Home | History | Annotate | Download | only in runtime
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "runtime.h"
     18 
     19 // sys/mount.h has to come before linux/fs.h due to redefinition of MS_RDONLY, MS_BIND, etc
     20 #include <sys/mount.h>
     21 #ifdef __linux__
     22 #include <linux/fs.h>
     23 #include <sys/prctl.h>
     24 #endif
     25 
     26 #include <signal.h>
     27 #include <sys/syscall.h>
     28 #include "base/memory_tool.h"
     29 #if defined(__APPLE__)
     30 #include <crt_externs.h>  // for _NSGetEnviron
     31 #endif
     32 
     33 #include <cstdio>
     34 #include <cstdlib>
     35 #include <limits>
     36 #include <memory_representation.h>
     37 #include <vector>
     38 #include <fcntl.h>
     39 
     40 #include "android-base/strings.h"
     41 
     42 #include "JniConstants.h"
     43 #include "ScopedLocalRef.h"
     44 #include "arch/arm/quick_method_frame_info_arm.h"
     45 #include "arch/arm/registers_arm.h"
     46 #include "arch/arm64/quick_method_frame_info_arm64.h"
     47 #include "arch/arm64/registers_arm64.h"
     48 #include "arch/instruction_set_features.h"
     49 #include "arch/mips/quick_method_frame_info_mips.h"
     50 #include "arch/mips/registers_mips.h"
     51 #include "arch/mips64/quick_method_frame_info_mips64.h"
     52 #include "arch/mips64/registers_mips64.h"
     53 #include "arch/x86/quick_method_frame_info_x86.h"
     54 #include "arch/x86/registers_x86.h"
     55 #include "arch/x86_64/quick_method_frame_info_x86_64.h"
     56 #include "arch/x86_64/registers_x86_64.h"
     57 #include "art_field-inl.h"
     58 #include "art_method-inl.h"
     59 #include "asm_support.h"
     60 #include "atomic.h"
     61 #include "base/arena_allocator.h"
     62 #include "base/dumpable.h"
     63 #include "base/enums.h"
     64 #include "base/stl_util.h"
     65 #include "base/systrace.h"
     66 #include "base/unix_file/fd_file.h"
     67 #include "cha.h"
     68 #include "class_linker-inl.h"
     69 #include "compiler_callbacks.h"
     70 #include "debugger.h"
     71 #include "elf_file.h"
     72 #include "entrypoints/runtime_asm_entrypoints.h"
     73 #include "experimental_flags.h"
     74 #include "fault_handler.h"
     75 #include "gc/accounting/card_table-inl.h"
     76 #include "gc/heap.h"
     77 #include "gc/scoped_gc_critical_section.h"
     78 #include "gc/space/image_space.h"
     79 #include "gc/space/space-inl.h"
     80 #include "gc/system_weak.h"
     81 #include "handle_scope-inl.h"
     82 #include "image-inl.h"
     83 #include "instrumentation.h"
     84 #include "intern_table.h"
     85 #include "interpreter/interpreter.h"
     86 #include "java_vm_ext.h"
     87 #include "jit/jit.h"
     88 #include "jit/jit_code_cache.h"
     89 #include "jni_internal.h"
     90 #include "linear_alloc.h"
     91 #include "mirror/array.h"
     92 #include "mirror/class-inl.h"
     93 #include "mirror/class_ext.h"
     94 #include "mirror/class_loader.h"
     95 #include "mirror/emulated_stack_frame.h"
     96 #include "mirror/field.h"
     97 #include "mirror/method.h"
     98 #include "mirror/method_handle_impl.h"
     99 #include "mirror/method_handles_lookup.h"
    100 #include "mirror/method_type.h"
    101 #include "mirror/stack_trace_element.h"
    102 #include "mirror/throwable.h"
    103 #include "monitor.h"
    104 #include "native/dalvik_system_DexFile.h"
    105 #include "native/dalvik_system_VMDebug.h"
    106 #include "native/dalvik_system_VMRuntime.h"
    107 #include "native/dalvik_system_VMStack.h"
    108 #include "native/dalvik_system_ZygoteHooks.h"
    109 #include "native/java_lang_Class.h"
    110 #include "native/java_lang_Object.h"
    111 #include "native/java_lang_String.h"
    112 #include "native/java_lang_StringFactory.h"
    113 #include "native/java_lang_System.h"
    114 #include "native/java_lang_Thread.h"
    115 #include "native/java_lang_Throwable.h"
    116 #include "native/java_lang_VMClassLoader.h"
    117 #include "native/java_lang_Void.h"
    118 #include "native/java_lang_invoke_MethodHandleImpl.h"
    119 #include "native/java_lang_ref_FinalizerReference.h"
    120 #include "native/java_lang_ref_Reference.h"
    121 #include "native/java_lang_reflect_Array.h"
    122 #include "native/java_lang_reflect_Constructor.h"
    123 #include "native/java_lang_reflect_Executable.h"
    124 #include "native/java_lang_reflect_Field.h"
    125 #include "native/java_lang_reflect_Method.h"
    126 #include "native/java_lang_reflect_Parameter.h"
    127 #include "native/java_lang_reflect_Proxy.h"
    128 #include "native/java_util_concurrent_atomic_AtomicLong.h"
    129 #include "native/libcore_util_CharsetUtils.h"
    130 #include "native/org_apache_harmony_dalvik_ddmc_DdmServer.h"
    131 #include "native/org_apache_harmony_dalvik_ddmc_DdmVmInternal.h"
    132 #include "native/sun_misc_Unsafe.h"
    133 #include "native_bridge_art_interface.h"
    134 #include "native_stack_dump.h"
    135 #include "oat_file.h"
    136 #include "oat_file_manager.h"
    137 #include "os.h"
    138 #include "parsed_options.h"
    139 #include "jit/profile_saver.h"
    140 #include "quick/quick_method_frame_info.h"
    141 #include "reflection.h"
    142 #include "runtime_callbacks.h"
    143 #include "runtime_options.h"
    144 #include "ScopedLocalRef.h"
    145 #include "scoped_thread_state_change-inl.h"
    146 #include "sigchain.h"
    147 #include "signal_catcher.h"
    148 #include "signal_set.h"
    149 #include "thread.h"
    150 #include "thread_list.h"
    151 #include "ti/agent.h"
    152 #include "trace.h"
    153 #include "transaction.h"
    154 #include "utils.h"
    155 #include "vdex_file.h"
    156 #include "verifier/method_verifier.h"
    157 #include "well_known_classes.h"
    158 
    159 #ifdef ART_TARGET_ANDROID
    160 #include <android/set_abort_message.h>
    161 #endif
    162 
    163 namespace art {
    164 
    165 // If a signal isn't handled properly, enable a handler that attempts to dump the Java stack.
    166 static constexpr bool kEnableJavaStackTraceHandler = false;
    167 // Tuned by compiling GmsCore under perf and measuring time spent in DescriptorEquals for class
    168 // linking.
    169 static constexpr double kLowMemoryMinLoadFactor = 0.5;
    170 static constexpr double kLowMemoryMaxLoadFactor = 0.8;
    171 static constexpr double kNormalMinLoadFactor = 0.4;
    172 static constexpr double kNormalMaxLoadFactor = 0.7;
    173 Runtime* Runtime::instance_ = nullptr;
    174 
    175 struct TraceConfig {
    176   Trace::TraceMode trace_mode;
    177   Trace::TraceOutputMode trace_output_mode;
    178   std::string trace_file;
    179   size_t trace_file_size;
    180 };
    181 
    182 namespace {
    183 #ifdef __APPLE__
    184 inline char** GetEnviron() {
    185   // When Google Test is built as a framework on MacOS X, the environ variable
    186   // is unavailable. Apple's documentation (man environ) recommends using
    187   // _NSGetEnviron() instead.
    188   return *_NSGetEnviron();
    189 }
    190 #else
    191 // Some POSIX platforms expect you to declare environ. extern "C" makes
    192 // it reside in the global namespace.
    193 extern "C" char** environ;
    194 inline char** GetEnviron() { return environ; }
    195 #endif
    196 }  // namespace
    197 
    198 Runtime::Runtime()
    199     : resolution_method_(nullptr),
    200       imt_conflict_method_(nullptr),
    201       imt_unimplemented_method_(nullptr),
    202       instruction_set_(kNone),
    203       compiler_callbacks_(nullptr),
    204       is_zygote_(false),
    205       must_relocate_(false),
    206       is_concurrent_gc_enabled_(true),
    207       is_explicit_gc_disabled_(false),
    208       dex2oat_enabled_(true),
    209       image_dex2oat_enabled_(true),
    210       default_stack_size_(0),
    211       heap_(nullptr),
    212       max_spins_before_thin_lock_inflation_(Monitor::kDefaultMaxSpinsBeforeThinLockInflation),
    213       monitor_list_(nullptr),
    214       monitor_pool_(nullptr),
    215       thread_list_(nullptr),
    216       intern_table_(nullptr),
    217       class_linker_(nullptr),
    218       signal_catcher_(nullptr),
    219       java_vm_(nullptr),
    220       fault_message_lock_("Fault message lock"),
    221       fault_message_(""),
    222       threads_being_born_(0),
    223       shutdown_cond_(new ConditionVariable("Runtime shutdown", *Locks::runtime_shutdown_lock_)),
    224       shutting_down_(false),
    225       shutting_down_started_(false),
    226       started_(false),
    227       finished_starting_(false),
    228       vfprintf_(nullptr),
    229       exit_(nullptr),
    230       abort_(nullptr),
    231       stats_enabled_(false),
    232       is_running_on_memory_tool_(RUNNING_ON_MEMORY_TOOL),
    233       instrumentation_(),
    234       main_thread_group_(nullptr),
    235       system_thread_group_(nullptr),
    236       system_class_loader_(nullptr),
    237       dump_gc_performance_on_shutdown_(false),
    238       preinitialization_transaction_(nullptr),
    239       verify_(verifier::VerifyMode::kNone),
    240       allow_dex_file_fallback_(true),
    241       target_sdk_version_(0),
    242       implicit_null_checks_(false),
    243       implicit_so_checks_(false),
    244       implicit_suspend_checks_(false),
    245       no_sig_chain_(false),
    246       force_native_bridge_(false),
    247       is_native_bridge_loaded_(false),
    248       is_native_debuggable_(false),
    249       is_java_debuggable_(false),
    250       zygote_max_failed_boots_(0),
    251       experimental_flags_(ExperimentalFlags::kNone),
    252       oat_file_manager_(nullptr),
    253       is_low_memory_mode_(false),
    254       safe_mode_(false),
    255       dump_native_stack_on_sig_quit_(true),
    256       pruned_dalvik_cache_(false),
    257       // Initially assume we perceive jank in case the process state is never updated.
    258       process_state_(kProcessStateJankPerceptible),
    259       zygote_no_threads_(false),
    260       cha_(nullptr) {
    261   CheckAsmSupportOffsetsAndSizes();
    262   std::fill(callee_save_methods_, callee_save_methods_ + arraysize(callee_save_methods_), 0u);
    263   interpreter::CheckInterpreterAsmConstants();
    264   callbacks_.reset(new RuntimeCallbacks());
    265   for (size_t i = 0; i <= static_cast<size_t>(DeoptimizationKind::kLast); ++i) {
    266     deoptimization_counts_[i] = 0u;
    267   }
    268 }
    269 
    270 Runtime::~Runtime() {
    271   ScopedTrace trace("Runtime shutdown");
    272   if (is_native_bridge_loaded_) {
    273     UnloadNativeBridge();
    274   }
    275 
    276   Thread* self = Thread::Current();
    277   const bool attach_shutdown_thread = self == nullptr;
    278   if (attach_shutdown_thread) {
    279     CHECK(AttachCurrentThread("Shutdown thread", false, nullptr, false));
    280     self = Thread::Current();
    281   } else {
    282     LOG(WARNING) << "Current thread not detached in Runtime shutdown";
    283   }
    284 
    285   if (dump_gc_performance_on_shutdown_) {
    286     // This can't be called from the Heap destructor below because it
    287     // could call RosAlloc::InspectAll() which needs the thread_list
    288     // to be still alive.
    289     heap_->DumpGcPerformanceInfo(LOG_STREAM(INFO));
    290   }
    291 
    292   if (jit_ != nullptr) {
    293     // Stop the profile saver thread before marking the runtime as shutting down.
    294     // The saver will try to dump the profiles before being sopped and that
    295     // requires holding the mutator lock.
    296     jit_->StopProfileSaver();
    297   }
    298 
    299   {
    300     ScopedTrace trace2("Wait for shutdown cond");
    301     MutexLock mu(self, *Locks::runtime_shutdown_lock_);
    302     shutting_down_started_ = true;
    303     while (threads_being_born_ > 0) {
    304       shutdown_cond_->Wait(self);
    305     }
    306     shutting_down_ = true;
    307   }
    308   // Shutdown and wait for the daemons.
    309   CHECK(self != nullptr);
    310   if (IsFinishedStarting()) {
    311     ScopedTrace trace2("Waiting for Daemons");
    312     self->ClearException();
    313     self->GetJniEnv()->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
    314                                             WellKnownClasses::java_lang_Daemons_stop);
    315   }
    316 
    317   Trace::Shutdown();
    318 
    319   // Report death. Clients me require a working thread, still, so do it before GC completes and
    320   // all non-daemon threads are done.
    321   {
    322     ScopedObjectAccess soa(self);
    323     callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kDeath);
    324   }
    325 
    326   if (attach_shutdown_thread) {
    327     DetachCurrentThread();
    328     self = nullptr;
    329   }
    330 
    331   // Make sure to let the GC complete if it is running.
    332   heap_->WaitForGcToComplete(gc::kGcCauseBackground, self);
    333   heap_->DeleteThreadPool();
    334   if (jit_ != nullptr) {
    335     ScopedTrace trace2("Delete jit");
    336     VLOG(jit) << "Deleting jit thread pool";
    337     // Delete thread pool before the thread list since we don't want to wait forever on the
    338     // JIT compiler threads.
    339     jit_->DeleteThreadPool();
    340   }
    341 
    342   // TODO Maybe do some locking.
