Home | History | Annotate | Download | only in MC
      1 //===-- llvm/MC/MCInstrDesc.h - Instruction Descriptors -*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the MCOperandInfo and MCInstrDesc classes, which
     11 // are used to describe target instructions and their operands.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_MC_MCINSTRDESC_H
     16 #define LLVM_MC_MCINSTRDESC_H
     17 
     18 #include "llvm/MC/MCRegisterInfo.h"
     19 #include "llvm/Support/DataTypes.h"
     20 #include <string>
     21 
     22 namespace llvm {
     23   class MCInst;
     24   class MCSubtargetInfo;
     25   class FeatureBitset;
     26 
     27 //===----------------------------------------------------------------------===//
     28 // Machine Operand Flags and Description
     29 //===----------------------------------------------------------------------===//
     30 
     31 namespace MCOI {
     32 // Operand constraints
     33 enum OperandConstraint {
     34   TIED_TO = 0,  // Must be allocated the same register as.
     35   EARLY_CLOBBER // Operand is an early clobber register operand
     36 };
     37 
     38 /// \brief These are flags set on operands, but should be considered
     39 /// private, all access should go through the MCOperandInfo accessors.
     40 /// See the accessors for a description of what these are.
     41 enum OperandFlags { LookupPtrRegClass = 0, Predicate, OptionalDef };
     42 
     43 /// \brief Operands are tagged with one of the values of this enum.
     44 enum OperandType {
     45   OPERAND_UNKNOWN = 0,
     46   OPERAND_IMMEDIATE = 1,
     47   OPERAND_REGISTER = 2,
     48   OPERAND_MEMORY = 3,
     49   OPERAND_PCREL = 4,
     50   OPERAND_FIRST_TARGET = 5
     51 };
     52 }
     53 
     54 /// \brief This holds information about one operand of a machine instruction,
     55 /// indicating the register class for register operands, etc.
     56 class MCOperandInfo {
     57 public:
     58   /// \brief This specifies the register class enumeration of the operand
     59   /// if the operand is a register.  If isLookupPtrRegClass is set, then this is
     60   /// an index that is passed to TargetRegisterInfo::getPointerRegClass(x) to
     61   /// get a dynamic register class.
     62   int16_t RegClass;
     63 
     64   /// \brief These are flags from the MCOI::OperandFlags enum.
     65   uint8_t Flags;
     66 
     67   /// \brief Information about the type of the operand.
     68   uint8_t OperandType;
     69   /// \brief The lower 16 bits are used to specify which constraints are set.
     70   /// The higher 16 bits are used to specify the value of constraints (4 bits
     71   /// each).
     72   uint32_t Constraints;
     73 
     74   /// \brief Set if this operand is a pointer value and it requires a callback
     75   /// to look up its register class.
     76   bool isLookupPtrRegClass() const {
     77     return Flags & (1 << MCOI::LookupPtrRegClass);
     78   }
     79 
     80   /// \brief Set if this is one of the operands that made up of the predicate
     81   /// operand that controls an isPredicable() instruction.
     82   bool isPredicate() const { return Flags & (1 << MCOI::Predicate); }
     83 
     84   /// \brief Set if this operand is a optional def.
     85   bool isOptionalDef() const { return Flags & (1 << MCOI::OptionalDef); }
     86 };
     87 
     88 //===----------------------------------------------------------------------===//
     89 // Machine Instruction Flags and Description
     90 //===----------------------------------------------------------------------===//
     91 
     92 namespace MCID {
     93 /// \brief These should be considered private to the implementation of the
     94 /// MCInstrDesc class.  Clients should use the predicate methods on MCInstrDesc,
     95 /// not use these directly.  These all correspond to bitfields in the
     96 /// MCInstrDesc::Flags field.
