Home | History | Annotate | Download | only in s390
      1 // Copyright 2014 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef V8_S390_MACRO_ASSEMBLER_S390_H_
      6 #define V8_S390_MACRO_ASSEMBLER_S390_H_
      7 
      8 #include "src/assembler.h"
      9 #include "src/bailout-reason.h"
     10 #include "src/frames.h"
     11 #include "src/globals.h"
     12 
     13 namespace v8 {
     14 namespace internal {
     15 
     16 // Give alias names to registers for calling conventions.
     17 const Register kReturnRegister0 = {Register::kCode_r2};
     18 const Register kReturnRegister1 = {Register::kCode_r3};
     19 const Register kReturnRegister2 = {Register::kCode_r4};
     20 const Register kJSFunctionRegister = {Register::kCode_r3};
     21 const Register kContextRegister = {Register::kCode_r13};
     22 const Register kAllocateSizeRegister = {Register::kCode_r3};
     23 const Register kInterpreterAccumulatorRegister = {Register::kCode_r2};
     24 const Register kInterpreterBytecodeOffsetRegister = {Register::kCode_r6};
     25 const Register kInterpreterBytecodeArrayRegister = {Register::kCode_r7};
     26 const Register kInterpreterDispatchTableRegister = {Register::kCode_r8};
     27 const Register kJavaScriptCallArgCountRegister = {Register::kCode_r2};
     28 const Register kJavaScriptCallNewTargetRegister = {Register::kCode_r5};
     29 const Register kRuntimeCallFunctionRegister = {Register::kCode_r3};
     30 const Register kRuntimeCallArgCountRegister = {Register::kCode_r2};
     31 
     32 // ----------------------------------------------------------------------------
     33 // Static helper functions
     34 
     35 // Generate a MemOperand for loading a field from an object.
     36 inline MemOperand FieldMemOperand(Register object, int offset) {
     37   return MemOperand(object, offset - kHeapObjectTag);
     38 }
     39 
     40 // Generate a MemOperand for loading a field from an object.
     41 inline MemOperand FieldMemOperand(Register object, Register index, int offset) {
     42   return MemOperand(object, index, offset - kHeapObjectTag);
     43 }
     44 
     45 // Generate a MemOperand for loading a field from Root register
     46 inline MemOperand RootMemOperand(Heap::RootListIndex index) {
     47   return MemOperand(kRootRegister, index << kPointerSizeLog2);
     48 }
     49 
     50 // Flags used for AllocateHeapNumber
     51 enum TaggingMode {
     52   // Tag the result.
     53   TAG_RESULT,
     54   // Don't tag
     55   DONT_TAG_RESULT
     56 };
     57 
     58 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
     59 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
     60 enum PointersToHereCheck {
     61   kPointersToHereMaybeInteresting,
     62   kPointersToHereAreAlwaysInteresting
     63 };
     64 enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved };
     65 
     66 Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2 = no_reg,
     67                                    Register reg3 = no_reg,
     68                                    Register reg4 = no_reg,
     69                                    Register reg5 = no_reg,
     70                                    Register reg6 = no_reg);
     71 
     72 #ifdef DEBUG
     73 bool AreAliased(Register reg1, Register reg2, Register reg3 = no_reg,
     74                 Register reg4 = no_reg, Register reg5 = no_reg,
     75                 Register reg6 = no_reg, Register reg7 = no_reg,
     76                 Register reg8 = no_reg, Register reg9 = no_reg,
     77                 Register reg10 = no_reg);
     78 #endif
     79 
     80 // These exist to provide portability between 32 and 64bit
     81 #if V8_TARGET_ARCH_S390X
     82 #define Div divd
     83 
     84 // The length of the arithmetic operation is the length
     85 // of the register.
     86 
     87 // Length:
     88 // H = halfword
     89 // W = word
     90 
     91 // arithmetics and bitwise
     92 #define AddMI agsi
     93 #define AddRR agr
     94 #define SubRR sgr
     95 #define AndRR ngr
     96 #define OrRR ogr
     97 #define XorRR xgr
     98 #define LoadComplementRR lcgr
     99 #define LoadNegativeRR lngr
    100 
    101 // Distinct Operands
    102 #define AddP_RRR agrk
    103 #define AddPImm_RRI aghik
    104 #define AddLogicalP_RRR algrk
    105 #define SubP_RRR sgrk
    106 #define SubLogicalP_RRR slgrk
    107 #define AndP_RRR ngrk
    108 #define OrP_RRR ogrk
    109 #define XorP_RRR xgrk
    110 
    111 // Load / Store
    112 #define LoadRR lgr
    113 #define LoadAndTestRR ltgr
    114 #define LoadImmP lghi
    115 
    116 // Compare
    117 #define CmpPH cghi
    118 #define CmpLogicalPW clgfi
    119 
    120 // Shifts
    121 #define ShiftLeftP sllg
    122 #define ShiftRightP srlg
    123 #define ShiftLeftArithP slag
    124 #define ShiftRightArithP srag
    125 #else
    126 
    127 // arithmetics and bitwise
    128 // Reg2Reg
    129 #define AddMI asi
    130 #define AddRR ar
    131 #define SubRR sr
    132 #define AndRR nr
    133 #define OrRR or_z
    134 #define XorRR xr
    135 #define LoadComplementRR lcr
    136 #define LoadNegativeRR lnr
    137 
    138 // Distinct Operands
    139 #define AddP_RRR ark
    140 #define AddPImm_RRI ahik
    141 #define AddLogicalP_RRR alrk
    142 #define SubP_RRR srk
    143 #define SubLogicalP_RRR slrk
    144 #define AndP_RRR nrk
    145 #define OrP_RRR ork
    146 #define XorP_RRR xrk
    147 
    148 // Load / Store
    149 #define LoadRR lr
    150 #define LoadAndTestRR ltr
    151 #define LoadImmP lhi
    152 
    153 // Compare
    154 #define CmpPH chi
    155 #define CmpLogicalPW clfi
    156 
    157 // Shifts
    158 #define ShiftLeftP ShiftLeft
    159 #define ShiftRightP ShiftRight
    160 #define ShiftLeftArithP ShiftLeftArith
    161 #define ShiftRightArithP ShiftRightArith
    162 
    163 #endif
    164 
    165 // MacroAssembler implements a collection of frequently used macros.
    166 class MacroAssembler : public Assembler {
    167  public:
    168   MacroAssembler(Isolate* isolate, void* buffer, int size,
    169                  CodeObjectRequired create_code_object);
    170 
    171   // Returns the size of a call in instructions.
    172   static int CallSize(Register target);
    173   int CallSize(Address target, RelocInfo::Mode rmode, Condition cond = al);
    174   static int CallSizeNotPredictableCodeSize(Address target,
    175                                             RelocInfo::Mode rmode,
    176                                             Condition cond = al);
    177 
    178   // Jump, Call, and Ret pseudo instructions implementing inter-working.
    179   void Jump(Register target);
    180   void JumpToJSEntry(Register target);
    181   void Jump(Address target, RelocInfo::Mode rmode, Condition cond = al,
    182             CRegister cr = cr7);
    183   void Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al);
    184   void Call(Register target);
    185   void CallJSEntry(Register target);
    186   void Call(Address target, RelocInfo::Mode rmode, Condition cond = al);
    187   int CallSize(Handle<Code> code,
    188                RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
    189                TypeFeedbackId ast_id = TypeFeedbackId::None(),
    190                Condition cond = al);
    191   void Call(Handle<Code> code, RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
    192             TypeFeedbackId ast_id = TypeFeedbackId::None(),
    193             Condition cond = al);
    194   void Ret() { b(r14); }
    195   void Ret(Condition cond) { b(cond, r14); }
    196 
    197   // Emit code that loads |parameter_index|'th parameter from the stack to
    198   // the register according to the CallInterfaceDescriptor definition.
    199   // |sp_to_caller_sp_offset_in_words| specifies the number of words pushed
    200   // below the caller's sp.
    201   template <class Descriptor>
    202   void LoadParameterFromStack(
    203       Register reg, typename Descriptor::ParameterIndices parameter_index,
    204       int sp_to_ra_offset_in_words = 0) {
    205     DCHECK(Descriptor::kPassLastArgsOnStack);
    206     UNIMPLEMENTED();
    207   }
    208 
    209   // Emit code to discard a non-negative number of pointer-sized elements
    210   // from the stack, clobbering only the sp register.
    211   void Drop(int count);
    212   void Drop(Register count, Register scratch = r0);
    213 
    214   void Ret(int drop) {
    215     Drop(drop);
    216     Ret();
    217   }
    218 
    219   void Call(Label* target);
    220 
    221   // Register move. May do nothing if the registers are identical.
    222   void Move(Register dst, Smi* smi) { LoadSmiLiteral(dst, smi); }
    223   void Move(Register dst, Handle<Object> value);
    224   void Move(Register dst, Register src, Condition cond = al);
    225   void Move(DoubleRegister dst, DoubleRegister src);
    226 
    227   void MultiPush(RegList regs, Register location = sp);
    228   void MultiPop(RegList regs, Register location = sp);
    229 
    230   void MultiPushDoubles(RegList dregs, Register location = sp);
    231   void MultiPopDoubles(RegList dregs, Register location = sp);
    232 
    233   // Load an object from the root table.
