7804           }
   7805 
   7806           Bind(&if_lhsisnotstring);
   7807           {
   7808             // The {lhs} is neither a Number nor a String, so we need to call
   7809             // ToPrimitive(lhs, hint Number) if {lhs} is a receiver or
   7810             // ToNumber(lhs) and ToNumber(rhs) in the other cases.
   7811             STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
   7812             Label if_lhsisreceiver(this, Label::kDeferred),
   7813                 if_lhsisnotreceiver(this, Label::kDeferred);
   7814             Branch(IsJSReceiverInstanceType(lhs_instance_type),
   7815                    &if_lhsisreceiver, &if_lhsisnotreceiver);
   7816 
   7817             Bind(&if_lhsisreceiver);
   7818             {
   7819               // Convert {lhs} to a primitive first passing Number hint.
   7820               Callable callable = CodeFactory::NonPrimitiveToPrimitive(
   7821                   isolate(), ToPrimitiveHint::kNumber);
   7822               var_lhs.Bind(CallStub(callable, context, lhs));
   7823               Goto(&loop);
   7824             }
   7825 
   7826             Bind(&if_lhsisnotreceiver);
   7827             {
   7828               // Convert both {lhs} and {rhs} to Number.
   7829               Callable callable = CodeFactory::ToNumber(isolate());
   7830               var_lhs.Bind(CallStub(callable, context, lhs));
   7831               var_rhs.Bind(CallStub(callable, context, rhs));
   7832               Goto(&loop);
   7833             }
   7834           }
   7835         }
   7836       }
   7837     }
   7838   }
   7839 
   7840   Bind(&do_fcmp);
   7841   {
   7842     // Load the {lhs} and {rhs} floating point values.
   7843     Node* lhs = var_fcmp_lhs.value();
   7844     Node* rhs = var_fcmp_rhs.value();
   7845 
   7846     // Perform a fast floating point comparison.
   7847     switch (mode) {
   7848       case kLessThan:
   7849         Branch(Float64LessThan(lhs, rhs), &return_true, &return_false);
   7850         break;
   7851       case kLessThanOrEqual:
   7852         Branch(Float64LessThanOrEqual(lhs, rhs), &return_true, &return_false);
   7853         break;
   7854       case kGreaterThan:
   7855         Branch(Float64GreaterThan(lhs, rhs), &return_true, &return_false);
   7856         break;
   7857       case kGreaterThanOrEqual:
   7858         Branch(Float64GreaterThanOrEqual(lhs, rhs), &return_true,
   7859                &return_false);
   7860         break;
   7861     }
   7862   }
   7863 
   7864   Bind(&return_true);
   7865   {
   7866     result.Bind(BooleanConstant(true));
   7867     Goto(&end);
   7868   }
   7869 
   7870   Bind(&return_false);
   7871   {
   7872     result.Bind(BooleanConstant(false));
   7873     Goto(&end);
   7874   }
   7875 
   7876   Bind(&end);
   7877   return result.value();
   7878 }
   7879 
   7880 namespace {
   7881 
   7882 void GenerateEqual_Same(CodeStubAssembler* assembler, compiler::Node* value,
   7883                         CodeStubAssembler::Label* if_equal,
   7884                         CodeStubAssembler::Label* if_notequal) {
   7885   // In case of abstract or strict equality checks, we need additional checks
   7886   // for NaN values because they are not considered equal, even if both the
   7887   // left and the right hand side reference exactly the same value.
   7888   // TODO(bmeurer): This seems to violate the SIMD.js specification, but it
   7889   // seems to be what is tested in the current SIMD.js testsuite.
   7890 
   7891   typedef CodeStubAssembler::Label Label;
   7892   typedef compiler::Node Node;
   7893 
   7894   // Check if {value} is a Smi or a HeapObject.
   7895   Label if_valueissmi(assembler), if_valueisnotsmi(assembler);
   7896   assembler->Branch(assembler->TaggedIsSmi(value), &if_valueissmi,
   7897                     &if_valueisnotsmi);
   7898 
   7899   assembler->Bind(&if_valueisnotsmi);
   7900   {
   7901     // Load the map of {value}.
   7902     Node* value_map = assembler->LoadMap(value);
   7903 
   7904     // Check if {value} (and therefore {rhs}) is a HeapNumber.
   7905     Label if_valueisnumber(assembler), if_valueisnotnumber(assembler);
   7906     assembler->Branch(assembler->IsHeapNumberMap(value_map), &if_valueisnumber,
   7907                       &if_valueisnotnumber);
   7908 
   7909     assembler->Bind(&if_valueisnumber);
   7910     {
   7911       // Convert {value} (and therefore {rhs}) to floating point value.
   7912       Node* value_value = assembler->LoadHeapNumberValue(value);
   7913 
   7914       // Check if the HeapNumber value is a NaN.
   7915       assembler->BranchIfFloat64IsNaN(value_value, if_notequal, if_equal);
   7916     }
   7917 
   7918     assembler->Bind(&if_valueisnotnumber);
   7919     assembler->Goto(if_equal);
   7920   }
   7921 
   7922   assembler->Bind(&if_valueissmi);
   7923   assembler->Goto(if_equal);
   7924 }
   7925 
   7926 void GenerateEqual_Simd128Value_HeapObject(
   7927     CodeStubAssembler* assembler, compiler::Node* lhs, compiler::Node* lhs_map,
   7928     compiler::Node* rhs, compiler::Node* rhs_map,
   7929     CodeStubAssembler::Label* if_equal, CodeStubAssembler::Label* if_notequal) {
   7930   assembler->BranchIfSimd128Equal(lhs, lhs_map, rhs, rhs_map, if_equal,
   7931                                   if_notequal);
   7932 }
   7933 
   7934 }  // namespace
   7935 
   7936 // ES6 section 7.2.12 Abstract Equality Comparison
   7937 compiler::Node* CodeStubAssembler::Equal(ResultMode mode, compiler::Node* lhs,
   7938                                          compiler::Node* rhs,
   7939                                          compiler::Node* context) {
   7940   // This is a slightly optimized version of Object::Equals represented as
   7941   // scheduled TurboFan graph utilizing the CodeStubAssembler. Whenever you
   7942   // change something functionality wise in here, remember to update the
   7943   // Object::Equals method as well.
   7944   typedef compiler::Node Node;
   7945 
   7946   Label if_equal(this), if_notequal(this),
   7947       do_rhsstringtonumber(this, Label::kDeferred), end(this);
   7948   Variable result(this, MachineRepresentation::kTagged);
   7949 
   7950   // Shared entry for floating point comparison.
   7951   Label do_fcmp(this);
   7952   Variable var_fcmp_lhs(this, MachineRepresentation::kFloat64),
   7953       var_fcmp_rhs(this, MachineRepresentation::kFloat64);
   7954 
   7955   // We might need to loop several times due to ToPrimitive and/or ToNumber
   7956   // conversions.
   7957   Variable var_lhs(this, MachineRepresentation::kTagged),
   7958       var_rhs(this, MachineRepresentation::kTagged);
   7959   Variable* loop_vars[2] = {&var_lhs, &var_rhs};
   7960   Label loop(this, 2, loop_vars);
   7961   var_lhs.Bind(lhs);
   7962   var_rhs.Bind(rhs);
   7963   Goto(&loop);
   7964   Bind(&loop);
   7965   {
   7966     // Load the current {lhs} and {rhs} values.
   7967     lhs = var_lhs.value();
   7968     rhs = var_rhs.value();
   7969 
   7970     // Check if {lhs} and {rhs} refer to the same object.
   7971     Label if_same(this), if_notsame(this);
   7972     Branch(WordEqual(lhs, rhs), &if_same, &if_notsame);
   7973 
   7974     Bind(&if_same);
   7975     {
   7976       // The {lhs} and {rhs} reference the exact same value, yet we need special
   7977       // treatment for HeapNumber, as NaN is not equal to NaN.
   7978       GenerateEqual_Same(this, lhs, &if_equal, &if_notequal);
   7979     }
   7980 
   7981     Bind(&if_notsame);
   7982     {
   7983       // Check if {lhs} is a Smi or a HeapObject.
   7984       Label if_lhsissmi(this), if_lhsisnotsmi(this);
   7985       Branch(TaggedIsSmi(lhs), &if_lhsissmi, &if_lhsisnotsmi);
   7986 
   7987       Bind(&if_lhsissmi);
   7988       {
   7989         // Check if {rhs} is a Smi or a HeapObject.
   7990         Label if_rhsissmi(this), if_rhsisnotsmi(this);
   7991         Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi);
   7992 
   7993         Bind(&if_rhsissmi);
   7994         // We have already checked for {lhs} and {rhs} being the same value, so
   7995         // if both are Smis when we get here they must not be equal.
   7996         Goto(&if_notequal);
   7997 
   7998         Bind(&if_rhsisnotsmi);
   7999         {
   8000           // Load the map of {rhs}.