     97 enum Flag {
     98   Variadic = 0,
     99   HasOptionalDef,
    100   Pseudo,
    101   Return,
    102   Call,
    103   Barrier,
    104   Terminator,
    105   Branch,
    106   IndirectBranch,
    107   Compare,
    108   MoveImm,
    109   Bitcast,
    110   Select,
    111   DelaySlot,
    112   FoldableAsLoad,
    113   MayLoad,
    114   MayStore,
    115   Predicable,
    116   NotDuplicable,
    117   UnmodeledSideEffects,
    118   Commutable,
    119   ConvertibleTo3Addr,
    120   UsesCustomInserter,
    121   HasPostISelHook,
    122   Rematerializable,
    123   CheapAsAMove,
    124   ExtraSrcRegAllocReq,
    125   ExtraDefRegAllocReq,
    126   RegSequence,
    127   ExtractSubreg,
    128   InsertSubreg,
    129   Convergent
    130 };
    131 }
    132 
    133 /// \brief Describe properties that are true of each instruction in the target
    134 /// description file.  This captures information about side effects, register
    135 /// use and many other things.  There is one instance of this struct for each
    136 /// target instruction class, and the MachineInstr class points to this struct
    137 /// directly to describe itself.
    138 class MCInstrDesc {
    139 public:
    140   unsigned short Opcode;         // The opcode number
    141   unsigned short NumOperands;    // Num of args (may be more if variable_ops)
    142   unsigned char NumDefs;         // Num of args that are definitions
    143   unsigned char Size;            // Number of bytes in encoding.
    144   unsigned short SchedClass;     // enum identifying instr sched class
    145   uint64_t Flags;                // Flags identifying machine instr class
    146   uint64_t TSFlags;              // Target Specific Flag values
    147   const MCPhysReg *ImplicitUses; // Registers implicitly read by this instr
    148   const MCPhysReg *ImplicitDefs; // Registers implicitly defined by this instr
    149   const MCOperandInfo *OpInfo;   // 'NumOperands' entries about operands
    150   // Subtarget feature that this is deprecated on, if any
    151   // -1 implies this is not deprecated by any single feature. It may still be
    152   // deprecated due to a "complex" reason, below.
    153   int64_t DeprecatedFeature;
    154 
    155   // A complex method to determine is a certain is deprecated or not, and return
    156   // the reason for deprecation.
    157   bool (*ComplexDeprecationInfo)(MCInst &, const MCSubtargetInfo &,
    158                                  std::string &);
    159 
    160   /// \brief Returns the value of the specific constraint if
    161   /// it is set. Returns -1 if it is not set.
    162   int getOperandConstraint(unsigned OpNum,
    163                            MCOI::OperandConstraint Constraint) const {
    164     if (OpNum < NumOperands &&
    165         (OpInfo[OpNum].Constraints & (1 << Constraint))) {
    166       unsigned Pos = 16 + Constraint * 4;
    167       return (int)(OpInfo[OpNum].Constraints >> Pos) & 0xf;
    168     }
    169     return -1;
    170   }
    171 
    172   /// \brief Returns true if a certain instruction is deprecated and if so
    173   /// returns the reason in \p Info.
    174   bool getDeprecatedInfo(MCInst &MI, const MCSubtargetInfo &STI,
    175                          std::string &Info) const;
    176 
    177   /// \brief Return the opcode number for this descriptor.
    178   unsigned getOpcode() const { return Opcode; }
    179 
    180   /// \brief Return the number of declared MachineOperands for this
    181   /// MachineInstruction.  Note that variadic (isVariadic() returns true)
    182   /// instructions may have additional operands at the end of the list, and note
    183   /// that the machine instruction may include implicit register def/uses as
    184   /// well.
    185   unsigned getNumOperands() const { return NumOperands; }
    186 
    187   /// \brief Return the number of MachineOperands that are register
    188   /// definitions.  Register definitions always occur at the start of the
    189   /// machine operand list.  This is the number of "outs" in the .td file,
    190   /// and does not include implicit defs.
    191   unsigned getNumDefs() const { return NumDefs; }
    192 
    193   /// \brief Return flags of this instruction.
    194   unsigned getFlags() const { return Flags; }
    195 
    196   /// \brief Return true if this instruction can have a variable number of
    197   /// operands.  In this case, the variable operands will be after the normal
    198   /// operands but before the implicit definitions and uses (if any are
    199   /// present).
    200   bool isVariadic() const { return Flags & (1 << MCID::Variadic); }
    201 
    202   /// \brief Set if this instruction has an optional definition, e.g.
    203   /// ARM instructions which can set condition code if 's' bit is set.