    343   for (auto& agent : agents_) {
    344     agent.Unload();
    345   }
    346 
    347   // TODO Maybe do some locking
    348   for (auto& plugin : plugins_) {
    349     plugin.Unload();
    350   }
    351 
    352   // Make sure our internal threads are dead before we start tearing down things they're using.
    353   Dbg::StopJdwp();
    354   delete signal_catcher_;
    355 
    356   // Make sure all other non-daemon threads have terminated, and all daemon threads are suspended.
    357   {
    358     ScopedTrace trace2("Delete thread list");
    359     delete thread_list_;
    360   }
    361   // Delete the JIT after thread list to ensure that there is no remaining threads which could be
    362   // accessing the instrumentation when we delete it.
    363   if (jit_ != nullptr) {
    364     VLOG(jit) << "Deleting jit";
    365     jit_.reset(nullptr);
    366   }
    367 
    368   // Shutdown the fault manager if it was initialized.
    369   fault_manager.Shutdown();
    370 
    371   ScopedTrace trace2("Delete state");
    372   delete monitor_list_;
    373   delete monitor_pool_;
    374   delete class_linker_;
    375   delete cha_;
    376   delete heap_;
    377   delete intern_table_;
    378   delete oat_file_manager_;
    379   Thread::Shutdown();
    380   QuasiAtomic::Shutdown();
    381   verifier::MethodVerifier::Shutdown();
    382 
    383   // Destroy allocators before shutting down the MemMap because they may use it.
    384   java_vm_.reset();
    385   linear_alloc_.reset();
    386   low_4gb_arena_pool_.reset();
    387   arena_pool_.reset();
    388   jit_arena_pool_.reset();
    389   MemMap::Shutdown();
    390 
    391   // TODO: acquire a static mutex on Runtime to avoid racing.
    392   CHECK(instance_ == nullptr || instance_ == this);
    393   instance_ = nullptr;
    394 }
    395 
    396 struct AbortState {
    397   void Dump(std::ostream& os) const {
    398     if (gAborting > 1) {
    399       os << "Runtime aborting --- recursively, so no thread-specific detail!\n";
    400       DumpRecursiveAbort(os);
    401       return;
    402     }
    403     gAborting++;
    404     os << "Runtime aborting...\n";
    405     if (Runtime::Current() == nullptr) {
    406       os << "(Runtime does not yet exist!)\n";
    407       DumpNativeStack(os, GetTid(), nullptr, "  native: ", nullptr);
    408       return;
    409     }
    410     Thread* self = Thread::Current();
    411     if (self == nullptr) {
    412       os << "(Aborting thread was not attached to runtime!)\n";
    413       DumpKernelStack(os, GetTid(), "  kernel: ", false);
    414       DumpNativeStack(os, GetTid(), nullptr, "  native: ", nullptr);
    415     } else {
    416       os << "Aborting thread:\n";
    417       if (Locks::mutator_lock_->IsExclusiveHeld(self) || Locks::mutator_lock_->IsSharedHeld(self)) {
    418         DumpThread(os, self);
    419       } else {
    420         if (Locks::mutator_lock_->SharedTryLock(self)) {
    421           DumpThread(os, self);
    422           Locks::mutator_lock_->SharedUnlock(self);
    423         }
    424       }
    425     }
    426     DumpAllThreads(os, self);
    427   }
    428 
    429   // No thread-safety analysis as we do explicitly test for holding the mutator lock.
    430   void DumpThread(std::ostream& os, Thread* self) const NO_THREAD_SAFETY_ANALYSIS {
    431     DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self) || Locks::mutator_lock_->IsSharedHeld(self));
    432     self->Dump(os);
    433     if (self->IsExceptionPending()) {
    434       mirror::Throwable* exception = self->GetException();
    435       os << "Pending exception " << exception->Dump();
    436     }
    437   }
    438 
    439   void DumpAllThreads(std::ostream& os, Thread* self) const {
    440     Runtime* runtime = Runtime::Current();
    441     if (runtime != nullptr) {
    442       ThreadList* thread_list = runtime->GetThreadList();
    443       if (thread_list != nullptr) {
    444         bool tll_already_held = Locks::thread_list_lock_->IsExclusiveHeld(self);
    445         bool ml_already_held = Locks::mutator_lock_->IsSharedHeld(self);
    446         if (!tll_already_held || !ml_already_held) {
    447           os << "Dumping all threads without appropriate locks held:"
    448               << (!tll_already_held ? " thread list lock" : "")
    449               << (!ml_already_held ? " mutator lock" : "")
    450               << "\n";
    451         }
    452         os << "All threads:\n";
    453         thread_list->Dump(os);
    454       }
    455     }
    456   }
    457 
    458   // For recursive aborts.
    459   void DumpRecursiveAbort(std::ostream& os) const NO_THREAD_SAFETY_ANALYSIS {
    460     // The only thing we'll attempt is dumping the native stack of the current thread. We will only
    461     // try this if we haven't exceeded an arbitrary amount of recursions, to recover and actually
    462     // die.
    463     // Note: as we're using a global counter for the recursive abort detection, there is a potential
    464     //       race here and it is not OK to just print when the counter is "2" (one from
    465     //       Runtime::Abort(), one from previous Dump() call). Use a number that seems large enough.
    466     static constexpr size_t kOnlyPrintWhenRecursionLessThan = 100u;
    467     if (gAborting < kOnlyPrintWhenRecursionLessThan) {
    468       gAborting++;
    469       DumpNativeStack(os, GetTid());
    470     }
    471   }
    472 };
    473 
    474 void Runtime::Abort(const char* msg) {
    475   gAborting++;  // set before taking any locks
    476 
    477   // Ensure that we don't have multiple threads trying to abort at once,
    478   // which would result in significantly worse diagnostics.
    479   MutexLock mu(Thread::Current(), *Locks::abort_lock_);
    480 
    481   // Get any pending output out of the way.
    482   fflush(nullptr);
    483 
    484   // Many people have difficulty distinguish aborts from crashes,
    485   // so be explicit.
    486   // Note: use cerr on the host to print log lines immediately, so we get at least some output
    487   //       in case of recursive aborts. We lose annotation with the source file and line number
    488   //       here, which is a minor issue. The same is significantly more complicated on device,
    489   //       which is why we ignore the issue there.
    490   AbortState state;
    491   if (kIsTargetBuild) {
    492     LOG(FATAL_WITHOUT_ABORT) << Dumpable<AbortState>(state);
    493   } else {
    494     std::cerr << Dumpable<AbortState>(state);
    495   }
    496 
    497   // Sometimes we dump long messages, and the Android abort message only retains the first line.
    498   // In those cases, just log the message again, to avoid logcat limits.
    499   if (msg != nullptr && strchr(msg, '\n') != nullptr) {
    500     LOG(FATAL_WITHOUT_ABORT) << msg;
    501   }
    502 
    503   // Call the abort hook if we have one.
    504   if (Runtime::Current() != nullptr && Runtime::Current()->abort_ != nullptr) {
    505     LOG(FATAL_WITHOUT_ABORT) << "Calling abort hook...";
    506     Runtime::Current()->abort_();
    507     // notreached
    508     LOG(FATAL_WITHOUT_ABORT) << "Unexpectedly returned from abort hook!";
    509   }
    510 
    511 #if defined(__GLIBC__)
    512   // TODO: we ought to be able to use pthread_kill(3) here (or abort(3),
    513   // which POSIX defines in terms of raise(3), which POSIX defines in terms
    514   // of pthread_kill(3)). On Linux, though, libcorkscrew can't unwind through
    515   // libpthread, which means the stacks we dump would be useless. Calling
    516   // tgkill(2) directly avoids that.
    517   syscall(__NR_tgkill, getpid(), GetTid(), SIGABRT);
    518   // TODO: LLVM installs it's own SIGABRT handler so exit to be safe... Can we disable that in LLVM?
    519   // If not, we could use sigaction(3) before calling tgkill(2) and lose this call to exit(3).
    520   exit(1);
    521 #else
    522   abort();
    523 #endif
    524   // notreached
    525 }
    526 
    527 void Runtime::PreZygoteFork() {
    528   heap_->PreZygoteFork();
    529 }
    530 
    531 void Runtime::CallExitHook(jint status) {
    532   if (exit_ != nullptr) {
    533     ScopedThreadStateChange tsc(Thread::Current(), kNative);
    534     exit_(status);
    535     LOG(WARNING) << "Exit hook returned instead of exiting!";
    536   }
    537 }
    538 
    539 void Runtime::SweepSystemWeaks(IsMarkedVisitor* visitor) {
    540   GetInternTable()->SweepInternTableWeaks(visitor);
    541   GetMonitorList()->SweepMonitorList(visitor);
    542   GetJavaVM()->SweepJniWeakGlobals(visitor);
    543   GetHeap()->SweepAllocationRecords(visitor);
    544   if (GetJit() != nullptr) {
    545     // Visit JIT literal tables. Objects in these tables are classes and strings
    546     // and only classes can be affected by class unloading. The strings always
    547     // stay alive as they are strongly interned.
    548     // TODO: Move this closer to CleanupClassLoaders, to avoid blocking weak accesses
    549     // from mutators. See b/32167580.
    550     GetJit()->GetCodeCache()->SweepRootTables(visitor);
    551   }
    552 
    553   // All other generic system-weak holders.
    554   for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
    555     holder->Sweep(visitor);
    556   }
    557 }
    558 
    559 bool Runtime::ParseOptions(const RuntimeOptions& raw_options,
    560                            bool ignore_unrecognized,
    561                            RuntimeArgumentMap* runtime_options) {
    562   InitLogging(/* argv */ nullptr, Aborter);  // Calls Locks::Init() as a side effect.
    563   bool parsed = ParsedOptions::Parse(raw_options, ignore_unrecognized, runtime_options);
    564   if (!parsed) {
    565     LOG(ERROR) << "Failed to parse options";
    566     return false;
    567   }
    568   return true;
    569 }
    570 
    571 // Callback to check whether it is safe to call Abort (e.g., to use a call to
    572 // LOG(FATAL)).  It is only safe to call Abort if the runtime has been created,
    573 // properly initialized, and has not shut down.
    574 static bool IsSafeToCallAbort() NO_THREAD_SAFETY_ANALYSIS {
    575   Runtime* runtime = Runtime::Current();
    576   return runtime != nullptr && runtime->IsStarted() && !runtime->IsShuttingDownLocked();
    577 }
    578 
    579 bool Runtime::Create(RuntimeArgumentMap&& runtime_options) {
    580   // TODO: acquire a static mutex on Runtime to avoid racing.
    581   if (Runtime::instance_ != nullptr) {
    582     return false;
    583   }
    584   instance_ = new Runtime;
    585   Locks::SetClientCallback(IsSafeToCallAbort);
    586   if (!instance_->Init(std::move(runtime_options))) {
    587     // TODO: Currently deleting the instance will abort the runtime on destruction. Now This will
    588     // leak memory, instead. Fix the destructor. b/19100793.
    589     // delete instance_;
    590     instance_ = nullptr;
    591     return false;
    592   }
    593   return true;
    594 }
    595 
    596 bool Runtime::Create(const RuntimeOptions& raw_options, bool ignore_unrecognized) {
    597   RuntimeArgumentMap runtime_options;
    598   return ParseOptions(raw_options, ignore_unrecognized, &runtime_options) &&
    599       Create(std::move(runtime_options));
    600 }
    601 
    602 static jobject CreateSystemClassLoader(Runtime* runtime) {
    603   if (runtime->IsAotCompiler() && !runtime->GetCompilerCallbacks()->IsBootImage()) {
    604     return nullptr;
    605   }
    606 
    607   ScopedObjectAccess soa(Thread::Current());
    608   ClassLinker* cl = Runtime::Current()->GetClassLinker();
    609   auto pointer_size = cl->GetImagePointerSize();
    610 
    611   StackHandleScope<2> hs(soa.Self());
    612   Handle<mirror::Class> class_loader_class(
    613       hs.NewHandle(soa.Decode<mirror::Class>(WellKnownClasses::java_lang_ClassLoader)));
    614   CHECK(cl->EnsureInitialized(soa.Self(), class_loader_class, true, true));
    615 
    616   ArtMethod* getSystemClassLoader = class_loader_class->FindDirectMethod(
    617       "getSystemClassLoader", "()Ljava/lang/ClassLoader;", pointer_size);
    618   CHECK(getSystemClassLoader != nullptr);
    619 
    620   JValue result = InvokeWithJValues(soa,
    621                                     nullptr,
    622                                     jni::EncodeArtMethod(getSystemClassLoader),
    623                                     nullptr);
    624   JNIEnv* env = soa.Self()->GetJniEnv();
    625   ScopedLocalRef<jobject> system_class_loader(env, soa.AddLocalReference<jobject>(result.GetL()));
    626   CHECK(system_class_loader.get() != nullptr);
    627 
    628   soa.Self()->SetClassLoaderOverride(system_class_loader.get());
    629 
    630   Handle<mirror::Class> thread_class(
    631       hs.NewHandle(soa.Decode<mirror::Class>(WellKnownClasses::java_lang_Thread)));
    632   CHECK(cl->EnsureInitialized(soa.Self(), thread_class, true, true));
    633 
    634   ArtField* contextClassLoader =
    635       thread_class->FindDeclaredInstanceField("contextClassLoader", "Ljava/lang/ClassLoader;");
    636   CHECK(contextClassLoader != nullptr);
    637 
    638   // We can't run in a transaction yet.
    639   contextClassLoader->SetObject<false>(
    640       soa.Self()->GetPeer(),
    641       soa.Decode<mirror::ClassLoader>(system_class_loader.get()).Ptr());
    642 
    643   return env->NewGlobalRef(system_class_loader.get());
    644 }
    645 
    646 std::string Runtime::GetPatchoatExecutable() const {
    647   if (!patchoat_executable_.empty()) {
    648     return patchoat_executable_;
    649   }
    650   std::string patchoat_executable(GetAndroidRoot());
    651   patchoat_executable += (kIsDebugBuild ? "/bin/patchoatd" : "/bin/patchoat");
    652   return patchoat_executable;
    653 }
    654 
    655 std::string Runtime::GetCompilerExecutable() const {
    656   if (!compiler_executable_.empty()) {
    657     return compiler_executable_;
    658   }
    659   std::string compiler_executable(GetAndroidRoot());
    660   compiler_executable += (kIsDebugBuild ? "/bin/dex2oatd" : "/bin/dex2oat");
    661   return compiler_executable;
    662 }
    663 
    664 bool Runtime::Start() {
    665   VLOG(startup) << "Runtime::Start entering";
    666 
    667   CHECK(!no_sig_chain_) << "A started runtime should have sig chain enabled";
    668 
    669   // If a debug host build, disable ptrace restriction for debugging and test timeout thread dump.
