Home | History | Annotate | Download | only in dexlayout
      1 /*
      2  * Copyright (C) 2016 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  *
     16  * Implementation file of the dexlayout utility.
     17  *
     18  * This is a tool to read dex files into an internal representation,
     19  * reorganize the representation, and emit dex files with a better
     20  * file layout.
     21  */
     22 
     23 #include "dexlayout.h"
     24 
     25 #include <inttypes.h>
     26 #include <stdio.h>
     27 #include <sys/mman.h>  // For the PROT_* and MAP_* constants.
     28 
     29 #include <iostream>
     30 #include <memory>
     31 #include <sstream>
     32 #include <vector>
     33 
     34 #include "android-base/stringprintf.h"
     35 
     36 #include "dex_ir_builder.h"
     37 #include "dex_file-inl.h"
     38 #include "dex_file_verifier.h"
     39 #include "dex_instruction-inl.h"
     40 #include "dex_verify.h"
     41 #include "dex_visualize.h"
     42 #include "dex_writer.h"
     43 #include "jit/profile_compilation_info.h"
     44 #include "mem_map.h"
     45 #include "os.h"
     46 #include "utils.h"
     47 
     48 namespace art {
     49 
     50 using android::base::StringPrintf;
     51 
     52 static constexpr uint32_t kDexCodeItemAlignment = 4;
     53 
     54 /*
     55  * Flags for use with createAccessFlagStr().
     56  */
     57 enum AccessFor {
     58   kAccessForClass = 0, kAccessForMethod = 1, kAccessForField = 2, kAccessForMAX
     59 };
     60 const int kNumFlags = 18;
     61 
     62 /*
     63  * Gets 2 little-endian bytes.
     64  */
     65 static inline uint16_t Get2LE(unsigned char const* src) {
     66   return src[0] | (src[1] << 8);
     67 }
     68 
     69 /*
     70  * Converts a type descriptor to human-readable "dotted" form.  For
     71  * example, "Ljava/lang/String;" becomes "java.lang.String", and
     72  * "[I" becomes "int[]".  Also converts '$' to '.', which means this
     73  * form can't be converted back to a descriptor.
     74  */
     75 static std::string DescriptorToDotWrapper(const char* descriptor) {
     76   std::string result = DescriptorToDot(descriptor);
     77   size_t found = result.find('$');
     78   while (found != std::string::npos) {
     79     result[found] = '.';
     80     found = result.find('$', found);
     81   }
     82   return result;
     83 }
     84 
     85 /*
     86  * Converts the class name portion of a type descriptor to human-readable
     87  * "dotted" form. For example, "Ljava/lang/String;" becomes "String".
     88  */
     89 static std::string DescriptorClassToDot(const char* str) {
     90   std::string descriptor(str);
     91   // Reduce to just the class name prefix.
     92   size_t last_slash = descriptor.rfind('/');
     93   if (last_slash == std::string::npos) {
     94     last_slash = 0;
     95   }
     96   // Start past the '/' or 'L'.
     97   last_slash++;
     98 
     99   // Copy class name over, trimming trailing ';'.
    100   size_t size = descriptor.size() - 1 - last_slash;
    101   std::string result(descriptor.substr(last_slash, size));
    102 
    103   // Replace '$' with '.'.
    104   size_t dollar_sign = result.find('$');
    105   while (dollar_sign != std::string::npos) {
    106     result[dollar_sign] = '.';
    107     dollar_sign = result.find('$', dollar_sign);
    108   }
    109 
    110   return result;
    111 }
    112 
    113 /*
    114  * Returns string representing the boolean value.
    115  */
    116 static const char* StrBool(bool val) {
    117   return val ? "true" : "false";
    118 }
    119 
    120 /*
    121  * Returns a quoted string representing the boolean value.
    122  */
    123 static const char* QuotedBool(bool val) {
    124   return val ? "\"true\"" : "\"false\"";
    125 }
    126 
    127 /*
    128  * Returns a quoted string representing the access flags.
    129  */
    130 static const char* QuotedVisibility(uint32_t access_flags) {
    131   if (access_flags & kAccPublic) {
    132     return "\"public\"";
    133   } else if (access_flags & kAccProtected) {
    134     return "\"protected\"";
    135   } else if (access_flags & kAccPrivate) {
    136     return "\"private\"";
    137   } else {
    138     return "\"package\"";
    139   }
    140 }
    141 
    142 /*
    143  * Counts the number of '1' bits in a word.
    144  */
    145 static int CountOnes(uint32_t val) {
    146   val = val - ((val >> 1) & 0x55555555);
    147   val = (val & 0x33333333) + ((val >> 2) & 0x33333333);
    148   return (((val + (val >> 4)) & 0x0F0F0F0F) * 0x01010101) >> 24;
    149 }
    150 
    151 /*
    152  * Creates a new string with human-readable access flags.
    153  *
    154  * In the base language the access_flags fields are type uint16_t; in Dalvik they're uint32_t.
    155  */
    156 static char* CreateAccessFlagStr(uint32_t flags, AccessFor for_what) {
    157   static const char* kAccessStrings[kAccessForMAX][kNumFlags] = {
    158     {
    159       "PUBLIC",                /* 0x00001 */
    160       "PRIVATE",               /* 0x00002 */
    161       "PROTECTED",             /* 0x00004 */
    162       "STATIC",                /* 0x00008 */
    163       "FINAL",                 /* 0x00010 */
    164       "?",                     /* 0x00020 */
    165       "?",                     /* 0x00040 */
    166       "?",                     /* 0x00080 */
    167       "?",                     /* 0x00100 */
    168       "INTERFACE",             /* 0x00200 */
    169       "ABSTRACT",              /* 0x00400 */
    170       "?",                     /* 0x00800 */
    171       "SYNTHETIC",             /* 0x01000 */
    172       "ANNOTATION",            /* 0x02000 */
    173       "ENUM",                  /* 0x04000 */
    174       "?",                     /* 0x08000 */
    175       "VERIFIED",              /* 0x10000 */
    176       "OPTIMIZED",             /* 0x20000 */
    177     }, {
    178       "PUBLIC",                /* 0x00001 */
    179       "PRIVATE",               /* 0x00002 */
    180       "PROTECTED",             /* 0x00004 */
    181       "STATIC",                /* 0x00008 */
    182       "FINAL",                 /* 0x00010 */
    183       "SYNCHRONIZED",          /* 0x00020 */
    184       "BRIDGE",                /* 0x00040 */
    185       "VARARGS",               /* 0x00080 */
    186       "NATIVE",                /* 0x00100 */
    187       "?",                     /* 0x00200 */
    188       "ABSTRACT",              /* 0x00400 */
    189       "STRICT",                /* 0x00800 */
    190       "SYNTHETIC",             /* 0x01000 */
    191       "?",                     /* 0x02000 */
    192       "?",                     /* 0x04000 */
    193       "MIRANDA",               /* 0x08000 */
    194       "CONSTRUCTOR",           /* 0x10000 */
    195       "DECLARED_SYNCHRONIZED", /* 0x20000 */
    196     }, {
    197       "PUBLIC",                /* 0x00001 */
    198       "PRIVATE",               /* 0x00002 */
    199       "PROTECTED",             /* 0x00004 */
    200       "STATIC",                /* 0x00008 */
    201       "FINAL",                 /* 0x00010 */
    202       "?",                     /* 0x00020 */
    203       "VOLATILE",              /* 0x00040 */
    204       "TRANSIENT",             /* 0x00080 */
    205       "?",                     /* 0x00100 */
    206       "?",                     /* 0x00200 */
    207       "?",                     /* 0x00400 */
    208       "?",                     /* 0x00800 */
    209       "SYNTHETIC",             /* 0x01000 */
    210       "?",                     /* 0x02000 */
    211       "ENUM",                  /* 0x04000 */
    212       "?",                     /* 0x08000 */
    213       "?",                     /* 0x10000 */
    214       "?",                     /* 0x20000 */
    215     },
    216   };
    217 
    218   // Allocate enough storage to hold the expected number of strings,
    219   // plus a space between each.  We over-allocate, using the longest
    220   // string above as the base metric.
    221   const int kLongest = 21;  // The strlen of longest string above.
    222   const int count = CountOnes(flags);
    223   char* str;
    224   char* cp;
    225   cp = str = reinterpret_cast<char*>(malloc(count * (kLongest + 1) + 1));
    226 
    227   for (int i = 0; i < kNumFlags; i++) {
    228     if (flags & 0x01) {
    229       const char* accessStr = kAccessStrings[for_what][i];
    230       const int len = strlen(accessStr);
    231       if (cp != str) {
    232         *cp++ = ' ';
    233       }
    234       memcpy(cp, accessStr, len);
    235       cp += len;
    236     }
    237     flags >>= 1;
    238   }  // for
    239 
    240   *cp = '\0';
    241   return str;
    242 }
    243 
    244 static std::string GetSignatureForProtoId(const dex_ir::ProtoId* proto) {
    245   if (proto == nullptr) {
    246     return "<no signature>";
    247   }
    248 
    249   std::string result("(");
    250   const dex_ir::TypeList* type_list = proto->Parameters();
    251   if (type_list != nullptr) {
    252     for (const dex_ir::TypeId* type_id : *type_list->GetTypeList()) {
    253       result += type_id->GetStringId()->Data();
    254     }
    255   }
    256   result += ")";
    257   result += proto->ReturnType()->GetStringId()->Data();
    258   return result;
    259 }
    260 
    261 /*
    262  * Copies character data from "data" to "out", converting non-ASCII values
    263  * to fprintf format chars or an ASCII filler ('.' or '?').
    264  *
    265  * The output buffer must be able to hold (2*len)+1 bytes.  The result is
    266  * NULL-terminated.
    267  */
    268 static void Asciify(char* out, const unsigned char* data, size_t len) {
    269   while (len--) {
    270     if (*data < 0x20) {
    271       // Could do more here, but we don't need them yet.
    272       switch (*data) {
    273         case '\0':
    274           *out++ = '\\';
    275           *out++ = '0';
    276           break;
    277         case '\n':
    278           *out++ = '\\';
    279           *out++ = 'n';
    280           break;
    281         default:
    282           *out++ = '.';
    283           break;
    284       }  // switch
    285     } else if (*data >= 0x80) {
    286       *out++ = '?';
    287     } else {
    288       *out++ = *data;
    289     }
    290     data++;
    291   }  // while
    292   *out = '\0';
    293 }
    294 
    295 /*
    296  * Dumps a string value with some escape characters.
    297  */
    298 static void DumpEscapedString(const char* p, FILE* out_file) {
    299   fputs("\"", out_file);
    300   for (; *p; p++) {
    301     switch (*p) {
    302       case '\\':
    303         fputs("\\\\", out_file);
    304         break;
    305       case '\"':
    306         fputs("\\\"", out_file);
    307         break;
    308       case '\t':
    309         fputs("\\t", out_file);
    310         break;
    311       case '\n':
    312         fputs("\\n", out_file);
    313         break;
    314       case '\r':
    315         fputs("\\r", out_file);
    316         break;
    317       default:
    318         putc(*p, out_file);
    319     }  // switch
    320   }  // for
    321   fputs("\"", out_file);
    322 }
    323 
    324 /*
    325  * Dumps a string as an XML attribute value.
    326  */
    327 static void DumpXmlAttribute(const char* p, FILE* out_file) {
    328   for (; *p; p++) {
    329     switch (*p) {
    330       case '&':
    331         fputs("&amp;", out_file);
    332         break;
    333       case '<':
    334         fputs("&lt;", out_file);
    335         break;
    336       case '>':
    337         fputs("&gt;", out_file);
    338         break;
    339       case '"':
    340         fputs("&quot;", out_file);
    341         break;
    342       case '\t':
    343         fputs("&#x9;", out_file);
    344         break;
    345       case '\n':
    346         fputs("&#xA;", out_file);
    347         break;
    348       case '\r':
    349         fputs("&#xD;", out_file);
    350         break;
    351       default:
    352         putc(*p, out_file);
    353     }  // switch
    354   }  // for
    355 }
    356 
    357 /*
    358  * Helper for dumpInstruction(), which builds the string
    359  * representation for the index in the given instruction.