    234   void LoadRoot(Register destination, Heap::RootListIndex index,
    235                 Condition cond = al);
    236   // Store an object to the root table.
    237   void StoreRoot(Register source, Heap::RootListIndex index,
    238                  Condition cond = al);
    239 
    240   //--------------------------------------------------------------------------
    241   // S390 Macro Assemblers for Instructions
    242   //--------------------------------------------------------------------------
    243 
    244   // Arithmetic Operations
    245 
    246   // Add (Register - Immediate)
    247   void Add32(Register dst, const Operand& imm);
    248   void AddP(Register dst, const Operand& imm);
    249   void Add32(Register dst, Register src, const Operand& imm);
    250   void AddP(Register dst, Register src, const Operand& imm);
    251 
    252   // Add (Register - Register)
    253   void Add32(Register dst, Register src);
    254   void AddP(Register dst, Register src);
    255   void AddP_ExtendSrc(Register dst, Register src);
    256   void Add32(Register dst, Register src1, Register src2);
    257   void AddP(Register dst, Register src1, Register src2);
    258   void AddP_ExtendSrc(Register dst, Register src1, Register src2);
    259 
    260   // Add (Register - Mem)
    261   void Add32(Register dst, const MemOperand& opnd);
    262   void AddP(Register dst, const MemOperand& opnd);
    263   void AddP_ExtendSrc(Register dst, const MemOperand& opnd);
    264 
    265   // Add (Mem - Immediate)
    266   void Add32(const MemOperand& opnd, const Operand& imm);
    267   void AddP(const MemOperand& opnd, const Operand& imm);
    268 
    269   // Add Logical (Register - Register)
    270   void AddLogical32(Register dst, Register src1, Register src2);
    271 
    272   // Add Logical With Carry (Register - Register)
    273   void AddLogicalWithCarry32(Register dst, Register src1, Register src2);
    274 
    275   // Add Logical (Register - Immediate)
    276   void AddLogical(Register dst, const Operand& imm);
    277   void AddLogicalP(Register dst, const Operand& imm);
    278 
    279   // Add Logical (Register - Mem)
    280   void AddLogical(Register dst, const MemOperand& opnd);
    281   void AddLogicalP(Register dst, const MemOperand& opnd);
    282 
    283   // Subtract (Register - Immediate)
    284   void Sub32(Register dst, const Operand& imm);
    285   void SubP(Register dst, const Operand& imm);
    286   void Sub32(Register dst, Register src, const Operand& imm);
    287   void SubP(Register dst, Register src, const Operand& imm);
    288 
    289   // Subtract (Register - Register)
    290   void Sub32(Register dst, Register src);
    291   void SubP(Register dst, Register src);
    292   void SubP_ExtendSrc(Register dst, Register src);
    293   void Sub32(Register dst, Register src1, Register src2);
    294   void SubP(Register dst, Register src1, Register src2);
    295   void SubP_ExtendSrc(Register dst, Register src1, Register src2);
    296 
    297   // Subtract (Register - Mem)
    298   void Sub32(Register dst, const MemOperand& opnd);
    299   void SubP(Register dst, const MemOperand& opnd);
    300   void SubP_ExtendSrc(Register dst, const MemOperand& opnd);
    301 
    302   // Subtract Logical (Register - Mem)
    303   void SubLogical(Register dst, const MemOperand& opnd);
    304   void SubLogicalP(Register dst, const MemOperand& opnd);
    305   void SubLogicalP_ExtendSrc(Register dst, const MemOperand& opnd);
    306   // Subtract Logical 32-bit
    307   void SubLogical32(Register dst, Register src1, Register src2);
    308   // Subtract Logical With Borrow 32-bit
    309   void SubLogicalWithBorrow32(Register dst, Register src1, Register src2);
    310 
    311   // Multiply
    312   void MulP(Register dst, const Operand& opnd);
    313   void MulP(Register dst, Register src);
    314   void MulP(Register dst, const MemOperand& opnd);
    315   void Mul(Register dst, Register src1, Register src2);
    316   void Mul32(Register dst, const MemOperand& src1);
    317   void Mul32(Register dst, Register src1);
    318   void Mul32(Register dst, const Operand& src1);
    319   void Mul64(Register dst, const MemOperand& src1);
    320   void Mul64(Register dst, Register src1);
    321   void Mul64(Register dst, const Operand& src1);
    322 
    323   // Divide
    324   void DivP(Register dividend, Register divider);
    325 
    326   // Compare
    327   void Cmp32(Register src1, Register src2);
    328   void CmpP(Register src1, Register src2);
    329   void Cmp32(Register dst, const Operand& opnd);
    330   void CmpP(Register dst, const Operand& opnd);
    331   void Cmp32(Register dst, const MemOperand& opnd);
    332   void CmpP(Register dst, const MemOperand& opnd);
    333 
    334   // Compare Logical
    335   void CmpLogical32(Register src1, Register src2);
    336   void CmpLogicalP(Register src1, Register src2);
    337   void CmpLogical32(Register src1, const Operand& opnd);
    338   void CmpLogicalP(Register src1, const Operand& opnd);
    339   void CmpLogical32(Register dst, const MemOperand& opnd);
    340   void CmpLogicalP(Register dst, const MemOperand& opnd);
    341 
    342   // Compare Logical Byte (CLI/CLIY)
    343   void CmpLogicalByte(const MemOperand& mem, const Operand& imm);
    344 
    345   // Load 32bit
    346   void Load(Register dst, const MemOperand& opnd);
    347   void Load(Register dst, const Operand& opnd);
    348   void LoadW(Register dst, const MemOperand& opnd, Register scratch = no_reg);
    349   void LoadW(Register dst, Register src);
    350   void LoadlW(Register dst, const MemOperand& opnd, Register scratch = no_reg);
    351   void LoadlW(Register dst, Register src);
    352   void LoadLogicalHalfWordP(Register dst, const MemOperand& opnd);
    353   void LoadLogicalHalfWordP(Register dst, Register src);
    354   void LoadB(Register dst, const MemOperand& opnd);
    355   void LoadB(Register dst, Register src);
    356   void LoadlB(Register dst, const MemOperand& opnd);
    357 
    358   void LoadLogicalReversedWordP(Register dst, const MemOperand& opnd);
    359   void LoadLogicalReversedHalfWordP(Register dst, const MemOperand& opnd);
    360 
    361   // Load And Test
    362   void LoadAndTest32(Register dst, Register src);
    363   void LoadAndTestP_ExtendSrc(Register dst, Register src);
    364   void LoadAndTestP(Register dst, Register src);
    365 
    366   void LoadAndTest32(Register dst, const MemOperand& opnd);
    367   void LoadAndTestP(Register dst, const MemOperand& opnd);
    368 
    369   // Load Floating Point
    370   void LoadDouble(DoubleRegister dst, const MemOperand& opnd);
    371   void LoadFloat32(DoubleRegister dst, const MemOperand& opnd);
    372   void LoadFloat32ConvertToDouble(DoubleRegister dst, const MemOperand& mem);
    373 
    374   // Load On Condition
    375   void LoadOnConditionP(Condition cond, Register dst, Register src);
    376 
    377   // Store Floating Point
    378   void StoreDouble(DoubleRegister dst, const MemOperand& opnd);
    379   void StoreFloat32(DoubleRegister dst, const MemOperand& opnd);
    380   void StoreDoubleAsFloat32(DoubleRegister src, const MemOperand& mem,
    381                             DoubleRegister scratch);
    382 
    383   void Branch(Condition c, const Operand& opnd);
    384   void BranchOnCount(Register r1, Label* l);
    385 
    386   // Shifts
    387   void ShiftLeft(Register dst, Register src, Register val);
    388   void ShiftLeft(Register dst, Register src, const Operand& val);
    389   void ShiftRight(Register dst, Register src, Register val);
    390   void ShiftRight(Register dst, Register src, const Operand& val);
    391   void ShiftLeftArith(Register dst, Register src, Register shift);
    392   void ShiftLeftArith(Register dst, Register src, const Operand& val);
    393   void ShiftRightArith(Register dst, Register src, Register shift);
    394   void ShiftRightArith(Register dst, Register src, const Operand& val);
    395 
    396   void ClearRightImm(Register dst, Register src, const Operand& val);
    397 
    398   // Bitwise operations
    399   void And(Register dst, Register src);
    400   void AndP(Register dst, Register src);
    401   void And(Register dst, Register src1, Register src2);
    402   void AndP(Register dst, Register src1, Register src2);
    403   void And(Register dst, const MemOperand& opnd);
    404   void AndP(Register dst, const MemOperand& opnd);
    405   void And(Register dst, const Operand& opnd);
    406   void AndP(Register dst, const Operand& opnd);
    407   void And(Register dst, Register src, const Operand& opnd);
    408   void AndP(Register dst, Register src, const Operand& opnd);
    409   void Or(Register dst, Register src);
    410   void OrP(Register dst, Register src);
    411   void Or(Register dst, Register src1, Register src2);
    412   void OrP(Register dst, Register src1, Register src2);
    413   void Or(Register dst, const MemOperand& opnd);
    414   void OrP(Register dst, const MemOperand& opnd);
    415   void Or(Register dst, const Operand& opnd);
    416   void OrP(Register dst, const Operand& opnd);
    417   void Or(Register dst, Register src, const Operand& opnd);
    418   void OrP(Register dst, Register src, const Operand& opnd);
    419   void Xor(Register dst, Register src);
    420   void XorP(Register dst, Register src);
    421   void Xor(Register dst, Register src1, Register src2);
    422   void XorP(Register dst, Register src1, Register src2);
    423   void Xor(Register dst, const MemOperand& opnd);
    424   void XorP(Register dst, const MemOperand& opnd);
    425   void Xor(Register dst, const Operand& opnd);
    426   void XorP(Register dst, const Operand& opnd);
    427   void Xor(Register dst, Register src, const Operand& opnd);
    428   void XorP(Register dst, Register src, const Operand& opnd);
    429   void Popcnt32(Register dst, Register src);
    430   void Not32(Register dst, Register src = no_reg);
    431   void Not64(Register dst, Register src = no_reg);
    432   void NotP(Register dst, Register src = no_reg);
    433 
    434 #ifdef V8_TARGET_ARCH_S390X
    435   void Popcnt64(Register dst, Register src);
    436 #endif
    437 
    438   void mov(Register dst, const Operand& src);
    439 
    440   void CleanUInt32(Register x) {
    441 #ifdef V8_TARGET_ARCH_S390X
    442     llgfr(x, x);
    443 #endif
    444   }
    445 
    446   // ---------------------------------------------------------------------------
    447   // GC Support
    448 
    449   void IncrementalMarkingRecordWriteHelper(Register object, Register value,
    450                                            Register address);
    451 
    452   enum RememberedSetFinalAction { kReturnAtEnd, kFallThroughAtEnd };
    453 
    454   // Record in the remembered set the fact that we have a pointer to new space
    455   // at the address pointed to by the addr register.  Only works if addr is not
    456   // in new space.