   8001           Node* rhs_map = LoadMap(rhs);
   8002 
   8003           // Check if {rhs} is a HeapNumber.
   8004           Node* number_map = HeapNumberMapConstant();
   8005           Label if_rhsisnumber(this), if_rhsisnotnumber(this);
   8006           Branch(WordEqual(rhs_map, number_map), &if_rhsisnumber,
   8007                  &if_rhsisnotnumber);
   8008 
   8009           Bind(&if_rhsisnumber);
   8010           {
   8011             // Convert {lhs} and {rhs} to floating point values, and
   8012             // perform a floating point comparison.
   8013             var_fcmp_lhs.Bind(SmiToFloat64(lhs));
   8014             var_fcmp_rhs.Bind(LoadHeapNumberValue(rhs));
   8015             Goto(&do_fcmp);
   8016           }
   8017 
   8018           Bind(&if_rhsisnotnumber);
   8019           {
   8020             // Load the instance type of the {rhs}.
   8021             Node* rhs_instance_type = LoadMapInstanceType(rhs_map);
   8022 
   8023             // Check if the {rhs} is a String.
   8024             Label if_rhsisstring(this, Label::kDeferred),
   8025                 if_rhsisnotstring(this);
   8026             Branch(IsStringInstanceType(rhs_instance_type), &if_rhsisstring,
   8027                    &if_rhsisnotstring);
   8028 
   8029             Bind(&if_rhsisstring);
   8030             {
   8031               // The {rhs} is a String and the {lhs} is a Smi; we need
   8032               // to convert the {rhs} to a Number and compare the output to
   8033               // the Number on the {lhs}.
   8034               Goto(&do_rhsstringtonumber);
   8035             }
   8036 
   8037             Bind(&if_rhsisnotstring);
   8038             {
   8039               // Check if the {rhs} is a Boolean.
   8040               Label if_rhsisboolean(this), if_rhsisnotboolean(this);
   8041               Branch(IsBooleanMap(rhs_map), &if_rhsisboolean,
   8042                      &if_rhsisnotboolean);
   8043 
   8044               Bind(&if_rhsisboolean);
   8045               {
   8046                 // The {rhs} is a Boolean, load its number value.
   8047                 var_rhs.Bind(LoadObjectField(rhs, Oddball::kToNumberOffset));
   8048                 Goto(&loop);
   8049               }
   8050 
   8051               Bind(&if_rhsisnotboolean);
   8052               {
   8053                 // Check if the {rhs} is a Receiver.
   8054                 STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
   8055                 Label if_rhsisreceiver(this, Label::kDeferred),
   8056                     if_rhsisnotreceiver(this);
   8057                 Branch(IsJSReceiverInstanceType(rhs_instance_type),
   8058                        &if_rhsisreceiver, &if_rhsisnotreceiver);
   8059 
   8060                 Bind(&if_rhsisreceiver);
   8061                 {
   8062                   // Convert {rhs} to a primitive first (passing no hint).
   8063                   Callable callable =
   8064                       CodeFactory::NonPrimitiveToPrimitive(isolate());
   8065                   var_rhs.Bind(CallStub(callable, context, rhs));
   8066                   Goto(&loop);
   8067                 }
   8068 
   8069                 Bind(&if_rhsisnotreceiver);
   8070                 Goto(&if_notequal);
   8071               }
   8072             }
   8073           }
   8074         }
   8075       }
   8076 
   8077       Bind(&if_lhsisnotsmi);
   8078       {
   8079         // Check if {rhs} is a Smi or a HeapObject.
   8080         Label if_rhsissmi(this), if_rhsisnotsmi(this);
   8081         Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi);
   8082 
   8083         Bind(&if_rhsissmi);
   8084         {
   8085           // The {lhs} is a HeapObject and the {rhs} is a Smi; swapping {lhs}
   8086           // and {rhs} is not observable and doesn't matter for the result, so
   8087           // we can just swap them and use the Smi handling above (for {lhs}
   8088           // being a Smi).
   8089           var_lhs.Bind(rhs);
   8090           var_rhs.Bind(lhs);
   8091           Goto(&loop);
   8092         }
   8093 
   8094         Bind(&if_rhsisnotsmi);
   8095         {
   8096           Label if_lhsisstring(this), if_lhsisnumber(this),
   8097               if_lhsissymbol(this), if_lhsissimd128value(this),
   8098               if_lhsisoddball(this), if_lhsisreceiver(this);
   8099 
   8100           // Both {lhs} and {rhs} are HeapObjects, load their maps
   8101           // and their instance types.
   8102           Node* lhs_map = LoadMap(lhs);
   8103           Node* rhs_map = LoadMap(rhs);
   8104 
   8105           // Load the instance types of {lhs} and {rhs}.
   8106           Node* lhs_instance_type = LoadMapInstanceType(lhs_map);
   8107           Node* rhs_instance_type = LoadMapInstanceType(rhs_map);
   8108 
   8109           // Dispatch based on the instance type of {lhs}.
   8110           size_t const kNumCases = FIRST_NONSTRING_TYPE + 4;
   8111           Label* case_labels[kNumCases];
   8112           int32_t case_values[kNumCases];
   8113           for (int32_t i = 0; i < FIRST_NONSTRING_TYPE; ++i) {
   8114             case_labels[i] = new Label(this);
   8115             case_values[i] = i;
   8116           }
   8117           case_labels[FIRST_NONSTRING_TYPE + 0] = &if_lhsisnumber;
   8118           case_values[FIRST_NONSTRING_TYPE + 0] = HEAP_NUMBER_TYPE;
   8119           case_labels[FIRST_NONSTRING_TYPE + 1] = &if_lhsissymbol;
   8120           case_values[FIRST_NONSTRING_TYPE + 1] = SYMBOL_TYPE;
   8121           case_labels[FIRST_NONSTRING_TYPE + 2] = &if_lhsissimd128value;
   8122           case_values[FIRST_NONSTRING_TYPE + 2] = SIMD128_VALUE_TYPE;
   8123           case_labels[FIRST_NONSTRING_TYPE + 3] = &if_lhsisoddball;
   8124           case_values[FIRST_NONSTRING_TYPE + 3] = ODDBALL_TYPE;
   8125           Switch(lhs_instance_type, &if_lhsisreceiver, case_values, case_labels,
   8126                  arraysize(case_values));
   8127           for (int32_t i = 0; i < FIRST_NONSTRING_TYPE; ++i) {
   8128             Bind(case_labels[i]);
   8129             Goto(&if_lhsisstring);
   8130             delete case_labels[i];
   8131           }
   8132 
   8133           Bind(&if_lhsisstring);
   8134           {
   8135             // Check if {rhs} is also a String.
   8136             Label if_rhsisstring(this, Label::kDeferred),
   8137                 if_rhsisnotstring(this);
   8138             Branch(IsStringInstanceType(rhs_instance_type), &if_rhsisstring,
   8139                    &if_rhsisnotstring);
   8140 
   8141             Bind(&if_rhsisstring);
   8142             {
   8143               // Both {lhs} and {rhs} are of type String, just do the
   8144               // string comparison then.
   8145               Callable callable = (mode == kDontNegateResult)
   8146                                       ? CodeFactory::StringEqual(isolate())
   8147                                       : CodeFactory::StringNotEqual(isolate());
   8148               result.Bind(CallStub(callable, context, lhs, rhs));
   8149               Goto(&end);
   8150             }
   8151 
   8152             Bind(&if_rhsisnotstring);
   8153             {
   8154               // The {lhs} is a String and the {rhs} is some other HeapObject.
   8155               // Swapping {lhs} and {rhs} is not observable and doesn't matter
   8156               // for the result, so we can just swap them and use the String
   8157               // handling below (for {rhs} being a String).
   8158               var_lhs.Bind(rhs);
   8159               var_rhs.Bind(lhs);
   8160               Goto(&loop);
   8161             }
   8162           }
   8163 
   8164           Bind(&if_lhsisnumber);
   8165           {
   8166             // Check if {rhs} is also a HeapNumber.
   8167             Label if_rhsisnumber(this), if_rhsisnotnumber(this);
   8168             Branch(Word32Equal(lhs_instance_type, rhs_instance_type),
   8169                    &if_rhsisnumber, &if_rhsisnotnumber);
   8170 
   8171             Bind(&if_rhsisnumber);
   8172             {
   8173               // Convert {lhs} and {rhs} to floating point values, and
   8174               // perform a floating point comparison.
   8175               var_fcmp_lhs.Bind(LoadHeapNumberValue(lhs));
   8176               var_fcmp_rhs.Bind(LoadHeapNumberValue(rhs));
   8177               Goto(&do_fcmp);
   8178             }
   8179 
   8180             Bind(&if_rhsisnotnumber);
   8181             {
   8182               // The {lhs} is a Number, the {rhs} is some other HeapObject.