    204   bool hasOptionalDef() const { return Flags & (1 << MCID::HasOptionalDef); }
    205 
    206   /// \brief Return true if this is a pseudo instruction that doesn't
    207   /// correspond to a real machine instruction.
    208   bool isPseudo() const { return Flags & (1 << MCID::Pseudo); }
    209 
    210   /// \brief Return true if the instruction is a return.
    211   bool isReturn() const { return Flags & (1 << MCID::Return); }
    212 
    213   /// \brief  Return true if the instruction is a call.
    214   bool isCall() const { return Flags & (1 << MCID::Call); }
    215 
    216   /// \brief Returns true if the specified instruction stops control flow
    217   /// from executing the instruction immediately following it.  Examples include
    218   /// unconditional branches and return instructions.
    219   bool isBarrier() const { return Flags & (1 << MCID::Barrier); }
    220 
    221   /// \brief Returns true if this instruction part of the terminator for
    222   /// a basic block.  Typically this is things like return and branch
    223   /// instructions.
    224   ///
    225   /// Various passes use this to insert code into the bottom of a basic block,
    226   /// but before control flow occurs.
    227   bool isTerminator() const { return Flags & (1 << MCID::Terminator); }
    228 
    229   /// \brief Returns true if this is a conditional, unconditional, or
    230   /// indirect branch.  Predicates below can be used to discriminate between
    231   /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
    232   /// get more information.
    233   bool isBranch() const { return Flags & (1 << MCID::Branch); }
    234 
    235   /// \brief Return true if this is an indirect branch, such as a
    236   /// branch through a register.
    237   bool isIndirectBranch() const { return Flags & (1 << MCID::IndirectBranch); }
    238 
    239   /// \brief Return true if this is a branch which may fall
    240   /// through to the next instruction or may transfer control flow to some other
    241   /// block.  The TargetInstrInfo::AnalyzeBranch method can be used to get more
    242   /// information about this branch.
    243   bool isConditionalBranch() const {
    244     return isBranch() & !isBarrier() & !isIndirectBranch();
    245   }
    246 
    247   /// \brief Return true if this is a branch which always
    248   /// transfers control flow to some other block.  The
    249   /// TargetInstrInfo::AnalyzeBranch method can be used to get more information
    250   /// about this branch.
    251   bool isUnconditionalBranch() const {
    252     return isBranch() & isBarrier() & !isIndirectBranch();
    253   }
    254 
    255   /// \brief Return true if this is a branch or an instruction which directly
    256   /// writes to the program counter. Considered 'may' affect rather than
    257   /// 'does' affect as things like predication are not taken into account.
    258   bool mayAffectControlFlow(const MCInst &MI, const MCRegisterInfo &RI) const;
    259 
    260   /// \brief Return true if this instruction has a predicate operand
    261   /// that controls execution. It may be set to 'always', or may be set to other
    262   /// values. There are various methods in TargetInstrInfo that can be used to
    263   /// control and modify the predicate in this instruction.
    264   bool isPredicable() const { return Flags & (1 << MCID::Predicable); }
    265 
    266   /// \brief Return true if this instruction is a comparison.
    267   bool isCompare() const { return Flags & (1 << MCID::Compare); }
    268 
    269   /// \brief Return true if this instruction is a move immediate
    270   /// (including conditional moves) instruction.
    271   bool isMoveImmediate() const { return Flags & (1 << MCID::MoveImm); }
    272 
    273   /// \brief Return true if this instruction is a bitcast instruction.
    274   bool isBitcast() const { return Flags & (1 << MCID::Bitcast); }
    275 
    276   /// \brief Return true if this is a select instruction.
    277   bool isSelect() const { return Flags & (1 << MCID::Select); }
    278 
    279   /// \brief Return true if this instruction cannot be safely
    280   /// duplicated.  For example, if the instruction has a unique labels attached
    281   /// to it, duplicating it would cause multiple definition errors.
    282   bool isNotDuplicable() const { return Flags & (1 << MCID::NotDuplicable); }
    283 
    284   /// \brief Returns true if the specified instruction has a delay slot which
    285   /// must be filled by the code generator.