    360  * Returns a pointer to a buffer of sufficient size.
    361  */
    362 static std::unique_ptr<char[]> IndexString(dex_ir::Header* header,
    363                                            const Instruction* dec_insn,
    364                                            size_t buf_size) {
    365   std::unique_ptr<char[]> buf(new char[buf_size]);
    366   // Determine index and width of the string.
    367   uint32_t index = 0;
    368   uint32_t secondary_index = DexFile::kDexNoIndex;
    369   uint32_t width = 4;
    370   switch (Instruction::FormatOf(dec_insn->Opcode())) {
    371     // SOME NOT SUPPORTED:
    372     // case Instruction::k20bc:
    373     case Instruction::k21c:
    374     case Instruction::k35c:
    375     // case Instruction::k35ms:
    376     case Instruction::k3rc:
    377     // case Instruction::k3rms:
    378     // case Instruction::k35mi:
    379     // case Instruction::k3rmi:
    380       index = dec_insn->VRegB();
    381       width = 4;
    382       break;
    383     case Instruction::k31c:
    384       index = dec_insn->VRegB();
    385       width = 8;
    386       break;
    387     case Instruction::k22c:
    388     // case Instruction::k22cs:
    389       index = dec_insn->VRegC();
    390       width = 4;
    391       break;
    392     case Instruction::k45cc:
    393     case Instruction::k4rcc:
    394       index = dec_insn->VRegB();
    395       secondary_index = dec_insn->VRegH();
    396       width = 4;
    397       break;
    398     default:
    399       break;
    400   }  // switch
    401 
    402   // Determine index type.
    403   size_t outSize = 0;
    404   switch (Instruction::IndexTypeOf(dec_insn->Opcode())) {
    405     case Instruction::kIndexUnknown:
    406       // This function should never get called for this type, but do
    407       // something sensible here, just to help with debugging.
    408       outSize = snprintf(buf.get(), buf_size, "<unknown-index>");
    409       break;
    410     case Instruction::kIndexNone:
    411       // This function should never get called for this type, but do
    412       // something sensible here, just to help with debugging.
    413       outSize = snprintf(buf.get(), buf_size, "<no-index>");
    414       break;
    415     case Instruction::kIndexTypeRef:
    416       if (index < header->GetCollections().TypeIdsSize()) {
    417         const char* tp = header->GetCollections().GetTypeId(index)->GetStringId()->Data();
    418         outSize = snprintf(buf.get(), buf_size, "%s // type@%0*x", tp, width, index);
    419       } else {
    420         outSize = snprintf(buf.get(), buf_size, "<type?> // type@%0*x", width, index);
    421       }
    422       break;
    423     case Instruction::kIndexStringRef:
    424       if (index < header->GetCollections().StringIdsSize()) {
    425         const char* st = header->GetCollections().GetStringId(index)->Data();
    426         outSize = snprintf(buf.get(), buf_size, "\"%s\" // string@%0*x", st, width, index);
    427       } else {
    428         outSize = snprintf(buf.get(), buf_size, "<string?> // string@%0*x", width, index);
    429       }
    430       break;
    431     case Instruction::kIndexMethodRef:
    432       if (index < header->GetCollections().MethodIdsSize()) {
    433         dex_ir::MethodId* method_id = header->GetCollections().GetMethodId(index);
    434         const char* name = method_id->Name()->Data();
    435         std::string type_descriptor = GetSignatureForProtoId(method_id->Proto());
    436         const char* back_descriptor = method_id->Class()->GetStringId()->Data();
    437         outSize = snprintf(buf.get(), buf_size, "%s.%s:%s // method@%0*x",
    438                            back_descriptor, name, type_descriptor.c_str(), width, index);
    439       } else {
    440         outSize = snprintf(buf.get(), buf_size, "<method?> // method@%0*x", width, index);
    441       }
    442       break;
    443     case Instruction::kIndexFieldRef:
    444       if (index < header->GetCollections().FieldIdsSize()) {
    445         dex_ir::FieldId* field_id = header->GetCollections().GetFieldId(index);
    446         const char* name = field_id->Name()->Data();
    447         const char* type_descriptor = field_id->Type()->GetStringId()->Data();
    448         const char* back_descriptor = field_id->Class()->GetStringId()->Data();
    449         outSize = snprintf(buf.get(), buf_size, "%s.%s:%s // field@%0*x",
    450                            back_descriptor, name, type_descriptor, width, index);
    451       } else {
    452         outSize = snprintf(buf.get(), buf_size, "<field?> // field@%0*x", width, index);
    453       }
    454       break;
    455     case Instruction::kIndexVtableOffset:
    456       outSize = snprintf(buf.get(), buf_size, "[%0*x] // vtable #%0*x",
    457                          width, index, width, index);
    458       break;
    459     case Instruction::kIndexFieldOffset:
    460       outSize = snprintf(buf.get(), buf_size, "[obj+%0*x]", width, index);
    461       break;
    462     case Instruction::kIndexMethodAndProtoRef: {
    463       std::string method("<method?>");
    464       std::string proto("<proto?>");
    465       if (index < header->GetCollections().MethodIdsSize()) {
    466         dex_ir::MethodId* method_id = header->GetCollections().GetMethodId(index);
    467         const char* name = method_id->Name()->Data();
    468         std::string type_descriptor = GetSignatureForProtoId(method_id->Proto());
    469         const char* back_descriptor = method_id->Class()->GetStringId()->Data();
    470         method = StringPrintf("%s.%s:%s", back_descriptor, name, type_descriptor.c_str());
    471       }
    472       if (secondary_index < header->GetCollections().ProtoIdsSize()) {
    473         dex_ir::ProtoId* proto_id = header->GetCollections().GetProtoId(secondary_index);
    474         proto = GetSignatureForProtoId(proto_id);
    475       }
    476       outSize = snprintf(buf.get(), buf_size, "%s, %s // method@%0*x, proto@%0*x",
    477                          method.c_str(), proto.c_str(), width, index, width, secondary_index);
    478     }
    479     break;
    480     // SOME NOT SUPPORTED:
    481     // case Instruction::kIndexVaries:
    482     // case Instruction::kIndexInlineMethod:
    483     default:
    484       outSize = snprintf(buf.get(), buf_size, "<?>");
    485       break;
    486   }  // switch
    487 
    488   // Determine success of string construction.
    489   if (outSize >= buf_size) {
    490     // The buffer wasn't big enough; retry with computed size. Note: snprintf()
    491     // doesn't count/ the '\0' as part of its returned size, so we add explicit
    492     // space for it here.
    493     return IndexString(header, dec_insn, outSize + 1);
    494   }
    495   return buf;
    496 }
    497 
    498 /*
    499  * Dumps encoded annotation.
    500  */
    501 void DexLayout::DumpEncodedAnnotation(dex_ir::EncodedAnnotation* annotation) {
    502   fputs(annotation->GetType()->GetStringId()->Data(), out_file_);
    503   // Display all name=value pairs.
    504   for (auto& subannotation : *annotation->GetAnnotationElements()) {
    505     fputc(' ', out_file_);
    506     fputs(subannotation->GetName()->Data(), out_file_);
    507     fputc('=', out_file_);
    508     DumpEncodedValue(subannotation->GetValue());
    509   }
    510 }
    511 /*
    512  * Dumps encoded value.
    513  */
    514 void DexLayout::DumpEncodedValue(const dex_ir::EncodedValue* data) {
    515   switch (data->Type()) {
    516     case DexFile::kDexAnnotationByte:
    517       fprintf(out_file_, "%" PRId8, data->GetByte());
    518       break;
    519     case DexFile::kDexAnnotationShort:
    520       fprintf(out_file_, "%" PRId16, data->GetShort());
    521       break;
    522     case DexFile::kDexAnnotationChar:
    523       fprintf(out_file_, "%" PRIu16, data->GetChar());
    524       break;
    525     case DexFile::kDexAnnotationInt:
    526       fprintf(out_file_, "%" PRId32, data->GetInt());
    527       break;
    528     case DexFile::kDexAnnotationLong:
    529       fprintf(out_file_, "%" PRId64, data->GetLong());
    530       break;
    531     case DexFile::kDexAnnotationFloat: {
    532       fprintf(out_file_, "%g", data->GetFloat());
    533       break;
    534     }
    535     case DexFile::kDexAnnotationDouble: {
    536       fprintf(out_file_, "%g", data->GetDouble());
    537       break;
    538     }
    539     case DexFile::kDexAnnotationString: {
    540       dex_ir::StringId* string_id = data->GetStringId();
    541       if (options_.output_format_ == kOutputPlain) {
    542         DumpEscapedString(string_id->Data(), out_file_);
    543       } else {
    544         DumpXmlAttribute(string_id->Data(), out_file_);
    545       }
    546       break;
    547     }
    548     case DexFile::kDexAnnotationType: {
    549       dex_ir::TypeId* type_id = data->GetTypeId();
    550       fputs(type_id->GetStringId()->Data(), out_file_);
    551       break;
    552     }
    553     case DexFile::kDexAnnotationField:
    554     case DexFile::kDexAnnotationEnum: {
    555       dex_ir::FieldId* field_id = data->GetFieldId();
    556       fputs(field_id->Name()->Data(), out_file_);
    557       break;
    558     }
    559     case DexFile::kDexAnnotationMethod: {
    560       dex_ir::MethodId* method_id = data->GetMethodId();
    561       fputs(method_id->Name()->Data(), out_file_);
    562       break;
    563     }
    564     case DexFile::kDexAnnotationArray: {
    565       fputc('{', out_file_);
    566       // Display all elements.
    567       for (auto& value : *data->GetEncodedArray()->GetEncodedValues()) {
    568         fputc(' ', out_file_);
    569         DumpEncodedValue(value.get());
    570       }
    571       fputs(" }", out_file_);
    572       break;
    573     }
    574     case DexFile::kDexAnnotationAnnotation: {
    575       DumpEncodedAnnotation(data->GetEncodedAnnotation());
    576       break;
    577     }
    578     case DexFile::kDexAnnotationNull:
    579       fputs("null", out_file_);
    580       break;
    581     case DexFile::kDexAnnotationBoolean:
    582       fputs(StrBool(data->GetBoolean()), out_file_);
    583       break;
    584     default:
    585       fputs("????", out_file_);
    586       break;
    587   }  // switch
    588 }
    589 
    590 /*
    591  * Dumps the file header.