    670   // Only 64-bit as prctl() may fail in 32 bit userspace on a 64-bit kernel.
    671 #if defined(__linux__) && !defined(ART_TARGET_ANDROID) && defined(__x86_64__)
    672   if (kIsDebugBuild) {
    673     CHECK_EQ(prctl(PR_SET_PTRACER, PR_SET_PTRACER_ANY), 0);
    674   }
    675 #endif
    676 
    677   // Restore main thread state to kNative as expected by native code.
    678   Thread* self = Thread::Current();
    679 
    680   self->TransitionFromRunnableToSuspended(kNative);
    681 
    682   started_ = true;
    683 
    684   if (!IsImageDex2OatEnabled() || !GetHeap()->HasBootImageSpace()) {
    685     ScopedObjectAccess soa(self);
    686     StackHandleScope<2> hs(soa.Self());
    687 
    688     auto class_class(hs.NewHandle<mirror::Class>(mirror::Class::GetJavaLangClass()));
    689     auto field_class(hs.NewHandle<mirror::Class>(mirror::Field::StaticClass()));
    690 
    691     class_linker_->EnsureInitialized(soa.Self(), class_class, true, true);
    692     // Field class is needed for register_java_net_InetAddress in libcore, b/28153851.
    693     class_linker_->EnsureInitialized(soa.Self(), field_class, true, true);
    694   }
    695 
    696   // InitNativeMethods needs to be after started_ so that the classes
    697   // it touches will have methods linked to the oat file if necessary.
    698   {
    699     ScopedTrace trace2("InitNativeMethods");
    700     InitNativeMethods();
    701   }
    702 
    703   // Initialize well known thread group values that may be accessed threads while attaching.
    704   InitThreadGroups(self);
    705 
    706   Thread::FinishStartup();
    707 
    708   // Create the JIT either if we have to use JIT compilation or save profiling info. This is
    709   // done after FinishStartup as the JIT pool needs Java thread peers, which require the main
    710   // ThreadGroup to exist.
    711   //
    712   // TODO(calin): We use the JIT class as a proxy for JIT compilation and for
    713   // recoding profiles. Maybe we should consider changing the name to be more clear it's
    714   // not only about compiling. b/28295073.
    715   if (jit_options_->UseJitCompilation() || jit_options_->GetSaveProfilingInfo()) {
    716     std::string error_msg;
    717     if (!IsZygote()) {
    718     // If we are the zygote then we need to wait until after forking to create the code cache
    719     // due to SELinux restrictions on r/w/x memory regions.
    720       CreateJit();
    721     } else if (jit_options_->UseJitCompilation()) {
    722       if (!jit::Jit::LoadCompilerLibrary(&error_msg)) {
    723         // Try to load compiler pre zygote to reduce PSS. b/27744947
    724         LOG(WARNING) << "Failed to load JIT compiler with error " << error_msg;
    725       }
    726     }
    727   }
    728 
    729   // Send the start phase event. We have to wait till here as this is when the main thread peer
    730   // has just been generated, important root clinits have been run and JNI is completely functional.
    731   {
    732     ScopedObjectAccess soa(self);
    733     callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kStart);
    734   }
    735 
    736   system_class_loader_ = CreateSystemClassLoader(this);
    737 
    738   if (!is_zygote_) {
    739     if (is_native_bridge_loaded_) {
    740       PreInitializeNativeBridge(".");
    741     }
    742     NativeBridgeAction action = force_native_bridge_
    743         ? NativeBridgeAction::kInitialize
    744         : NativeBridgeAction::kUnload;
    745     InitNonZygoteOrPostFork(self->GetJniEnv(),
    746                             /* is_system_server */ false,
    747                             action,
    748                             GetInstructionSetString(kRuntimeISA));
    749   }
    750 
    751   // Send the initialized phase event. Send it before starting daemons, as otherwise
    752   // sending thread events becomes complicated.
    753   {
    754     ScopedObjectAccess soa(self);
    755     callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kInit);
    756   }
    757 
    758   StartDaemonThreads();
    759 
    760   {
    761     ScopedObjectAccess soa(self);
    762     self->GetJniEnv()->locals.AssertEmpty();
    763   }
    764 
    765   VLOG(startup) << "Runtime::Start exiting";
    766   finished_starting_ = true;
    767 
    768   if (trace_config_.get() != nullptr && trace_config_->trace_file != "") {
    769     ScopedThreadStateChange tsc(self, kWaitingForMethodTracingStart);
    770     Trace::Start(trace_config_->trace_file.c_str(),
    771                  -1,
    772                  static_cast<int>(trace_config_->trace_file_size),
    773                  0,
    774                  trace_config_->trace_output_mode,
    775                  trace_config_->trace_mode,
    776                  0);
    777   }
    778 
    779   return true;
    780 }
    781 
    782 void Runtime::EndThreadBirth() REQUIRES(Locks::runtime_shutdown_lock_) {
    783   DCHECK_GT(threads_being_born_, 0U);
    784   threads_being_born_--;
    785   if (shutting_down_started_ && threads_being_born_ == 0) {
    786     shutdown_cond_->Broadcast(Thread::Current());
    787   }
    788 }
    789 
    790 void Runtime::InitNonZygoteOrPostFork(
    791     JNIEnv* env, bool is_system_server, NativeBridgeAction action, const char* isa) {
    792   is_zygote_ = false;
    793 
    794   if (is_native_bridge_loaded_) {
    795     switch (action) {
    796       case NativeBridgeAction::kUnload:
    797         UnloadNativeBridge();
    798         is_native_bridge_loaded_ = false;
    799         break;
    800 
    801       case NativeBridgeAction::kInitialize:
    802         InitializeNativeBridge(env, isa);
    803         break;
    804     }
    805   }
    806 
    807   // Create the thread pools.
    808   heap_->CreateThreadPool();
    809   // Reset the gc performance data at zygote fork so that the GCs
    810   // before fork aren't attributed to an app.
    811   heap_->ResetGcPerformanceInfo();
    812 
    813   // We may want to collect profiling samples for system server, but we never want to JIT there.
    814   if ((!is_system_server || !jit_options_->UseJitCompilation()) &&
    815       !safe_mode_ &&
    816       (jit_options_->UseJitCompilation() || jit_options_->GetSaveProfilingInfo()) &&
    817       jit_ == nullptr) {
    818     // Note that when running ART standalone (not zygote, nor zygote fork),
    819     // the jit may have already been created.
    820     CreateJit();
    821   }
    822 
    823   StartSignalCatcher();
    824 
    825   // Start the JDWP thread. If the command-line debugger flags specified "suspend=y",
    826   // this will pause the runtime, so we probably want this to come last.
    827   Dbg::StartJdwp();
    828 }
    829 
    830 void Runtime::StartSignalCatcher() {
    831   if (!is_zygote_) {
    832     signal_catcher_ = new SignalCatcher(stack_trace_file_);
    833   }
    834 }
    835 
    836 bool Runtime::IsShuttingDown(Thread* self) {
    837   MutexLock mu(self, *Locks::runtime_shutdown_lock_);
    838   return IsShuttingDownLocked();
    839 }
    840 
    841 void Runtime::StartDaemonThreads() {
    842   ScopedTrace trace(__FUNCTION__);
    843   VLOG(startup) << "Runtime::StartDaemonThreads entering";
    844 
    845   Thread* self = Thread::Current();
    846 
    847   // Must be in the kNative state for calling native methods.
    848   CHECK_EQ(self->GetState(), kNative);
    849 
    850   JNIEnv* env = self->GetJniEnv();
    851   env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
    852                             WellKnownClasses::java_lang_Daemons_start);
    853   if (env->ExceptionCheck()) {
    854     env->ExceptionDescribe();
    855     LOG(FATAL) << "Error starting java.lang.Daemons";
    856   }
    857 
    858   VLOG(startup) << "Runtime::StartDaemonThreads exiting";
    859 }
    860 
    861 // Attempts to open dex files from image(s). Given the image location, try to find the oat file
    862 // and open it to get the stored dex file. If the image is the first for a multi-image boot
    863 // classpath, go on and also open the other images.
    864 static bool OpenDexFilesFromImage(const std::string& image_location,
    865                                   std::vector<std::unique_ptr<const DexFile>>* dex_files,
    866                                   size_t* failures) {
    867   DCHECK(dex_files != nullptr) << "OpenDexFilesFromImage: out-param is nullptr";
    868 
    869   // Use a work-list approach, so that we can easily reuse the opening code.
    870   std::vector<std::string> image_locations;
    871   image_locations.push_back(image_location);
    872 
    873   for (size_t index = 0; index < image_locations.size(); ++index) {
    874     std::string system_filename;
    875     bool has_system = false;
    876     std::string cache_filename_unused;
    877     bool dalvik_cache_exists_unused;
    878     bool has_cache_unused;
    879     bool is_global_cache_unused;
    880     bool found_image = gc::space::ImageSpace::FindImageFilename(image_locations[index].c_str(),
    881                                                                 kRuntimeISA,
    882                                                                 &system_filename,
    883                                                                 &has_system,
    884                                                                 &cache_filename_unused,
    885                                                                 &dalvik_cache_exists_unused,
    886                                                                 &has_cache_unused,
    887                                                                 &is_global_cache_unused);
    888 
    889     if (!found_image || !has_system) {
    890       return false;
    891     }
    892 
    893     // We are falling back to non-executable use of the oat file because patching failed, presumably
    894     // due to lack of space.
    895     std::string vdex_filename =
    896         ImageHeader::GetVdexLocationFromImageLocation(system_filename.c_str());
    897     std::string oat_filename =
    898         ImageHeader::GetOatLocationFromImageLocation(system_filename.c_str());
    899     std::string oat_location =
    900         ImageHeader::GetOatLocationFromImageLocation(image_locations[index].c_str());
    901     // Note: in the multi-image case, the image location may end in ".jar," and not ".art." Handle
    902     //       that here.
    903     if (android::base::EndsWith(oat_location, ".jar")) {
    904       oat_location.replace(oat_location.length() - 3, 3, "oat");
    905     }
    906     std::string error_msg;
    907 
    908     std::unique_ptr<VdexFile> vdex_file(VdexFile::Open(vdex_filename,
    909                                                        false /* writable */,
    910                                                        false /* low_4gb */,
    911                                                        false, /* unquicken */
    912                                                        &error_msg));
    913     if (vdex_file.get() == nullptr) {
    914       return false;
    915     }
    916 
    917     std::unique_ptr<File> file(OS::OpenFileForReading(oat_filename.c_str()));
    918     if (file.get() == nullptr) {
    919       return false;
    920     }
    921     std::unique_ptr<ElfFile> elf_file(ElfFile::Open(file.get(),
    922                                                     false /* writable */,
    923                                                     false /* program_header_only */,
    924                                                     false /* low_4gb */,
    925                                                     &error_msg));
    926     if (elf_file.get() == nullptr) {
    927       return false;
    928     }
    929     std::unique_ptr<const OatFile> oat_file(
    930         OatFile::OpenWithElfFile(elf_file.release(),
    931                                  vdex_file.release(),
    932                                  oat_location,
    933                                  nullptr,
    934                                  &error_msg));
    935     if (oat_file == nullptr) {
    936       LOG(WARNING) << "Unable to use '" << oat_filename << "' because " << error_msg;
    937       return false;
    938     }
    939 
    940     for (const OatFile::OatDexFile* oat_dex_file : oat_file->GetOatDexFiles()) {
    941       if (oat_dex_file == nullptr) {
    942         *failures += 1;
    943         continue;
    944       }
    945       std::unique_ptr<const DexFile> dex_file = oat_dex_file->OpenDexFile(&error_msg);
    946       if (dex_file.get() == nullptr) {
    947         *failures += 1;
    948       } else {
    949         dex_files->push_back(std::move(dex_file));
    950       }
    951     }
    952 
    953     if (index == 0) {
    954       // First file. See if this is a multi-image environment, and if so, enqueue the other images.
    955       const OatHeader& boot_oat_header = oat_file->GetOatHeader();
    956       const char* boot_cp = boot_oat_header.GetStoreValueByKey(OatHeader::kBootClassPathKey);
    957       if (boot_cp != nullptr) {
    958         gc::space::ImageSpace::ExtractMultiImageLocations(image_locations[0],
    959                                                           boot_cp,
    960                                                           &image_locations);
    961       }
    962     }
    963 
    964     Runtime::Current()->GetOatFileManager().RegisterOatFile(std::move(oat_file));
    965   }
    966   return true;
    967 }
    968 
    969 
    970 static size_t OpenDexFiles(const std::vector<std::string>& dex_filenames,
    971                            const std::vector<std::string>& dex_locations,
    972                            const std::string& image_location,
    973                            std::vector<std::unique_ptr<const DexFile>>* dex_files) {
    974   DCHECK(dex_files != nullptr) << "OpenDexFiles: out-param is nullptr";
    975   size_t failure_count = 0;
    976   if (!image_location.empty() && OpenDexFilesFromImage(image_location, dex_files, &failure_count)) {
    977     return failure_count;
    978   }
    979   failure_count = 0;
    980   for (size_t i = 0; i < dex_filenames.size(); i++) {
    981     const char* dex_filename = dex_filenames[i].c_str();
    982     const char* dex_location = dex_locations[i].c_str();
    983     static constexpr bool kVerifyChecksum = true;
    984     std::string error_msg;
    985     if (!OS::FileExists(dex_filename)) {
    986       LOG(WARNING) << "Skipping non-existent dex file '" << dex_filename << "'";
    987       continue;
    988     }
    989     if (!DexFile::Open(dex_filename, dex_location, kVerifyChecksum, &error_msg, dex_files)) {
    990       LOG(WARNING) << "Failed to open .dex from file '" << dex_filename << "': " << error_msg;
    991       ++failure_count;
    992     }
    993   }
    994   return failure_count;
    995 }
    996 
    997 void Runtime::SetSentinel(mirror::Object* sentinel) {
    998   CHECK(sentinel_.Read() == nullptr);
    999   CHECK(sentinel != nullptr);
   1000   CHECK(!heap_->IsMovableObject(sentinel));
   1001   sentinel_ = GcRoot<mirror::Object>(sentinel);
   1002 }
   1003 
   1004 bool Runtime::Init(RuntimeArgumentMap&& runtime_options_in) {
   1005   // (b/30160149): protect subprocesses from modifications to LD_LIBRARY_PATH, etc.