    457   void RememberedSetHelper(Register object,  // Used for debug code.
    458                            Register addr, Register scratch,
    459                            SaveFPRegsMode save_fp,
    460                            RememberedSetFinalAction and_then);
    461 
    462   void CheckPageFlag(Register object, Register scratch, int mask, Condition cc,
    463                      Label* condition_met);
    464 
    465   // Check if object is in new space.  Jumps if the object is not in new space.
    466   // The register scratch can be object itself, but scratch will be clobbered.
    467   void JumpIfNotInNewSpace(Register object, Register scratch, Label* branch) {
    468     InNewSpace(object, scratch, eq, branch);
    469   }
    470 
    471   // Check if object is in new space.  Jumps if the object is in new space.
    472   // The register scratch can be object itself, but it will be clobbered.
    473   void JumpIfInNewSpace(Register object, Register scratch, Label* branch) {
    474     InNewSpace(object, scratch, ne, branch);
    475   }
    476 
    477   // Check if an object has a given incremental marking color.
    478   void HasColor(Register object, Register scratch0, Register scratch1,
    479                 Label* has_color, int first_bit, int second_bit);
    480 
    481   void JumpIfBlack(Register object, Register scratch0, Register scratch1,
    482                    Label* on_black);
    483 
    484   // Checks the color of an object.  If the object is white we jump to the
    485   // incremental marker.
    486   void JumpIfWhite(Register value, Register scratch1, Register scratch2,
    487                    Register scratch3, Label* value_is_white);
    488 
    489   // Notify the garbage collector that we wrote a pointer into an object.
    490   // |object| is the object being stored into, |value| is the object being
    491   // stored.  value and scratch registers are clobbered by the operation.
    492   // The offset is the offset from the start of the object, not the offset from
    493   // the tagged HeapObject pointer.  For use with FieldMemOperand(reg, off).
    494   void RecordWriteField(
    495       Register object, int offset, Register value, Register scratch,
    496       LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
    497       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    498       SmiCheck smi_check = INLINE_SMI_CHECK,
    499       PointersToHereCheck pointers_to_here_check_for_value =
    500           kPointersToHereMaybeInteresting);
    501 
    502   // As above, but the offset has the tag presubtracted.  For use with
    503   // MemOperand(reg, off).
    504   inline void RecordWriteContextSlot(
    505       Register context, int offset, Register value, Register scratch,
    506       LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
    507       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    508       SmiCheck smi_check = INLINE_SMI_CHECK,
    509       PointersToHereCheck pointers_to_here_check_for_value =
    510           kPointersToHereMaybeInteresting) {
    511     RecordWriteField(context, offset + kHeapObjectTag, value, scratch,
    512                      lr_status, save_fp, remembered_set_action, smi_check,
    513                      pointers_to_here_check_for_value);
    514   }
    515 
    516   // Notify the garbage collector that we wrote a code entry into a
    517   // JSFunction. Only scratch is clobbered by the operation.
    518   void RecordWriteCodeEntryField(Register js_function, Register code_entry,
    519                                  Register scratch);
    520 
    521   void RecordWriteForMap(Register object, Register map, Register dst,
    522                          LinkRegisterStatus lr_status, SaveFPRegsMode save_fp);
    523 
    524   // For a given |object| notify the garbage collector that the slot |address|
    525   // has been written.  |value| is the object being stored. The value and
    526   // address registers are clobbered by the operation.
    527   void RecordWrite(
    528       Register object, Register address, Register value,
    529       LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
    530       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    531       SmiCheck smi_check = INLINE_SMI_CHECK,
    532       PointersToHereCheck pointers_to_here_check_for_value =
    533           kPointersToHereMaybeInteresting);
    534 
    535   void push(Register src) {
    536     lay(sp, MemOperand(sp, -kPointerSize));
    537     StoreP(src, MemOperand(sp));
    538   }
    539 
    540   void pop(Register dst) {
    541     LoadP(dst, MemOperand(sp));
    542     la(sp, MemOperand(sp, kPointerSize));
    543   }
    544 
    545   void pop() { la(sp, MemOperand(sp, kPointerSize)); }
    546 
    547   void Push(Register src) { push(src); }
    548 
    549   // Push a handle.
    550   void Push(Handle<Object> handle);
    551   void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
    552 
    553   // Push two registers.  Pushes leftmost register first (to highest address).
    554   void Push(Register src1, Register src2) {
    555     lay(sp, MemOperand(sp, -kPointerSize * 2));
    556     StoreP(src1, MemOperand(sp, kPointerSize));
    557     StoreP(src2, MemOperand(sp, 0));
    558   }
    559 
    560   // Push three registers.  Pushes leftmost register first (to highest address).
    561   void Push(Register src1, Register src2, Register src3) {
    562     lay(sp, MemOperand(sp, -kPointerSize * 3));
    563     StoreP(src1, MemOperand(sp, kPointerSize * 2));
    564     StoreP(src2, MemOperand(sp, kPointerSize));
    565     StoreP(src3, MemOperand(sp, 0));
    566   }
    567 
    568   // Push four registers.  Pushes leftmost register first (to highest address).
    569   void Push(Register src1, Register src2, Register src3, Register src4) {
    570     lay(sp, MemOperand(sp, -kPointerSize * 4));
    571     StoreP(src1, MemOperand(sp, kPointerSize * 3));
    572     StoreP(src2, MemOperand(sp, kPointerSize * 2));
    573     StoreP(src3, MemOperand(sp, kPointerSize));
    574     StoreP(src4, MemOperand(sp, 0));
    575   }
    576 
    577   // Push five registers.  Pushes leftmost register first (to highest address).
    578   void Push(Register src1, Register src2, Register src3, Register src4,
    579             Register src5) {
    580     DCHECK(!src1.is(src2));
    581     DCHECK(!src1.is(src3));
    582     DCHECK(!src2.is(src3));
    583     DCHECK(!src1.is(src4));
    584     DCHECK(!src2.is(src4));
    585     DCHECK(!src3.is(src4));
    586     DCHECK(!src1.is(src5));
    587     DCHECK(!src2.is(src5));
    588     DCHECK(!src3.is(src5));
    589     DCHECK(!src4.is(src5));
    590 
    591     lay(sp, MemOperand(sp, -kPointerSize * 5));
    592     StoreP(src1, MemOperand(sp, kPointerSize * 4));
    593     StoreP(src2, MemOperand(sp, kPointerSize * 3));
    594     StoreP(src3, MemOperand(sp, kPointerSize * 2));
    595     StoreP(src4, MemOperand(sp, kPointerSize));
    596     StoreP(src5, MemOperand(sp, 0));
    597   }
    598 
    599   void Pop(Register dst) { pop(dst); }
    600 
    601   // Pop two registers. Pops rightmost register first (from lower address).