    592  */
    593 void DexLayout::DumpFileHeader() {
    594   char sanitized[8 * 2 + 1];
    595   dex_ir::Collections& collections = header_->GetCollections();
    596   fprintf(out_file_, "DEX file header:\n");
    597   Asciify(sanitized, header_->Magic(), 8);
    598   fprintf(out_file_, "magic               : '%s'\n", sanitized);
    599   fprintf(out_file_, "checksum            : %08x\n", header_->Checksum());
    600   fprintf(out_file_, "signature           : %02x%02x...%02x%02x\n",
    601           header_->Signature()[0], header_->Signature()[1],
    602           header_->Signature()[DexFile::kSha1DigestSize - 2],
    603           header_->Signature()[DexFile::kSha1DigestSize - 1]);
    604   fprintf(out_file_, "file_size           : %d\n", header_->FileSize());
    605   fprintf(out_file_, "header_size         : %d\n", header_->HeaderSize());
    606   fprintf(out_file_, "link_size           : %d\n", header_->LinkSize());
    607   fprintf(out_file_, "link_off            : %d (0x%06x)\n",
    608           header_->LinkOffset(), header_->LinkOffset());
    609   fprintf(out_file_, "string_ids_size     : %d\n", collections.StringIdsSize());
    610   fprintf(out_file_, "string_ids_off      : %d (0x%06x)\n",
    611           collections.StringIdsOffset(), collections.StringIdsOffset());
    612   fprintf(out_file_, "type_ids_size       : %d\n", collections.TypeIdsSize());
    613   fprintf(out_file_, "type_ids_off        : %d (0x%06x)\n",
    614           collections.TypeIdsOffset(), collections.TypeIdsOffset());
    615   fprintf(out_file_, "proto_ids_size      : %d\n", collections.ProtoIdsSize());
    616   fprintf(out_file_, "proto_ids_off       : %d (0x%06x)\n",
    617           collections.ProtoIdsOffset(), collections.ProtoIdsOffset());
    618   fprintf(out_file_, "field_ids_size      : %d\n", collections.FieldIdsSize());
    619   fprintf(out_file_, "field_ids_off       : %d (0x%06x)\n",
    620           collections.FieldIdsOffset(), collections.FieldIdsOffset());
    621   fprintf(out_file_, "method_ids_size     : %d\n", collections.MethodIdsSize());
    622   fprintf(out_file_, "method_ids_off      : %d (0x%06x)\n",
    623           collections.MethodIdsOffset(), collections.MethodIdsOffset());
    624   fprintf(out_file_, "class_defs_size     : %d\n", collections.ClassDefsSize());
    625   fprintf(out_file_, "class_defs_off      : %d (0x%06x)\n",
    626           collections.ClassDefsOffset(), collections.ClassDefsOffset());
    627   fprintf(out_file_, "data_size           : %d\n", header_->DataSize());
    628   fprintf(out_file_, "data_off            : %d (0x%06x)\n\n",
    629           header_->DataOffset(), header_->DataOffset());
    630 }
    631 
    632 /*
    633  * Dumps a class_def_item.
    634  */
    635 void DexLayout::DumpClassDef(int idx) {
    636   // General class information.
    637   dex_ir::ClassDef* class_def = header_->GetCollections().GetClassDef(idx);
    638   fprintf(out_file_, "Class #%d header:\n", idx);
    639   fprintf(out_file_, "class_idx           : %d\n", class_def->ClassType()->GetIndex());
    640   fprintf(out_file_, "access_flags        : %d (0x%04x)\n",
    641           class_def->GetAccessFlags(), class_def->GetAccessFlags());
    642   uint32_t superclass_idx =  class_def->Superclass() == nullptr ?
    643       DexFile::kDexNoIndex16 : class_def->Superclass()->GetIndex();
    644   fprintf(out_file_, "superclass_idx      : %d\n", superclass_idx);
    645   fprintf(out_file_, "interfaces_off      : %d (0x%06x)\n",
    646           class_def->InterfacesOffset(), class_def->InterfacesOffset());
    647   uint32_t source_file_offset = 0xffffffffU;
    648   if (class_def->SourceFile() != nullptr) {
    649     source_file_offset = class_def->SourceFile()->GetIndex();
    650   }
    651   fprintf(out_file_, "source_file_idx     : %d\n", source_file_offset);
    652   uint32_t annotations_offset = 0;
    653   if (class_def->Annotations() != nullptr) {
    654     annotations_offset = class_def->Annotations()->GetOffset();
    655   }
    656   fprintf(out_file_, "annotations_off     : %d (0x%06x)\n",
    657           annotations_offset, annotations_offset);
    658   if (class_def->GetClassData() == nullptr) {
    659     fprintf(out_file_, "class_data_off      : %d (0x%06x)\n", 0, 0);
    660   } else {
    661     fprintf(out_file_, "class_data_off      : %d (0x%06x)\n",
    662             class_def->GetClassData()->GetOffset(), class_def->GetClassData()->GetOffset());
    663   }
    664 
    665   // Fields and methods.
    666   dex_ir::ClassData* class_data = class_def->GetClassData();
    667   if (class_data != nullptr && class_data->StaticFields() != nullptr) {
    668     fprintf(out_file_, "static_fields_size  : %zu\n", class_data->StaticFields()->size());
    669   } else {
    670     fprintf(out_file_, "static_fields_size  : 0\n");
    671   }
    672   if (class_data != nullptr && class_data->InstanceFields() != nullptr) {
    673     fprintf(out_file_, "instance_fields_size: %zu\n", class_data->InstanceFields()->size());
    674   } else {
    675     fprintf(out_file_, "instance_fields_size: 0\n");
    676   }
    677   if (class_data != nullptr && class_data->DirectMethods() != nullptr) {
    678     fprintf(out_file_, "direct_methods_size : %zu\n", class_data->DirectMethods()->size());
    679   } else {
    680     fprintf(out_file_, "direct_methods_size : 0\n");
    681   }
    682   if (class_data != nullptr && class_data->VirtualMethods() != nullptr) {
    683     fprintf(out_file_, "virtual_methods_size: %zu\n", class_data->VirtualMethods()->size());
    684   } else {
    685     fprintf(out_file_, "virtual_methods_size: 0\n");
    686   }
    687   fprintf(out_file_, "\n");
    688 }
    689 
    690 /**
    691  * Dumps an annotation set item.
    692  */
    693 void DexLayout::DumpAnnotationSetItem(dex_ir::AnnotationSetItem* set_item) {
    694   if (set_item == nullptr || set_item->GetItems()->size() == 0) {
    695     fputs("  empty-annotation-set\n", out_file_);
    696     return;
    697   }
    698   for (dex_ir::AnnotationItem* annotation : *set_item->GetItems()) {
    699     if (annotation == nullptr) {
    700       continue;
    701     }
    702     fputs("  ", out_file_);
    703     switch (annotation->GetVisibility()) {
    704       case DexFile::kDexVisibilityBuild:   fputs("VISIBILITY_BUILD ",   out_file_); break;
    705       case DexFile::kDexVisibilityRuntime: fputs("VISIBILITY_RUNTIME ", out_file_); break;
    706       case DexFile::kDexVisibilitySystem:  fputs("VISIBILITY_SYSTEM ",  out_file_); break;
    707       default:                             fputs("VISIBILITY_UNKNOWN ", out_file_); break;
    708     }  // switch
    709     DumpEncodedAnnotation(annotation->GetAnnotation());
    710     fputc('\n', out_file_);
    711   }
    712 }
    713 
    714 /*
    715  * Dumps class annotations.
    716  */
    717 void DexLayout::DumpClassAnnotations(int idx) {
    718   dex_ir::ClassDef* class_def = header_->GetCollections().GetClassDef(idx);
    719   dex_ir::AnnotationsDirectoryItem* annotations_directory = class_def->Annotations();
    720   if (annotations_directory == nullptr) {
    721     return;  // none
    722   }
    723 
    724   fprintf(out_file_, "Class #%d annotations:\n", idx);
    725 
    726   dex_ir::AnnotationSetItem* class_set_item = annotations_directory->GetClassAnnotation();
    727   dex_ir::FieldAnnotationVector* fields = annotations_directory->GetFieldAnnotations();
    728   dex_ir::MethodAnnotationVector* methods = annotations_directory->GetMethodAnnotations();
    729   dex_ir::ParameterAnnotationVector* parameters = annotations_directory->GetParameterAnnotations();
    730 
    731   // Annotations on the class itself.
    732   if (class_set_item != nullptr) {
    733     fprintf(out_file_, "Annotations on class\n");
    734     DumpAnnotationSetItem(class_set_item);
    735   }
    736 
    737   // Annotations on fields.
    738   if (fields != nullptr) {
    739     for (auto& field : *fields) {
    740       const dex_ir::FieldId* field_id = field->GetFieldId();
    741       const uint32_t field_idx = field_id->GetIndex();
    742       const char* field_name = field_id->Name()->Data();
    743       fprintf(out_file_, "Annotations on field #%u '%s'\n", field_idx, field_name);
    744       DumpAnnotationSetItem(field->GetAnnotationSetItem());
    745     }
    746   }
    747 
    748   // Annotations on methods.
    749   if (methods != nullptr) {
    750     for (auto& method : *methods) {
    751       const dex_ir::MethodId* method_id = method->GetMethodId();
    752       const uint32_t method_idx = method_id->GetIndex();
    753       const char* method_name = method_id->Name()->Data();
    754       fprintf(out_file_, "Annotations on method #%u '%s'\n", method_idx, method_name);
    755       DumpAnnotationSetItem(method->GetAnnotationSetItem());
    756     }
    757   }
    758 
    759   // Annotations on method parameters.
    760   if (parameters != nullptr) {
    761     for (auto& parameter : *parameters) {
    762       const dex_ir::MethodId* method_id = parameter->GetMethodId();
    763       const uint32_t method_idx = method_id->GetIndex();
    764       const char* method_name = method_id->Name()->Data();
    765       fprintf(out_file_, "Annotations on method #%u '%s' parameters\n", method_idx, method_name);
    766       uint32_t j = 0;
    767       for (dex_ir::AnnotationSetItem* annotation : *parameter->GetAnnotations()->GetItems()) {
    768         fprintf(out_file_, "#%u\n", j);
    769         DumpAnnotationSetItem(annotation);
    770         ++j;
    771       }
    772     }
    773   }
    774 
    775   fputc('\n', out_file_);
    776 }
    777 
    778 /*
    779  * Dumps an interface that a class declares to implement.
    780  */
    781 void DexLayout::DumpInterface(const dex_ir::TypeId* type_item, int i) {
    782   const char* interface_name = type_item->GetStringId()->Data();
    783   if (options_.output_format_ == kOutputPlain) {
    784     fprintf(out_file_, "    #%d              : '%s'\n", i, interface_name);
    785   } else {
    786     std::string dot(DescriptorToDotWrapper(interface_name));
    787     fprintf(out_file_, "<implements name=\"%s\">\n</implements>\n", dot.c_str());
    788   }
    789 }
    790 
    791 /*
    792  * Dumps the catches table associated with the code.
    793  */
    794 void DexLayout::DumpCatches(const dex_ir::CodeItem* code) {
    795   const uint16_t tries_size = code->TriesSize();
    796 
    797   // No catch table.
    798   if (tries_size == 0) {
    799     fprintf(out_file_, "      catches       : (none)\n");
    800     return;
    801   }
    802 
    803   // Dump all table entries.
    804   fprintf(out_file_, "      catches       : %d\n", tries_size);
    805   std::vector<std::unique_ptr<const dex_ir::TryItem>>* tries = code->Tries();
    806   for (uint32_t i = 0; i < tries_size; i++) {
    807     const dex_ir::TryItem* try_item = (*tries)[i].get();
    808     const uint32_t start = try_item->StartAddr();
    809     const uint32_t end = start + try_item->InsnCount();
    810     fprintf(out_file_, "        0x%04x - 0x%04x\n", start, end);
    811     for (auto& handler : *try_item->GetHandlers()->GetHandlers()) {
    812       const dex_ir::TypeId* type_id = handler->GetTypeId();
    813       const char* descriptor = (type_id == nullptr) ? "<any>" : type_id->GetStringId()->Data();
    814       fprintf(out_file_, "          %s -> 0x%04x\n", descriptor, handler->GetAddress());
    815     }  // for
    816   }  // for
    817 }
    818 
    819 /*
    820  * Dumps all positions table entries associated with the code.
    821  */
    822 void DexLayout::DumpPositionInfo(const dex_ir::CodeItem* code) {
    823   dex_ir::DebugInfoItem* debug_info = code->DebugInfo();
    824   if (debug_info == nullptr) {
    825     return;
    826   }
    827   std::vector<std::unique_ptr<dex_ir::PositionInfo>>& positions = debug_info->GetPositionInfo();
    828   for (size_t i = 0; i < positions.size(); ++i) {
    829     fprintf(out_file_, "        0x%04x line=%d\n", positions[i]->address_, positions[i]->line_);
    830   }
    831 }
    832 
    833 /*
    834  * Dumps all locals table entries associated with the code.