   8183               Label if_rhsisstring(this, Label::kDeferred),
   8184                   if_rhsisnotstring(this);
   8185               Branch(IsStringInstanceType(rhs_instance_type), &if_rhsisstring,
   8186                      &if_rhsisnotstring);
   8187 
   8188               Bind(&if_rhsisstring);
   8189               {
   8190                 // The {rhs} is a String and the {lhs} is a HeapNumber; we need
   8191                 // to convert the {rhs} to a Number and compare the output to
   8192                 // the Number on the {lhs}.
   8193                 Goto(&do_rhsstringtonumber);
   8194               }
   8195 
   8196               Bind(&if_rhsisnotstring);
   8197               {
   8198                 // Check if the {rhs} is a JSReceiver.
   8199                 Label if_rhsisreceiver(this), if_rhsisnotreceiver(this);
   8200                 STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
   8201                 Branch(IsJSReceiverInstanceType(rhs_instance_type),
   8202                        &if_rhsisreceiver, &if_rhsisnotreceiver);
   8203 
   8204                 Bind(&if_rhsisreceiver);
   8205                 {
   8206                   // The {lhs} is a Primitive and the {rhs} is a JSReceiver.
   8207                   // Swapping {lhs} and {rhs} is not observable and doesn't
   8208                   // matter for the result, so we can just swap them and use
   8209                   // the JSReceiver handling below (for {lhs} being a
   8210                   // JSReceiver).
   8211                   var_lhs.Bind(rhs);
   8212                   var_rhs.Bind(lhs);
   8213                   Goto(&loop);
   8214                 }
   8215 
   8216                 Bind(&if_rhsisnotreceiver);
   8217                 {
   8218                   // Check if {rhs} is a Boolean.
   8219                   Label if_rhsisboolean(this), if_rhsisnotboolean(this);
   8220                   Branch(IsBooleanMap(rhs_map), &if_rhsisboolean,
   8221                          &if_rhsisnotboolean);
   8222 
   8223                   Bind(&if_rhsisboolean);
   8224                   {
   8225                     // The {rhs} is a Boolean, convert it to a Smi first.
   8226                     var_rhs.Bind(
   8227                         LoadObjectField(rhs, Oddball::kToNumberOffset));
   8228                     Goto(&loop);
   8229                   }
   8230 
   8231                   Bind(&if_rhsisnotboolean);
   8232                   Goto(&if_notequal);
   8233                 }
   8234               }
   8235             }
   8236           }
   8237 
   8238           Bind(&if_lhsisoddball);
   8239           {
   8240             // The {lhs} is an Oddball and {rhs} is some other HeapObject.
   8241             Label if_lhsisboolean(this), if_lhsisnotboolean(this);
   8242             Node* boolean_map = BooleanMapConstant();
   8243             Branch(WordEqual(lhs_map, boolean_map), &if_lhsisboolean,
   8244                    &if_lhsisnotboolean);
   8245 
   8246             Bind(&if_lhsisboolean);
   8247             {
   8248               // The {lhs} is a Boolean, check if {rhs} is also a Boolean.
   8249               Label if_rhsisboolean(this), if_rhsisnotboolean(this);
   8250               Branch(WordEqual(rhs_map, boolean_map), &if_rhsisboolean,
   8251                      &if_rhsisnotboolean);
   8252 
   8253               Bind(&if_rhsisboolean);
   8254               {
   8255                 // Both {lhs} and {rhs} are distinct Boolean values.
   8256                 Goto(&if_notequal);
   8257               }
   8258 
   8259               Bind(&if_rhsisnotboolean);
   8260               {
   8261                 // Convert the {lhs} to a Number first.
   8262                 var_lhs.Bind(LoadObjectField(lhs, Oddball::kToNumberOffset));
   8263                 Goto(&loop);
   8264               }
   8265             }
   8266 
   8267             Bind(&if_lhsisnotboolean);
   8268             {
   8269               // The {lhs} is either Null or Undefined; check if the {rhs} is
   8270               // undetectable (i.e. either also Null or Undefined or some
   8271               // undetectable JSReceiver).
   8272               Node* rhs_bitfield = LoadMapBitField(rhs_map);
   8273               Branch(Word32Equal(
   8274                          Word32And(rhs_bitfield,
   8275                                    Int32Constant(1 << Map::kIsUndetectable)),
   8276                          Int32Constant(0)),
   8277                      &if_notequal, &if_equal);
   8278             }
   8279           }
   8280 
   8281           Bind(&if_lhsissymbol);
   8282           {
   8283             // Check if the {rhs} is a JSReceiver.
   8284             Label if_rhsisreceiver(this), if_rhsisnotreceiver(this);
   8285             STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
   8286             Branch(IsJSReceiverInstanceType(rhs_instance_type),
   8287                    &if_rhsisreceiver, &if_rhsisnotreceiver);
   8288 
   8289             Bind(&if_rhsisreceiver);
   8290             {
   8291               // The {lhs} is a Primitive and the {rhs} is a JSReceiver.
   8292               // Swapping {lhs} and {rhs} is not observable and doesn't
   8293               // matter for the result, so we can just swap them and use
   8294               // the JSReceiver handling below (for {lhs} being a JSReceiver).
   8295               var_lhs.Bind(rhs);
   8296               var_rhs.Bind(lhs);
   8297               Goto(&loop);
   8298             }
   8299 
   8300             Bind(&if_rhsisnotreceiver);
   8301             {
   8302               // The {rhs} is not a JSReceiver and also not the same Symbol
   8303               // as the {lhs}, so this is equality check is considered false.
   8304               Goto(&if_notequal);
   8305             }
   8306           }
   8307 
   8308           Bind(&if_lhsissimd128value);
   8309           {
   8310             // Check if the {rhs} is also a Simd128Value.
   8311             Label if_rhsissimd128value(this), if_rhsisnotsimd128value(this);
   8312             Branch(Word32Equal(lhs_instance_type, rhs_instance_type),
   8313                    &if_rhsissimd128value, &if_rhsisnotsimd128value);
   8314 
   8315             Bind(&if_rhsissimd128value);
   8316             {
   8317               // Both {lhs} and {rhs} is a Simd128Value.
   8318               GenerateEqual_Simd128Value_HeapObject(
   8319                   this, lhs, lhs_map, rhs, rhs_map, &if_equal, &if_notequal);
   8320             }
   8321 
   8322             Bind(&if_rhsisnotsimd128value);
   8323             {
   8324               // Check if the {rhs} is a JSReceiver.
   8325               Label if_rhsisreceiver(this), if_rhsisnotreceiver(this);
   8326               STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
   8327               Branch(IsJSReceiverInstanceType(rhs_instance_type),
   8328                      &if_rhsisreceiver, &if_rhsisnotreceiver);
   8329 
   8330               Bind(&if_rhsisreceiver);
   8331               {
   8332                 // The {lhs} is a Primitive and the {rhs} is a JSReceiver.
   8333                 // Swapping {lhs} and {rhs} is not observable and doesn't
   8334                 // matter for the result, so we can just swap them and use
   8335                 // the JSReceiver handling below (for {lhs} being a JSReceiver).
   8336                 var_lhs.Bind(rhs);
   8337                 var_rhs.Bind(lhs);
   8338                 Goto(&loop);
   8339               }
   8340 
   8341               Bind(&if_rhsisnotreceiver);
   8342               {
   8343                 // The {rhs} is some other Primitive.
   8344                 Goto(&if_notequal);
   8345               }
   8346             }
   8347           }
   8348 
   8349           Bind(&if_lhsisreceiver);
   8350           {
   8351             // Check if the {rhs} is also a JSReceiver.
   8352             Label if_rhsisreceiver(this), if_rhsisnotreceiver(this);
   8353             STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
   8354             Branch(IsJSReceiverInstanceType(rhs_instance_type),
   8355                    &if_rhsisreceiver, &if_rhsisnotreceiver);
   8356 
   8357             Bind(&if_rhsisreceiver);
   8358             {
   8359               // Both {lhs} and {rhs} are different JSReceiver references, so
   8360               // this cannot be considered equal.
   8361               Goto(&if_notequal);
   8362             }
   8363 
   8364             Bind(&if_rhsisnotreceiver);
   8365             {
   8366               // Check if {rhs} is Null or Undefined (an undetectable check
   8367               // is sufficient here, since we already know that {rhs} is not
   8368               // a JSReceiver).
   8369               Label if_rhsisundetectable(this),
   8370                   if_rhsisnotundetectable(this, Label::kDeferred);
   8371               Node* rhs_bitfield = LoadMapBitField(rhs_map);
   8372               Branch(Word32Equal(
   8373                          Word32And(rhs_bitfield,
   8374                                    Int32Constant(1 << Map::kIsUndetectable)),
   8375                          Int32Constant(0)),
   8376                      &if_rhsisnotundetectable, &if_rhsisundetectable);
   8377 
   8378               Bind(&if_rhsisundetectable);
   8379               {
   8380                 // Check if {lhs} is an undetectable JSReceiver.