    602   void Pop(Register src1, Register src2) {
    603     LoadP(src2, MemOperand(sp, 0));
    604     LoadP(src1, MemOperand(sp, kPointerSize));
    605     la(sp, MemOperand(sp, 2 * kPointerSize));
    606   }
    607 
    608   // Pop three registers.  Pops rightmost register first (from lower address).
    609   void Pop(Register src1, Register src2, Register src3) {
    610     LoadP(src3, MemOperand(sp, 0));
    611     LoadP(src2, MemOperand(sp, kPointerSize));
    612     LoadP(src1, MemOperand(sp, 2 * kPointerSize));
    613     la(sp, MemOperand(sp, 3 * kPointerSize));
    614   }
    615 
    616   // Pop four registers.  Pops rightmost register first (from lower address).
    617   void Pop(Register src1, Register src2, Register src3, Register src4) {
    618     LoadP(src4, MemOperand(sp, 0));
    619     LoadP(src3, MemOperand(sp, kPointerSize));
    620     LoadP(src2, MemOperand(sp, 2 * kPointerSize));
    621     LoadP(src1, MemOperand(sp, 3 * kPointerSize));
    622     la(sp, MemOperand(sp, 4 * kPointerSize));
    623   }
    624 
    625   // Pop five registers.  Pops rightmost register first (from lower address).
    626   void Pop(Register src1, Register src2, Register src3, Register src4,
    627            Register src5) {
    628     LoadP(src5, MemOperand(sp, 0));
    629     LoadP(src4, MemOperand(sp, kPointerSize));
    630     LoadP(src3, MemOperand(sp, 2 * kPointerSize));
    631     LoadP(src2, MemOperand(sp, 3 * kPointerSize));
    632     LoadP(src1, MemOperand(sp, 4 * kPointerSize));
    633     la(sp, MemOperand(sp, 5 * kPointerSize));
    634   }
    635 
    636   // Push a fixed frame, consisting of lr, fp, constant pool.
    637   void PushCommonFrame(Register marker_reg = no_reg);
    638 
    639   // Push a standard frame, consisting of lr, fp, constant pool,
    640   // context and JS function
    641   void PushStandardFrame(Register function_reg);
    642 
    643   void PopCommonFrame(Register marker_reg = no_reg);
    644 
    645   // Restore caller's frame pointer and return address prior to being
    646   // overwritten by tail call stack preparation.
    647   void RestoreFrameStateForTailCall();
    648 
    649   // Push and pop the registers that can hold pointers, as defined by the
    650   // RegList constant kSafepointSavedRegisters.
    651   void PushSafepointRegisters();
    652   void PopSafepointRegisters();
    653   // Store value in register src in the safepoint stack slot for
    654   // register dst.
    655   void StoreToSafepointRegisterSlot(Register src, Register dst);
    656   // Load the value of the src register from its safepoint stack slot
    657   // into register dst.
    658   void LoadFromSafepointRegisterSlot(Register dst, Register src);
    659 
    660   // Flush the I-cache from asm code. You should use CpuFeatures::FlushICache
    661   // from C.
    662   // Does not handle errors.
    663   void FlushICache(Register address, size_t size, Register scratch);
    664 
    665   // If the value is a NaN, canonicalize the value else, do nothing.
    666   void CanonicalizeNaN(const DoubleRegister dst, const DoubleRegister src);
    667   void CanonicalizeNaN(const DoubleRegister value) {
    668     CanonicalizeNaN(value, value);
    669   }
    670 
    671   // Converts the integer (untagged smi) in |src| to a double, storing
    672   // the result to |dst|
    673   void ConvertIntToDouble(Register src, DoubleRegister dst);
    674 
    675   // Converts the unsigned integer (untagged smi) in |src| to
    676   // a double, storing the result to |dst|
    677   void ConvertUnsignedIntToDouble(Register src, DoubleRegister dst);
    678 
    679   // Converts the integer (untagged smi) in |src| to
    680   // a float, storing the result in |dst|
    681   void ConvertIntToFloat(Register src, DoubleRegister dst);
    682 
    683   // Converts the unsigned integer (untagged smi) in |src| to
    684   // a float, storing the result in |dst|
    685   void ConvertUnsignedIntToFloat(Register src, DoubleRegister dst);
    686 
    687 #if V8_TARGET_ARCH_S390X
    688   void ConvertInt64ToFloat(Register src, DoubleRegister double_dst);
    689   void ConvertInt64ToDouble(Register src, DoubleRegister double_dst);
    690   void ConvertUnsignedInt64ToFloat(Register src, DoubleRegister double_dst);
    691   void ConvertUnsignedInt64ToDouble(Register src, DoubleRegister double_dst);
    692 #endif
    693 
    694   void MovIntToFloat(DoubleRegister dst, Register src);
    695   void MovFloatToInt(Register dst, DoubleRegister src);
    696   void MovDoubleToInt64(Register dst, DoubleRegister src);
    697   void MovInt64ToDouble(DoubleRegister dst, Register src);
    698   // Converts the double_input to an integer.  Note that, upon return,
    699   // the contents of double_dst will also hold the fixed point representation.
    700   void ConvertFloat32ToInt64(const DoubleRegister double_input,
    701 #if !V8_TARGET_ARCH_S390X
    702                              const Register dst_hi,
    703 #endif
    704                              const Register dst,
    705                              const DoubleRegister double_dst,
    706                              FPRoundingMode rounding_mode = kRoundToZero);
    707 
    708   // Converts the double_input to an integer.  Note that, upon return,
    709   // the contents of double_dst will also hold the fixed point representation.
    710   void ConvertDoubleToInt64(const DoubleRegister double_input,
    711 #if !V8_TARGET_ARCH_S390X
    712                             const Register dst_hi,
    713 #endif
    714                             const Register dst, const DoubleRegister double_dst,
    715                             FPRoundingMode rounding_mode = kRoundToZero);
    716 
    717   void ConvertFloat32ToInt32(const DoubleRegister double_input,
    718                              const Register dst,
    719                              const DoubleRegister double_dst,
    720                              FPRoundingMode rounding_mode);
    721   void ConvertFloat32ToUnsignedInt32(
    722       const DoubleRegister double_input, const Register dst,
    723       const DoubleRegister double_dst,
    724       FPRoundingMode rounding_mode = kRoundToZero);
    725 #if V8_TARGET_ARCH_S390X
    726   // Converts the double_input to an unsigned integer.  Note that, upon return,
    727   // the contents of double_dst will also hold the fixed point representation.
    728   void ConvertDoubleToUnsignedInt64(
    729       const DoubleRegister double_input, const Register dst,
    730       const DoubleRegister double_dst,
    731       FPRoundingMode rounding_mode = kRoundToZero);
    732   void ConvertFloat32ToUnsignedInt64(
    733       const DoubleRegister double_input, const Register dst,
    734       const DoubleRegister double_dst,
    735       FPRoundingMode rounding_mode = kRoundToZero);
    736 #endif
    737 
    738 #if !V8_TARGET_ARCH_S390X
    739   void ShiftLeftPair(Register dst_low, Register dst_high, Register src_low,
    740                      Register src_high, Register scratch, Register shift);
    741   void ShiftLeftPair(Register dst_low, Register dst_high, Register src_low,
    742                      Register src_high, uint32_t shift);
    743   void ShiftRightPair(Register dst_low, Register dst_high, Register src_low,
    744                       Register src_high, Register scratch, Register shift);
    745   void ShiftRightPair(Register dst_low, Register dst_high, Register src_low,
    746                       Register src_high, uint32_t shift);
    747   void ShiftRightArithPair(Register dst_low, Register dst_high,
    748                            Register src_low, Register src_high,
    749                            Register scratch, Register shift);
    750   void ShiftRightArithPair(Register dst_low, Register dst_high,
    751                            Register src_low, Register src_high, uint32_t shift);
    752 #endif
    753 
    754   // Generates function and stub prologue code.
    755   void StubPrologue(StackFrame::Type type, Register base = no_reg,
    756                     int prologue_offset = 0);
    757   void Prologue(bool code_pre_aging, Register base, int prologue_offset = 0);
    758 
    759   // Enter exit frame.
    760   // stack_space - extra stack space, used for parameters before call to C.
    761   // At least one slot (for the return address) should be provided.
    762   void EnterExitFrame(bool save_doubles, int stack_space = 1,
    763                       StackFrame::Type frame_type = StackFrame::EXIT);
    764 
    765   // Leave the current exit frame. Expects the return value in r0.
    766   // Expect the number of values, pushed prior to the exit frame, to
    767   // remove in a register (or no_reg, if there is nothing to remove).
    768   void LeaveExitFrame(bool save_doubles, Register argument_count,
    769                       bool restore_context,
    770                       bool argument_count_is_length = false);
    771 
    772   // Get the actual activation frame alignment for target environment.
    773   static int ActivationFrameAlignment();
    774 
    775   void LoadContext(Register dst, int context_chain_length);
    776 
    777   // Load the global object from the current context.