    835  */
    836 void DexLayout::DumpLocalInfo(const dex_ir::CodeItem* code) {
    837   dex_ir::DebugInfoItem* debug_info = code->DebugInfo();
    838   if (debug_info == nullptr) {
    839     return;
    840   }
    841   std::vector<std::unique_ptr<dex_ir::LocalInfo>>& locals = debug_info->GetLocalInfo();
    842   for (size_t i = 0; i < locals.size(); ++i) {
    843     dex_ir::LocalInfo* entry = locals[i].get();
    844     fprintf(out_file_, "        0x%04x - 0x%04x reg=%d %s %s %s\n",
    845             entry->start_address_, entry->end_address_, entry->reg_,
    846             entry->name_.c_str(), entry->descriptor_.c_str(), entry->signature_.c_str());
    847   }
    848 }
    849 
    850 /*
    851  * Dumps a single instruction.
    852  */
    853 void DexLayout::DumpInstruction(const dex_ir::CodeItem* code,
    854                                 uint32_t code_offset,
    855                                 uint32_t insn_idx,
    856                                 uint32_t insn_width,
    857                                 const Instruction* dec_insn) {
    858   // Address of instruction (expressed as byte offset).
    859   fprintf(out_file_, "%06x:", code_offset + 0x10 + insn_idx * 2);
    860 
    861   // Dump (part of) raw bytes.
    862   const uint16_t* insns = code->Insns();
    863   for (uint32_t i = 0; i < 8; i++) {
    864     if (i < insn_width) {
    865       if (i == 7) {
    866         fprintf(out_file_, " ... ");
    867       } else {
    868         // Print 16-bit value in little-endian order.
    869         const uint8_t* bytePtr = (const uint8_t*) &insns[insn_idx + i];
    870         fprintf(out_file_, " %02x%02x", bytePtr[0], bytePtr[1]);
    871       }
    872     } else {
    873       fputs("     ", out_file_);
    874     }
    875   }  // for
    876 
    877   // Dump pseudo-instruction or opcode.
    878   if (dec_insn->Opcode() == Instruction::NOP) {
    879     const uint16_t instr = Get2LE((const uint8_t*) &insns[insn_idx]);
    880     if (instr == Instruction::kPackedSwitchSignature) {
    881       fprintf(out_file_, "|%04x: packed-switch-data (%d units)", insn_idx, insn_width);
    882     } else if (instr == Instruction::kSparseSwitchSignature) {
    883       fprintf(out_file_, "|%04x: sparse-switch-data (%d units)", insn_idx, insn_width);
    884     } else if (instr == Instruction::kArrayDataSignature) {
    885       fprintf(out_file_, "|%04x: array-data (%d units)", insn_idx, insn_width);
    886     } else {
    887       fprintf(out_file_, "|%04x: nop // spacer", insn_idx);
    888     }
    889   } else {
    890     fprintf(out_file_, "|%04x: %s", insn_idx, dec_insn->Name());
    891   }
    892 
    893   // Set up additional argument.
    894   std::unique_ptr<char[]> index_buf;
    895   if (Instruction::IndexTypeOf(dec_insn->Opcode()) != Instruction::kIndexNone) {
    896     index_buf = IndexString(header_, dec_insn, 200);
    897   }
    898 
    899   // Dump the instruction.
    900   //
    901   // NOTE: pDecInsn->DumpString(pDexFile) differs too much from original.
    902   //
    903   switch (Instruction::FormatOf(dec_insn->Opcode())) {
    904     case Instruction::k10x:        // op
    905       break;
    906     case Instruction::k12x:        // op vA, vB
    907       fprintf(out_file_, " v%d, v%d", dec_insn->VRegA(), dec_insn->VRegB());
    908       break;
    909     case Instruction::k11n:        // op vA, #+B
    910       fprintf(out_file_, " v%d, #int %d // #%x",
    911               dec_insn->VRegA(), (int32_t) dec_insn->VRegB(), (uint8_t)dec_insn->VRegB());
    912       break;
    913     case Instruction::k11x:        // op vAA
    914       fprintf(out_file_, " v%d", dec_insn->VRegA());
    915       break;
    916     case Instruction::k10t:        // op +AA
    917     case Instruction::k20t: {      // op +AAAA
    918       const int32_t targ = (int32_t) dec_insn->VRegA();
    919       fprintf(out_file_, " %04x // %c%04x",
    920               insn_idx + targ,
    921               (targ < 0) ? '-' : '+',
    922               (targ < 0) ? -targ : targ);
    923       break;
    924     }
    925     case Instruction::k22x:        // op vAA, vBBBB
    926       fprintf(out_file_, " v%d, v%d", dec_insn->VRegA(), dec_insn->VRegB());
    927       break;
    928     case Instruction::k21t: {     // op vAA, +BBBB
    929       const int32_t targ = (int32_t) dec_insn->VRegB();
    930       fprintf(out_file_, " v%d, %04x // %c%04x", dec_insn->VRegA(),
    931               insn_idx + targ,
    932               (targ < 0) ? '-' : '+',
    933               (targ < 0) ? -targ : targ);
    934       break;
    935     }
    936     case Instruction::k21s:        // op vAA, #+BBBB
    937       fprintf(out_file_, " v%d, #int %d // #%x",
    938               dec_insn->VRegA(), (int32_t) dec_insn->VRegB(), (uint16_t)dec_insn->VRegB());
    939       break;
    940     case Instruction::k21h:        // op vAA, #+BBBB0000[00000000]
    941       // The printed format varies a bit based on the actual opcode.
    942       if (dec_insn->Opcode() == Instruction::CONST_HIGH16) {
    943         const int32_t value = dec_insn->VRegB() << 16;
    944         fprintf(out_file_, " v%d, #int %d // #%x",
    945                 dec_insn->VRegA(), value, (uint16_t) dec_insn->VRegB());
    946       } else {
    947         const int64_t value = ((int64_t) dec_insn->VRegB()) << 48;
    948         fprintf(out_file_, " v%d, #long %" PRId64 " // #%x",
    949                 dec_insn->VRegA(), value, (uint16_t) dec_insn->VRegB());
    950       }
    951       break;
    952     case Instruction::k21c:        // op vAA, thing@BBBB
    953     case Instruction::k31c:        // op vAA, thing@BBBBBBBB
    954       fprintf(out_file_, " v%d, %s", dec_insn->VRegA(), index_buf.get());
    955       break;
    956     case Instruction::k23x:        // op vAA, vBB, vCC
    957       fprintf(out_file_, " v%d, v%d, v%d",
    958               dec_insn->VRegA(), dec_insn->VRegB(), dec_insn->VRegC());
    959       break;
    960     case Instruction::k22b:        // op vAA, vBB, #+CC
    961       fprintf(out_file_, " v%d, v%d, #int %d // #%02x",
    962               dec_insn->VRegA(), dec_insn->VRegB(),
    963               (int32_t) dec_insn->VRegC(), (uint8_t) dec_insn->VRegC());
    964       break;
    965     case Instruction::k22t: {      // op vA, vB, +CCCC
    966       const int32_t targ = (int32_t) dec_insn->VRegC();
    967       fprintf(out_file_, " v%d, v%d, %04x // %c%04x",
    968               dec_insn->VRegA(), dec_insn->VRegB(),
    969               insn_idx + targ,
    970               (targ < 0) ? '-' : '+',
    971               (targ < 0) ? -targ : targ);
    972       break;
    973     }
    974     case Instruction::k22s:        // op vA, vB, #+CCCC
    975       fprintf(out_file_, " v%d, v%d, #int %d // #%04x",
    976               dec_insn->VRegA(), dec_insn->VRegB(),
    977               (int32_t) dec_insn->VRegC(), (uint16_t) dec_insn->VRegC());
    978       break;
    979     case Instruction::k22c:        // op vA, vB, thing@CCCC
    980     // NOT SUPPORTED:
    981     // case Instruction::k22cs:    // [opt] op vA, vB, field offset CCCC
    982       fprintf(out_file_, " v%d, v%d, %s",
    983               dec_insn->VRegA(), dec_insn->VRegB(), index_buf.get());
    984       break;
    985     case Instruction::k30t:
    986       fprintf(out_file_, " #%08x", dec_insn->VRegA());
    987       break;
    988     case Instruction::k31i: {     // op vAA, #+BBBBBBBB
    989       // This is often, but not always, a float.
    990       union {
    991         float f;
    992         uint32_t i;
    993       } conv;
    994       conv.i = dec_insn->VRegB();
    995       fprintf(out_file_, " v%d, #float %g // #%08x",
    996               dec_insn->VRegA(), conv.f, dec_insn->VRegB());
    997       break;
    998     }
    999     case Instruction::k31t:       // op vAA, offset +BBBBBBBB
   1000       fprintf(out_file_, " v%d, %08x // +%08x",
   1001               dec_insn->VRegA(), insn_idx + dec_insn->VRegB(), dec_insn->VRegB());
   1002       break;
   1003     case Instruction::k32x:        // op vAAAA, vBBBB
   1004       fprintf(out_file_, " v%d, v%d", dec_insn->VRegA(), dec_insn->VRegB());
   1005       break;
   1006     case Instruction::k35c:           // op {vC, vD, vE, vF, vG}, thing@BBBB
   1007     case Instruction::k45cc: {        // op {vC, vD, vE, vF, vG}, meth@BBBB, proto@HHHH
   1008     // NOT SUPPORTED:
   1009     // case Instruction::k35ms:       // [opt] invoke-virtual+super
   1010     // case Instruction::k35mi:       // [opt] inline invoke
   1011       uint32_t arg[Instruction::kMaxVarArgRegs];
   1012       dec_insn->GetVarArgs(arg);
   1013       fputs(" {", out_file_);
   1014       for (int i = 0, n = dec_insn->VRegA(); i < n; i++) {
   1015         if (i == 0) {
   1016           fprintf(out_file_, "v%d", arg[i]);
   1017         } else {
   1018           fprintf(out_file_, ", v%d", arg[i]);
   1019         }
   1020       }  // for
   1021       fprintf(out_file_, "}, %s", index_buf.get());
   1022       break;
   1023     }
   1024     case Instruction::k3rc:           // op {vCCCC .. v(CCCC+AA-1)}, thing@BBBB
   1025     case Instruction::k4rcc:          // op {vCCCC .. v(CCCC+AA-1)}, meth@BBBB, proto@HHHH
   1026     // NOT SUPPORTED:
   1027     // case Instruction::k3rms:       // [opt] invoke-virtual+super/range
   1028     // case Instruction::k3rmi:       // [opt] execute-inline/range
   1029       {
   1030         // This doesn't match the "dx" output when some of the args are
   1031         // 64-bit values -- dx only shows the first register.
   1032         fputs(" {", out_file_);
   1033         for (int i = 0, n = dec_insn->VRegA(); i < n; i++) {
   1034           if (i == 0) {
   1035             fprintf(out_file_, "v%d", dec_insn->VRegC() + i);
   1036           } else {
   1037             fprintf(out_file_, ", v%d", dec_insn->VRegC() + i);
   1038           }
   1039         }  // for
   1040         fprintf(out_file_, "}, %s", index_buf.get());
   1041       }
   1042       break;
   1043     case Instruction::k51l: {      // op vAA, #+BBBBBBBBBBBBBBBB
   1044       // This is often, but not always, a double.