    286   bool hasDelaySlot() const { return Flags & (1 << MCID::DelaySlot); }
    287 
    288   /// \brief Return true for instructions that can be folded as memory operands
    289   /// in other instructions. The most common use for this is instructions that
    290   /// are simple loads from memory that don't modify the loaded value in any
    291   /// way, but it can also be used for instructions that can be expressed as
    292   /// constant-pool loads, such as V_SETALLONES on x86, to allow them to be
    293   /// folded when it is beneficial.  This should only be set on instructions
    294   /// that return a value in their only virtual register definition.
    295   bool canFoldAsLoad() const { return Flags & (1 << MCID::FoldableAsLoad); }
    296 
    297   /// \brief Return true if this instruction behaves
    298   /// the same way as the generic REG_SEQUENCE instructions.
    299   /// E.g., on ARM,
    300   /// dX VMOVDRR rY, rZ
    301   /// is equivalent to
    302   /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1.
    303   ///
    304   /// Note that for the optimizers to be able to take advantage of
    305   /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be
    306   /// override accordingly.
    307   bool isRegSequenceLike() const { return Flags & (1 << MCID::RegSequence); }
    308 
    309   /// \brief Return true if this instruction behaves
    310   /// the same way as the generic EXTRACT_SUBREG instructions.
    311   /// E.g., on ARM,
    312   /// rX, rY VMOVRRD dZ
    313   /// is equivalent to two EXTRACT_SUBREG:
    314   /// rX = EXTRACT_SUBREG dZ, ssub_0
    315   /// rY = EXTRACT_SUBREG dZ, ssub_1
    316   ///
    317   /// Note that for the optimizers to be able to take advantage of
    318   /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be
    319   /// override accordingly.
    320   bool isExtractSubregLike() const {
    321     return Flags & (1 << MCID::ExtractSubreg);
    322   }
    323 
    324   /// \brief Return true if this instruction behaves
    325   /// the same way as the generic INSERT_SUBREG instructions.
    326   /// E.g., on ARM,
    327   /// dX = VSETLNi32 dY, rZ, Imm
    328   /// is equivalent to a INSERT_SUBREG:
    329   /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm)
    330   ///
    331   /// Note that for the optimizers to be able to take advantage of
    332   /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be
    333   /// override accordingly.
    334   bool isInsertSubregLike() const { return Flags & (1 << MCID::InsertSubreg); }
    335 
    336 
    337   /// \brief Return true if this instruction is convergent.
    338   ///
    339   /// Convergent instructions may not be made control-dependent on any
    340   /// additional values.
    341   bool isConvergent() const { return Flags & (1 << MCID::Convergent); }
    342 
    343   //===--------------------------------------------------------------------===//
    344   // Side Effect Analysis
    345   //===--------------------------------------------------------------------===//
    346 
    347   /// \brief Return true if this instruction could possibly read memory.
    348   /// Instructions with this flag set are not necessarily simple load
    349   /// instructions, they may load a value and modify it, for example.
    350   bool mayLoad() const { return Flags & (1 << MCID::MayLoad); }
    351 
    352   /// \brief Return true if this instruction could possibly modify memory.
    353   /// Instructions with this flag set are not necessarily simple store
    354   /// instructions, they may store a modified value based on their operands, or
    355   /// may not actually modify anything, for example.
    356   bool mayStore() const { return Flags & (1 << MCID::MayStore); }
    357 
    358   /// \brief Return true if this instruction has side
    359   /// effects that are not modeled by other flags.  This does not return true
    360   /// for instructions whose effects are captured by:
    361   ///
    362   ///  1. Their operand list and implicit definition/use list.  Register use/def
    363   ///     info is explicit for instructions.
    364   ///  2. Memory accesses.  Use mayLoad/mayStore.
    365   ///  3. Calling, branching, returning: use isCall/isReturn/isBranch.
    366   ///
    367   /// Examples of side effects would be modifying 'invisible' machine state like
    368   /// a control register, flushing a cache, modifying a register invisible to
    369   /// LLVM, etc.
    370   bool hasUnmodeledSideEffects() const {
    371     return Flags & (1 << MCID::UnmodeledSideEffects);
    372   }
    373 
    374   //===--------------------------------------------------------------------===//
    375   // Flags that indicate whether an instruction can be modified by a method.