   8381                 Node* lhs_bitfield = LoadMapBitField(lhs_map);
   8382                 Branch(Word32Equal(
   8383                            Word32And(lhs_bitfield,
   8384                                      Int32Constant(1 << Map::kIsUndetectable)),
   8385                            Int32Constant(0)),
   8386                        &if_notequal, &if_equal);
   8387               }
   8388 
   8389               Bind(&if_rhsisnotundetectable);
   8390               {
   8391                 // The {rhs} is some Primitive different from Null and
   8392                 // Undefined, need to convert {lhs} to Primitive first.
   8393                 Callable callable =
   8394                     CodeFactory::NonPrimitiveToPrimitive(isolate());
   8395                 var_lhs.Bind(CallStub(callable, context, lhs));
   8396                 Goto(&loop);
   8397               }
   8398             }
   8399           }
   8400         }
   8401       }
   8402     }
   8403 
   8404     Bind(&do_rhsstringtonumber);
   8405     {
   8406       Callable callable = CodeFactory::StringToNumber(isolate());
   8407       var_rhs.Bind(CallStub(callable, context, rhs));
   8408       Goto(&loop);
   8409     }
   8410   }
   8411 
   8412   Bind(&do_fcmp);
   8413   {
   8414     // Load the {lhs} and {rhs} floating point values.
   8415     Node* lhs = var_fcmp_lhs.value();
   8416     Node* rhs = var_fcmp_rhs.value();
   8417 
   8418     // Perform a fast floating point comparison.
   8419     Branch(Float64Equal(lhs, rhs), &if_equal, &if_notequal);
   8420   }
   8421 
   8422   Bind(&if_equal);
   8423   {
   8424     result.Bind(BooleanConstant(mode == kDontNegateResult));
   8425     Goto(&end);
   8426   }
   8427 
   8428   Bind(&if_notequal);
   8429   {
   8430     result.Bind(BooleanConstant(mode == kNegateResult));
   8431     Goto(&end);
   8432   }
   8433 
   8434   Bind(&end);
   8435   return result.value();
   8436 }
   8437 
   8438 compiler::Node* CodeStubAssembler::StrictEqual(ResultMode mode,
   8439                                                compiler::Node* lhs,
   8440                                                compiler::Node* rhs,
   8441                                                compiler::Node* context) {
   8442   // Here's pseudo-code for the algorithm below in case of kDontNegateResult
   8443   // mode; for kNegateResult mode we properly negate the result.
   8444   //
   8445   // if (lhs == rhs) {
   8446   //   if (lhs->IsHeapNumber()) return HeapNumber::cast(lhs)->value() != NaN;
   8447   //   return true;
   8448   // }
   8449   // if (!lhs->IsSmi()) {
   8450   //   if (lhs->IsHeapNumber()) {
   8451   //     if (rhs->IsSmi()) {
   8452   //       return Smi::cast(rhs)->value() == HeapNumber::cast(lhs)->value();
   8453   //     } else if (rhs->IsHeapNumber()) {
   8454   //       return HeapNumber::cast(rhs)->value() ==
   8455   //       HeapNumber::cast(lhs)->value();
   8456   //     } else {
   8457   //       return false;
   8458   //     }
   8459   //   } else {
   8460   //     if (rhs->IsSmi()) {
   8461   //       return false;
   8462   //     } else {
   8463   //       if (lhs->IsString()) {
   8464   //         if (rhs->IsString()) {
   8465   //           return %StringEqual(lhs, rhs);
   8466   //         } else {
   8467   //           return false;
   8468   //         }
   8469   //       } else if (lhs->IsSimd128()) {
   8470   //         if (rhs->IsSimd128()) {
   8471   //           return %StrictEqual(lhs, rhs);
   8472   //         }
   8473   //       } else {
   8474   //         return false;
   8475   //       }
   8476   //     }
   8477   //   }
   8478   // } else {
   8479   //   if (rhs->IsSmi()) {
   8480   //     return false;
   8481   //   } else {
   8482   //     if (rhs->IsHeapNumber()) {
   8483   //       return Smi::cast(lhs)->value() == HeapNumber::cast(rhs)->value();
   8484   //     } else {
   8485   //       return false;
   8486   //     }
   8487   //   }
   8488   // }
   8489 
   8490   typedef compiler::Node Node;
   8491 
   8492   Label if_equal(this), if_notequal(this), end(this);
   8493   Variable result(this, MachineRepresentation::kTagged);
   8494 
   8495   // Check if {lhs} and {rhs} refer to the same object.
   8496   Label if_same(this), if_notsame(this);
   8497   Branch(WordEqual(lhs, rhs), &if_same, &if_notsame);
   8498 
   8499   Bind(&if_same);
   8500   {
   8501     // The {lhs} and {rhs} reference the exact same value, yet we need special
   8502     // treatment for HeapNumber, as NaN is not equal to NaN.
   8503     GenerateEqual_Same(this, lhs, &if_equal, &if_notequal);
   8504   }
   8505 
   8506   Bind(&if_notsame);
   8507   {
   8508     // The {lhs} and {rhs} reference different objects, yet for Smi, HeapNumber,
   8509     // String and Simd128Value they can still be considered equal.
   8510     Node* number_map = HeapNumberMapConstant();
   8511 
   8512     // Check if {lhs} is a Smi or a HeapObject.
   8513     Label if_lhsissmi(this), if_lhsisnotsmi(this);
   8514     Branch(TaggedIsSmi(lhs), &if_lhsissmi, &if_lhsisnotsmi);
   8515 
   8516     Bind(&if_lhsisnotsmi);
   8517     {
   8518       // Load the map of {lhs}.
   8519       Node* lhs_map = LoadMap(lhs);
   8520 
   8521       // Check if {lhs} is a HeapNumber.
   8522       Label if_lhsisnumber(this), if_lhsisnotnumber(this);
   8523       Branch(WordEqual(lhs_map, number_map), &if_lhsisnumber,
   8524              &if_lhsisnotnumber);
   8525 
   8526       Bind(&if_lhsisnumber);
   8527       {
   8528         // Check if {rhs} is a Smi or a HeapObject.
   8529         Label if_rhsissmi(this), if_rhsisnotsmi(this);
   8530         Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi);
   8531 
   8532         Bind(&if_rhsissmi);
   8533         {
   8534           // Convert {lhs} and {rhs} to floating point values.
   8535           Node* lhs_value = LoadHeapNumberValue(lhs);
   8536           Node* rhs_value = SmiToFloat64(rhs);
   8537 
   8538           // Perform a floating point comparison of {lhs} and {rhs}.
   8539           Branch(Float64Equal(lhs_value, rhs_value), &if_equal, &if_notequal);
   8540         }
   8541 
   8542         Bind(&if_rhsisnotsmi);
   8543         {
   8544           // Load the map of {rhs}.
   8545           Node* rhs_map = LoadMap(rhs);
   8546 
   8547           // Check if {rhs} is also a HeapNumber.
   8548           Label if_rhsisnumber(this), if_rhsisnotnumber(this);
   8549           Branch(WordEqual(rhs_map, number_map), &if_rhsisnumber,
   8550                  &if_rhsisnotnumber);
   8551 
   8552           Bind(&if_rhsisnumber);
   8553           {
   8554             // Convert {lhs} and {rhs} to floating point values.
   8555             Node* lhs_value = LoadHeapNumberValue(lhs);
   8556             Node* rhs_value = LoadHeapNumberValue(rhs);
   8557 
   8558             // Perform a floating point comparison of {lhs} and {rhs}.
   8559             Branch(Float64Equal(lhs_value, rhs_value), &if_equal, &if_notequal);
   8560           }
   8561 
   8562           Bind(&if_rhsisnotnumber);
   8563           Goto(&if_notequal);
   8564         }
   8565       }
   8566 
   8567       Bind(&if_lhsisnotnumber);
   8568       {
   8569         // Check if {rhs} is a Smi or a HeapObject.
   8570         Label if_rhsissmi(this), if_rhsisnotsmi(this);
   8571         Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi);
   8572 
   8573         Bind(&if_rhsissmi);
   8574         Goto(&if_notequal);
   8575 
   8576         Bind(&if_rhsisnotsmi);
   8577         {
   8578           // Load the instance type of {lhs}.
   8579           Node* lhs_instance_type = LoadMapInstanceType(lhs_map);
   8580 
   8581           // Check if {lhs} is a String.
   8582           Label if_lhsisstring(this), if_lhsisnotstring(this);
   8583           Branch(IsStringInstanceType(lhs_instance_type), &if_lhsisstring,
   8584                  &if_lhsisnotstring);
   8585 
   8586           Bind(&if_lhsisstring);
   8587           {
   8588             // Load the instance type of {rhs}.