   1045       union {
   1046         double d;
   1047         uint64_t j;
   1048       } conv;
   1049       conv.j = dec_insn->WideVRegB();
   1050       fprintf(out_file_, " v%d, #double %g // #%016" PRIx64,
   1051               dec_insn->VRegA(), conv.d, dec_insn->WideVRegB());
   1052       break;
   1053     }
   1054     // NOT SUPPORTED:
   1055     // case Instruction::k00x:        // unknown op or breakpoint
   1056     //    break;
   1057     default:
   1058       fprintf(out_file_, " ???");
   1059       break;
   1060   }  // switch
   1061 
   1062   fputc('\n', out_file_);
   1063 }
   1064 
   1065 /*
   1066  * Dumps a bytecode disassembly.
   1067  */
   1068 void DexLayout::DumpBytecodes(uint32_t idx, const dex_ir::CodeItem* code, uint32_t code_offset) {
   1069   dex_ir::MethodId* method_id = header_->GetCollections().GetMethodId(idx);
   1070   const char* name = method_id->Name()->Data();
   1071   std::string type_descriptor = GetSignatureForProtoId(method_id->Proto());
   1072   const char* back_descriptor = method_id->Class()->GetStringId()->Data();
   1073 
   1074   // Generate header.
   1075   std::string dot(DescriptorToDotWrapper(back_descriptor));
   1076   fprintf(out_file_, "%06x:                                        |[%06x] %s.%s:%s\n",
   1077           code_offset, code_offset, dot.c_str(), name, type_descriptor.c_str());
   1078 
   1079   // Iterate over all instructions.
   1080   const uint16_t* insns = code->Insns();
   1081   for (uint32_t insn_idx = 0; insn_idx < code->InsnsSize();) {
   1082     const Instruction* instruction = Instruction::At(&insns[insn_idx]);
   1083     const uint32_t insn_width = instruction->SizeInCodeUnits();
   1084     if (insn_width == 0) {
   1085       fprintf(stderr, "GLITCH: zero-width instruction at idx=0x%04x\n", insn_idx);
   1086       break;
   1087     }
   1088     DumpInstruction(code, code_offset, insn_idx, insn_width, instruction);
   1089     insn_idx += insn_width;
   1090   }  // for
   1091 }
   1092 
   1093 /*
   1094  * Dumps code of a method.
   1095  */
   1096 void DexLayout::DumpCode(uint32_t idx, const dex_ir::CodeItem* code, uint32_t code_offset) {
   1097   fprintf(out_file_, "      registers     : %d\n", code->RegistersSize());
   1098   fprintf(out_file_, "      ins           : %d\n", code->InsSize());
   1099   fprintf(out_file_, "      outs          : %d\n", code->OutsSize());
   1100   fprintf(out_file_, "      insns size    : %d 16-bit code units\n",
   1101           code->InsnsSize());
   1102 
   1103   // Bytecode disassembly, if requested.
   1104   if (options_.disassemble_) {
   1105     DumpBytecodes(idx, code, code_offset);
   1106   }
   1107 
   1108   // Try-catch blocks.
   1109   DumpCatches(code);
   1110 
   1111   // Positions and locals table in the debug info.
   1112   fprintf(out_file_, "      positions     : \n");
   1113   DumpPositionInfo(code);
   1114   fprintf(out_file_, "      locals        : \n");
   1115   DumpLocalInfo(code);
   1116 }
   1117 
   1118 /*
   1119  * Dumps a method.
   1120  */
   1121 void DexLayout::DumpMethod(uint32_t idx, uint32_t flags, const dex_ir::CodeItem* code, int i) {
   1122   // Bail for anything private if export only requested.
   1123   if (options_.exports_only_ && (flags & (kAccPublic | kAccProtected)) == 0) {
   1124     return;
   1125   }
   1126 
   1127   dex_ir::MethodId* method_id = header_->GetCollections().GetMethodId(idx);
   1128   const char* name = method_id->Name()->Data();
   1129   char* type_descriptor = strdup(GetSignatureForProtoId(method_id->Proto()).c_str());
   1130   const char* back_descriptor = method_id->Class()->GetStringId()->Data();
   1131   char* access_str = CreateAccessFlagStr(flags, kAccessForMethod);
   1132 
   1133   if (options_.output_format_ == kOutputPlain) {
   1134     fprintf(out_file_, "    #%d              : (in %s)\n", i, back_descriptor);
   1135     fprintf(out_file_, "      name          : '%s'\n", name);
   1136     fprintf(out_file_, "      type          : '%s'\n", type_descriptor);
   1137     fprintf(out_file_, "      access        : 0x%04x (%s)\n", flags, access_str);
   1138     if (code == nullptr) {
   1139       fprintf(out_file_, "      code          : (none)\n");
   1140     } else {
   1141       fprintf(out_file_, "      code          -\n");
   1142       DumpCode(idx, code, code->GetOffset());
   1143     }
   1144     if (options_.disassemble_) {
   1145       fputc('\n', out_file_);
   1146     }
   1147   } else if (options_.output_format_ == kOutputXml) {
   1148     const bool constructor = (name[0] == '<');
   1149 
   1150     // Method name and prototype.
   1151     if (constructor) {
   1152       std::string dot(DescriptorClassToDot(back_descriptor));
   1153       fprintf(out_file_, "<constructor name=\"%s\"\n", dot.c_str());
   1154       dot = DescriptorToDotWrapper(back_descriptor);
   1155       fprintf(out_file_, " type=\"%s\"\n", dot.c_str());
   1156     } else {
   1157       fprintf(out_file_, "<method name=\"%s\"\n", name);
   1158       const char* return_type = strrchr(type_descriptor, ')');
   1159       if (return_type == nullptr) {
   1160         fprintf(stderr, "bad method type descriptor '%s'\n", type_descriptor);
   1161         goto bail;
   1162       }
   1163       std::string dot(DescriptorToDotWrapper(return_type + 1));
   1164       fprintf(out_file_, " return=\"%s\"\n", dot.c_str());
   1165       fprintf(out_file_, " abstract=%s\n", QuotedBool((flags & kAccAbstract) != 0));
   1166       fprintf(out_file_, " native=%s\n", QuotedBool((flags & kAccNative) != 0));
   1167       fprintf(out_file_, " synchronized=%s\n", QuotedBool(
   1168           (flags & (kAccSynchronized | kAccDeclaredSynchronized)) != 0));
   1169     }
   1170 
   1171     // Additional method flags.
   1172     fprintf(out_file_, " static=%s\n", QuotedBool((flags & kAccStatic) != 0));
   1173     fprintf(out_file_, " final=%s\n", QuotedBool((flags & kAccFinal) != 0));
   1174     // The "deprecated=" not knowable w/o parsing annotations.
   1175     fprintf(out_file_, " visibility=%s\n>\n", QuotedVisibility(flags));
   1176 
   1177     // Parameters.
   1178     if (type_descriptor[0] != '(') {
   1179       fprintf(stderr, "ERROR: bad descriptor '%s'\n", type_descriptor);
   1180       goto bail;
   1181     }
   1182     char* tmp_buf = reinterpret_cast<char*>(malloc(strlen(type_descriptor) + 1));
   1183     const char* base = type_descriptor + 1;
   1184     int arg_num = 0;
   1185     while (*base != ')') {
   1186       char* cp = tmp_buf;
   1187       while (*base == '[') {
   1188         *cp++ = *base++;
   1189       }
   1190       if (*base == 'L') {
   1191         // Copy through ';'.
   1192         do {
   1193           *cp = *base++;
   1194         } while (*cp++ != ';');
   1195       } else {
   1196         // Primitive char, copy it.
   1197         if (strchr("ZBCSIFJD", *base) == nullptr) {
   1198           fprintf(stderr, "ERROR: bad method signature '%s'\n", base);
   1199           break;  // while
   1200         }
   1201         *cp++ = *base++;
   1202       }
   1203       // Null terminate and display.
   1204       *cp++ = '\0';
   1205       std::string dot(DescriptorToDotWrapper(tmp_buf));
   1206       fprintf(out_file_, "<parameter name=\"arg%d\" type=\"%s\">\n"
   1207                         "</parameter>\n", arg_num++, dot.c_str());
   1208     }  // while
   1209     free(tmp_buf);
   1210     if (constructor) {
   1211       fprintf(out_file_, "</constructor>\n");
   1212     } else {
   1213       fprintf(out_file_, "</method>\n");
   1214     }
   1215   }
   1216 
   1217  bail:
   1218   free(type_descriptor);
   1219   free(access_str);
   1220 }
   1221 
   1222 /*
   1223  * Dumps a static (class) field.
   1224  */
   1225 void DexLayout::DumpSField(uint32_t idx, uint32_t flags, int i, dex_ir::EncodedValue* init) {
   1226   // Bail for anything private if export only requested.
   1227   if (options_.exports_only_ && (flags & (kAccPublic | kAccProtected)) == 0) {
   1228     return;
   1229   }
   1230 
   1231   dex_ir::FieldId* field_id = header_->GetCollections().GetFieldId(idx);
   1232   const char* name = field_id->Name()->Data();
   1233   const char* type_descriptor = field_id->Type()->GetStringId()->Data();
   1234   const char* back_descriptor = field_id->Class()->GetStringId()->Data();
   1235   char* access_str = CreateAccessFlagStr(flags, kAccessForField);
   1236 
   1237   if (options_.output_format_ == kOutputPlain) {
   1238     fprintf(out_file_, "    #%d              : (in %s)\n", i, back_descriptor);
   1239     fprintf(out_file_, "      name          : '%s'\n", name);
   1240     fprintf(out_file_, "      type          : '%s'\n", type_descriptor);
   1241     fprintf(out_file_, "      access        : 0x%04x (%s)\n", flags, access_str);
   1242     if (init != nullptr) {
   1243       fputs("      value         : ", out_file_);
   1244       DumpEncodedValue(init);
   1245       fputs("\n", out_file_);
   1246     }
   1247   } else if (options_.output_format_ == kOutputXml) {
   1248     fprintf(out_file_, "<field name=\"%s\"\n", name);
   1249     std::string dot(DescriptorToDotWrapper(type_descriptor));
   1250     fprintf(out_file_, " type=\"%s\"\n", dot.c_str());
   1251     fprintf(out_file_, " transient=%s\n", QuotedBool((flags & kAccTransient) != 0));
   1252     fprintf(out_file_, " volatile=%s\n", QuotedBool((flags & kAccVolatile) != 0));
   1253     // The "value=" is not knowable w/o parsing annotations.
   1254     fprintf(out_file_, " static=%s\n", QuotedBool((flags & kAccStatic) != 0));
   1255     fprintf(out_file_, " final=%s\n", QuotedBool((flags & kAccFinal) != 0));
   1256     // The "deprecated=" is not knowable w/o parsing annotations.
   1257     fprintf(out_file_, " visibility=%s\n", QuotedVisibility(flags));
   1258     if (init != nullptr) {
   1259       fputs(" value=\"", out_file_);
   1260       DumpEncodedValue(init);
   1261       fputs("\"\n", out_file_);
   1262     }
   1263     fputs(">\n</field>\n", out_file_);
   1264   }
   1265 
   1266   free(access_str);
   1267 }
   1268 
   1269 /*
   1270  * Dumps an instance field.
   1271  */
   1272 void DexLayout::DumpIField(uint32_t idx, uint32_t flags, int i) {
   1273   DumpSField(idx, flags, i, nullptr);
   1274 }
   1275 
   1276 /*
   1277  * Dumps the class.
   1278  *
   1279  * Note "idx" is a DexClassDef index, not a DexTypeId index.
   1280  *
   1281  * If "*last_package" is nullptr or does not match the current class' package,
   1282  * the value will be replaced with a newly-allocated string.
   1283  */
   1284 void DexLayout::DumpClass(int idx, char** last_package) {
   1285   dex_ir::ClassDef* class_def = header_->GetCollections().GetClassDef(idx);
   1286   // Omitting non-public class.