   1006   // Take a snapshot of the environment at the time the runtime was created, for use by Exec, etc.
   1007   env_snapshot_.TakeSnapshot();
   1008 
   1009   RuntimeArgumentMap runtime_options(std::move(runtime_options_in));
   1010   ScopedTrace trace(__FUNCTION__);
   1011   CHECK_EQ(sysconf(_SC_PAGE_SIZE), kPageSize);
   1012 
   1013   MemMap::Init();
   1014 
   1015   using Opt = RuntimeArgumentMap;
   1016   VLOG(startup) << "Runtime::Init -verbose:startup enabled";
   1017 
   1018   QuasiAtomic::Startup();
   1019 
   1020   oat_file_manager_ = new OatFileManager;
   1021 
   1022   Thread::SetSensitiveThreadHook(runtime_options.GetOrDefault(Opt::HookIsSensitiveThread));
   1023   Monitor::Init(runtime_options.GetOrDefault(Opt::LockProfThreshold));
   1024 
   1025   boot_class_path_string_ = runtime_options.ReleaseOrDefault(Opt::BootClassPath);
   1026   class_path_string_ = runtime_options.ReleaseOrDefault(Opt::ClassPath);
   1027   properties_ = runtime_options.ReleaseOrDefault(Opt::PropertiesList);
   1028 
   1029   compiler_callbacks_ = runtime_options.GetOrDefault(Opt::CompilerCallbacksPtr);
   1030   patchoat_executable_ = runtime_options.ReleaseOrDefault(Opt::PatchOat);
   1031   must_relocate_ = runtime_options.GetOrDefault(Opt::Relocate);
   1032   is_zygote_ = runtime_options.Exists(Opt::Zygote);
   1033   is_explicit_gc_disabled_ = runtime_options.Exists(Opt::DisableExplicitGC);
   1034   dex2oat_enabled_ = runtime_options.GetOrDefault(Opt::Dex2Oat);
   1035   image_dex2oat_enabled_ = runtime_options.GetOrDefault(Opt::ImageDex2Oat);
   1036   dump_native_stack_on_sig_quit_ = runtime_options.GetOrDefault(Opt::DumpNativeStackOnSigQuit);
   1037 
   1038   vfprintf_ = runtime_options.GetOrDefault(Opt::HookVfprintf);
   1039   exit_ = runtime_options.GetOrDefault(Opt::HookExit);
   1040   abort_ = runtime_options.GetOrDefault(Opt::HookAbort);
   1041 
   1042   default_stack_size_ = runtime_options.GetOrDefault(Opt::StackSize);
   1043   stack_trace_file_ = runtime_options.ReleaseOrDefault(Opt::StackTraceFile);
   1044 
   1045   compiler_executable_ = runtime_options.ReleaseOrDefault(Opt::Compiler);
   1046   compiler_options_ = runtime_options.ReleaseOrDefault(Opt::CompilerOptions);
   1047   for (StringPiece option : Runtime::Current()->GetCompilerOptions()) {
   1048     if (option.starts_with("--debuggable")) {
   1049       SetJavaDebuggable(true);
   1050       break;
   1051     }
   1052   }
   1053   image_compiler_options_ = runtime_options.ReleaseOrDefault(Opt::ImageCompilerOptions);
   1054   image_location_ = runtime_options.GetOrDefault(Opt::Image);
   1055 
   1056   max_spins_before_thin_lock_inflation_ =
   1057       runtime_options.GetOrDefault(Opt::MaxSpinsBeforeThinLockInflation);
   1058 
   1059   monitor_list_ = new MonitorList;
   1060   monitor_pool_ = MonitorPool::Create();
   1061   thread_list_ = new ThreadList(runtime_options.GetOrDefault(Opt::ThreadSuspendTimeout));
   1062   intern_table_ = new InternTable;
   1063 
   1064   verify_ = runtime_options.GetOrDefault(Opt::Verify);
   1065   allow_dex_file_fallback_ = !runtime_options.Exists(Opt::NoDexFileFallback);
   1066 
   1067   no_sig_chain_ = runtime_options.Exists(Opt::NoSigChain);
   1068   force_native_bridge_ = runtime_options.Exists(Opt::ForceNativeBridge);
   1069 
   1070   Split(runtime_options.GetOrDefault(Opt::CpuAbiList), ',', &cpu_abilist_);
   1071 
   1072   fingerprint_ = runtime_options.ReleaseOrDefault(Opt::Fingerprint);
   1073 
   1074   if (runtime_options.GetOrDefault(Opt::Interpret)) {
   1075     GetInstrumentation()->ForceInterpretOnly();
   1076   }
   1077 
   1078   zygote_max_failed_boots_ = runtime_options.GetOrDefault(Opt::ZygoteMaxFailedBoots);
   1079   experimental_flags_ = runtime_options.GetOrDefault(Opt::Experimental);
   1080   is_low_memory_mode_ = runtime_options.Exists(Opt::LowMemoryMode);
   1081 
   1082   plugins_ = runtime_options.ReleaseOrDefault(Opt::Plugins);
   1083   agents_ = runtime_options.ReleaseOrDefault(Opt::AgentPath);
   1084   // TODO Add back in -agentlib
   1085   // for (auto lib : runtime_options.ReleaseOrDefault(Opt::AgentLib)) {
   1086   //   agents_.push_back(lib);
   1087   // }
   1088 
   1089   XGcOption xgc_option = runtime_options.GetOrDefault(Opt::GcOption);
   1090   heap_ = new gc::Heap(runtime_options.GetOrDefault(Opt::MemoryInitialSize),
   1091                        runtime_options.GetOrDefault(Opt::HeapGrowthLimit),
   1092                        runtime_options.GetOrDefault(Opt::HeapMinFree),
   1093                        runtime_options.GetOrDefault(Opt::HeapMaxFree),
   1094                        runtime_options.GetOrDefault(Opt::HeapTargetUtilization),
   1095                        runtime_options.GetOrDefault(Opt::ForegroundHeapGrowthMultiplier),
   1096                        runtime_options.GetOrDefault(Opt::MemoryMaximumSize),
   1097                        runtime_options.GetOrDefault(Opt::NonMovingSpaceCapacity),
   1098                        runtime_options.GetOrDefault(Opt::Image),
   1099                        runtime_options.GetOrDefault(Opt::ImageInstructionSet),
   1100                        // Override the collector type to CC if the read barrier config.
   1101                        kUseReadBarrier ? gc::kCollectorTypeCC : xgc_option.collector_type_,
   1102                        kUseReadBarrier ? BackgroundGcOption(gc::kCollectorTypeCCBackground)
   1103                                        : runtime_options.GetOrDefault(Opt::BackgroundGc),
   1104                        runtime_options.GetOrDefault(Opt::LargeObjectSpace),
   1105                        runtime_options.GetOrDefault(Opt::LargeObjectThreshold),
   1106                        runtime_options.GetOrDefault(Opt::ParallelGCThreads),
   1107                        runtime_options.GetOrDefault(Opt::ConcGCThreads),
   1108                        runtime_options.Exists(Opt::LowMemoryMode),
   1109                        runtime_options.GetOrDefault(Opt::LongPauseLogThreshold),
   1110                        runtime_options.GetOrDefault(Opt::LongGCLogThreshold),
   1111                        runtime_options.Exists(Opt::IgnoreMaxFootprint),
   1112                        runtime_options.GetOrDefault(Opt::UseTLAB),
   1113                        xgc_option.verify_pre_gc_heap_,
   1114                        xgc_option.verify_pre_sweeping_heap_,
   1115                        xgc_option.verify_post_gc_heap_,
   1116                        xgc_option.verify_pre_gc_rosalloc_,
   1117                        xgc_option.verify_pre_sweeping_rosalloc_,
   1118                        xgc_option.verify_post_gc_rosalloc_,
   1119                        xgc_option.gcstress_,
   1120                        xgc_option.measure_,
   1121                        runtime_options.GetOrDefault(Opt::EnableHSpaceCompactForOOM),
   1122                        runtime_options.GetOrDefault(Opt::HSpaceCompactForOOMMinIntervalsMs));
   1123 
   1124   if (!heap_->HasBootImageSpace() && !allow_dex_file_fallback_) {
   1125     LOG(ERROR) << "Dex file fallback disabled, cannot continue without image.";
   1126     return false;
   1127   }
   1128 
   1129   dump_gc_performance_on_shutdown_ = runtime_options.Exists(Opt::DumpGCPerformanceOnShutdown);
   1130 
   1131   if (runtime_options.Exists(Opt::JdwpOptions)) {
   1132     Dbg::ConfigureJdwp(runtime_options.GetOrDefault(Opt::JdwpOptions));
   1133   }
   1134   callbacks_->AddThreadLifecycleCallback(Dbg::GetThreadLifecycleCallback());
   1135   callbacks_->AddClassLoadCallback(Dbg::GetClassLoadCallback());
   1136 
   1137   jit_options_.reset(jit::JitOptions::CreateFromRuntimeArguments(runtime_options));
   1138   if (IsAotCompiler()) {
   1139     // If we are already the compiler at this point, we must be dex2oat. Don't create the jit in
   1140     // this case.
   1141     // If runtime_options doesn't have UseJIT set to true then CreateFromRuntimeArguments returns
   1142     // null and we don't create the jit.
   1143     jit_options_->SetUseJitCompilation(false);
   1144     jit_options_->SetSaveProfilingInfo(false);
   1145   }
   1146 
   1147   // Use MemMap arena pool for jit, malloc otherwise. Malloc arenas are faster to allocate but
   1148   // can't be trimmed as easily.
   1149   const bool use_malloc = IsAotCompiler();
   1150   arena_pool_.reset(new ArenaPool(use_malloc, /* low_4gb */ false));
   1151   jit_arena_pool_.reset(
   1152       new ArenaPool(/* use_malloc */ false, /* low_4gb */ false, "CompilerMetadata"));
   1153 
   1154   if (IsAotCompiler() && Is64BitInstructionSet(kRuntimeISA)) {
   1155     // 4gb, no malloc. Explanation in header.
   1156     low_4gb_arena_pool_.reset(new ArenaPool(/* use_malloc */ false, /* low_4gb */ true));
   1157   }
   1158   linear_alloc_.reset(CreateLinearAlloc());
   1159 
   1160   BlockSignals();
   1161   InitPlatformSignalHandlers();
   1162 
   1163   // Change the implicit checks flags based on runtime architecture.
   1164   switch (kRuntimeISA) {
   1165     case kArm:
   1166     case kThumb2:
   1167     case kX86:
   1168     case kArm64:
   1169     case kX86_64:
   1170     case kMips:
   1171     case kMips64:
   1172       implicit_null_checks_ = true;
   1173       // Installing stack protection does not play well with valgrind.
   1174       implicit_so_checks_ = !(RUNNING_ON_MEMORY_TOOL && kMemoryToolIsValgrind);
   1175       break;
   1176     default:
   1177       // Keep the defaults.
   1178       break;
   1179   }
   1180 
   1181   if (!no_sig_chain_) {
   1182     // Dex2Oat's Runtime does not need the signal chain or the fault handler.
   1183     if (implicit_null_checks_ || implicit_so_checks_ || implicit_suspend_checks_) {
   1184       fault_manager.Init();
   1185 
   1186       // These need to be in a specific order.  The null point check handler must be
   1187       // after the suspend check and stack overflow check handlers.
   1188       //
   1189       // Note: the instances attach themselves to the fault manager and are handled by it. The manager
   1190       //       will delete the instance on Shutdown().
   1191       if (implicit_suspend_checks_) {
   1192         new SuspensionHandler(&fault_manager);
   1193       }
   1194 
   1195       if (implicit_so_checks_) {
   1196         new StackOverflowHandler(&fault_manager);
   1197       }
   1198 
   1199       if (implicit_null_checks_) {
   1200         new NullPointerHandler(&fault_manager);
   1201       }
   1202 
   1203       if (kEnableJavaStackTraceHandler) {
   1204         new JavaStackTraceHandler(&fault_manager);
   1205       }
   1206     }
   1207   }
   1208 
   1209   std::string error_msg;
   1210   java_vm_ = JavaVMExt::Create(this, runtime_options, &error_msg);
   1211   if (java_vm_.get() == nullptr) {
   1212     LOG(ERROR) << "Could not initialize JavaVMExt: " << error_msg;
   1213     return false;
   1214   }
   1215 
   1216   // Add the JniEnv handler.
   1217   // TODO Refactor this stuff.
   1218   java_vm_->AddEnvironmentHook(JNIEnvExt::GetEnvHandler);
   1219 
   1220   Thread::Startup();
   1221 
   1222   // ClassLinker needs an attached thread, but we can't fully attach a thread without creating
   1223   // objects. We can't supply a thread group yet; it will be fixed later. Since we are the main
   1224   // thread, we do not get a java peer.
   1225   Thread* self = Thread::Attach("main", false, nullptr, false);
   1226   CHECK_EQ(self->GetThreadId(), ThreadList::kMainThreadId);
   1227   CHECK(self != nullptr);
   1228 
   1229   self->SetCanCallIntoJava(!IsAotCompiler());
   1230 
   1231   // Set us to runnable so tools using a runtime can allocate and GC by default
   1232   self->TransitionFromSuspendedToRunnable();
   1233 
   1234   // Now we're attached, we can take the heap locks and validate the heap.