   8589             Node* rhs_instance_type = LoadInstanceType(rhs);
   8590 
   8591             // Check if {rhs} is also a String.
   8592             Label if_rhsisstring(this, Label::kDeferred),
   8593                 if_rhsisnotstring(this);
   8594             Branch(IsStringInstanceType(rhs_instance_type), &if_rhsisstring,
   8595                    &if_rhsisnotstring);
   8596 
   8597             Bind(&if_rhsisstring);
   8598             {
   8599               Callable callable = (mode == kDontNegateResult)
   8600                                       ? CodeFactory::StringEqual(isolate())
   8601                                       : CodeFactory::StringNotEqual(isolate());
   8602               result.Bind(CallStub(callable, context, lhs, rhs));
   8603               Goto(&end);
   8604             }
   8605 
   8606             Bind(&if_rhsisnotstring);
   8607             Goto(&if_notequal);
   8608           }
   8609 
   8610           Bind(&if_lhsisnotstring);
   8611           {
   8612             // Check if {lhs} is a Simd128Value.
   8613             Label if_lhsissimd128value(this), if_lhsisnotsimd128value(this);
   8614             Branch(Word32Equal(lhs_instance_type,
   8615                                Int32Constant(SIMD128_VALUE_TYPE)),
   8616                    &if_lhsissimd128value, &if_lhsisnotsimd128value);
   8617 
   8618             Bind(&if_lhsissimd128value);
   8619             {
   8620               // Load the map of {rhs}.
   8621               Node* rhs_map = LoadMap(rhs);
   8622 
   8623               // Check if {rhs} is also a Simd128Value that is equal to {lhs}.
   8624               GenerateEqual_Simd128Value_HeapObject(
   8625                   this, lhs, lhs_map, rhs, rhs_map, &if_equal, &if_notequal);
   8626             }
   8627 
   8628             Bind(&if_lhsisnotsimd128value);
   8629             Goto(&if_notequal);
   8630           }
   8631         }
   8632       }
   8633     }
   8634 
   8635     Bind(&if_lhsissmi);
   8636     {
   8637       // We already know that {lhs} and {rhs} are not reference equal, and {lhs}
   8638       // is a Smi; so {lhs} and {rhs} can only be strictly equal if {rhs} is a
   8639       // HeapNumber with an equal floating point value.
   8640 
   8641       // Check if {rhs} is a Smi or a HeapObject.
   8642       Label if_rhsissmi(this), if_rhsisnotsmi(this);
   8643       Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi);
   8644 
   8645       Bind(&if_rhsissmi);
   8646       Goto(&if_notequal);
   8647 
   8648       Bind(&if_rhsisnotsmi);
   8649       {
   8650         // Load the map of the {rhs}.
   8651         Node* rhs_map = LoadMap(rhs);
   8652 
   8653         // The {rhs} could be a HeapNumber with the same value as {lhs}.
   8654         Label if_rhsisnumber(this), if_rhsisnotnumber(this);
   8655         Branch(WordEqual(rhs_map, number_map), &if_rhsisnumber,
   8656                &if_rhsisnotnumber);
   8657 
   8658         Bind(&if_rhsisnumber);
   8659         {
   8660           // Convert {lhs} and {rhs} to floating point values.
   8661           Node* lhs_value = SmiToFloat64(lhs);
   8662           Node* rhs_value = LoadHeapNumberValue(rhs);
   8663 
   8664           // Perform a floating point comparison of {lhs} and {rhs}.
   8665           Branch(Float64Equal(lhs_value, rhs_value), &if_equal, &if_notequal);
   8666         }
   8667 
   8668         Bind(&if_rhsisnotnumber);
   8669         Goto(&if_notequal);
   8670       }
   8671     }
   8672   }
   8673 
   8674   Bind(&if_equal);
   8675   {
   8676     result.Bind(BooleanConstant(mode == kDontNegateResult));
   8677     Goto(&end);
   8678   }
   8679 
   8680   Bind(&if_notequal);
   8681   {
   8682     result.Bind(BooleanConstant(mode == kNegateResult));
   8683     Goto(&end);
   8684   }
   8685 
   8686   Bind(&end);
   8687   return result.value();
   8688 }
   8689 
   8690 // ECMA#sec-samevalue
   8691 // This algorithm differs from the Strict Equality Comparison Algorithm in its
   8692 // treatment of signed zeroes and NaNs.
   8693 compiler::Node* CodeStubAssembler::SameValue(compiler::Node* lhs,
   8694                                              compiler::Node* rhs,
   8695                                              compiler::Node* context) {
   8696   Variable var_result(this, MachineType::PointerRepresentation());
   8697   Label strict_equal(this), out(this);
   8698 
   8699   Node* const int_false = IntPtrConstant(0);
   8700   Node* const int_true = IntPtrConstant(1);
   8701 
   8702   Label if_equal(this), if_notequal(this);
   8703   Branch(WordEqual(lhs, rhs), &if_equal, &if_notequal);
   8704 
   8705   Bind(&if_equal);
   8706   {
   8707     // This covers the case when {lhs} == {rhs}. We can simply return true
   8708     // because SameValue considers two NaNs to be equal.
   8709 
   8710     var_result.Bind(int_true);
   8711     Goto(&out);
   8712   }
   8713 
   8714   Bind(&if_notequal);
   8715   {
   8716     // This covers the case when {lhs} != {rhs}. We only handle numbers here
   8717     // and defer to StrictEqual for the rest.
   8718 
   8719     Node* const lhs_float = TryTaggedToFloat64(lhs, &strict_equal);
   8720     Node* const rhs_float = TryTaggedToFloat64(rhs, &strict_equal);
   8721 
   8722     Label if_lhsisnan(this), if_lhsnotnan(this);
   8723     BranchIfFloat64IsNaN(lhs_float, &if_lhsisnan, &if_lhsnotnan);
   8724 
   8725     Bind(&if_lhsisnan);
   8726     {
   8727       // Return true iff {rhs} is NaN.
   8728 
   8729       Node* const result =
   8730           Select(Float64Equal(rhs_float, rhs_float), int_false, int_true,
   8731                  MachineType::PointerRepresentation());
   8732       var_result.Bind(result);
   8733       Goto(&out);
   8734     }
   8735 
   8736     Bind(&if_lhsnotnan);
   8737     {
   8738       Label if_floatisequal(this), if_floatnotequal(this);
   8739       Branch(Float64Equal(lhs_float, rhs_float), &if_floatisequal,
   8740              &if_floatnotequal);
   8741 
   8742       Bind(&if_floatisequal);
   8743       {
   8744         // We still need to handle the case when {lhs} and {rhs} are -0.0 and
   8745         // 0.0 (or vice versa). Compare the high word to
   8746         // distinguish between the two.
   8747 
   8748         Node* const lhs_hi_word = Float64ExtractHighWord32(lhs_float);
   8749         Node* const rhs_hi_word = Float64ExtractHighWord32(rhs_float);
   8750 
   8751         // If x is +0 and y is -0, return false.
   8752         // If x is -0 and y is +0, return false.