    778   void LoadGlobalObject(Register dst) {
    779     LoadNativeContextSlot(Context::EXTENSION_INDEX, dst);
    780   }
    781 
    782   // Load the global proxy from the current context.
    783   void LoadGlobalProxy(Register dst) {
    784     LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst);
    785   }
    786 
    787   // Conditionally load the cached Array transitioned map of type
    788   // transitioned_kind from the native context if the map in register
    789   // map_in_out is the cached Array map in the native context of
    790   // expected_kind.
    791   void LoadTransitionedArrayMapConditional(ElementsKind expected_kind,
    792                                            ElementsKind transitioned_kind,
    793                                            Register map_in_out,
    794                                            Register scratch,
    795                                            Label* no_map_match);
    796 
    797   void LoadNativeContextSlot(int index, Register dst);
    798 
    799   // Load the initial map from the global function. The registers
    800   // function and map can be the same, function is then overwritten.
    801   void LoadGlobalFunctionInitialMap(Register function, Register map,
    802                                     Register scratch);
    803 
    804   void InitializeRootRegister() {
    805     ExternalReference roots_array_start =
    806         ExternalReference::roots_array_start(isolate());
    807     mov(kRootRegister, Operand(roots_array_start));
    808   }
    809 
    810   // ----------------------------------------------------------------
    811   // new S390 macro-assembler interfaces that are slightly higher level
    812   // than assembler-s390 and may generate variable length sequences
    813 
    814   // load a literal signed int value <value> to GPR <dst>
    815   void LoadIntLiteral(Register dst, int value);
    816 
    817   // load an SMI value <value> to GPR <dst>
    818   void LoadSmiLiteral(Register dst, Smi* smi);
    819 
    820   // load a literal double value <value> to FPR <result>
    821   void LoadDoubleLiteral(DoubleRegister result, double value, Register scratch);
    822   void LoadDoubleLiteral(DoubleRegister result, uint64_t value,
    823                          Register scratch);
    824 
    825   void LoadFloat32Literal(DoubleRegister result, float value, Register scratch);
    826 
    827   void StoreW(Register src, const MemOperand& mem, Register scratch = no_reg);
    828 
    829   void LoadHalfWordP(Register dst, const MemOperand& mem,
    830                      Register scratch = no_reg);
    831 
    832   void StoreHalfWord(Register src, const MemOperand& mem,
    833                      Register scratch = r0);
    834   void StoreByte(Register src, const MemOperand& mem, Register scratch = r0);
    835 
    836   void LoadRepresentation(Register dst, const MemOperand& mem, Representation r,
    837                           Register scratch = no_reg);
    838   void StoreRepresentation(Register src, const MemOperand& mem,
    839                            Representation r, Register scratch = no_reg);
    840 
    841   void AddSmiLiteral(Register dst, Register src, Smi* smi, Register scratch);
    842   void SubSmiLiteral(Register dst, Register src, Smi* smi, Register scratch);
    843   void CmpSmiLiteral(Register src1, Smi* smi, Register scratch);
    844   void CmpLogicalSmiLiteral(Register src1, Smi* smi, Register scratch);
    845   void AndSmiLiteral(Register dst, Register src, Smi* smi);
    846 
    847   // Set new rounding mode RN to FPSCR
    848   void SetRoundingMode(FPRoundingMode RN);
    849 
    850   // reset rounding mode to default (kRoundToNearest)
    851   void ResetRoundingMode();
    852 
    853   // These exist to provide portability between 32 and 64bit
    854   void LoadP(Register dst, const MemOperand& mem, Register scratch = no_reg);
    855   void StoreP(Register src, const MemOperand& mem, Register scratch = no_reg);
    856   void StoreP(const MemOperand& mem, const Operand& opnd,
    857               Register scratch = no_reg);
    858   void LoadMultipleP(Register dst1, Register dst2, const MemOperand& mem);
    859   void StoreMultipleP(Register dst1, Register dst2, const MemOperand& mem);
    860   void LoadMultipleW(Register dst1, Register dst2, const MemOperand& mem);
    861   void StoreMultipleW(Register dst1, Register dst2, const MemOperand& mem);
    862 
    863   // Cleanse pointer address on 31bit by zero out top  bit.
    864   // This is a NOP on 64-bit.
    865   void CleanseP(Register src) {
    866 #if (V8_HOST_ARCH_S390 && !(V8_TARGET_ARCH_S390X))
    867     nilh(src, Operand(0x7FFF));
    868 #endif
    869   }
    870 
    871   // ---------------------------------------------------------------------------
    872   // JavaScript invokes
    873 
    874   // Set up call kind marking in ecx. The method takes ecx as an
    875   // explicit first parameter to make the code more readable at the
    876   // call sites.
    877   // void SetCallKind(Register dst, CallKind kind);
    878 
    879   // Removes current frame and its arguments from the stack preserving
    880   // the arguments and a return address pushed to the stack for the next call.
    881   // Both |callee_args_count| and |caller_args_count_reg| do not include
    882   // receiver. |callee_args_count| is not modified, |caller_args_count_reg|
    883   // is trashed.
    884   void PrepareForTailCall(const ParameterCount& callee_args_count,
    885                           Register caller_args_count_reg, Register scratch0,
    886                           Register scratch1);
    887 
    888   // Invoke the JavaScript function code by either calling or jumping.
    889   void InvokeFunctionCode(Register function, Register new_target,
    890                           const ParameterCount& expected,
    891                           const ParameterCount& actual, InvokeFlag flag,
    892                           const CallWrapper& call_wrapper);
    893 
    894   void FloodFunctionIfStepping(Register fun, Register new_target,
    895                                const ParameterCount& expected,
    896                                const ParameterCount& actual);
    897 
    898   // Invoke the JavaScript function in the given register. Changes the
    899   // current context to the context in the function before invoking.
    900   void InvokeFunction(Register function, Register new_target,
    901                       const ParameterCount& actual, InvokeFlag flag,
    902                       const CallWrapper& call_wrapper);
    903 
    904   void InvokeFunction(Register function, const ParameterCount& expected,
    905                       const ParameterCount& actual, InvokeFlag flag,
    906                       const CallWrapper& call_wrapper);
    907 
    908   void InvokeFunction(Handle<JSFunction> function,
    909                       const ParameterCount& expected,
    910                       const ParameterCount& actual, InvokeFlag flag,
    911                       const CallWrapper& call_wrapper);
    912 
    913   void IsObjectJSStringType(Register object, Register scratch, Label* fail);
    914 
    915   void IsObjectNameType(Register object, Register scratch, Label* fail);
    916 
    917   // ---------------------------------------------------------------------------
    918   // Debugger Support
    919 
    920   void DebugBreak();
    921 
    922   // ---------------------------------------------------------------------------
    923   // Exception handling
    924 
    925   // Push a new stack handler and link into stack handler chain.
    926   void PushStackHandler();
    927 
    928   // Unlink the stack handler on top of the stack from the stack handler chain.
    929   // Must preserve the result register.
    930   void PopStackHandler();
    931 
    932   // ---------------------------------------------------------------------------
    933   // Inline caching support
    934 
    935   void GetNumberHash(Register t0, Register scratch);
    936 
    937   inline void MarkCode(NopMarkerTypes type) { nop(type); }
    938 
    939   // Check if the given instruction is a 'type' marker.
    940   // i.e. check if is is a mov r<type>, r<type> (referenced as nop(type))
    941   // These instructions are generated to mark special location in the code,
    942   // like some special IC code.
    943   static inline bool IsMarkedCode(Instr instr, int type) {
    944     DCHECK((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER));
    945     return IsNop(instr, type);
    946   }
    947 
    948   static inline int GetCodeMarker(Instr instr) {
    949     int dst_reg_offset = 12;
    950     int dst_mask = 0xf << dst_reg_offset;
    951     int src_mask = 0xf;
    952     int dst_reg = (instr & dst_mask) >> dst_reg_offset;
    953     int src_reg = instr & src_mask;
    954     uint32_t non_register_mask = ~(dst_mask | src_mask);
    955     uint32_t mov_mask = al | 13 << 21;
    956 
    957     // Return <n> if we have a mov rn rn, else return -1.
    958     int type = ((instr & non_register_mask) == mov_mask) &&
    959                        (dst_reg == src_reg) && (FIRST_IC_MARKER <= dst_reg) &&
    960                        (dst_reg < LAST_CODE_MARKER)
    961                    ? src_reg
    962                    : -1;
    963     DCHECK((type == -1) ||
    964            ((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)));
    965     return type;
    966   }
    967 
    968   // ---------------------------------------------------------------------------
    969   // Allocation support
    970 
    971   // Allocate an object in new space or old pointer space. The object_size is
    972   // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
    973   // is passed. If the space is exhausted control continues at the gc_required
    974   // label. The allocated object is returned in result. If the flag
    975   // tag_allocated_object is true the result is tagged as as a heap object.
    976   // All registers are clobbered also when control continues at the gc_required
    977   // label.