   1235   GetHeap()->EnableObjectValidation();
   1236 
   1237   CHECK_GE(GetHeap()->GetContinuousSpaces().size(), 1U);
   1238   class_linker_ = new ClassLinker(intern_table_);
   1239   cha_ = new ClassHierarchyAnalysis;
   1240   if (GetHeap()->HasBootImageSpace()) {
   1241     bool result = class_linker_->InitFromBootImage(&error_msg);
   1242     if (!result) {
   1243       LOG(ERROR) << "Could not initialize from image: " << error_msg;
   1244       return false;
   1245     }
   1246     if (kIsDebugBuild) {
   1247       for (auto image_space : GetHeap()->GetBootImageSpaces()) {
   1248         image_space->VerifyImageAllocations();
   1249       }
   1250     }
   1251     if (boot_class_path_string_.empty()) {
   1252       // The bootclasspath is not explicitly specified: construct it from the loaded dex files.
   1253       const std::vector<const DexFile*>& boot_class_path = GetClassLinker()->GetBootClassPath();
   1254       std::vector<std::string> dex_locations;
   1255       dex_locations.reserve(boot_class_path.size());
   1256       for (const DexFile* dex_file : boot_class_path) {
   1257         dex_locations.push_back(dex_file->GetLocation());
   1258       }
   1259       boot_class_path_string_ = android::base::Join(dex_locations, ':');
   1260     }
   1261     {
   1262       ScopedTrace trace2("AddImageStringsToTable");
   1263       GetInternTable()->AddImagesStringsToTable(heap_->GetBootImageSpaces());
   1264     }
   1265     if (IsJavaDebuggable()) {
   1266       // Now that we have loaded the boot image, deoptimize its methods if we are running
   1267       // debuggable, as the code may have been compiled non-debuggable.
   1268       DeoptimizeBootImage();
   1269     }
   1270   } else {
   1271     std::vector<std::string> dex_filenames;
   1272     Split(boot_class_path_string_, ':', &dex_filenames);
   1273 
   1274     std::vector<std::string> dex_locations;
   1275     if (!runtime_options.Exists(Opt::BootClassPathLocations)) {
   1276       dex_locations = dex_filenames;
   1277     } else {
   1278       dex_locations = runtime_options.GetOrDefault(Opt::BootClassPathLocations);
   1279       CHECK_EQ(dex_filenames.size(), dex_locations.size());
   1280     }
   1281 
   1282     std::vector<std::unique_ptr<const DexFile>> boot_class_path;
   1283     if (runtime_options.Exists(Opt::BootClassPathDexList)) {
   1284       boot_class_path.swap(*runtime_options.GetOrDefault(Opt::BootClassPathDexList));
   1285     } else {
   1286       OpenDexFiles(dex_filenames,
   1287                    dex_locations,
   1288                    runtime_options.GetOrDefault(Opt::Image),
   1289                    &boot_class_path);
   1290     }
   1291     instruction_set_ = runtime_options.GetOrDefault(Opt::ImageInstructionSet);
   1292     if (!class_linker_->InitWithoutImage(std::move(boot_class_path), &error_msg)) {
   1293       LOG(ERROR) << "Could not initialize without image: " << error_msg;
   1294       return false;
   1295     }
   1296 
   1297     // TODO: Should we move the following to InitWithoutImage?
   1298     SetInstructionSet(instruction_set_);
   1299     for (int i = 0; i < Runtime::kLastCalleeSaveType; i++) {
   1300       Runtime::CalleeSaveType type = Runtime::CalleeSaveType(i);
   1301       if (!HasCalleeSaveMethod(type)) {
   1302         SetCalleeSaveMethod(CreateCalleeSaveMethod(), type);
   1303       }
   1304     }
   1305   }
   1306 
   1307   CHECK(class_linker_ != nullptr);
   1308 
   1309   verifier::MethodVerifier::Init();
   1310 
   1311   if (runtime_options.Exists(Opt::MethodTrace)) {
   1312     trace_config_.reset(new TraceConfig());
   1313     trace_config_->trace_file = runtime_options.ReleaseOrDefault(Opt::MethodTraceFile);
   1314     trace_config_->trace_file_size = runtime_options.ReleaseOrDefault(Opt::MethodTraceFileSize);
   1315     trace_config_->trace_mode = Trace::TraceMode::kMethodTracing;
   1316     trace_config_->trace_output_mode = runtime_options.Exists(Opt::MethodTraceStreaming) ?
   1317         Trace::TraceOutputMode::kStreaming :
   1318         Trace::TraceOutputMode::kFile;
   1319   }
   1320 
   1321   // TODO: move this to just be an Trace::Start argument
   1322   Trace::SetDefaultClockSource(runtime_options.GetOrDefault(Opt::ProfileClock));
   1323 
   1324   // Pre-allocate an OutOfMemoryError for the double-OOME case.
   1325   self->ThrowNewException("Ljava/lang/OutOfMemoryError;",
   1326                           "OutOfMemoryError thrown while trying to throw OutOfMemoryError; "
   1327                           "no stack trace available");
   1328   pre_allocated_OutOfMemoryError_ = GcRoot<mirror::Throwable>(self->GetException());
   1329   self->ClearException();
   1330 
   1331   // Pre-allocate a NoClassDefFoundError for the common case of failing to find a system class
   1332   // ahead of checking the application's class loader.
   1333   self->ThrowNewException("Ljava/lang/NoClassDefFoundError;",
   1334                           "Class not found using the boot class loader; no stack trace available");
   1335   pre_allocated_NoClassDefFoundError_ = GcRoot<mirror::Throwable>(self->GetException());
   1336   self->ClearException();
   1337 
   1338   // Runtime initialization is largely done now.
   1339   // We load plugins first since that can modify the runtime state slightly.
   1340   // Load all plugins
   1341   for (auto& plugin : plugins_) {
   1342     std::string err;
   1343     if (!plugin.Load(&err)) {
   1344       LOG(FATAL) << plugin << " failed to load: " << err;
   1345     }
   1346   }
   1347 
   1348   // Look for a native bridge.
   1349   //
   1350   // The intended flow here is, in the case of a running system:
   1351   //
   1352   // Runtime::Init() (zygote):
   1353   //   LoadNativeBridge -> dlopen from cmd line parameter.
   1354   //  |
   1355   //  V
   1356   // Runtime::Start() (zygote):
   1357   //   No-op wrt native bridge.
   1358   //  |
   1359   //  | start app
   1360   //  V
   1361   // DidForkFromZygote(action)
   1362   //   action = kUnload -> dlclose native bridge.
   1363   //   action = kInitialize -> initialize library
   1364   //
   1365   //
   1366   // The intended flow here is, in the case of a simple dalvikvm call:
   1367   //
   1368   // Runtime::Init():
   1369   //   LoadNativeBridge -> dlopen from cmd line parameter.
   1370   //  |
   1371   //  V
   1372   // Runtime::Start():
   1373   //   DidForkFromZygote(kInitialize) -> try to initialize any native bridge given.
   1374   //   No-op wrt native bridge.
   1375   {
   1376     std::string native_bridge_file_name = runtime_options.ReleaseOrDefault(Opt::NativeBridge);
   1377     is_native_bridge_loaded_ = LoadNativeBridge(native_bridge_file_name);
   1378   }
   1379 
   1380   // Startup agents
   1381   // TODO Maybe we should start a new thread to run these on. Investigate RI behavior more.
   1382   for (auto& agent : agents_) {
   1383     // TODO Check err
   1384     int res = 0;
   1385     std::string err = "";
   1386     ti::Agent::LoadError result = agent.Load(&res, &err);
   1387     if (result == ti::Agent::kInitializationError) {
   1388       LOG(FATAL) << "Unable to initialize agent!";
   1389     } else if (result != ti::Agent::kNoError) {
   1390       LOG(ERROR) << "Unable to load an agent: " << err;
   1391     }
   1392   }
   1393   {
   1394     ScopedObjectAccess soa(self);
   1395     callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kInitialAgents);
   1396   }
   1397 
   1398   VLOG(startup) << "Runtime::Init exiting";
   1399 
   1400   return true;
   1401 }
   1402 
   1403 static bool EnsureJvmtiPlugin(Runtime* runtime,
   1404                               std::vector<Plugin>* plugins,
   1405                               std::string* error_msg) {
   1406   constexpr const char* plugin_name = kIsDebugBuild ? "libopenjdkjvmtid.so" : "libopenjdkjvmti.so";
   1407 
   1408   // Is the plugin already loaded?
   1409   for (const Plugin& p : *plugins) {
   1410     if (p.GetLibrary() == plugin_name) {
   1411       return true;
   1412     }
   1413   }
   1414 
   1415   // Is the process debuggable? Otherwise, do not attempt to load the plugin.
   1416   if (!runtime->IsJavaDebuggable()) {
   1417     *error_msg = "Process is not debuggable.";
   1418     return false;
   1419   }
   1420 
   1421   Plugin new_plugin = Plugin::Create(plugin_name);
   1422 
   1423   if (!new_plugin.Load(error_msg)) {
   1424     return false;
   1425   }
   1426 
   1427   plugins->push_back(std::move(new_plugin));
   1428   return true;
   1429 }
   1430 
   1431 // Attach a new agent and add it to the list of runtime agents
   1432 //
   1433 // TODO: once we decide on the threading model for agents,
   1434 //   revisit this and make sure we're doing this on the right thread
   1435 //   (and we synchronize access to any shared data structures like "agents_")
   1436 //
   1437 void Runtime::AttachAgent(const std::string& agent_arg) {
   1438   std::string error_msg;
   1439   if (!EnsureJvmtiPlugin(this, &plugins_, &error_msg)) {
   1440     LOG(WARNING) << "Could not load plugin: " << error_msg;
   1441     ScopedObjectAccess soa(Thread::Current());
   1442     ThrowIOException("%s", error_msg.c_str());
   1443     return;
   1444   }
   1445 
   1446   ti::Agent agent(agent_arg);
   1447 
   1448   int res = 0;
   1449   ti::Agent::LoadError result = agent.Attach(&res, &error_msg);
   1450 
   1451   if (result == ti::Agent::kNoError) {
   1452     agents_.push_back(std::move(agent));
   1453   } else {
   1454     LOG(WARNING) << "Agent attach failed (result=" << result << ") : " << error_msg;
   1455     ScopedObjectAccess soa(Thread::Current());
   1456     ThrowIOException("%s", error_msg.c_str());
   1457   }
   1458 }
   1459 
   1460 void Runtime::InitNativeMethods() {
   1461   VLOG(startup) << "Runtime::InitNativeMethods entering";
   1462   Thread* self = Thread::Current();
   1463   JNIEnv* env = self->GetJniEnv();
   1464 
   1465   // Must be in the kNative state for calling native methods (JNI_OnLoad code).
   1466   CHECK_EQ(self->GetState(), kNative);
   1467 
   1468   // First set up JniConstants, which is used by both the runtime's built-in native
   1469   // methods and libcore.
   1470   JniConstants::init(env);
   1471 
   1472   // Then set up the native methods provided by the runtime itself.
   1473   RegisterRuntimeNativeMethods(env);
   1474 
   1475   // Initialize classes used in JNI. The initialization requires runtime native
   1476   // methods to be loaded first.
   1477   WellKnownClasses::Init(env);
   1478 
   1479   // Then set up libjavacore / libopenjdk, which are just a regular JNI libraries with
   1480   // a regular JNI_OnLoad. Most JNI libraries can just use System.loadLibrary, but
   1481   // libcore can't because it's the library that implements System.loadLibrary!
   1482   {
   1483     std::string error_msg;
   1484     if (!java_vm_->LoadNativeLibrary(env, "libjavacore.so", nullptr, nullptr, &error_msg)) {
   1485       LOG(FATAL) << "LoadNativeLibrary failed for \"libjavacore.so\": " << error_msg;
   1486     }
   1487   }
   1488   {
   1489     constexpr const char* kOpenJdkLibrary = kIsDebugBuild
   1490                                                 ? "libopenjdkd.so"
   1491                                                 : "libopenjdk.so";
   1492     std::string error_msg;
   1493     if (!java_vm_->LoadNativeLibrary(env, kOpenJdkLibrary, nullptr, nullptr, &error_msg)) {
   1494       LOG(FATAL) << "LoadNativeLibrary failed for \"" << kOpenJdkLibrary << "\": " << error_msg;
   1495     }
   1496   }
   1497 
   1498   // Initialize well known classes that may invoke runtime native methods.