    376   //===--------------------------------------------------------------------===//
    377 
    378   /// \brief Return true if this may be a 2- or 3-address instruction (of the
    379   /// form "X = op Y, Z, ..."), which produces the same result if Y and Z are
    380   /// exchanged.  If this flag is set, then the
    381   /// TargetInstrInfo::commuteInstruction method may be used to hack on the
    382   /// instruction.
    383   ///
    384   /// Note that this flag may be set on instructions that are only commutable
    385   /// sometimes.  In these cases, the call to commuteInstruction will fail.
    386   /// Also note that some instructions require non-trivial modification to
    387   /// commute them.
    388   bool isCommutable() const { return Flags & (1 << MCID::Commutable); }
    389 
    390   /// \brief Return true if this is a 2-address instruction which can be changed
    391   /// into a 3-address instruction if needed.  Doing this transformation can be
    392   /// profitable in the register allocator, because it means that the
    393   /// instruction can use a 2-address form if possible, but degrade into a less
    394   /// efficient form if the source and dest register cannot be assigned to the
    395   /// same register.  For example, this allows the x86 backend to turn a "shl
    396   /// reg, 3" instruction into an LEA instruction, which is the same speed as
    397   /// the shift but has bigger code size.
    398   ///
    399   /// If this returns true, then the target must implement the
    400   /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
    401   /// is allowed to fail if the transformation isn't valid for this specific
    402   /// instruction (e.g. shl reg, 4 on x86).
    403   ///
    404   bool isConvertibleTo3Addr() const {
    405     return Flags & (1 << MCID::ConvertibleTo3Addr);
    406   }
    407 
    408   /// \brief Return true if this instruction requires custom insertion support
    409   /// when the DAG scheduler is inserting it into a machine basic block.  If
    410   /// this is true for the instruction, it basically means that it is a pseudo
    411   /// instruction used at SelectionDAG time that is expanded out into magic code
    412   /// by the target when MachineInstrs are formed.
    413   ///
    414   /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
    415   /// is used to insert this into the MachineBasicBlock.
    416   bool usesCustomInsertionHook() const {
    417     return Flags & (1 << MCID::UsesCustomInserter);
    418   }
    419 
    420   /// \brief Return true if this instruction requires *adjustment* after
    421   /// instruction selection by calling a target hook. For example, this can be
    422   /// used to fill in ARM 's' optional operand depending on whether the
    423   /// conditional flag register is used.
    424   bool hasPostISelHook() const { return Flags & (1 << MCID::HasPostISelHook); }
    425 
    426   /// \brief Returns true if this instruction is a candidate for remat. This
    427   /// flag is only used in TargetInstrInfo method isTriviallyRematerializable.
    428   ///
    429   /// If this flag is set, the isReallyTriviallyReMaterializable()
    430   /// or isReallyTriviallyReMaterializableGeneric methods are called to verify
    431   /// the instruction is really rematable.
    432   bool isRematerializable() const {
    433     return Flags & (1 << MCID::Rematerializable);
    434   }
    435 
    436   /// \brief Returns true if this instruction has the same cost (or less) than a
    437   /// move instruction. This is useful during certain types of optimizations
    438   /// (e.g., remat during two-address conversion or machine licm) where we would
    439   /// like to remat or hoist the instruction, but not if it costs more than
    440   /// moving the instruction into the appropriate register. Note, we are not
    441   /// marking copies from and to the same register class with this flag.
    442   ///
    443   /// This method could be called by interface TargetInstrInfo::isAsCheapAsAMove
    444   /// for different subtargets.
    445   bool isAsCheapAsAMove() const { return Flags & (1 << MCID::CheapAsAMove); }
    446 
    447   /// \brief Returns true if this instruction source operands have special
    448   /// register allocation requirements that are not captured by the operand
    449   /// register classes. e.g. ARM::STRD's two source registers must be an even /
    450   /// odd pair, ARM::STM registers have to be in ascending order.  Post-register
    451   /// allocation passes should not attempt to change allocations for sources of
    452   /// instructions with this flag.
    453   bool hasExtraSrcRegAllocReq() const {
    454     return Flags & (1 << MCID::ExtraSrcRegAllocReq);
    455   }
    456 
    457   /// \brief Returns true if this instruction def operands have special register
    458   /// allocation requirements that are not captured by the operand register
    459   /// classes. e.g. ARM::LDRD's two def registers must be an even / odd pair,
    460   /// ARM::LDM registers have to be in ascending order.  Post-register
    461   /// allocation passes should not attempt to change allocations for definitions
    462   /// of instructions with this flag.