    978   void Allocate(int object_size, Register result, Register scratch1,
    979                 Register scratch2, Label* gc_required, AllocationFlags flags);
    980 
    981   void Allocate(Register object_size, Register result, Register result_end,
    982                 Register scratch, Label* gc_required, AllocationFlags flags);
    983 
    984   // FastAllocate is right now only used for folded allocations. It just
    985   // increments the top pointer without checking against limit. This can only
    986   // be done if it was proved earlier that the allocation will succeed.
    987   void FastAllocate(int object_size, Register result, Register scratch1,
    988                     Register scratch2, AllocationFlags flags);
    989 
    990   void FastAllocate(Register object_size, Register result, Register result_end,
    991                     Register scratch, AllocationFlags flags);
    992 
    993   void AllocateTwoByteString(Register result, Register length,
    994                              Register scratch1, Register scratch2,
    995                              Register scratch3, Label* gc_required);
    996   void AllocateOneByteString(Register result, Register length,
    997                              Register scratch1, Register scratch2,
    998                              Register scratch3, Label* gc_required);
    999   void AllocateTwoByteConsString(Register result, Register length,
   1000                                  Register scratch1, Register scratch2,
   1001                                  Label* gc_required);
   1002   void AllocateOneByteConsString(Register result, Register length,
   1003                                  Register scratch1, Register scratch2,
   1004                                  Label* gc_required);
   1005   void AllocateTwoByteSlicedString(Register result, Register length,
   1006                                    Register scratch1, Register scratch2,
   1007                                    Label* gc_required);
   1008   void AllocateOneByteSlicedString(Register result, Register length,
   1009                                    Register scratch1, Register scratch2,
   1010                                    Label* gc_required);
   1011 
   1012   // Allocates a heap number or jumps to the gc_required label if the young
   1013   // space is full and a scavenge is needed. All registers are clobbered also
   1014   // when control continues at the gc_required label.
   1015   void AllocateHeapNumber(Register result, Register scratch1, Register scratch2,
   1016                           Register heap_number_map, Label* gc_required,
   1017                           MutableMode mode = IMMUTABLE);
   1018   void AllocateHeapNumberWithValue(Register result, DoubleRegister value,
   1019                                    Register scratch1, Register scratch2,
   1020                                    Register heap_number_map,
   1021                                    Label* gc_required);
   1022 
   1023   // Allocate and initialize a JSValue wrapper with the specified {constructor}
   1024   // and {value}.
   1025   void AllocateJSValue(Register result, Register constructor, Register value,
   1026                        Register scratch1, Register scratch2,
   1027                        Label* gc_required);
   1028 
   1029   // Initialize fields with filler values.  |count| fields starting at
   1030   // |current_address| are overwritten with the value in |filler|.  At the end
   1031   // the loop, |current_address| points at the next uninitialized field.
   1032   // |count| is assumed to be non-zero.
   1033   void InitializeNFieldsWithFiller(Register current_address, Register count,
   1034                                    Register filler);
   1035 
   1036   // Initialize fields with filler values.  Fields starting at |current_address|
   1037   // not including |end_address| are overwritten with the value in |filler|.  At
   1038   // the end the loop, |current_address| takes the value of |end_address|.
   1039   void InitializeFieldsWithFiller(Register current_address,
   1040                                   Register end_address, Register filler);
   1041 
   1042   // ---------------------------------------------------------------------------
   1043   // Support functions.
   1044 
   1045   // Machine code version of Map::GetConstructor().
   1046   // |temp| holds |result|'s map when done, and |temp2| its instance type.
   1047   void GetMapConstructor(Register result, Register map, Register temp,
   1048                          Register temp2);
   1049 
   1050   // Try to get function prototype of a function and puts the value in
   1051   // the result register. Checks that the function really is a
   1052   // function and jumps to the miss label if the fast checks fail. The
   1053   // function register will be untouched; the other registers may be
   1054   // clobbered.
   1055   void TryGetFunctionPrototype(Register function, Register result,
   1056                                Register scratch, Label* miss);
   1057 
   1058   // Compare object type for heap object.  heap_object contains a non-Smi
   1059   // whose object type should be compared with the given type.  This both
   1060   // sets the flags and leaves the object type in the type_reg register.
   1061   // It leaves the map in the map register (unless the type_reg and map register
   1062   // are the same register).  It leaves the heap object in the heap_object
   1063   // register unless the heap_object register is the same register as one of the
   1064   // other registers.
   1065   // Type_reg can be no_reg. In that case ip is used.
   1066   void CompareObjectType(Register heap_object, Register map, Register type_reg,
   1067                          InstanceType type);
   1068 
   1069   // Compare instance type in a map.  map contains a valid map object whose
   1070   // object type should be compared with the given type.  This both
   1071   // sets the flags and leaves the object type in the type_reg register.
   1072   void CompareInstanceType(Register map, Register type_reg, InstanceType type);
   1073 
   1074   // Check if a map for a JSObject indicates that the object can have both smi
   1075   // and HeapObject elements.  Jump to the specified label if it does not.
   1076   void CheckFastObjectElements(Register map, Register scratch, Label* fail);
   1077 
   1078   // Check if a map for a JSObject indicates that the object has fast smi only
   1079   // elements.  Jump to the specified label if it does not.
   1080   void CheckFastSmiElements(Register map, Register scratch, Label* fail);
   1081 
   1082   // Check to see if maybe_number can be stored as a double in
   1083   // FastDoubleElements. If it can, store it at the index specified by key in
   1084   // the FastDoubleElements array elements. Otherwise jump to fail.
   1085   void StoreNumberToDoubleElements(Register value_reg, Register key_reg,
   1086                                    Register elements_reg, Register scratch1,
   1087                                    DoubleRegister double_scratch, Label* fail,
   1088                                    int elements_offset = 0);
   1089 
   1090   // Compare an object's map with the specified map and its transitioned
   1091   // elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. Condition flags are
   1092   // set with result of map compare. If multiple map compares are required, the
   1093   // compare sequences branches to early_success.
   1094   void CompareMap(Register obj, Register scratch, Handle<Map> map,
   1095                   Label* early_success);
   1096 
   1097   // As above, but the map of the object is already loaded into the register
   1098   // which is preserved by the code generated.
   1099   void CompareMap(Register obj_map, Handle<Map> map, Label* early_success);
   1100 
   1101   // Check if the map of an object is equal to a specified map and branch to
   1102   // label if not. Skip the smi check if not required (object is known to be a
   1103   // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
   1104   // against maps that are ElementsKind transition maps of the specified map.
   1105   void CheckMap(Register obj, Register scratch, Handle<Map> map, Label* fail,
   1106                 SmiCheckType smi_check_type);
   1107 
   1108   void CheckMap(Register obj, Register scratch, Heap::RootListIndex index,
   1109                 Label* fail, SmiCheckType smi_check_type);
   1110 
   1111   // Check if the map of an object is equal to a specified weak map and branch
   1112   // to a specified target if equal. Skip the smi check if not required
   1113   // (object is known to be a heap object)
   1114   void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
   1115                        Handle<WeakCell> cell, Handle<Code> success,
   1116                        SmiCheckType smi_check_type);
   1117 
   1118   // Compare the given value and the value of weak cell.
   1119   void CmpWeakValue(Register value, Handle<WeakCell> cell, Register scratch,
   1120                     CRegister cr = cr7);
   1121 
   1122   void GetWeakValue(Register value, Handle<WeakCell> cell);
   1123 
   1124   // Load the value of the weak cell in the value register. Branch to the given
   1125   // miss label if the weak cell was cleared.
   1126   void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
   1127 
   1128   // Compare the object in a register to a value from the root list.
   1129   // Uses the ip register as scratch.
   1130   void CompareRoot(Register obj, Heap::RootListIndex index);
   1131   void PushRoot(Heap::RootListIndex index) {
   1132     LoadRoot(r0, index);
   1133     Push(r0);
   1134   }
   1135 
   1136   // Compare the object in a register to a value and jump if they are equal.
   1137   void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal) {
   1138     CompareRoot(with, index);
   1139     beq(if_equal);
   1140   }
   1141 
   1142   // Compare the object in a register to a value and jump if they are not equal.
   1143   void JumpIfNotRoot(Register with, Heap::RootListIndex index,
   1144                      Label* if_not_equal) {
   1145     CompareRoot(with, index);
   1146     bne(if_not_equal);
   1147   }
   1148 
   1149   // Load and check the instance type of an object for being a string.
   1150   // Loads the type into the second argument register.
   1151   // Returns a condition that will be enabled if the object was a string.
   1152   Condition IsObjectStringType(Register obj, Register type) {
   1153     LoadP(type, FieldMemOperand(obj, HeapObject::kMapOffset));
   1154     LoadlB(type, FieldMemOperand(type, Map::kInstanceTypeOffset));
   1155     mov(r0, Operand(kIsNotStringMask));
   1156     AndP(r0, type);
   1157     DCHECK_EQ(0u, kStringTag);
   1158     return eq;
   1159   }
   1160 
   1161   // Get the number of least significant bits from a register
   1162   void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits);
   1163   void GetLeastBitsFromInt32(Register dst, Register src, int mun_least_bits);
   1164 
   1165   // Load the value of a smi object into a FP double register. The register
   1166   // scratch1 can be the same register as smi in which case smi will hold the
   1167   // untagged value afterwards.