   1499   WellKnownClasses::LateInit(env);
   1500 
   1501   VLOG(startup) << "Runtime::InitNativeMethods exiting";
   1502 }
   1503 
   1504 void Runtime::ReclaimArenaPoolMemory() {
   1505   arena_pool_->LockReclaimMemory();
   1506 }
   1507 
   1508 void Runtime::InitThreadGroups(Thread* self) {
   1509   JNIEnvExt* env = self->GetJniEnv();
   1510   ScopedJniEnvLocalRefState env_state(env);
   1511   main_thread_group_ =
   1512       env->NewGlobalRef(env->GetStaticObjectField(
   1513           WellKnownClasses::java_lang_ThreadGroup,
   1514           WellKnownClasses::java_lang_ThreadGroup_mainThreadGroup));
   1515   CHECK(main_thread_group_ != nullptr || IsAotCompiler());
   1516   system_thread_group_ =
   1517       env->NewGlobalRef(env->GetStaticObjectField(
   1518           WellKnownClasses::java_lang_ThreadGroup,
   1519           WellKnownClasses::java_lang_ThreadGroup_systemThreadGroup));
   1520   CHECK(system_thread_group_ != nullptr || IsAotCompiler());
   1521 }
   1522 
   1523 jobject Runtime::GetMainThreadGroup() const {
   1524   CHECK(main_thread_group_ != nullptr || IsAotCompiler());
   1525   return main_thread_group_;
   1526 }
   1527 
   1528 jobject Runtime::GetSystemThreadGroup() const {
   1529   CHECK(system_thread_group_ != nullptr || IsAotCompiler());
   1530   return system_thread_group_;
   1531 }
   1532 
   1533 jobject Runtime::GetSystemClassLoader() const {
   1534   CHECK(system_class_loader_ != nullptr || IsAotCompiler());
   1535   return system_class_loader_;
   1536 }
   1537 
   1538 void Runtime::RegisterRuntimeNativeMethods(JNIEnv* env) {
   1539   register_dalvik_system_DexFile(env);
   1540   register_dalvik_system_VMDebug(env);
   1541   register_dalvik_system_VMRuntime(env);
   1542   register_dalvik_system_VMStack(env);
   1543   register_dalvik_system_ZygoteHooks(env);
   1544   register_java_lang_Class(env);
   1545   register_java_lang_Object(env);
   1546   register_java_lang_invoke_MethodHandleImpl(env);
   1547   register_java_lang_ref_FinalizerReference(env);
   1548   register_java_lang_reflect_Array(env);
   1549   register_java_lang_reflect_Constructor(env);
   1550   register_java_lang_reflect_Executable(env);
   1551   register_java_lang_reflect_Field(env);
   1552   register_java_lang_reflect_Method(env);
   1553   register_java_lang_reflect_Parameter(env);
   1554   register_java_lang_reflect_Proxy(env);
   1555   register_java_lang_ref_Reference(env);
   1556   register_java_lang_String(env);
   1557   register_java_lang_StringFactory(env);
   1558   register_java_lang_System(env);
   1559   register_java_lang_Thread(env);
   1560   register_java_lang_Throwable(env);
   1561   register_java_lang_VMClassLoader(env);
   1562   register_java_lang_Void(env);
   1563   register_java_util_concurrent_atomic_AtomicLong(env);
   1564   register_libcore_util_CharsetUtils(env);
   1565   register_org_apache_harmony_dalvik_ddmc_DdmServer(env);
   1566   register_org_apache_harmony_dalvik_ddmc_DdmVmInternal(env);
   1567   register_sun_misc_Unsafe(env);
   1568 }
   1569 
   1570 std::ostream& operator<<(std::ostream& os, const DeoptimizationKind& kind) {
   1571   os << GetDeoptimizationKindName(kind);
   1572   return os;
   1573 }
   1574 
   1575 void Runtime::DumpDeoptimizations(std::ostream& os) {
   1576   for (size_t i = 0; i <= static_cast<size_t>(DeoptimizationKind::kLast); ++i) {
   1577     if (deoptimization_counts_[i] != 0) {
   1578       os << "Number of "
   1579          << GetDeoptimizationKindName(static_cast<DeoptimizationKind>(i))
   1580          << " deoptimizations: "
   1581          << deoptimization_counts_[i]
   1582          << "\n";
   1583     }
   1584   }
   1585 }
   1586 
   1587 void Runtime::DumpForSigQuit(std::ostream& os) {
   1588   GetClassLinker()->DumpForSigQuit(os);
   1589   GetInternTable()->DumpForSigQuit(os);
   1590   GetJavaVM()->DumpForSigQuit(os);
   1591   GetHeap()->DumpForSigQuit(os);
   1592   oat_file_manager_->DumpForSigQuit(os);
   1593   if (GetJit() != nullptr) {
   1594     GetJit()->DumpForSigQuit(os);
   1595   } else {
   1596     os << "Running non JIT\n";
   1597   }
   1598   DumpDeoptimizations(os);
   1599   TrackedAllocators::Dump(os);
   1600   os << "\n";
   1601 
   1602   thread_list_->DumpForSigQuit(os);
   1603   BaseMutex::DumpAll(os);
   1604 
   1605   // Inform anyone else who is interested in SigQuit.
   1606   {
   1607     ScopedObjectAccess soa(Thread::Current());
   1608     callbacks_->SigQuit();
   1609   }
   1610 }
   1611 
   1612 void Runtime::DumpLockHolders(std::ostream& os) {
   1613   uint64_t mutator_lock_owner = Locks::mutator_lock_->GetExclusiveOwnerTid();
   1614   pid_t thread_list_lock_owner = GetThreadList()->GetLockOwner();
   1615   pid_t classes_lock_owner = GetClassLinker()->GetClassesLockOwner();
   1616   pid_t dex_lock_owner = GetClassLinker()->GetDexLockOwner();
   1617   if ((thread_list_lock_owner | classes_lock_owner | dex_lock_owner) != 0) {
   1618     os << "Mutator lock exclusive owner tid: " << mutator_lock_owner << "\n"
   1619        << "ThreadList lock owner tid: " << thread_list_lock_owner << "\n"
   1620        << "ClassLinker classes lock owner tid: " << classes_lock_owner << "\n"
   1621        << "ClassLinker dex lock owner tid: " << dex_lock_owner << "\n";
   1622   }
   1623 }
   1624 
   1625 void Runtime::SetStatsEnabled(bool new_state) {
   1626   Thread* self = Thread::Current();
   1627   MutexLock mu(self, *Locks::instrument_entrypoints_lock_);
   1628   if (new_state == true) {
   1629     GetStats()->Clear(~0);
   1630     // TODO: wouldn't it make more sense to clear _all_ threads' stats?
   1631     self->GetStats()->Clear(~0);
   1632     if (stats_enabled_ != new_state) {
   1633       GetInstrumentation()->InstrumentQuickAllocEntryPointsLocked();
   1634     }
   1635   } else if (stats_enabled_ != new_state) {
   1636     GetInstrumentation()->UninstrumentQuickAllocEntryPointsLocked();
   1637   }
   1638   stats_enabled_ = new_state;
   1639 }
   1640 
   1641 void Runtime::ResetStats(int kinds) {
   1642   GetStats()->Clear(kinds & 0xffff);
   1643   // TODO: wouldn't it make more sense to clear _all_ threads' stats?
   1644   Thread::Current()->GetStats()->Clear(kinds >> 16);
   1645 }
   1646 
   1647 int32_t Runtime::GetStat(int kind) {
   1648   RuntimeStats* stats;
   1649   if (kind < (1<<16)) {
   1650     stats = GetStats();
   1651   } else {
   1652     stats = Thread::Current()->GetStats();
   1653     kind >>= 16;
   1654   }
   1655   switch (kind) {
   1656   case KIND_ALLOCATED_OBJECTS:
   1657     return stats->allocated_objects;
   1658   case KIND_ALLOCATED_BYTES:
   1659     return stats->allocated_bytes;
   1660   case KIND_FREED_OBJECTS:
   1661     return stats->freed_objects;
   1662   case KIND_FREED_BYTES:
   1663     return stats->freed_bytes;
   1664   case KIND_GC_INVOCATIONS:
   1665     return stats->gc_for_alloc_count;
   1666   case KIND_CLASS_INIT_COUNT:
   1667     return stats->class_init_count;
   1668   case KIND_CLASS_INIT_TIME:
   1669     // Convert ns to us, reduce to 32 bits.
   1670     return static_cast<int>(stats->class_init_time_ns / 1000);
   1671   case KIND_EXT_ALLOCATED_OBJECTS:
   1672   case KIND_EXT_ALLOCATED_BYTES:
   1673   case KIND_EXT_FREED_OBJECTS:
   1674   case KIND_EXT_FREED_BYTES:
   1675     return 0;  // backward compatibility
   1676   default:
   1677     LOG(FATAL) << "Unknown statistic " << kind;
   1678     return -1;  // unreachable
   1679   }
   1680 }
   1681 
   1682 void Runtime::BlockSignals() {
   1683   SignalSet signals;
   1684   signals.Add(SIGPIPE);
   1685   // SIGQUIT is used to dump the runtime's state (including stack traces).
   1686   signals.Add(SIGQUIT);
   1687   // SIGUSR1 is used to initiate a GC.
   1688   signals.Add(SIGUSR1);
   1689   signals.Block();
   1690 }
   1691 
   1692 bool Runtime::AttachCurrentThread(const char* thread_name, bool as_daemon, jobject thread_group,
   1693                                   bool create_peer) {
   1694   ScopedTrace trace(__FUNCTION__);
   1695   return Thread::Attach(thread_name, as_daemon, thread_group, create_peer) != nullptr;
   1696 }
   1697 
   1698 void Runtime::DetachCurrentThread() {
   1699   ScopedTrace trace(__FUNCTION__);
   1700   Thread* self = Thread::Current();
   1701   if (self == nullptr) {
   1702     LOG(FATAL) << "attempting to detach thread that is not attached";
   1703   }
   1704   if (self->HasManagedStack()) {
   1705     LOG(FATAL) << *Thread::Current() << " attempting to detach while still running code";
   1706   }
   1707   thread_list_->Unregister(self);
   1708 }
   1709 
   1710 mirror::Throwable* Runtime::GetPreAllocatedOutOfMemoryError() {
   1711   mirror::Throwable* oome = pre_allocated_OutOfMemoryError_.Read();
   1712   if (oome == nullptr) {
   1713     LOG(ERROR) << "Failed to return pre-allocated OOME";
   1714   }
   1715   return oome;
   1716 }
   1717 
   1718 mirror::Throwable* Runtime::GetPreAllocatedNoClassDefFoundError() {
   1719   mirror::Throwable* ncdfe = pre_allocated_NoClassDefFoundError_.Read();
   1720   if (ncdfe == nullptr) {
   1721     LOG(ERROR) << "Failed to return pre-allocated NoClassDefFoundError";
   1722   }
   1723   return ncdfe;
   1724 }
   1725 
   1726 void Runtime::VisitConstantRoots(RootVisitor* visitor) {
   1727   // Visit the classes held as static in mirror classes, these can be visited concurrently and only
   1728   // need to be visited once per GC since they never change.
   1729   mirror::Class::VisitRoots(visitor);
   1730   mirror::Constructor::VisitRoots(visitor);
   1731   mirror::Reference::VisitRoots(visitor);
   1732   mirror::Method::VisitRoots(visitor);
   1733   mirror::StackTraceElement::VisitRoots(visitor);
   1734   mirror::String::VisitRoots(visitor);
   1735   mirror::Throwable::VisitRoots(visitor);
   1736   mirror::Field::VisitRoots(visitor);
   1737   mirror::MethodType::VisitRoots(visitor);
   1738   mirror::MethodHandleImpl::VisitRoots(visitor);
   1739   mirror::MethodHandlesLookup::VisitRoots(visitor);
   1740   mirror::EmulatedStackFrame::VisitRoots(visitor);
   1741   mirror::ClassExt::VisitRoots(visitor);
   1742   mirror::CallSite::VisitRoots(visitor);
   1743   // Visit all the primitive array types classes.
   1744   mirror::PrimitiveArray<uint8_t>::VisitRoots(visitor);   // BooleanArray
   1745   mirror::PrimitiveArray<int8_t>::VisitRoots(visitor);    // ByteArray
   1746   mirror::PrimitiveArray<uint16_t>::VisitRoots(visitor);  // CharArray
   1747   mirror::PrimitiveArray<double>::VisitRoots(visitor);    // DoubleArray
   1748   mirror::PrimitiveArray<float>::VisitRoots(visitor);     // FloatArray
   1749   mirror::PrimitiveArray<int32_t>::VisitRoots(visitor);   // IntArray
   1750   mirror::PrimitiveArray<int64_t>::VisitRoots(visitor);   // LongArray
   1751   mirror::PrimitiveArray<int16_t>::VisitRoots(visitor);   // ShortArray
   1752   // Visiting the roots of these ArtMethods is not currently required since all the GcRoots are
   1753   // null.
   1754   BufferedRootVisitor<16> buffered_visitor(visitor, RootInfo(kRootVMInternal));
   1755   const PointerSize pointer_size = GetClassLinker()->GetImagePointerSize();
   1756   if (HasResolutionMethod()) {
   1757     resolution_method_->VisitRoots(buffered_visitor, pointer_size);
   1758   }
   1759   if (HasImtConflictMethod()) {
   1760     imt_conflict_method_->VisitRoots(buffered_visitor, pointer_size);
   1761   }
   1762   if (imt_unimplemented_method_ != nullptr) {
   1763     imt_unimplemented_method_->VisitRoots(buffered_visitor, pointer_size);
   1764   }
   1765   for (size_t i = 0; i < kLastCalleeSaveType; ++i) {
   1766     auto* m = reinterpret_cast<ArtMethod*>(callee_save_methods_[i]);
   1767     if (m != nullptr) {
   1768       m->VisitRoots(buffered_visitor, pointer_size);
   1769     }
   1770   }
   1771 }
   1772 
   1773 void Runtime::VisitConcurrentRoots(RootVisitor* visitor, VisitRootFlags flags) {
   1774   intern_table_->VisitRoots(visitor, flags);
   1775   class_linker_->VisitRoots(visitor, flags);
   1776   heap_->VisitAllocationRecords(visitor);
   1777   if ((flags & kVisitRootFlagNewRoots) == 0) {
   1778     // Guaranteed to have no new roots in the constant roots.