    463   bool hasExtraDefRegAllocReq() const {
    464     return Flags & (1 << MCID::ExtraDefRegAllocReq);
    465   }
    466 
    467   /// \brief Return a list of registers that are potentially read by any
    468   /// instance of this machine instruction.  For example, on X86, the "adc"
    469   /// instruction adds two register operands and adds the carry bit in from the
    470   /// flags register.  In this case, the instruction is marked as implicitly
    471   /// reading the flags.  Likewise, the variable shift instruction on X86 is
    472   /// marked as implicitly reading the 'CL' register, which it always does.
    473   ///
    474   /// This method returns null if the instruction has no implicit uses.
    475   const MCPhysReg *getImplicitUses() const { return ImplicitUses; }
    476 
    477   /// \brief Return the number of implicit uses this instruction has.
    478   unsigned getNumImplicitUses() const {
    479     if (!ImplicitUses)
    480       return 0;
    481     unsigned i = 0;
    482     for (; ImplicitUses[i]; ++i) /*empty*/
    483       ;
    484     return i;
    485   }
    486 
    487   /// \brief Return a list of registers that are potentially written by any
    488   /// instance of this machine instruction.  For example, on X86, many
    489   /// instructions implicitly set the flags register.  In this case, they are
    490   /// marked as setting the FLAGS.  Likewise, many instructions always deposit
    491   /// their result in a physical register.  For example, the X86 divide
    492   /// instruction always deposits the quotient and remainder in the EAX/EDX
    493   /// registers.  For that instruction, this will return a list containing the
    494   /// EAX/EDX/EFLAGS registers.
    495   ///
    496   /// This method returns null if the instruction has no implicit defs.
    497   const MCPhysReg *getImplicitDefs() const { return ImplicitDefs; }
    498 
    499   /// \brief Return the number of implicit defs this instruct has.
    500   unsigned getNumImplicitDefs() const {
    501     if (!ImplicitDefs)
    502       return 0;
    503     unsigned i = 0;
    504     for (; ImplicitDefs[i]; ++i) /*empty*/
    505       ;
    506     return i;
    507   }
    508 
    509   /// \brief Return true if this instruction implicitly
    510   /// uses the specified physical register.
    511   bool hasImplicitUseOfPhysReg(unsigned Reg) const {
    512     if (const MCPhysReg *ImpUses = ImplicitUses)
    513       for (; *ImpUses; ++ImpUses)
    514         if (*ImpUses == Reg)
    515           return true;
    516     return false;
    517   }
    518 
    519   /// \brief Return true if this instruction implicitly
    520   /// defines the specified physical register.
    521   bool hasImplicitDefOfPhysReg(unsigned Reg,
    522                                const MCRegisterInfo *MRI = nullptr) const;
    523 
    524   /// \brief Return the scheduling class for this instruction.  The
    525   /// scheduling class is an index into the InstrItineraryData table.  This
    526   /// returns zero if there is no known scheduling information for the
    527   /// instruction.
    528   unsigned getSchedClass() const { return SchedClass; }
    529 
    530   /// \brief Return the number of bytes in the encoding of this instruction,
    531   /// or zero if the encoding size cannot be known from the opcode.
    532   unsigned getSize() const { return Size; }
    533 
    534   /// \brief Find the index of the first operand in the
    535   /// operand list that is used to represent the predicate. It returns -1 if
    536   /// none is found.
    537   int findFirstPredOperandIdx() const {
    538     if (isPredicable()) {
    539       for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
    540         if (OpInfo[i].isPredicate())
    541           return i;
    542     }
    543     return -1;
    544   }
    545 
    546 private:
    547 
    548   /// \brief Return true if this instruction defines the specified physical
    549   /// register, either explicitly or implicitly.
    550   bool hasDefOfPhysReg(const MCInst &MI, unsigned Reg,
    551                        const MCRegisterInfo &RI) const;
    552 };
    553 
    554 } // end namespace llvm
    555 
    556 #endif
    557