   8753 
   8754         Node* const result = Word32Equal(lhs_hi_word, rhs_hi_word);
   8755         var_result.Bind(result);
   8756         Goto(&out);
   8757       }
   8758 
   8759       Bind(&if_floatnotequal);
   8760       {
   8761         var_result.Bind(int_false);
   8762         Goto(&out);
   8763       }
   8764     }
   8765   }
   8766 
   8767   Bind(&strict_equal);
   8768   {
   8769     Node* const is_equal = StrictEqual(kDontNegateResult, lhs, rhs, context);
   8770     Node* const result = WordEqual(is_equal, TrueConstant());
   8771     var_result.Bind(result);
   8772     Goto(&out);
   8773   }
   8774 
   8775   Bind(&out);
   8776   return var_result.value();
   8777 }
   8778 
   8779 compiler::Node* CodeStubAssembler::ForInFilter(compiler::Node* key,
   8780                                                compiler::Node* object,
   8781                                                compiler::Node* context) {
   8782   Label return_undefined(this, Label::kDeferred), return_to_name(this),
   8783       end(this);
   8784 
   8785   Variable var_result(this, MachineRepresentation::kTagged);
   8786 
   8787   Node* has_property =
   8788       HasProperty(object, key, context, Runtime::kForInHasProperty);
   8789 
   8790   Branch(WordEqual(has_property, BooleanConstant(true)), &return_to_name,
   8791          &return_undefined);
   8792 
   8793   Bind(&return_to_name);
   8794   {
   8795     var_result.Bind(ToName(context, key));
   8796     Goto(&end);
   8797   }
   8798 
   8799   Bind(&return_undefined);
   8800   {
   8801     var_result.Bind(UndefinedConstant());
   8802     Goto(&end);
   8803   }
   8804 
   8805   Bind(&end);
   8806   return var_result.value();
   8807 }
   8808 
   8809 compiler::Node* CodeStubAssembler::HasProperty(
   8810     compiler::Node* object, compiler::Node* key, compiler::Node* context,
   8811     Runtime::FunctionId fallback_runtime_function_id) {
   8812   typedef compiler::Node Node;
   8813   typedef CodeStubAssembler::Label Label;
   8814   typedef CodeStubAssembler::Variable Variable;
   8815 
   8816   Label call_runtime(this, Label::kDeferred), return_true(this),
   8817       return_false(this), end(this);
   8818 
   8819   CodeStubAssembler::LookupInHolder lookup_property_in_holder =
   8820       [this, &return_true](Node* receiver, Node* holder, Node* holder_map,
   8821                            Node* holder_instance_type, Node* unique_name,
   8822                            Label* next_holder, Label* if_bailout) {
   8823         TryHasOwnProperty(holder, holder_map, holder_instance_type, unique_name,
   8824                           &return_true, next_holder, if_bailout);
   8825       };
   8826 
   8827   CodeStubAssembler::LookupInHolder lookup_element_in_holder =
   8828       [this, &return_true](Node* receiver, Node* holder, Node* holder_map,
   8829                            Node* holder_instance_type, Node* index,
   8830                            Label* next_holder, Label* if_bailout) {
   8831         TryLookupElement(holder, holder_map, holder_instance_type, index,
   8832                          &return_true, next_holder, if_bailout);
   8833       };
   8834 
   8835   TryPrototypeChainLookup(object, key, lookup_property_in_holder,
   8836                           lookup_element_in_holder, &return_false,
   8837                           &call_runtime);
   8838 
   8839   Variable result(this, MachineRepresentation::kTagged);
   8840   Bind(&return_true);
   8841   {
   8842     result.Bind(BooleanConstant(true));
   8843     Goto(&end);
   8844   }
   8845 
   8846   Bind(&return_false);
   8847   {
   8848     result.Bind(BooleanConstant(false));
   8849     Goto(&end);
   8850   }
   8851 
   8852   Bind(&call_runtime);
   8853   {
   8854     result.Bind(
   8855         CallRuntime(fallback_runtime_function_id, context, object, key));
   8856     Goto(&end);
   8857   }
   8858 
   8859   Bind(&end);
   8860   return result.value();
   8861 }
   8862 
   8863 compiler::Node* CodeStubAssembler::Typeof(compiler::Node* value,
   8864                                           compiler::Node* context) {
   8865   Variable result_var(this, MachineRepresentation::kTagged);
   8866 
   8867   Label return_number(this, Label::kDeferred), if_oddball(this),
   8868       return_function(this), return_undefined(this), return_object(this),
   8869       return_string(this), return_result(this);
   8870 
   8871   GotoIf(TaggedIsSmi(value), &return_number);
   8872 
   8873   Node* map = LoadMap(value);
   8874 
   8875   GotoIf(IsHeapNumberMap(map), &return_number);
   8876 
   8877   Node* instance_type = LoadMapInstanceType(map);
   8878 
   8879   GotoIf(Word32Equal(instance_type, Int32Constant(ODDBALL_TYPE)), &if_oddball);
   8880 
   8881   Node* callable_or_undetectable_mask = Word32And(
   8882       LoadMapBitField(map),
   8883       Int32Constant(1 << Map::kIsCallable | 1 << Map::kIsUndetectable));
   8884 
   8885   GotoIf(Word32Equal(callable_or_undetectable_mask,
   8886                      Int32Constant(1 << Map::kIsCallable)),
   8887          &return_function);
   8888 
   8889   GotoUnless(Word32Equal(callable_or_undetectable_mask, Int32Constant(0)),
   8890              &return_undefined);
   8891 
   8892   GotoIf(IsJSReceiverInstanceType(instance_type), &return_object);
   8893 
   8894   GotoIf(IsStringInstanceType(instance_type), &return_string);
   8895 
   8896 #define SIMD128_BRANCH(TYPE, Type, type, lane_count, lane_type) \
   8897   Label return_##type(this);                                    \
   8898   Node* type##_map = HeapConstant(factory()->type##_map());     \
   8899   GotoIf(WordEqual(map, type##_map), &return_##type);
   8900   SIMD128_TYPES(SIMD128_BRANCH)
   8901 #undef SIMD128_BRANCH
   8902 
   8903   CSA_ASSERT(this, Word32Equal(instance_type, Int32Constant(SYMBOL_TYPE)));
   8904   result_var.Bind(HeapConstant(isolate()->factory()->symbol_string()));
   8905   Goto(&return_result);
   8906 
   8907   Bind(&return_number);
   8908   {
   8909     result_var.Bind(HeapConstant(isolate()->factory()->number_string()));
   8910     Goto(&return_result);
   8911   }
   8912 
   8913   Bind(&if_oddball);
   8914   {
   8915     Node* type = LoadObjectField(value, Oddball::kTypeOfOffset);
   8916     result_var.Bind(type);
   8917     Goto(&return_result);
   8918   }
   8919 
   8920   Bind(&return_function);
   8921   {
   8922     result_var.Bind(HeapConstant(isolate()->factory()->function_string()));
   8923     Goto(&return_result);
   8924   }
   8925 
   8926   Bind(&return_undefined);
   8927   {
   8928     result_var.Bind(HeapConstant(isolate()->factory()->undefined_string()));
   8929     Goto(&return_result);
   8930   }
   8931 
   8932   Bind(&return_object);
   8933   {
   8934     result_var.Bind(HeapConstant(isolate()->factory()->object_string()));
   8935     Goto(&return_result);
   8936   }
   8937 
   8938   Bind(&return_string);
   8939   {
   8940     result_var.Bind(HeapConstant(isolate()->factory()->string_string()));
   8941     Goto(&return_result);
   8942   }
   8943 
   8944 #define SIMD128_BIND_RETURN(TYPE, Type, type, lane_count, lane_type)      \
   8945   Bind(&return_##type);                                                   \
   8946   {                                                                       \
   8947     result_var.Bind(HeapConstant(isolate()->factory()->type##_string())); \
   8948     Goto(&return_result);                                                 \
   8949   }
   8950   SIMD128_TYPES(SIMD128_BIND_RETURN)
   8951 #undef SIMD128_BIND_RETURN
   8952 
   8953   Bind(&return_result);
   8954   return result_var.value();
   8955 }
   8956 
   8957 compiler::Node* CodeStubAssembler::InstanceOf(compiler::Node* object,
   8958                                               compiler::Node* callable,
   8959                                               compiler::Node* context) {
   8960   Label return_runtime(this, Label::kDeferred), end(this);
   8961   Variable result(this, MachineRepresentation::kTagged);
   8962 
   8963   // Check if no one installed @@hasInstance somewhere.
   8964   GotoUnless(
   8965       WordEqual(LoadObjectField(LoadRoot(Heap::kHasInstanceProtectorRootIndex),
   8966                                 PropertyCell::kValueOffset),
   8967                 SmiConstant(Smi::FromInt(Isolate::kProtectorValid))),
   8968       &return_runtime);
   8969 
   8970   // Check if {callable} is a valid receiver.
   8971   GotoIf(TaggedIsSmi(callable), &return_runtime);
   8972   GotoUnless(IsCallableMap(LoadMap(callable)), &return_runtime);
   8973 
   8974   // Use the inline OrdinaryHasInstance directly.
   8975   result.Bind(OrdinaryHasInstance(context, callable, object));
   8976   Goto(&end);
   8977 
   8978   // TODO(bmeurer): Use GetPropertyStub here once available.
   8979   Bind(&return_runtime);
   8980   {
   8981     result.Bind(CallRuntime(Runtime::kInstanceOf, context, object, callable));
   8982     Goto(&end);
   8983   }
   8984 
   8985   Bind(&end);
   8986   return result.value();
   8987 }
   8988 
   8989 compiler::Node* CodeStubAssembler::NumberInc(compiler::Node* value) {
   8990   Variable var_result(this, MachineRepresentation::kTagged),
   8991       var_finc_value(this, MachineRepresentation::kFloat64);
   8992   Label if_issmi(this), if_isnotsmi(this), do_finc(this), end(this);
   8993   Branch(TaggedIsSmi(value), &if_issmi, &if_isnotsmi);
   8994 
   8995   Bind(&if_issmi);
   8996   {
   8997     // Try fast Smi addition first.
   8998     Node* one = SmiConstant(Smi::FromInt(1));
   8999     Node* pair = IntPtrAddWithOverflow(BitcastTaggedToWord(value),
   9000                                        BitcastTaggedToWord(one));
   9001     Node* overflow = Projection(1, pair);
   9002 
   9003     // Check if the Smi addition overflowed.