   1779     VisitConstantRoots(visitor);
   1780   }
   1781   Dbg::VisitRoots(visitor);
   1782 }
   1783 
   1784 void Runtime::VisitTransactionRoots(RootVisitor* visitor) {
   1785   if (preinitialization_transaction_ != nullptr) {
   1786     preinitialization_transaction_->VisitRoots(visitor);
   1787   }
   1788 }
   1789 
   1790 void Runtime::VisitNonThreadRoots(RootVisitor* visitor) {
   1791   java_vm_->VisitRoots(visitor);
   1792   sentinel_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
   1793   pre_allocated_OutOfMemoryError_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
   1794   pre_allocated_NoClassDefFoundError_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
   1795   verifier::MethodVerifier::VisitStaticRoots(visitor);
   1796   VisitTransactionRoots(visitor);
   1797 }
   1798 
   1799 void Runtime::VisitNonConcurrentRoots(RootVisitor* visitor, VisitRootFlags flags) {
   1800   VisitThreadRoots(visitor, flags);
   1801   VisitNonThreadRoots(visitor);
   1802 }
   1803 
   1804 void Runtime::VisitThreadRoots(RootVisitor* visitor, VisitRootFlags flags) {
   1805   thread_list_->VisitRoots(visitor, flags);
   1806 }
   1807 
   1808 size_t Runtime::FlipThreadRoots(Closure* thread_flip_visitor, Closure* flip_callback,
   1809                                 gc::collector::GarbageCollector* collector) {
   1810   return thread_list_->FlipThreadRoots(thread_flip_visitor, flip_callback, collector);
   1811 }
   1812 
   1813 void Runtime::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) {
   1814   VisitNonConcurrentRoots(visitor, flags);
   1815   VisitConcurrentRoots(visitor, flags);
   1816 }
   1817 
   1818 void Runtime::VisitImageRoots(RootVisitor* visitor) {
   1819   for (auto* space : GetHeap()->GetContinuousSpaces()) {
   1820     if (space->IsImageSpace()) {
   1821       auto* image_space = space->AsImageSpace();
   1822       const auto& image_header = image_space->GetImageHeader();
   1823       for (int32_t i = 0, size = image_header.GetImageRoots()->GetLength(); i != size; ++i) {
   1824         auto* obj = image_header.GetImageRoot(static_cast<ImageHeader::ImageRoot>(i));
   1825         if (obj != nullptr) {
   1826           auto* after_obj = obj;
   1827           visitor->VisitRoot(&after_obj, RootInfo(kRootStickyClass));
   1828           CHECK_EQ(after_obj, obj);
   1829         }
   1830       }
   1831     }
   1832   }
   1833 }
   1834 
   1835 static ArtMethod* CreateRuntimeMethod(ClassLinker* class_linker, LinearAlloc* linear_alloc) {
   1836   const PointerSize image_pointer_size = class_linker->GetImagePointerSize();
   1837   const size_t method_alignment = ArtMethod::Alignment(image_pointer_size);
   1838   const size_t method_size = ArtMethod::Size(image_pointer_size);
   1839   LengthPrefixedArray<ArtMethod>* method_array = class_linker->AllocArtMethodArray(
   1840       Thread::Current(),
   1841       linear_alloc,
   1842       1);
   1843   ArtMethod* method = &method_array->At(0, method_size, method_alignment);
   1844   CHECK(method != nullptr);
   1845   method->SetDexMethodIndex(DexFile::kDexNoIndex);
   1846   CHECK(method->IsRuntimeMethod());
   1847   return method;
   1848 }
   1849 
   1850 ArtMethod* Runtime::CreateImtConflictMethod(LinearAlloc* linear_alloc) {
   1851   ClassLinker* const class_linker = GetClassLinker();
   1852   ArtMethod* method = CreateRuntimeMethod(class_linker, linear_alloc);
   1853   // When compiling, the code pointer will get set later when the image is loaded.
   1854   const PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_);
   1855   if (IsAotCompiler()) {
   1856     method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size);
   1857   } else {
   1858     method->SetEntryPointFromQuickCompiledCode(GetQuickImtConflictStub());
   1859   }
   1860   // Create empty conflict table.
   1861   method->SetImtConflictTable(class_linker->CreateImtConflictTable(/*count*/0u, linear_alloc),
   1862                               pointer_size);
   1863   return method;
   1864 }
   1865 
   1866 void Runtime::SetImtConflictMethod(ArtMethod* method) {
   1867   CHECK(method != nullptr);
   1868   CHECK(method->IsRuntimeMethod());
   1869   imt_conflict_method_ = method;
   1870 }
   1871 
   1872 ArtMethod* Runtime::CreateResolutionMethod() {
   1873   auto* method = CreateRuntimeMethod(GetClassLinker(), GetLinearAlloc());
   1874   // When compiling, the code pointer will get set later when the image is loaded.
   1875   if (IsAotCompiler()) {
   1876     PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_);
   1877     method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size);
   1878   } else {
   1879     method->SetEntryPointFromQuickCompiledCode(GetQuickResolutionStub());
   1880   }
   1881   return method;
   1882 }
   1883 
   1884 ArtMethod* Runtime::CreateCalleeSaveMethod() {
   1885   auto* method = CreateRuntimeMethod(GetClassLinker(), GetLinearAlloc());
   1886   PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_);
   1887   method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size);
   1888   DCHECK_NE(instruction_set_, kNone);
   1889   DCHECK(method->IsRuntimeMethod());
   1890   return method;
   1891 }
   1892 
   1893 void Runtime::DisallowNewSystemWeaks() {
   1894   CHECK(!kUseReadBarrier);
   1895   monitor_list_->DisallowNewMonitors();
   1896   intern_table_->ChangeWeakRootState(gc::kWeakRootStateNoReadsOrWrites);
   1897   java_vm_->DisallowNewWeakGlobals();
   1898   heap_->DisallowNewAllocationRecords();
   1899   if (GetJit() != nullptr) {
   1900     GetJit()->GetCodeCache()->DisallowInlineCacheAccess();
   1901   }
   1902 
   1903   // All other generic system-weak holders.
   1904   for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
   1905     holder->Disallow();
   1906   }
   1907 }
   1908 
   1909 void Runtime::AllowNewSystemWeaks() {
   1910   CHECK(!kUseReadBarrier);
   1911   monitor_list_->AllowNewMonitors();
   1912   intern_table_->ChangeWeakRootState(gc::kWeakRootStateNormal);  // TODO: Do this in the sweeping.
   1913   java_vm_->AllowNewWeakGlobals();
   1914   heap_->AllowNewAllocationRecords();
   1915   if (GetJit() != nullptr) {
   1916     GetJit()->GetCodeCache()->AllowInlineCacheAccess();
   1917   }
   1918 
   1919   // All other generic system-weak holders.
   1920   for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
   1921     holder->Allow();
   1922   }
   1923 }
   1924 
   1925 void Runtime::BroadcastForNewSystemWeaks(bool broadcast_for_checkpoint) {
   1926   // This is used for the read barrier case that uses the thread-local
   1927   // Thread::GetWeakRefAccessEnabled() flag and the checkpoint while weak ref access is disabled
   1928   // (see ThreadList::RunCheckpoint).
   1929   monitor_list_->BroadcastForNewMonitors();
   1930   intern_table_->BroadcastForNewInterns();
   1931   java_vm_->BroadcastForNewWeakGlobals();
   1932   heap_->BroadcastForNewAllocationRecords();
   1933   if (GetJit() != nullptr) {
   1934     GetJit()->GetCodeCache()->BroadcastForInlineCacheAccess();
   1935   }
   1936 
   1937   // All other generic system-weak holders.
   1938   for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
   1939     holder->Broadcast(broadcast_for_checkpoint);
   1940   }
   1941 }
   1942 
   1943 void Runtime::SetInstructionSet(InstructionSet instruction_set) {
   1944   instruction_set_ = instruction_set;
   1945   if ((instruction_set_ == kThumb2) || (instruction_set_ == kArm)) {
   1946     for (int i = 0; i != kLastCalleeSaveType; ++i) {
   1947       CalleeSaveType type = static_cast<CalleeSaveType>(i);
   1948       callee_save_method_frame_infos_[i] = arm::ArmCalleeSaveMethodFrameInfo(type);
   1949     }
   1950   } else if (instruction_set_ == kMips) {
   1951     for (int i = 0; i != kLastCalleeSaveType; ++i) {
   1952       CalleeSaveType type = static_cast<CalleeSaveType>(i);
   1953       callee_save_method_frame_infos_[i] = mips::MipsCalleeSaveMethodFrameInfo(type);
   1954     }
   1955   } else if (instruction_set_ == kMips64) {
   1956     for (int i = 0; i != kLastCalleeSaveType; ++i) {
   1957       CalleeSaveType type = static_cast<CalleeSaveType>(i);
   1958       callee_save_method_frame_infos_[i] = mips64::Mips64CalleeSaveMethodFrameInfo(type);
   1959     }
   1960   } else if (instruction_set_ == kX86) {
   1961     for (int i = 0; i != kLastCalleeSaveType; ++i) {
   1962       CalleeSaveType type = static_cast<CalleeSaveType>(i);
   1963       callee_save_method_frame_infos_[i] = x86::X86CalleeSaveMethodFrameInfo(type);
   1964     }
   1965   } else if (instruction_set_ == kX86_64) {
   1966     for (int i = 0; i != kLastCalleeSaveType; ++i) {
   1967       CalleeSaveType type = static_cast<CalleeSaveType>(i);
   1968       callee_save_method_frame_infos_[i] = x86_64::X86_64CalleeSaveMethodFrameInfo(type);
   1969     }
   1970   } else if (instruction_set_ == kArm64) {
   1971     for (int i = 0; i != kLastCalleeSaveType; ++i) {
   1972       CalleeSaveType type = static_cast<CalleeSaveType>(i);
   1973       callee_save_method_frame_infos_[i] = arm64::Arm64CalleeSaveMethodFrameInfo(type);
   1974     }
   1975   } else {
   1976     UNIMPLEMENTED(FATAL) << instruction_set_;
   1977   }
   1978 }
   1979 
   1980 void Runtime::ClearInstructionSet() {
   1981   instruction_set_ = InstructionSet::kNone;
   1982 }
   1983 
   1984 void Runtime::SetCalleeSaveMethod(ArtMethod* method, CalleeSaveType type) {
   1985   DCHECK_LT(static_cast<int>(type), static_cast<int>(kLastCalleeSaveType));
   1986   CHECK(method != nullptr);
   1987   callee_save_methods_[type] = reinterpret_cast<uintptr_t>(method);
   1988 }
   1989 
   1990 void Runtime::ClearCalleeSaveMethods() {
   1991   for (size_t i = 0; i < static_cast<size_t>(kLastCalleeSaveType); ++i) {
   1992     CalleeSaveType type = static_cast<CalleeSaveType>(i);
   1993     callee_save_methods_[type] = reinterpret_cast<uintptr_t>(nullptr);
   1994   }
   1995 }
   1996 
   1997 void Runtime::RegisterAppInfo(const std::vector<std::string>& code_paths,
   1998                               const std::string& profile_output_filename) {
   1999   if (jit_.get() == nullptr) {
   2000     // We are not JITing. Nothing to do.
   2001     return;
   2002   }
   2003 
   2004   VLOG(profiler) << "Register app with " << profile_output_filename
   2005       << " " << android::base::Join(code_paths, ':');
   2006 
   2007   if (profile_output_filename.empty()) {
   2008     LOG(WARNING) << "JIT profile information will not be recorded: profile filename is empty.";
   2009     return;
   2010   }
   2011   if (!FileExists(profile_output_filename)) {
   2012     LOG(WARNING) << "JIT profile information will not be recorded: profile file does not exits.";
   2013     return;
   2014   }
   2015   if (code_paths.empty()) {
   2016     LOG(WARNING) << "JIT profile information will not be recorded: code paths is empty.";
   2017     return;
   2018   }
   2019 
   2020   jit_->StartProfileSaver(profile_output_filename, code_paths);
   2021 }
   2022 
   2023 // Transaction support.
   2024 void Runtime::EnterTransactionMode(Transaction* transaction) {
   2025   DCHECK(IsAotCompiler());
   2026   DCHECK(transaction != nullptr);
   2027   DCHECK(!IsActiveTransaction());
   2028   preinitialization_transaction_ = transaction;
   2029 }
   2030 
   2031 void Runtime::ExitTransactionMode() {
   2032   DCHECK(IsAotCompiler());
   2033   DCHECK(IsActiveTransaction());
   2034   preinitialization_transaction_ = nullptr;
   2035 }
   2036 
   2037 bool Runtime::IsTransactionAborted() const {
   2038   if (!IsActiveTransaction()) {
   2039     return false;
   2040   } else {
   2041     DCHECK(IsAotCompiler());
   2042     return preinitialization_transaction_->IsAborted();
   2043   }
   2044 }
   2045 
   2046 void Runtime::AbortTransactionAndThrowAbortError(Thread* self, const std::string& abort_message) {
   2047   DCHECK(IsAotCompiler());
   2048   DCHECK(IsActiveTransaction());
   2049   // Throwing an exception may cause its class initialization. If we mark the transaction
   2050   // aborted before that, we may warn with a false alarm. Throwing the exception before
   2051   // marking the transaction aborted avoids that.
   2052   preinitialization_transaction_->ThrowAbortError(self, &abort_message);
   2053   preinitialization_transaction_->Abort(abort_message);
   2054 }
   2055 
   2056 void Runtime::ThrowTransactionAbortError(Thread* self) {
   2057   DCHECK(IsAotCompiler());
   2058   DCHECK(IsActiveTransaction());
   2059   // Passing nullptr means we rethrow an exception with the earlier transaction abort message.