   1287   if (options_.exports_only_ && (class_def->GetAccessFlags() & kAccPublic) == 0) {
   1288     return;
   1289   }
   1290 
   1291   if (options_.show_section_headers_) {
   1292     DumpClassDef(idx);
   1293   }
   1294 
   1295   if (options_.show_annotations_) {
   1296     DumpClassAnnotations(idx);
   1297   }
   1298 
   1299   // For the XML output, show the package name.  Ideally we'd gather
   1300   // up the classes, sort them, and dump them alphabetically so the
   1301   // package name wouldn't jump around, but that's not a great plan
   1302   // for something that needs to run on the device.
   1303   const char* class_descriptor =
   1304       header_->GetCollections().GetClassDef(idx)->ClassType()->GetStringId()->Data();
   1305   if (!(class_descriptor[0] == 'L' &&
   1306         class_descriptor[strlen(class_descriptor)-1] == ';')) {
   1307     // Arrays and primitives should not be defined explicitly. Keep going?
   1308     fprintf(stderr, "Malformed class name '%s'\n", class_descriptor);
   1309   } else if (options_.output_format_ == kOutputXml) {
   1310     char* mangle = strdup(class_descriptor + 1);
   1311     mangle[strlen(mangle)-1] = '\0';
   1312 
   1313     // Reduce to just the package name.
   1314     char* last_slash = strrchr(mangle, '/');
   1315     if (last_slash != nullptr) {
   1316       *last_slash = '\0';
   1317     } else {
   1318       *mangle = '\0';
   1319     }
   1320 
   1321     for (char* cp = mangle; *cp != '\0'; cp++) {
   1322       if (*cp == '/') {
   1323         *cp = '.';
   1324       }
   1325     }  // for
   1326 
   1327     if (*last_package == nullptr || strcmp(mangle, *last_package) != 0) {
   1328       // Start of a new package.
   1329       if (*last_package != nullptr) {
   1330         fprintf(out_file_, "</package>\n");
   1331       }
   1332       fprintf(out_file_, "<package name=\"%s\"\n>\n", mangle);
   1333       free(*last_package);
   1334       *last_package = mangle;
   1335     } else {
   1336       free(mangle);
   1337     }
   1338   }
   1339 
   1340   // General class information.
   1341   char* access_str = CreateAccessFlagStr(class_def->GetAccessFlags(), kAccessForClass);
   1342   const char* superclass_descriptor = nullptr;
   1343   if (class_def->Superclass() != nullptr) {
   1344     superclass_descriptor = class_def->Superclass()->GetStringId()->Data();
   1345   }
   1346   if (options_.output_format_ == kOutputPlain) {
   1347     fprintf(out_file_, "Class #%d            -\n", idx);
   1348     fprintf(out_file_, "  Class descriptor  : '%s'\n", class_descriptor);
   1349     fprintf(out_file_, "  Access flags      : 0x%04x (%s)\n",
   1350             class_def->GetAccessFlags(), access_str);
   1351     if (superclass_descriptor != nullptr) {
   1352       fprintf(out_file_, "  Superclass        : '%s'\n", superclass_descriptor);
   1353     }
   1354     fprintf(out_file_, "  Interfaces        -\n");
   1355   } else {
   1356     std::string dot(DescriptorClassToDot(class_descriptor));
   1357     fprintf(out_file_, "<class name=\"%s\"\n", dot.c_str());
   1358     if (superclass_descriptor != nullptr) {
   1359       dot = DescriptorToDotWrapper(superclass_descriptor);
   1360       fprintf(out_file_, " extends=\"%s\"\n", dot.c_str());
   1361     }
   1362     fprintf(out_file_, " interface=%s\n",
   1363             QuotedBool((class_def->GetAccessFlags() & kAccInterface) != 0));
   1364     fprintf(out_file_, " abstract=%s\n",
   1365             QuotedBool((class_def->GetAccessFlags() & kAccAbstract) != 0));
   1366     fprintf(out_file_, " static=%s\n", QuotedBool((class_def->GetAccessFlags() & kAccStatic) != 0));
   1367     fprintf(out_file_, " final=%s\n", QuotedBool((class_def->GetAccessFlags() & kAccFinal) != 0));
   1368     // The "deprecated=" not knowable w/o parsing annotations.
   1369     fprintf(out_file_, " visibility=%s\n", QuotedVisibility(class_def->GetAccessFlags()));
   1370     fprintf(out_file_, ">\n");
   1371   }
   1372 
   1373   // Interfaces.
   1374   const dex_ir::TypeList* interfaces = class_def->Interfaces();
   1375   if (interfaces != nullptr) {
   1376     const dex_ir::TypeIdVector* interfaces_vector = interfaces->GetTypeList();
   1377     for (uint32_t i = 0; i < interfaces_vector->size(); i++) {
   1378       DumpInterface((*interfaces_vector)[i], i);
   1379     }  // for
   1380   }
   1381 
   1382   // Fields and methods.
   1383   dex_ir::ClassData* class_data = class_def->GetClassData();
   1384   // Prepare data for static fields.
   1385   dex_ir::EncodedArrayItem* static_values = class_def->StaticValues();
   1386   dex_ir::EncodedValueVector* encoded_values =
   1387       static_values == nullptr ? nullptr : static_values->GetEncodedValues();
   1388   const uint32_t encoded_values_size = (encoded_values == nullptr) ? 0 : encoded_values->size();
   1389 
   1390   // Static fields.
   1391   if (options_.output_format_ == kOutputPlain) {
   1392     fprintf(out_file_, "  Static fields     -\n");
   1393   }
   1394   if (class_data != nullptr) {
   1395     dex_ir::FieldItemVector* static_fields = class_data->StaticFields();
   1396     if (static_fields != nullptr) {
   1397       for (uint32_t i = 0; i < static_fields->size(); i++) {
   1398         DumpSField((*static_fields)[i]->GetFieldId()->GetIndex(),
   1399                    (*static_fields)[i]->GetAccessFlags(),
   1400                    i,
   1401                    i < encoded_values_size ? (*encoded_values)[i].get() : nullptr);
   1402       }  // for
   1403     }
   1404   }
   1405 
   1406   // Instance fields.
   1407   if (options_.output_format_ == kOutputPlain) {
   1408     fprintf(out_file_, "  Instance fields   -\n");
   1409   }
   1410   if (class_data != nullptr) {
   1411     dex_ir::FieldItemVector* instance_fields = class_data->InstanceFields();
   1412     if (instance_fields != nullptr) {
   1413       for (uint32_t i = 0; i < instance_fields->size(); i++) {
   1414         DumpIField((*instance_fields)[i]->GetFieldId()->GetIndex(),
   1415                    (*instance_fields)[i]->GetAccessFlags(),
   1416                    i);
   1417       }  // for
   1418     }
   1419   }
   1420 
   1421   // Direct methods.
   1422   if (options_.output_format_ == kOutputPlain) {
   1423     fprintf(out_file_, "  Direct methods    -\n");
   1424   }
   1425   if (class_data != nullptr) {
   1426     dex_ir::MethodItemVector* direct_methods = class_data->DirectMethods();
   1427     if (direct_methods != nullptr) {
   1428       for (uint32_t i = 0; i < direct_methods->size(); i++) {
   1429         DumpMethod((*direct_methods)[i]->GetMethodId()->GetIndex(),
   1430                    (*direct_methods)[i]->GetAccessFlags(),
   1431                    (*direct_methods)[i]->GetCodeItem(),
   1432                  i);
   1433       }  // for
   1434     }
   1435   }
   1436 
   1437   // Virtual methods.
   1438   if (options_.output_format_ == kOutputPlain) {
   1439     fprintf(out_file_, "  Virtual methods   -\n");
   1440   }
   1441   if (class_data != nullptr) {
   1442     dex_ir::MethodItemVector* virtual_methods = class_data->VirtualMethods();
   1443     if (virtual_methods != nullptr) {
   1444       for (uint32_t i = 0; i < virtual_methods->size(); i++) {
   1445         DumpMethod((*virtual_methods)[i]->GetMethodId()->GetIndex(),
   1446                    (*virtual_methods)[i]->GetAccessFlags(),
   1447                    (*virtual_methods)[i]->GetCodeItem(),
   1448                    i);
   1449       }  // for
   1450     }
   1451   }
   1452 
   1453   // End of class.
   1454   if (options_.output_format_ == kOutputPlain) {
   1455     const char* file_name = "unknown";
   1456     if (class_def->SourceFile() != nullptr) {
   1457       file_name = class_def->SourceFile()->Data();
   1458     }
   1459     const dex_ir::StringId* source_file = class_def->SourceFile();
   1460     fprintf(out_file_, "  source_file_idx   : %d (%s)\n\n",
   1461             source_file == nullptr ? 0xffffffffU : source_file->GetIndex(), file_name);
   1462   } else if (options_.output_format_ == kOutputXml) {
   1463     fprintf(out_file_, "</class>\n");
   1464   }
   1465 
   1466   free(access_str);
   1467 }
   1468 
   1469 void DexLayout::DumpDexFile() {
   1470   // Headers.
   1471   if (options_.show_file_headers_) {
   1472     DumpFileHeader();
   1473   }
   1474 
   1475   // Open XML context.
   1476   if (options_.output_format_ == kOutputXml) {
   1477     fprintf(out_file_, "<api>\n");
   1478   }
   1479 
   1480   // Iterate over all classes.
   1481   char* package = nullptr;
   1482   const uint32_t class_defs_size = header_->GetCollections().ClassDefsSize();
   1483   for (uint32_t i = 0; i < class_defs_size; i++) {
   1484     DumpClass(i, &package);
   1485   }  // for
   1486 
   1487   // Free the last package allocated.
   1488   if (package != nullptr) {
   1489     fprintf(out_file_, "</package>\n");
   1490     free(package);
   1491   }
   1492 
   1493   // Close XML context.
   1494   if (options_.output_format_ == kOutputXml) {
   1495     fprintf(out_file_, "</api>\n");
   1496   }
   1497 }
   1498 
   1499 std::vector<dex_ir::ClassData*> DexLayout::LayoutClassDefsAndClassData(const DexFile* dex_file) {
   1500   std::vector<dex_ir::ClassDef*> new_class_def_order;
   1501   for (std::unique_ptr<dex_ir::ClassDef>& class_def : header_->GetCollections().ClassDefs()) {
   1502     dex::TypeIndex type_idx(class_def->ClassType()->GetIndex());
   1503     if (info_->ContainsClass(*dex_file, type_idx)) {
   1504       new_class_def_order.push_back(class_def.get());
   1505     }
   1506   }
   1507   for (std::unique_ptr<dex_ir::ClassDef>& class_def : header_->GetCollections().ClassDefs()) {
   1508     dex::TypeIndex type_idx(class_def->ClassType()->GetIndex());
   1509     if (!info_->ContainsClass(*dex_file, type_idx)) {
   1510       new_class_def_order.push_back(class_def.get());
   1511     }
   1512   }
   1513   uint32_t class_defs_offset = header_->GetCollections().ClassDefsOffset();
   1514   uint32_t class_data_offset = header_->GetCollections().ClassDatasOffset();
   1515   std::unordered_set<dex_ir::ClassData*> visited_class_data;
   1516   std::vector<dex_ir::ClassData*> new_class_data_order;
   1517   for (uint32_t i = 0; i < new_class_def_order.size(); ++i) {
   1518     dex_ir::ClassDef* class_def = new_class_def_order[i];
   1519     class_def->SetIndex(i);
   1520     class_def->SetOffset(class_defs_offset);
   1521     class_defs_offset += dex_ir::ClassDef::ItemSize();
   1522     dex_ir::ClassData* class_data = class_def->GetClassData();
   1523     if (class_data != nullptr && visited_class_data.find(class_data) == visited_class_data.end()) {
   1524       class_data->SetOffset(class_data_offset);
   1525       class_data_offset += class_data->GetSize();
   1526       visited_class_data.insert(class_data);
   1527       new_class_data_order.push_back(class_data);
   1528     }
   1529   }
   1530   return new_class_data_order;
   1531 }
   1532 
   1533 void DexLayout::LayoutStringData(const DexFile* dex_file) {
   1534   const size_t num_strings = header_->GetCollections().StringIds().size();
   1535   std::vector<bool> is_shorty(num_strings, false);
   1536   std::vector<bool> from_hot_method(num_strings, false);
   1537   for (std::unique_ptr<dex_ir::ClassDef>& class_def : header_->GetCollections().ClassDefs()) {
   1538     // A name of a profile class is probably going to get looked up by ClassTable::Lookup, mark it
   1539     // as hot.