   1168   void SmiToDouble(DoubleRegister value, Register smi);
   1169 
   1170   // Check if a double can be exactly represented as a signed 32-bit integer.
   1171   // CR_EQ in cr7 is set if true.
   1172   void TestDoubleIsInt32(DoubleRegister double_input, Register scratch1,
   1173                          Register scratch2, DoubleRegister double_scratch);
   1174 
   1175   // Check if a double is equal to -0.0.
   1176   // CR_EQ in cr7 holds the result.
   1177   void TestDoubleIsMinusZero(DoubleRegister input, Register scratch1,
   1178                              Register scratch2);
   1179 
   1180   // Check the sign of a double.
   1181   // CR_LT in cr7 holds the result.
   1182   void TestDoubleSign(DoubleRegister input, Register scratch);
   1183   void TestHeapNumberSign(Register input, Register scratch);
   1184 
   1185   // Try to convert a double to a signed 32-bit integer.
   1186   // CR_EQ in cr7 is set and result assigned if the conversion is exact.
   1187   void TryDoubleToInt32Exact(Register result, DoubleRegister double_input,
   1188                              Register scratch, DoubleRegister double_scratch);
   1189 
   1190   // Floor a double and writes the value to the result register.
   1191   // Go to exact if the conversion is exact (to be able to test -0),
   1192   // fall through calling code if an overflow occurred, else go to done.
   1193   // In return, input_high is loaded with high bits of input.
   1194   void TryInt32Floor(Register result, DoubleRegister double_input,
   1195                      Register input_high, Register scratch,
   1196                      DoubleRegister double_scratch, Label* done, Label* exact);
   1197 
   1198   // Performs a truncating conversion of a floating point number as used by
   1199   // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
   1200   // succeeds, otherwise falls through if result is saturated. On return
   1201   // 'result' either holds answer, or is clobbered on fall through.
   1202   //
   1203   // Only public for the test code in test-code-stubs-arm.cc.
   1204   void TryInlineTruncateDoubleToI(Register result, DoubleRegister input,
   1205                                   Label* done);
   1206 
   1207   // Performs a truncating conversion of a floating point number as used by
   1208   // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
   1209   // Exits with 'result' holding the answer.
   1210   void TruncateDoubleToI(Register result, DoubleRegister double_input);
   1211 
   1212   // Performs a truncating conversion of a heap number as used by
   1213   // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
   1214   // must be different registers.  Exits with 'result' holding the answer.
   1215   void TruncateHeapNumberToI(Register result, Register object);
   1216 
   1217   // Converts the smi or heap number in object to an int32 using the rules
   1218   // for ToInt32 as described in ECMAScript 9.5.: the value is truncated
   1219   // and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
   1220   // different registers.
   1221   void TruncateNumberToI(Register object, Register result,
   1222                          Register heap_number_map, Register scratch1,
   1223                          Label* not_int32);
   1224 
   1225   // ---------------------------------------------------------------------------
   1226   // Runtime calls
   1227 
   1228   // Call a code stub.
   1229   void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None(),
   1230                 Condition cond = al);
   1231 
   1232   // Call a code stub.
   1233   void TailCallStub(CodeStub* stub, Condition cond = al);
   1234 
   1235   // Call a runtime routine.
   1236   void CallRuntime(const Runtime::Function* f, int num_arguments,
   1237                    SaveFPRegsMode save_doubles = kDontSaveFPRegs);
   1238   void CallRuntimeSaveDoubles(Runtime::FunctionId fid) {
   1239     const Runtime::Function* function = Runtime::FunctionForId(fid);
   1240     CallRuntime(function, function->nargs, kSaveFPRegs);
   1241   }
   1242 
   1243   // Convenience function: Same as above, but takes the fid instead.
   1244   void CallRuntime(Runtime::FunctionId fid,
   1245                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
   1246     const Runtime::Function* function = Runtime::FunctionForId(fid);
   1247     CallRuntime(function, function->nargs, save_doubles);
   1248   }
   1249 
   1250   // Convenience function: Same as above, but takes the fid instead.
   1251   void CallRuntime(Runtime::FunctionId fid, int num_arguments,
   1252                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
   1253     CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
   1254   }
   1255 
   1256   // Convenience function: call an external reference.
   1257   void CallExternalReference(const ExternalReference& ext, int num_arguments);
   1258 
   1259   // Convenience function: tail call a runtime routine (jump).
   1260   void TailCallRuntime(Runtime::FunctionId fid);
   1261 
   1262   int CalculateStackPassedWords(int num_reg_arguments,
   1263                                 int num_double_arguments);
   1264 
   1265   // Before calling a C-function from generated code, align arguments on stack.
   1266   // After aligning the frame, non-register arguments must be stored in
   1267   // sp[0], sp[4], etc., not pushed. The argument count assumes all arguments
   1268   // are word sized. If double arguments are used, this function assumes that
   1269   // all double arguments are stored before core registers; otherwise the
   1270   // correct alignment of the double values is not guaranteed.
   1271   // Some compilers/platforms require the stack to be aligned when calling
   1272   // C++ code.
   1273   // Needs a scratch register to do some arithmetic. This register will be
   1274   // trashed.
   1275   void PrepareCallCFunction(int num_reg_arguments, int num_double_registers,
   1276                             Register scratch);
   1277   void PrepareCallCFunction(int num_reg_arguments, Register scratch);
   1278 
   1279   // There are two ways of passing double arguments on ARM, depending on
   1280   // whether soft or hard floating point ABI is used. These functions
   1281   // abstract parameter passing for the three different ways we call
   1282   // C functions from generated code.
   1283   void MovToFloatParameter(DoubleRegister src);
   1284   void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2);
   1285   void MovToFloatResult(DoubleRegister src);
   1286 
   1287   // Calls a C function and cleans up the space for arguments allocated
   1288   // by PrepareCallCFunction. The called function is not allowed to trigger a
   1289   // garbage collection, since that might move the code and invalidate the
   1290   // return address (unless this is somehow accounted for by the called
   1291   // function).
   1292   void CallCFunction(ExternalReference function, int num_arguments);
   1293   void CallCFunction(Register function, int num_arguments);
   1294   void CallCFunction(ExternalReference function, int num_reg_arguments,
   1295                      int num_double_arguments);
   1296   void CallCFunction(Register function, int num_reg_arguments,
   1297                      int num_double_arguments);
   1298 
   1299   void MovFromFloatParameter(DoubleRegister dst);
   1300   void MovFromFloatResult(DoubleRegister dst);
   1301 
   1302   // Jump to a runtime routine.
   1303   void JumpToExternalReference(const ExternalReference& builtin,
   1304                                bool builtin_exit_frame = false);
   1305 
   1306   Handle<Object> CodeObject() {
   1307     DCHECK(!code_object_.is_null());
   1308     return code_object_;
   1309   }
   1310 
   1311   // Emit code for a truncating division by a constant. The dividend register is
   1312   // unchanged and ip gets clobbered. Dividend and result must be different.
   1313   void TruncatingDiv(Register result, Register dividend, int32_t divisor);
   1314 
   1315   // ---------------------------------------------------------------------------
   1316   // StatsCounter support
   1317 
   1318   void SetCounter(StatsCounter* counter, int value, Register scratch1,
   1319                   Register scratch2);
   1320   void IncrementCounter(StatsCounter* counter, int value, Register scratch1,
   1321                         Register scratch2);
   1322   void DecrementCounter(StatsCounter* counter, int value, Register scratch1,
   1323                         Register scratch2);
   1324 
   1325   // ---------------------------------------------------------------------------
   1326   // Debugging
   1327 
   1328   // Calls Abort(msg) if the condition cond is not satisfied.
   1329   // Use --debug_code to enable.
   1330   void Assert(Condition cond, BailoutReason reason, CRegister cr = cr7);
   1331   void AssertFastElements(Register elements);
   1332 
   1333   // Like Assert(), but always enabled.
   1334   void Check(Condition cond, BailoutReason reason, CRegister cr = cr7);
   1335 
   1336   // Print a message to stdout and abort execution.
   1337   void Abort(BailoutReason reason);
   1338 
   1339   // Verify restrictions about code generated in stubs.
   1340   void set_generating_stub(bool value) { generating_stub_ = value; }
   1341   bool generating_stub() { return generating_stub_; }
   1342   void set_has_frame(bool value) { has_frame_ = value; }
   1343   bool has_frame() { return has_frame_; }
   1344   inline bool AllowThisStubCall(CodeStub* stub);
   1345 
   1346   // ---------------------------------------------------------------------------
   1347   // Number utilities
   1348 
   1349   // Check whether the value of reg is a power of two and not zero. If not
   1350   // control continues at the label not_power_of_two. If reg is a power of two
   1351   // the register scratch contains the value of (reg - 1) when control falls
   1352   // through.