   2060   preinitialization_transaction_->ThrowAbortError(self, nullptr);
   2061 }
   2062 
   2063 void Runtime::RecordWriteFieldBoolean(mirror::Object* obj, MemberOffset field_offset,
   2064                                       uint8_t value, bool is_volatile) const {
   2065   DCHECK(IsAotCompiler());
   2066   DCHECK(IsActiveTransaction());
   2067   preinitialization_transaction_->RecordWriteFieldBoolean(obj, field_offset, value, is_volatile);
   2068 }
   2069 
   2070 void Runtime::RecordWriteFieldByte(mirror::Object* obj, MemberOffset field_offset,
   2071                                    int8_t value, bool is_volatile) const {
   2072   DCHECK(IsAotCompiler());
   2073   DCHECK(IsActiveTransaction());
   2074   preinitialization_transaction_->RecordWriteFieldByte(obj, field_offset, value, is_volatile);
   2075 }
   2076 
   2077 void Runtime::RecordWriteFieldChar(mirror::Object* obj, MemberOffset field_offset,
   2078                                    uint16_t value, bool is_volatile) const {
   2079   DCHECK(IsAotCompiler());
   2080   DCHECK(IsActiveTransaction());
   2081   preinitialization_transaction_->RecordWriteFieldChar(obj, field_offset, value, is_volatile);
   2082 }
   2083 
   2084 void Runtime::RecordWriteFieldShort(mirror::Object* obj, MemberOffset field_offset,
   2085                                     int16_t value, bool is_volatile) const {
   2086   DCHECK(IsAotCompiler());
   2087   DCHECK(IsActiveTransaction());
   2088   preinitialization_transaction_->RecordWriteFieldShort(obj, field_offset, value, is_volatile);
   2089 }
   2090 
   2091 void Runtime::RecordWriteField32(mirror::Object* obj, MemberOffset field_offset,
   2092                                  uint32_t value, bool is_volatile) const {
   2093   DCHECK(IsAotCompiler());
   2094   DCHECK(IsActiveTransaction());
   2095   preinitialization_transaction_->RecordWriteField32(obj, field_offset, value, is_volatile);
   2096 }
   2097 
   2098 void Runtime::RecordWriteField64(mirror::Object* obj, MemberOffset field_offset,
   2099                                  uint64_t value, bool is_volatile) const {
   2100   DCHECK(IsAotCompiler());
   2101   DCHECK(IsActiveTransaction());
   2102   preinitialization_transaction_->RecordWriteField64(obj, field_offset, value, is_volatile);
   2103 }
   2104 
   2105 void Runtime::RecordWriteFieldReference(mirror::Object* obj,
   2106                                         MemberOffset field_offset,
   2107                                         ObjPtr<mirror::Object> value,
   2108                                         bool is_volatile) const {
   2109   DCHECK(IsAotCompiler());
   2110   DCHECK(IsActiveTransaction());
   2111   preinitialization_transaction_->RecordWriteFieldReference(obj,
   2112                                                             field_offset,
   2113                                                             value.Ptr(),
   2114                                                             is_volatile);
   2115 }
   2116 
   2117 void Runtime::RecordWriteArray(mirror::Array* array, size_t index, uint64_t value) const {
   2118   DCHECK(IsAotCompiler());
   2119   DCHECK(IsActiveTransaction());
   2120   preinitialization_transaction_->RecordWriteArray(array, index, value);
   2121 }
   2122 
   2123 void Runtime::RecordStrongStringInsertion(ObjPtr<mirror::String> s) const {
   2124   DCHECK(IsAotCompiler());
   2125   DCHECK(IsActiveTransaction());
   2126   preinitialization_transaction_->RecordStrongStringInsertion(s);
   2127 }
   2128 
   2129 void Runtime::RecordWeakStringInsertion(ObjPtr<mirror::String> s) const {
   2130   DCHECK(IsAotCompiler());
   2131   DCHECK(IsActiveTransaction());
   2132   preinitialization_transaction_->RecordWeakStringInsertion(s);
   2133 }
   2134 
   2135 void Runtime::RecordStrongStringRemoval(ObjPtr<mirror::String> s) const {
   2136   DCHECK(IsAotCompiler());
   2137   DCHECK(IsActiveTransaction());
   2138   preinitialization_transaction_->RecordStrongStringRemoval(s);
   2139 }
   2140 
   2141 void Runtime::RecordWeakStringRemoval(ObjPtr<mirror::String> s) const {
   2142   DCHECK(IsAotCompiler());
   2143   DCHECK(IsActiveTransaction());
   2144   preinitialization_transaction_->RecordWeakStringRemoval(s);
   2145 }
   2146 
   2147 void Runtime::RecordResolveString(ObjPtr<mirror::DexCache> dex_cache,
   2148                                   dex::StringIndex string_idx) const {
   2149   DCHECK(IsAotCompiler());
   2150   DCHECK(IsActiveTransaction());
   2151   preinitialization_transaction_->RecordResolveString(dex_cache, string_idx);
   2152 }
   2153 
   2154 void Runtime::SetFaultMessage(const std::string& message) {
   2155   MutexLock mu(Thread::Current(), fault_message_lock_);
   2156   fault_message_ = message;
   2157 }
   2158 
   2159 void Runtime::AddCurrentRuntimeFeaturesAsDex2OatArguments(std::vector<std::string>* argv)
   2160     const {
   2161   if (GetInstrumentation()->InterpretOnly()) {
   2162     argv->push_back("--compiler-filter=quicken");
   2163   }
   2164 
   2165   // Make the dex2oat instruction set match that of the launching runtime. If we have multiple
   2166   // architecture support, dex2oat may be compiled as a different instruction-set than that
   2167   // currently being executed.
   2168   std::string instruction_set("--instruction-set=");
   2169   instruction_set += GetInstructionSetString(kRuntimeISA);
   2170   argv->push_back(instruction_set);
   2171 
   2172   std::unique_ptr<const InstructionSetFeatures> features(InstructionSetFeatures::FromCppDefines());
   2173   std::string feature_string("--instruction-set-features=");
   2174   feature_string += features->GetFeatureString();
   2175   argv->push_back(feature_string);
   2176 }
   2177 
   2178 void Runtime::CreateJit() {
   2179   CHECK(!IsAotCompiler());
   2180   if (kIsDebugBuild && GetInstrumentation()->IsForcedInterpretOnly()) {
   2181     DCHECK(!jit_options_->UseJitCompilation());
   2182   }
   2183   std::string error_msg;
   2184   jit_.reset(jit::Jit::Create(jit_options_.get(), &error_msg));
   2185   if (jit_.get() == nullptr) {
   2186     LOG(WARNING) << "Failed to create JIT " << error_msg;
   2187     return;
   2188   }
   2189 
   2190   // In case we have a profile path passed as a command line argument,
   2191   // register the current class path for profiling now. Note that we cannot do
   2192   // this before we create the JIT and having it here is the most convenient way.
   2193   // This is used when testing profiles with dalvikvm command as there is no
   2194   // framework to register the dex files for profiling.
   2195   if (jit_options_->GetSaveProfilingInfo() &&
   2196       !jit_options_->GetProfileSaverOptions().GetProfilePath().empty()) {
   2197     std::vector<std::string> dex_filenames;
   2198     Split(class_path_string_, ':', &dex_filenames);
   2199     RegisterAppInfo(dex_filenames, jit_options_->GetProfileSaverOptions().GetProfilePath());
   2200   }
   2201 }
   2202 
   2203 bool Runtime::CanRelocate() const {
   2204   return !IsAotCompiler() || compiler_callbacks_->IsRelocationPossible();
   2205 }
   2206 
   2207 bool Runtime::IsCompilingBootImage() const {
   2208   return IsCompiler() && compiler_callbacks_->IsBootImage();
   2209 }
   2210 
   2211 void Runtime::SetResolutionMethod(ArtMethod* method) {
   2212   CHECK(method != nullptr);
   2213   CHECK(method->IsRuntimeMethod()) << method;
   2214   resolution_method_ = method;
   2215 }
   2216 
   2217 void Runtime::SetImtUnimplementedMethod(ArtMethod* method) {
   2218   CHECK(method != nullptr);
   2219   CHECK(method->IsRuntimeMethod());
   2220   imt_unimplemented_method_ = method;
   2221 }
   2222 
   2223 void Runtime::FixupConflictTables() {
   2224   // We can only do this after the class linker is created.
   2225   const PointerSize pointer_size = GetClassLinker()->GetImagePointerSize();
   2226   if (imt_unimplemented_method_->GetImtConflictTable(pointer_size) == nullptr) {
   2227     imt_unimplemented_method_->SetImtConflictTable(
   2228         ClassLinker::CreateImtConflictTable(/*count*/0u, GetLinearAlloc(), pointer_size),
   2229         pointer_size);
   2230   }
   2231   if (imt_conflict_method_->GetImtConflictTable(pointer_size) == nullptr) {
   2232     imt_conflict_method_->SetImtConflictTable(
   2233           ClassLinker::CreateImtConflictTable(/*count*/0u, GetLinearAlloc(), pointer_size),
   2234           pointer_size);
   2235   }
   2236 }
   2237 
   2238 bool Runtime::IsVerificationEnabled() const {
   2239   return verify_ == verifier::VerifyMode::kEnable ||
   2240       verify_ == verifier::VerifyMode::kSoftFail;
   2241 }
   2242 
   2243 bool Runtime::IsVerificationSoftFail() const {
   2244   return verify_ == verifier::VerifyMode::kSoftFail;
   2245 }
   2246 
   2247 bool Runtime::IsAsyncDeoptimizeable(uintptr_t code) const {
   2248   // We only support async deopt (ie the compiled code is not explicitly asking for
   2249   // deopt, but something else like the debugger) in debuggable JIT code.
   2250   // We could look at the oat file where `code` is being defined,
   2251   // and check whether it's been compiled debuggable, but we decided to
   2252   // only rely on the JIT for debuggable apps.
   2253   return IsJavaDebuggable() &&
   2254       GetJit() != nullptr &&
   2255       GetJit()->GetCodeCache()->ContainsPc(reinterpret_cast<const void*>(code));
   2256 }
   2257 
   2258 LinearAlloc* Runtime::CreateLinearAlloc() {
   2259   // For 64 bit compilers, it needs to be in low 4GB in the case where we are cross compiling for a
   2260   // 32 bit target. In this case, we have 32 bit pointers in the dex cache arrays which can't hold
   2261   // when we have 64 bit ArtMethod pointers.
   2262   return (IsAotCompiler() && Is64BitInstructionSet(kRuntimeISA))
   2263       ? new LinearAlloc(low_4gb_arena_pool_.get())
   2264       : new LinearAlloc(arena_pool_.get());
   2265 }
   2266 
   2267 double Runtime::GetHashTableMinLoadFactor() const {
   2268   return is_low_memory_mode_ ? kLowMemoryMinLoadFactor : kNormalMinLoadFactor;
   2269 }
   2270 
   2271 double Runtime::GetHashTableMaxLoadFactor() const {
   2272   return is_low_memory_mode_ ? kLowMemoryMaxLoadFactor : kNormalMaxLoadFactor;
   2273 }
   2274 
   2275 void Runtime::UpdateProcessState(ProcessState process_state) {
   2276   ProcessState old_process_state = process_state_;
   2277   process_state_ = process_state;
   2278   GetHeap()->UpdateProcessState(old_process_state, process_state);
   2279 }
   2280 
   2281 void Runtime::RegisterSensitiveThread() const {
   2282   Thread::SetJitSensitiveThread();
   2283 }
   2284 
   2285 // Returns true if JIT compilations are enabled. GetJit() will be not null in this case.
   2286 bool Runtime::UseJitCompilation() const {
   2287   return (jit_ != nullptr) && jit_->UseJitCompilation();
   2288 }
   2289 
   2290 void Runtime::EnvSnapshot::TakeSnapshot() {
   2291   char** env = GetEnviron();
   2292   for (size_t i = 0; env[i] != nullptr; ++i) {
   2293     name_value_pairs_.emplace_back(new std::string(env[i]));
   2294   }
   2295   // The strings in name_value_pairs_ retain ownership of the c_str, but we assign pointers
   2296   // for quick use by GetSnapshot.  This avoids allocation and copying cost at Exec.
   2297   c_env_vector_.reset(new char*[name_value_pairs_.size() + 1]);
   2298   for (size_t i = 0; env[i] != nullptr; ++i) {
   2299     c_env_vector_[i] = const_cast<char*>(name_value_pairs_[i]->c_str());
   2300   }
   2301   c_env_vector_[name_value_pairs_.size()] = nullptr;
   2302 }
   2303 
   2304 char** Runtime::EnvSnapshot::GetSnapshot() const {
   2305   return c_env_vector_.get();
   2306 }
   2307 
   2308 void Runtime::AddSystemWeakHolder(gc::AbstractSystemWeakHolder* holder) {
   2309   gc::ScopedGCCriticalSection gcs(Thread::Current(),
   2310                                   gc::kGcCauseAddRemoveSystemWeakHolder,
   2311                                   gc::kCollectorTypeAddRemoveSystemWeakHolder);
   2312   // Note: The ScopedGCCriticalSection also ensures that the rest of the function is in
   2313   //       a critical section.
   2314   system_weak_holders_.push_back(holder);
   2315 }
   2316 
   2317 void Runtime::RemoveSystemWeakHolder(gc::AbstractSystemWeakHolder* holder) {
   2318   gc::ScopedGCCriticalSection gcs(Thread::Current(),
   2319                                   gc::kGcCauseAddRemoveSystemWeakHolder,
   2320                                   gc::kCollectorTypeAddRemoveSystemWeakHolder);
   2321   auto it = std::find(system_weak_holders_.begin(), system_weak_holders_.end(), holder);
   2322   if (it != system_weak_holders_.end()) {
   2323     system_weak_holders_.erase(it);
   2324   }
   2325 }
   2326 
   2327 NO_RETURN
   2328 void Runtime::Aborter(const char* abort_message) {
   2329 #ifdef ART_TARGET_ANDROID
   2330   android_set_abort_message(abort_message);
   2331 #endif
   2332   Runtime::Abort(abort_message);
   2333 }
   2334 
   2335 RuntimeCallbacks* Runtime::GetRuntimeCallbacks() {
   2336   return callbacks_.get();
   2337 }
   2338 
   2339 // Used to patch boot image method entry point to interpreter bridge.
   2340 class UpdateEntryPointsClassVisitor : public ClassVisitor {
   2341  public:
   2342   explicit UpdateEntryPointsClassVisitor(instrumentation::Instrumentation* instrumentation)
   2343       : instrumentation_(instrumentation) {}
   2344 
   2345   bool operator()(ObjPtr<mirror::Class> klass) OVERRIDE REQUIRES(Locks::mutator_lock_) {
   2346     auto pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize();
   2347     for (auto& m : klass->GetMethods(pointer_size)) {
   2348       const void* code = m.GetEntryPointFromQuickCompiledCode();
   2349       if (Runtime::Current()->GetHeap()->IsInBootImageOatFile(code) &&
   2350           !m.IsNative() &&
   2351           !m.IsProxyMethod()) {
   2352         instrumentation_->UpdateMethodsCodeForJavaDebuggable(&m, GetQuickToInterpreterBridge());
   2353       }
   2354     }
   2355     return true;
   2356   }
   2357 
   2358  private:
   2359   instrumentation::Instrumentation* const instrumentation_;
   2360 };
   2361 
   2362 void Runtime::SetJavaDebuggable(bool value) {
   2363   is_java_debuggable_ = value;
   2364   // Do not call DeoptimizeBootImage just yet, the runtime may still be starting up.
   2365 }
   2366 
   2367 void Runtime::DeoptimizeBootImage() {
   2368   // If we've already started and we are setting this runtime to debuggable,
   2369   // we patch entry points of methods in boot image to interpreter bridge, as
   2370   // boot image code may be AOT compiled as not debuggable.
   2371   if (!GetInstrumentation()->IsForcedInterpretOnly()) {
   2372     ScopedObjectAccess soa(Thread::Current());
   2373     UpdateEntryPointsClassVisitor visitor(GetInstrumentation());
   2374     GetClassLinker()->VisitClasses(&visitor);
   2375   }
   2376 }
   2377 
   2378 }  // namespace art
   2379