   1540     const bool is_profile_class =
   1541         info_->ContainsClass(*dex_file, dex::TypeIndex(class_def->ClassType()->GetIndex()));
   1542     if (is_profile_class) {
   1543       from_hot_method[class_def->ClassType()->GetStringId()->GetIndex()] = true;
   1544     }
   1545     dex_ir::ClassData* data = class_def->GetClassData();
   1546     if (data == nullptr) {
   1547       continue;
   1548     }
   1549     for (size_t i = 0; i < 2; ++i) {
   1550       for (auto& method : *(i == 0 ? data->DirectMethods() : data->VirtualMethods())) {
   1551         const dex_ir::MethodId* method_id = method->GetMethodId();
   1552         dex_ir::CodeItem* code_item = method->GetCodeItem();
   1553         if (code_item == nullptr) {
   1554           continue;
   1555         }
   1556         const bool is_clinit = is_profile_class &&
   1557             (method->GetAccessFlags() & kAccConstructor) != 0 &&
   1558             (method->GetAccessFlags() & kAccStatic) != 0;
   1559         const bool method_executed = is_clinit ||
   1560             info_->ContainsMethod(MethodReference(dex_file, method_id->GetIndex()));
   1561         if (!method_executed) {
   1562           continue;
   1563         }
   1564         is_shorty[method_id->Proto()->Shorty()->GetIndex()] = true;
   1565         dex_ir::CodeFixups* fixups = code_item->GetCodeFixups();
   1566         if (fixups == nullptr) {
   1567           continue;
   1568         }
   1569         if (fixups->StringIds() != nullptr) {
   1570           // Add const-strings.
   1571           for (dex_ir::StringId* id : *fixups->StringIds()) {
   1572             from_hot_method[id->GetIndex()] = true;
   1573           }
   1574         }
   1575         // TODO: Only visit field ids from static getters and setters.
   1576         for (dex_ir::FieldId* id : *fixups->FieldIds()) {
   1577           // Add the field names and types from getters and setters.
   1578           from_hot_method[id->Name()->GetIndex()] = true;
   1579           from_hot_method[id->Type()->GetStringId()->GetIndex()] = true;
   1580         }
   1581       }
   1582     }
   1583   }
   1584   // Sort string data by specified order.
   1585   std::vector<dex_ir::StringId*> string_ids;
   1586   size_t min_offset = std::numeric_limits<size_t>::max();
   1587   size_t max_offset = 0;
   1588   size_t hot_bytes = 0;
   1589   for (auto& string_id : header_->GetCollections().StringIds()) {
   1590     string_ids.push_back(string_id.get());
   1591     const size_t cur_offset = string_id->DataItem()->GetOffset();
   1592     CHECK_NE(cur_offset, 0u);
   1593     min_offset = std::min(min_offset, cur_offset);
   1594     dex_ir::StringData* data = string_id->DataItem();
   1595     const size_t element_size = data->GetSize() + 1;  // Add one extra for null.
   1596     size_t end_offset = cur_offset + element_size;
   1597     if (is_shorty[string_id->GetIndex()] || from_hot_method[string_id->GetIndex()]) {
   1598       hot_bytes += element_size;
   1599     }
   1600     max_offset = std::max(max_offset, end_offset);
   1601   }
   1602   VLOG(compiler) << "Hot string data bytes " << hot_bytes << "/" << max_offset - min_offset;
   1603   std::sort(string_ids.begin(),
   1604             string_ids.end(),
   1605             [&is_shorty, &from_hot_method](const dex_ir::StringId* a,
   1606                                            const dex_ir::StringId* b) {
   1607     const bool a_is_hot = from_hot_method[a->GetIndex()];
   1608     const bool b_is_hot = from_hot_method[b->GetIndex()];
   1609     if (a_is_hot != b_is_hot) {
   1610       return a_is_hot < b_is_hot;
   1611     }
   1612     // After hot methods are partitioned, subpartition shorties.
   1613     const bool a_is_shorty = is_shorty[a->GetIndex()];
   1614     const bool b_is_shorty = is_shorty[b->GetIndex()];
   1615     if (a_is_shorty != b_is_shorty) {
   1616       return a_is_shorty < b_is_shorty;
   1617     }
   1618     // Preserve order.
   1619     return a->DataItem()->GetOffset() < b->DataItem()->GetOffset();
   1620   });
   1621   // Now we know what order we want the string data, reorder the offsets.
   1622   size_t offset = min_offset;
   1623   for (dex_ir::StringId* string_id : string_ids) {
   1624     dex_ir::StringData* data = string_id->DataItem();
   1625     data->SetOffset(offset);
   1626     offset += data->GetSize() + 1;  // Add one extra for null.
   1627   }
   1628   if (offset > max_offset) {
   1629     const uint32_t diff = offset - max_offset;
   1630     // If we expanded the string data section, we need to update the offsets or else we will
   1631     // corrupt the next section when writing out.
   1632     FixupSections(header_->GetCollections().StringDatasOffset(), diff);
   1633     // Update file size.
   1634     header_->SetFileSize(header_->FileSize() + diff);
   1635   }
   1636 }
   1637 
   1638 // Orders code items according to specified class data ordering.
   1639 // NOTE: If the section following the code items is byte aligned, the last code item is left in
   1640 // place to preserve alignment. Layout needs an overhaul to handle movement of other sections.
   1641 int32_t DexLayout::LayoutCodeItems(const DexFile* dex_file,
   1642                                    std::vector<dex_ir::ClassData*> new_class_data_order) {
   1643   // Do not move code items if class data section precedes code item section.
   1644   // ULEB encoding is variable length, causing problems determining the offset of the code items.
   1645   // TODO: We should swap the order of these sections in the future to avoid this issue.
   1646   uint32_t class_data_offset = header_->GetCollections().ClassDatasOffset();
   1647   uint32_t code_item_offset = header_->GetCollections().CodeItemsOffset();
   1648   if (class_data_offset < code_item_offset) {
   1649     return 0;
   1650   }
   1651 
   1652   // Find the last code item so we can leave it in place if the next section is not 4 byte aligned.
   1653   dex_ir::CodeItem* last_code_item = nullptr;
   1654   std::unordered_set<dex_ir::CodeItem*> visited_code_items;
   1655   bool is_code_item_aligned = IsNextSectionCodeItemAligned(code_item_offset);
   1656   if (!is_code_item_aligned) {
   1657     for (auto& code_item_pair : header_->GetCollections().CodeItems()) {
   1658       std::unique_ptr<dex_ir::CodeItem>& code_item = code_item_pair.second;
   1659       if (last_code_item == nullptr
   1660           || last_code_item->GetOffset() < code_item->GetOffset()) {
   1661         last_code_item = code_item.get();
   1662       }
   1663     }
   1664   }
   1665 
   1666   enum CodeItemKind {
   1667     kMethodNotExecuted = 0,
   1668     kMethodExecuted = 1,
   1669     kSize = 2,
   1670   };
   1671 
   1672   static constexpr InvokeType invoke_types[] = {
   1673       kDirect,
   1674       kVirtual
   1675   };
   1676 
   1677   std::unordered_set<dex_ir::CodeItem*> code_items[CodeItemKind::kSize];
   1678   for (InvokeType invoke_type : invoke_types) {
   1679     for (std::unique_ptr<dex_ir::ClassDef>& class_def : header_->GetCollections().ClassDefs()) {
   1680       const bool is_profile_class =
   1681           info_->ContainsClass(*dex_file, dex::TypeIndex(class_def->ClassType()->GetIndex()));
   1682 
   1683       // Skip classes that are not defined in this dex file.
   1684       dex_ir::ClassData* class_data = class_def->GetClassData();
   1685       if (class_data == nullptr) {
   1686         continue;
   1687       }
   1688       for (auto& method : *(invoke_type == InvokeType::kDirect
   1689                                 ? class_data->DirectMethods()
   1690                                 : class_data->VirtualMethods())) {
   1691         const dex_ir::MethodId *method_id = method->GetMethodId();
   1692         dex_ir::CodeItem *code_item = method->GetCodeItem();
   1693         if (code_item == last_code_item || code_item == nullptr) {
   1694           continue;
   1695         }
   1696         // Separate executed methods (clinits and profiled methods) from unexecuted methods.
   1697         // TODO: clinits are executed only once, consider separating them further.
   1698         const bool is_clinit = is_profile_class &&
   1699             (method->GetAccessFlags() & kAccConstructor) != 0 &&
   1700             (method->GetAccessFlags() & kAccStatic) != 0;
   1701         const bool is_method_executed = is_clinit ||
   1702             info_->ContainsMethod(MethodReference(dex_file, method_id->GetIndex()));
   1703         code_items[is_method_executed
   1704                        ? CodeItemKind::kMethodExecuted
   1705                        : CodeItemKind::kMethodNotExecuted]
   1706             .insert(code_item);
   1707       }
   1708     }
   1709   }
   1710 
   1711   // total_diff includes diffs generated by both executed and non-executed methods.
   1712   int32_t total_diff = 0;
   1713   // The relative placement has no effect on correctness; it is used to ensure
   1714   // the layout is deterministic
   1715   for (std::unordered_set<dex_ir::CodeItem*>& code_items_set : code_items) {
   1716     // diff is reset for executed and non-executed methods.
   1717     int32_t diff = 0;
   1718     for (dex_ir::ClassData* data : new_class_data_order) {
   1719       data->SetOffset(data->GetOffset() + diff);
   1720       for (InvokeType invoke_type : invoke_types) {
   1721         for (auto &method : *(invoke_type == InvokeType::kDirect
   1722                                   ? data->DirectMethods()
   1723                                   : data->VirtualMethods())) {
   1724           dex_ir::CodeItem* code_item = method->GetCodeItem();
   1725           if (code_item != nullptr &&
   1726               code_items_set.find(code_item) != code_items_set.end()) {
   1727             diff += UnsignedLeb128Size(code_item_offset)
   1728                 - UnsignedLeb128Size(code_item->GetOffset());
   1729             code_item->SetOffset(code_item_offset);
   1730             code_item_offset +=
   1731                 RoundUp(code_item->GetSize(), kDexCodeItemAlignment);
   1732           }
   1733         }
   1734       }
   1735     }
   1736     total_diff += diff;
   1737   }
   1738   // Adjust diff to be 4-byte aligned.