   9004     Label if_overflow(this), if_notoverflow(this);
   9005     Branch(overflow, &if_overflow, &if_notoverflow);
   9006 
   9007     Bind(&if_notoverflow);
   9008     var_result.Bind(Projection(0, pair));
   9009     Goto(&end);
   9010 
   9011     Bind(&if_overflow);
   9012     {
   9013       var_finc_value.Bind(SmiToFloat64(value));
   9014       Goto(&do_finc);
   9015     }
   9016   }
   9017 
   9018   Bind(&if_isnotsmi);
   9019   {
   9020     // Check if the value is a HeapNumber.
   9021     CSA_ASSERT(this, IsHeapNumberMap(LoadMap(value)));
   9022 
   9023     // Load the HeapNumber value.
   9024     var_finc_value.Bind(LoadHeapNumberValue(value));
   9025     Goto(&do_finc);
   9026   }
   9027 
   9028   Bind(&do_finc);
   9029   {
   9030     Node* finc_value = var_finc_value.value();
   9031     Node* one = Float64Constant(1.0);
   9032     Node* finc_result = Float64Add(finc_value, one);
   9033     var_result.Bind(AllocateHeapNumberWithValue(finc_result));
   9034     Goto(&end);
   9035   }
   9036 
   9037   Bind(&end);
   9038   return var_result.value();
   9039 }
   9040 
   9041 compiler::Node* CodeStubAssembler::CreateArrayIterator(
   9042     compiler::Node* array, compiler::Node* array_map,
   9043     compiler::Node* array_type, compiler::Node* context, IterationKind mode) {
   9044   int kBaseMapIndex = 0;
   9045   switch (mode) {
   9046     case IterationKind::kKeys:
   9047       kBaseMapIndex = Context::TYPED_ARRAY_KEY_ITERATOR_MAP_INDEX;
   9048       break;
   9049     case IterationKind::kValues:
   9050       kBaseMapIndex = Context::UINT8_ARRAY_VALUE_ITERATOR_MAP_INDEX;
   9051       break;
   9052     case IterationKind::kEntries:
   9053       kBaseMapIndex = Context::UINT8_ARRAY_KEY_VALUE_ITERATOR_MAP_INDEX;
   9054       break;
   9055   }
   9056 
   9057   // Fast Array iterator map index:
   9058   // (kBaseIndex + kFastIteratorOffset) + ElementsKind (for JSArrays)
   9059   // kBaseIndex + (ElementsKind - UINT8_ELEMENTS) (for JSTypedArrays)
   9060   const int kFastIteratorOffset =
   9061       Context::FAST_SMI_ARRAY_VALUE_ITERATOR_MAP_INDEX -
   9062       Context::UINT8_ARRAY_VALUE_ITERATOR_MAP_INDEX;
   9063   STATIC_ASSERT(kFastIteratorOffset ==
   9064                 (Context::FAST_SMI_ARRAY_KEY_VALUE_ITERATOR_MAP_INDEX -
   9065                  Context::UINT8_ARRAY_KEY_VALUE_ITERATOR_MAP_INDEX));
   9066 
   9067   // Slow Array iterator map index: (kBaseIndex + kSlowIteratorOffset)
   9068   const int kSlowIteratorOffset =
   9069       Context::GENERIC_ARRAY_VALUE_ITERATOR_MAP_INDEX -
   9070       Context::UINT8_ARRAY_VALUE_ITERATOR_MAP_INDEX;
   9071   STATIC_ASSERT(kSlowIteratorOffset ==
   9072                 (Context::GENERIC_ARRAY_KEY_VALUE_ITERATOR_MAP_INDEX -
   9073                  Context::UINT8_ARRAY_KEY_VALUE_ITERATOR_MAP_INDEX));
   9074 
   9075   // Assert: Type(array) is Object
   9076   CSA_ASSERT(this, IsJSReceiverInstanceType(array_type));
   9077 
   9078   Variable var_result(this, MachineRepresentation::kTagged);
   9079   Variable var_map_index(this, MachineType::PointerRepresentation());
   9080   Variable var_array_map(this, MachineRepresentation::kTagged);
   9081 
   9082   Label return_result(this);
   9083   Label allocate_iterator(this);
   9084 
   9085   if (mode == IterationKind::kKeys) {
   9086     // There are only two key iterator maps, branch depending on whether or not
   9087     // the receiver is a TypedArray or not.
   9088 
   9089     Label if_istypedarray(this), if_isgeneric(this);
   9090 
   9091     Branch(Word32Equal(array_type, Int32Constant(JS_TYPED_ARRAY_TYPE)),
   9092            &if_istypedarray, &if_isgeneric);
   9093 
   9094     Bind(&if_isgeneric);
   9095     {
   9096       Label if_isfast(this), if_isslow(this);
   9097       BranchIfFastJSArray(array, context, &if_isfast, &if_isslow);
   9098 
   9099       Bind(&if_isfast);
   9100       {
   9101         var_map_index.Bind(
   9102             IntPtrConstant(Context::FAST_ARRAY_KEY_ITERATOR_MAP_INDEX));
   9103         var_array_map.Bind(array_map);
   9104         Goto(&allocate_iterator);
   9105       }
   9106 
   9107       Bind(&if_isslow);
   9108       {
   9109         var_map_index.Bind(
   9110             IntPtrConstant(Context::GENERIC_ARRAY_KEY_ITERATOR_MAP_INDEX));
   9111         var_array_map.Bind(UndefinedConstant());
   9112         Goto(&allocate_iterator);
   9113       }
   9114     }
   9115 
   9116     Bind(&if_istypedarray);
   9117     {
   9118       var_map_index.Bind(
   9119           IntPtrConstant(Context::TYPED_ARRAY_KEY_ITERATOR_MAP_INDEX));
   9120       var_array_map.Bind(UndefinedConstant());
   9121       Goto(&allocate_iterator);
   9122     }
   9123   } else {
   9124     Label if_istypedarray(this), if_isgeneric(this);
   9125     Branch(Word32Equal(array_type, Int32Constant(JS_TYPED_ARRAY_TYPE)),
   9126            &if_istypedarray, &if_isgeneric);
   9127 
   9128     Bind(&if_isgeneric);
   9129     {
   9130       Label if_isfast(this), if_isslow(this);
   9131       BranchIfFastJSArray(array, context, &if_isfast, &if_isslow);
   9132 
   9133       Bind(&if_isfast);
   9134       {
   9135         Label if_ispacked(this), if_isholey(this);
   9136         Node* elements_kind = LoadMapElementsKind(array_map);
   9137         Branch(IsHoleyFastElementsKind(elements_kind), &if_isholey,
   9138                &if_ispacked);
   9139 
   9140         Bind(&if_isholey);
   9141         {
   9142           // Fast holey JSArrays can treat the hole as undefined if the
   9143           // protector cell is valid, and the prototype chain is unchanged from
   9144           // its initial state (because the protector cell is only tracked for
   9145           // initial the Array and Object prototypes). Check these conditions
   9146           // here, and take the slow path if any fail.