   1739   return RoundUp(total_diff, kDexCodeItemAlignment);
   1740 }
   1741 
   1742 bool DexLayout::IsNextSectionCodeItemAligned(uint32_t offset) {
   1743   dex_ir::Collections& collections = header_->GetCollections();
   1744   std::set<uint32_t> section_offsets;
   1745   section_offsets.insert(collections.MapListOffset());
   1746   section_offsets.insert(collections.TypeListsOffset());
   1747   section_offsets.insert(collections.AnnotationSetRefListsOffset());
   1748   section_offsets.insert(collections.AnnotationSetItemsOffset());
   1749   section_offsets.insert(collections.ClassDatasOffset());
   1750   section_offsets.insert(collections.CodeItemsOffset());
   1751   section_offsets.insert(collections.StringDatasOffset());
   1752   section_offsets.insert(collections.DebugInfoItemsOffset());
   1753   section_offsets.insert(collections.AnnotationItemsOffset());
   1754   section_offsets.insert(collections.EncodedArrayItemsOffset());
   1755   section_offsets.insert(collections.AnnotationsDirectoryItemsOffset());
   1756 
   1757   auto found = section_offsets.find(offset);
   1758   if (found != section_offsets.end()) {
   1759     found++;
   1760     if (found != section_offsets.end()) {
   1761       return *found % kDexCodeItemAlignment == 0;
   1762     }
   1763   }
   1764   return false;
   1765 }
   1766 
   1767 // Adjust offsets of every item in the specified section by diff bytes.
   1768 template<class T> void DexLayout::FixupSection(std::map<uint32_t, std::unique_ptr<T>>& map,
   1769                                                uint32_t diff) {
   1770   for (auto& pair : map) {
   1771     std::unique_ptr<T>& item = pair.second;
   1772     item->SetOffset(item->GetOffset() + diff);
   1773   }
   1774 }
   1775 
   1776 // Adjust offsets of all sections with an address after the specified offset by diff bytes.
   1777 void DexLayout::FixupSections(uint32_t offset, uint32_t diff) {
   1778   dex_ir::Collections& collections = header_->GetCollections();
   1779   uint32_t map_list_offset = collections.MapListOffset();
   1780   if (map_list_offset > offset) {
   1781     collections.SetMapListOffset(map_list_offset + diff);
   1782   }
   1783 
   1784   uint32_t type_lists_offset = collections.TypeListsOffset();
   1785   if (type_lists_offset > offset) {
   1786     collections.SetTypeListsOffset(type_lists_offset + diff);
   1787     FixupSection(collections.TypeLists(), diff);
   1788   }
   1789 
   1790   uint32_t annotation_set_ref_lists_offset = collections.AnnotationSetRefListsOffset();
   1791   if (annotation_set_ref_lists_offset > offset) {
   1792     collections.SetAnnotationSetRefListsOffset(annotation_set_ref_lists_offset + diff);
   1793     FixupSection(collections.AnnotationSetRefLists(), diff);
   1794   }
   1795 
   1796   uint32_t annotation_set_items_offset = collections.AnnotationSetItemsOffset();
   1797   if (annotation_set_items_offset > offset) {
   1798     collections.SetAnnotationSetItemsOffset(annotation_set_items_offset + diff);
   1799     FixupSection(collections.AnnotationSetItems(), diff);
   1800   }
   1801 
   1802   uint32_t class_datas_offset = collections.ClassDatasOffset();
   1803   if (class_datas_offset > offset) {
   1804     collections.SetClassDatasOffset(class_datas_offset + diff);
   1805     FixupSection(collections.ClassDatas(), diff);
   1806   }
   1807 
   1808   uint32_t code_items_offset = collections.CodeItemsOffset();
   1809   if (code_items_offset > offset) {
   1810     collections.SetCodeItemsOffset(code_items_offset + diff);
   1811     FixupSection(collections.CodeItems(), diff);
   1812   }
   1813 
   1814   uint32_t string_datas_offset = collections.StringDatasOffset();
   1815   if (string_datas_offset > offset) {
   1816     collections.SetStringDatasOffset(string_datas_offset + diff);
   1817     FixupSection(collections.StringDatas(), diff);
   1818   }
   1819 
   1820   uint32_t debug_info_items_offset = collections.DebugInfoItemsOffset();
   1821   if (debug_info_items_offset > offset) {
   1822     collections.SetDebugInfoItemsOffset(debug_info_items_offset + diff);
   1823     FixupSection(collections.DebugInfoItems(), diff);
   1824   }
   1825 
   1826   uint32_t annotation_items_offset = collections.AnnotationItemsOffset();
   1827   if (annotation_items_offset > offset) {
   1828     collections.SetAnnotationItemsOffset(annotation_items_offset + diff);
   1829     FixupSection(collections.AnnotationItems(), diff);
   1830   }
   1831 
   1832   uint32_t encoded_array_items_offset = collections.EncodedArrayItemsOffset();
   1833   if (encoded_array_items_offset > offset) {
   1834     collections.SetEncodedArrayItemsOffset(encoded_array_items_offset + diff);
   1835     FixupSection(collections.EncodedArrayItems(), diff);
   1836   }
   1837 
   1838   uint32_t annotations_directory_items_offset = collections.AnnotationsDirectoryItemsOffset();
   1839   if (annotations_directory_items_offset > offset) {
   1840     collections.SetAnnotationsDirectoryItemsOffset(annotations_directory_items_offset + diff);
   1841     FixupSection(collections.AnnotationsDirectoryItems(), diff);
   1842   }
   1843 }
   1844 
   1845 void DexLayout::LayoutOutputFile(const DexFile* dex_file) {
   1846   LayoutStringData(dex_file);
   1847   std::vector<dex_ir::ClassData*> new_class_data_order = LayoutClassDefsAndClassData(dex_file);
   1848   int32_t diff = LayoutCodeItems(dex_file, new_class_data_order);
   1849   // Move sections after ClassData by diff bytes.
   1850   FixupSections(header_->GetCollections().ClassDatasOffset(), diff);
   1851   // Update file size.
   1852   header_->SetFileSize(header_->FileSize() + diff);
   1853 }
   1854 
   1855 void DexLayout::OutputDexFile(const DexFile* dex_file) {
   1856   const std::string& dex_file_location = dex_file->GetLocation();
   1857   std::string error_msg;
   1858   std::unique_ptr<File> new_file;
   1859   if (!options_.output_to_memmap_) {
   1860     std::string output_location(options_.output_dex_directory_);
   1861     size_t last_slash = dex_file_location.rfind('/');
   1862     std::string dex_file_directory = dex_file_location.substr(0, last_slash + 1);
   1863     if (output_location == dex_file_directory) {
   1864       output_location = dex_file_location + ".new";
   1865     } else if (last_slash != std::string::npos) {
   1866       output_location += dex_file_location.substr(last_slash);
   1867     } else {
   1868       output_location += "/" + dex_file_location + ".new";
   1869     }
   1870     new_file.reset(OS::CreateEmptyFile(output_location.c_str()));
   1871     if (new_file == nullptr) {
   1872       LOG(ERROR) << "Could not create dex writer output file: " << output_location;
   1873       return;
   1874     }
   1875     if (ftruncate(new_file->Fd(), header_->FileSize()) != 0) {
   1876       LOG(ERROR) << "Could not grow dex writer output file: " << output_location;;
   1877       new_file->Erase();
   1878       return;
   1879     }
   1880     mem_map_.reset(MemMap::MapFile(header_->FileSize(), PROT_READ | PROT_WRITE, MAP_SHARED,
   1881         new_file->Fd(), 0, /*low_4gb*/ false, output_location.c_str(), &error_msg));
   1882   } else {
   1883     mem_map_.reset(MemMap::MapAnonymous("layout dex", nullptr, header_->FileSize(),
   1884         PROT_READ | PROT_WRITE, /* low_4gb */ false, /* reuse */ false, &error_msg));
   1885   }
   1886   if (mem_map_ == nullptr) {
   1887     LOG(ERROR) << "Could not create mem map for dex writer output: " << error_msg;
   1888     if (new_file != nullptr) {
   1889       new_file->Erase();
   1890     }
   1891     return;
   1892   }
   1893   DexWriter::Output(header_, mem_map_.get());
   1894   if (new_file != nullptr) {
   1895     UNUSED(new_file->FlushCloseOrErase());
   1896   }
   1897   // Verify the output dex file's structure for debug builds.
   1898   if (kIsDebugBuild) {
   1899     std::string location = "memory mapped file for " + dex_file_location;
   1900     std::unique_ptr<const DexFile> output_dex_file(DexFile::Open(mem_map_->Begin(),
   1901                                                                  mem_map_->Size(),
   1902                                                                  location,
   1903                                                                  header_->Checksum(),
   1904                                                                  /*oat_dex_file*/ nullptr,
   1905                                                                  /*verify*/ true,
   1906                                                                  /*verify_checksum*/ false,
   1907                                                                  &error_msg));
   1908     DCHECK(output_dex_file != nullptr) << "Failed to re-open output file:" << error_msg;
   1909   }
   1910   // Do IR-level comparison between input and output. This check ignores potential differences
   1911   // due to layout, so offsets are not checked. Instead, it checks the data contents of each item.
   1912   if (options_.verify_output_) {
   1913     std::unique_ptr<dex_ir::Header> orig_header(dex_ir::DexIrBuilder(*dex_file));
   1914     CHECK(VerifyOutputDexFile(orig_header.get(), header_, &error_msg)) << error_msg;
   1915   }
   1916 }
   1917 
   1918 /*
   1919  * Dumps the requested sections of the file.
   1920  */
   1921 void DexLayout::ProcessDexFile(const char* file_name,
   1922                                const DexFile* dex_file,
   1923                                size_t dex_file_index) {
   1924   std::unique_ptr<dex_ir::Header> header(dex_ir::DexIrBuilder(*dex_file));
   1925   SetHeader(header.get());
   1926 
   1927   if (options_.verbose_) {
   1928     fprintf(out_file_, "Opened '%s', DEX version '%.3s'\n",
   1929             file_name, dex_file->GetHeader().magic_ + 4);
   1930   }
   1931 
   1932   if (options_.visualize_pattern_) {
   1933     VisualizeDexLayout(header_, dex_file, dex_file_index, info_);
   1934     return;
   1935   }
   1936 
   1937   if (options_.show_section_statistics_) {
   1938     ShowDexSectionStatistics(header_, dex_file_index);
   1939     return;
   1940   }
   1941 
   1942   // Dump dex file.
   1943   if (options_.dump_) {
   1944     DumpDexFile();
   1945   }
   1946 
   1947   // Output dex file as file or memmap.
   1948   if (options_.output_dex_directory_ != nullptr || options_.output_to_memmap_) {
   1949     if (info_ != nullptr) {
   1950       LayoutOutputFile(dex_file);
   1951     }
   1952     OutputDexFile(dex_file);
   1953   }
   1954 }
   1955 
   1956 /*
   1957  * Processes a single file (either direct .dex or indirect .zip/.jar/.apk).
   1958  */
   1959 int DexLayout::ProcessFile(const char* file_name) {
   1960   if (options_.verbose_) {
   1961     fprintf(out_file_, "Processing '%s'...\n", file_name);
   1962   }
   1963 
   1964   // If the file is not a .dex file, the function tries .zip/.jar/.apk files,
   1965   // all of which are Zip archives with "classes.dex" inside.
   1966   const bool verify_checksum = !options_.ignore_bad_checksum_;
   1967   std::string error_msg;
   1968   std::vector<std::unique_ptr<const DexFile>> dex_files;
   1969   if (!DexFile::Open(file_name, file_name, verify_checksum, &error_msg, &dex_files)) {
   1970     // Display returned error message to user. Note that this error behavior
   1971     // differs from the error messages shown by the original Dalvik dexdump.
   1972     fputs(error_msg.c_str(), stderr);
   1973     fputc('\n', stderr);
   1974     return -1;
   1975   }
   1976 
   1977   // Success. Either report checksum verification or process
   1978   // all dex files found in given file.
   1979   if (options_.checksum_only_) {
   1980     fprintf(out_file_, "Checksum verified\n");
   1981   } else {
   1982     for (size_t i = 0; i < dex_files.size(); i++) {
   1983       ProcessDexFile(file_name, dex_files[i].get(), i);
   1984     }
   1985   }
   1986   return 0;
   1987 }
   1988 
   1989 }  // namespace art
   1990