   9147           Node* protector_cell = LoadRoot(Heap::kArrayProtectorRootIndex);
   9148           DCHECK(isolate()->heap()->array_protector()->IsPropertyCell());
   9149           GotoUnless(
   9150               WordEqual(
   9151                   LoadObjectField(protector_cell, PropertyCell::kValueOffset),
   9152                   SmiConstant(Smi::FromInt(Isolate::kProtectorValid))),
   9153               &if_isslow);
   9154 
   9155           Node* native_context = LoadNativeContext(context);
   9156 
   9157           Node* prototype = LoadMapPrototype(array_map);
   9158           Node* array_prototype = LoadContextElement(
   9159               native_context, Context::INITIAL_ARRAY_PROTOTYPE_INDEX);
   9160           GotoUnless(WordEqual(prototype, array_prototype), &if_isslow);
   9161 
   9162           Node* map = LoadMap(prototype);
   9163           prototype = LoadMapPrototype(map);
   9164           Node* object_prototype = LoadContextElement(
   9165               native_context, Context::INITIAL_OBJECT_PROTOTYPE_INDEX);
   9166           GotoUnless(WordEqual(prototype, object_prototype), &if_isslow);
   9167 
   9168           map = LoadMap(prototype);
   9169           prototype = LoadMapPrototype(map);
   9170           Branch(IsNull(prototype), &if_ispacked, &if_isslow);
   9171         }
   9172         Bind(&if_ispacked);
   9173         {
   9174           Node* map_index =
   9175               IntPtrAdd(IntPtrConstant(kBaseMapIndex + kFastIteratorOffset),
   9176                         LoadMapElementsKind(array_map));
   9177           CSA_ASSERT(this, IntPtrGreaterThanOrEqual(
   9178                                map_index, IntPtrConstant(kBaseMapIndex +
   9179                                                          kFastIteratorOffset)));
   9180           CSA_ASSERT(this, IntPtrLessThan(map_index,
   9181                                           IntPtrConstant(kBaseMapIndex +
   9182                                                          kSlowIteratorOffset)));
   9183 
   9184           var_map_index.Bind(map_index);
   9185           var_array_map.Bind(array_map);
   9186           Goto(&allocate_iterator);
   9187         }
   9188       }
   9189 
   9190       Bind(&if_isslow);
   9191       {
   9192         Node* map_index = IntPtrAdd(IntPtrConstant(kBaseMapIndex),
   9193                                     IntPtrConstant(kSlowIteratorOffset));
   9194         var_map_index.Bind(map_index);
   9195         var_array_map.Bind(UndefinedConstant());
   9196         Goto(&allocate_iterator);
   9197       }
   9198     }
   9199 
   9200     Bind(&if_istypedarray);
   9201     {
   9202       Node* map_index =
   9203           IntPtrAdd(IntPtrConstant(kBaseMapIndex - UINT8_ELEMENTS),
   9204                     LoadMapElementsKind(array_map));
   9205       CSA_ASSERT(
   9206           this, IntPtrLessThan(map_index, IntPtrConstant(kBaseMapIndex +
   9207                                                          kFastIteratorOffset)));
   9208       CSA_ASSERT(this, IntPtrGreaterThanOrEqual(map_index,
   9209                                                 IntPtrConstant(kBaseMapIndex)));
   9210       var_map_index.Bind(map_index);
   9211       var_array_map.Bind(UndefinedConstant());
   9212       Goto(&allocate_iterator);
   9213     }
   9214   }
   9215 
   9216   Bind(&allocate_iterator);
   9217   {
   9218     Node* map =
   9219         LoadFixedArrayElement(LoadNativeContext(context), var_map_index.value(),
   9220                               0, CodeStubAssembler::INTPTR_PARAMETERS);
   9221     var_result.Bind(AllocateJSArrayIterator(array, var_array_map.value(), map));
   9222     Goto(&return_result);
   9223   }
   9224 
   9225   Bind(&return_result);
   9226   return var_result.value();
   9227 }
   9228 
   9229 compiler::Node* CodeStubAssembler::AllocateJSArrayIterator(
   9230     compiler::Node* array, compiler::Node* array_map, compiler::Node* map) {
   9231   Node* iterator = Allocate(JSArrayIterator::kSize);
   9232   StoreMapNoWriteBarrier(iterator, map);
   9233   StoreObjectFieldRoot(iterator, JSArrayIterator::kPropertiesOffset,
   9234                        Heap::kEmptyFixedArrayRootIndex);
   9235   StoreObjectFieldRoot(iterator, JSArrayIterator::kElementsOffset,
   9236                        Heap::kEmptyFixedArrayRootIndex);
   9237   StoreObjectFieldNoWriteBarrier(iterator,
   9238                                  JSArrayIterator::kIteratedObjectOffset, array);
   9239   StoreObjectFieldNoWriteBarrier(iterator, JSArrayIterator::kNextIndexOffset,
   9240                                  SmiConstant(Smi::FromInt(0)));
   9241   StoreObjectFieldNoWriteBarrier(
   9242       iterator, JSArrayIterator::kIteratedObjectMapOffset, array_map);
   9243   return iterator;
   9244 }
   9245 
   9246 compiler::Node* CodeStubAssembler::IsDetachedBuffer(compiler::Node* buffer) {
   9247   CSA_ASSERT(this, HasInstanceType(buffer, JS_ARRAY_BUFFER_TYPE));
   9248 
   9249   Node* buffer_bit_field = LoadObjectField(
   9250       buffer, JSArrayBuffer::kBitFieldOffset, MachineType::Uint32());
   9251   Node* was_neutered_mask = Int32Constant(JSArrayBuffer::WasNeutered::kMask);
   9252 
   9253   return Word32NotEqual(Word32And(buffer_bit_field, was_neutered_mask),
   9254                         Int32Constant(0));
   9255 }
   9256 
   9257 CodeStubArguments::CodeStubArguments(CodeStubAssembler* assembler,
   9258                                      compiler::Node* argc,
   9259                                      CodeStubAssembler::ParameterMode mode)
   9260     : assembler_(assembler),
   9261       argc_(argc),
   9262       arguments_(nullptr),
   9263       fp_(assembler->LoadFramePointer()) {
   9264   compiler::Node* offset = assembler->ElementOffsetFromIndex(
   9265       argc_, FAST_ELEMENTS, mode,
   9266       (StandardFrameConstants::kFixedSlotCountAboveFp - 1) * kPointerSize);
   9267   arguments_ = assembler_->IntPtrAddFoldConstants(fp_, offset);
   9268   if (mode == CodeStubAssembler::INTEGER_PARAMETERS) {
   9269     argc_ = assembler->ChangeInt32ToIntPtr(argc_);
   9270   } else if (mode == CodeStubAssembler::SMI_PARAMETERS) {
   9271     argc_ = assembler->SmiUntag(argc_);
   9272   }
   9273 }
   9274 
   9275 compiler::Node* CodeStubArguments::GetReceiver() {
   9276   return assembler_->Load(MachineType::AnyTagged(), arguments_,
   9277                           assembler_->IntPtrConstant(kPointerSize));
   9278 }
   9279 
   9280 compiler::Node* CodeStubArguments::AtIndex(
   9281     compiler::Node* index, CodeStubAssembler::ParameterMode mode) {
   9282   typedef compiler::Node Node;
   9283   Node* negated_index = assembler_->IntPtrSubFoldConstants(
   9284       assembler_->IntPtrOrSmiConstant(0, mode), index);
   9285   Node* offset =
   9286       assembler_->ElementOffsetFromIndex(negated_index, FAST_ELEMENTS, mode, 0);
   9287   return assembler_->Load(MachineType::AnyTagged(), arguments_, offset);
   9288 }
   9289 
   9290 compiler::Node* CodeStubArguments::AtIndex(int index) {
   9291   return AtIndex(assembler_->IntPtrConstant(index));
   9292 }
   9293 
   9294 void CodeStubArguments::ForEach(const CodeStubAssembler::VariableList& vars,
   9295                                 CodeStubArguments::ForEachBodyFunction body,
   9296                                 compiler::Node* first, compiler::Node* last,
   9297                                 CodeStubAssembler::ParameterMode mode) {
   9298   assembler_->Comment("CodeStubArguments::ForEach");
   9299   DCHECK_IMPLIES(first == nullptr || last == nullptr,
   9300                  mode == CodeStubAssembler::INTPTR_PARAMETERS);
   9301   if (first == nullptr) {
   9302     first = assembler_->IntPtrOrSmiConstant(0, mode);
   9303   }
   9304   if (last == nullptr) {
   9305     last = argc_;
   9306   }
   9307   compiler::Node* start = assembler_->IntPtrSubFoldConstants(
   9308       arguments_,
   9309       assembler_->ElementOffsetFromIndex(first, FAST_ELEMENTS, mode));
   9310   compiler::Node* end = assembler_->IntPtrSubFoldConstants(
   9311       arguments_,
   9312       assembler_->ElementOffsetFromIndex(last, FAST_ELEMENTS, mode));
   9313   assembler_->BuildFastLoop(
   9314       vars, MachineType::PointerRepresentation(), start, end,
   9315       [body](CodeStubAssembler* assembler, compiler::Node* current) {
   9316         Node* arg = assembler->Load(MachineType::AnyTagged(), current);
   9317         body(assembler, arg);
   9318       },
   9319       -kPointerSize, CodeStubAssembler::IndexAdvanceMode::kPost);
   9320 }
   9321 
   9322 void CodeStubArguments::PopAndReturn(compiler::Node* value) {
   9323   assembler_->PopAndReturn(
   9324       assembler_->IntPtrAddFoldConstants(argc_, assembler_->IntPtrConstant(1)),
   9325       value);
   9326 }
   9327 
   9328 compiler::Node* CodeStubAssembler::IsFastElementsKind(
   9329     compiler::Node* elements_kind) {
   9330   return Uint32LessThanOrEqual(elements_kind,
   9331                                Int32Constant(LAST_FAST_ELEMENTS_KIND));
   9332 }
   9333 
   9334 compiler::Node* CodeStubAssembler::IsHoleyFastElementsKind(
   9335     compiler::Node* elements_kind) {
   9336   CSA_ASSERT(this, IsFastElementsKind(elements_kind));
   9337 
   9338   STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == (FAST_SMI_ELEMENTS | 1));
   9339   STATIC_ASSERT(FAST_HOLEY_ELEMENTS == (FAST_ELEMENTS | 1));
   9340   STATIC_ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == (FAST_DOUBLE_ELEMENTS | 1));
   9341 
   9342   // Check prototype chain if receiver does not have packed elements.
   9343   Node* holey_elements = Word32And(elements_kind, Int32Constant(1));
   9344   return Word32Equal(holey_elements, Int32Constant(1));
   9345 }
   9346 
   9347 }  // namespace internal
   9348 }  // namespace v8
   9349