   1353   void JumpIfNotPowerOfTwoOrZero(Register reg, Register scratch,
   1354                                  Label* not_power_of_two_or_zero);
   1355   // Check whether the value of reg is a power of two and not zero.
   1356   // Control falls through if it is, with scratch containing the mask
   1357   // value (reg - 1).
   1358   // Otherwise control jumps to the 'zero_and_neg' label if the value of reg is
   1359   // zero or negative, or jumps to the 'not_power_of_two' label if the value is
   1360   // strictly positive but not a power of two.
   1361   void JumpIfNotPowerOfTwoOrZeroAndNeg(Register reg, Register scratch,
   1362                                        Label* zero_and_neg,
   1363                                        Label* not_power_of_two);
   1364 
   1365   // ---------------------------------------------------------------------------
   1366   // Bit testing/extraction
   1367   //
   1368   // Bit numbering is such that the least significant bit is bit 0
   1369   // (for consistency between 32/64-bit).
   1370 
   1371   // Extract consecutive bits (defined by rangeStart - rangeEnd) from src
   1372   // and place them into the least significant bits of dst.
   1373   inline void ExtractBitRange(Register dst, Register src, int rangeStart,
   1374                               int rangeEnd) {
   1375     DCHECK(rangeStart >= rangeEnd && rangeStart < kBitsPerPointer);
   1376 
   1377     // Try to use RISBG if possible.
   1378     if (CpuFeatures::IsSupported(GENERAL_INSTR_EXT)) {
   1379       int shiftAmount = (64 - rangeEnd) % 64;  // Convert to shift left.
   1380       int endBit = 63;  // End is always LSB after shifting.
   1381       int startBit = 63 - rangeStart + rangeEnd;
   1382       risbg(dst, src, Operand(startBit), Operand(endBit), Operand(shiftAmount),
   1383             true);
   1384     } else {
   1385       if (rangeEnd > 0)  // Don't need to shift if rangeEnd is zero.
   1386         ShiftRightP(dst, src, Operand(rangeEnd));
   1387       else if (!dst.is(src))  // If we didn't shift, we might need to copy
   1388         LoadRR(dst, src);
   1389       int width = rangeStart - rangeEnd + 1;
   1390 #if V8_TARGET_ARCH_S390X
   1391       uint64_t mask = (static_cast<uint64_t>(1) << width) - 1;
   1392       nihf(dst, Operand(mask >> 32));
   1393       nilf(dst, Operand(mask & 0xFFFFFFFF));
   1394       ltgr(dst, dst);
   1395 #else
   1396       uint32_t mask = (1 << width) - 1;
   1397       AndP(dst, Operand(mask));
   1398 #endif
   1399     }
   1400   }
   1401 
   1402   inline void ExtractBit(Register dst, Register src, uint32_t bitNumber) {
   1403     ExtractBitRange(dst, src, bitNumber, bitNumber);
   1404   }
   1405 
   1406   // Extract consecutive bits (defined by mask) from src and place them
   1407   // into the least significant bits of dst.
   1408   inline void ExtractBitMask(Register dst, Register src, uintptr_t mask,
   1409                              RCBit rc = LeaveRC) {
   1410     int start = kBitsPerPointer - 1;
   1411     int end;
   1412     uintptr_t bit = (1L << start);
   1413 
   1414     while (bit && (mask & bit) == 0) {
   1415       start--;
   1416       bit >>= 1;
   1417     }
   1418     end = start;
   1419     bit >>= 1;
   1420 
   1421     while (bit && (mask & bit)) {
   1422       end--;
   1423       bit >>= 1;
   1424     }
   1425 
   1426     // 1-bits in mask must be contiguous
   1427     DCHECK(bit == 0 || (mask & ((bit << 1) - 1)) == 0);
   1428 
   1429     ExtractBitRange(dst, src, start, end);
   1430   }
   1431 
   1432   // Test single bit in value.
   1433   inline void TestBit(Register value, int bitNumber, Register scratch = r0) {
   1434     ExtractBitRange(scratch, value, bitNumber, bitNumber);
   1435   }
   1436 
   1437   // Test consecutive bit range in value.  Range is defined by
   1438   // rangeStart - rangeEnd.
   1439   inline void TestBitRange(Register value, int rangeStart, int rangeEnd,
   1440                            Register scratch = r0) {
   1441     ExtractBitRange(scratch, value, rangeStart, rangeEnd);
   1442   }
   1443 
   1444   // Test consecutive bit range in value.  Range is defined by mask.
   1445   inline void TestBitMask(Register value, uintptr_t mask,
   1446                           Register scratch = r0) {
   1447     ExtractBitMask(scratch, value, mask, SetRC);
   1448   }
   1449 
   1450   // ---------------------------------------------------------------------------
   1451   // Smi utilities
   1452 
   1453   // Shift left by kSmiShift
   1454   void SmiTag(Register reg) { SmiTag(reg, reg); }
   1455   void SmiTag(Register dst, Register src) {
   1456     ShiftLeftP(dst, src, Operand(kSmiShift));
   1457   }
   1458 
   1459 #if !V8_TARGET_ARCH_S390X
   1460   // Test for overflow < 0: use BranchOnOverflow() or BranchOnNoOverflow().
   1461   void SmiTagCheckOverflow(Register reg, Register overflow);
   1462   void SmiTagCheckOverflow(Register dst, Register src, Register overflow);
   1463 
   1464   inline void JumpIfNotSmiCandidate(Register value, Register scratch,
   1465                                     Label* not_smi_label) {
   1466     // High bits must be identical to fit into an Smi
   1467     STATIC_ASSERT(kSmiShift == 1);
   1468     AddP(scratch, value, Operand(0x40000000u));
   1469     CmpP(scratch, Operand::Zero());
   1470     blt(not_smi_label);
   1471   }
   1472 #endif
   1473   inline void TestUnsignedSmiCandidate(Register value, Register scratch) {
   1474     // The test is different for unsigned int values. Since we need
   1475     // the value to be in the range of a positive smi, we can't
   1476     // handle any of the high bits being set in the value.
   1477     TestBitRange(value, kBitsPerPointer - 1, kBitsPerPointer - 1 - kSmiShift,
   1478                  scratch);
   1479   }
   1480   inline void JumpIfNotUnsignedSmiCandidate(Register value, Register scratch,
   1481                                             Label* not_smi_label) {
   1482     TestUnsignedSmiCandidate(value, scratch);
   1483     bne(not_smi_label /*, cr0*/);
   1484   }
   1485 
   1486   void SmiUntag(Register reg) { SmiUntag(reg, reg); }
   1487 
   1488   void SmiUntag(Register dst, Register src) {
   1489     ShiftRightArithP(dst, src, Operand(kSmiShift));
   1490   }
   1491 
   1492   void SmiToPtrArrayOffset(Register dst, Register src) {
   1493 #if V8_TARGET_ARCH_S390X
   1494     STATIC_ASSERT(kSmiTag == 0 && kSmiShift > kPointerSizeLog2);
   1495     ShiftRightArithP(dst, src, Operand(kSmiShift - kPointerSizeLog2));
   1496 #else
   1497     STATIC_ASSERT(kSmiTag == 0 && kSmiShift < kPointerSizeLog2);
   1498     ShiftLeftP(dst, src, Operand(kPointerSizeLog2 - kSmiShift));
   1499 #endif
   1500   }
   1501 
   1502   void SmiToByteArrayOffset(Register dst, Register src) { SmiUntag(dst, src); }
   1503 
   1504   void SmiToShortArrayOffset(Register dst, Register src) {
   1505 #if V8_TARGET_ARCH_S390X
   1506     STATIC_ASSERT(kSmiTag == 0 && kSmiShift > 1);
   1507     ShiftRightArithP(dst, src, Operand(kSmiShift - 1));
   1508 #else
   1509     STATIC_ASSERT(kSmiTag == 0 && kSmiShift == 1);
   1510     if (!dst.is(src)) {
   1511       LoadRR(dst, src);
   1512     }
   1513 #endif
   1514   }
   1515 
   1516   void SmiToIntArrayOffset(Register dst, Register src) {
   1517 #if V8_TARGET_ARCH_S390X
   1518     STATIC_ASSERT(kSmiTag == 0 && kSmiShift > 2);
   1519     ShiftRightArithP(dst, src, Operand(kSmiShift - 2));
   1520 #else
   1521     STATIC_ASSERT(kSmiTag == 0 && kSmiShift < 2);
   1522     ShiftLeftP(dst, src, Operand(2 - kSmiShift));
   1523 #endif
   1524   }
   1525 
   1526 #define SmiToFloatArrayOffset SmiToIntArrayOffset
   1527 
   1528   void SmiToDoubleArrayOffset(Register dst, Register src) {
   1529 #if V8_TARGET_ARCH_S390X
   1530     STATIC_ASSERT(kSmiTag == 0 && kSmiShift > kDoubleSizeLog2);
   1531     ShiftRightArithP(dst, src, Operand(kSmiShift - kDoubleSizeLog2));
   1532 #else
   1533     STATIC_ASSERT(kSmiTag == 0 && kSmiShift < kDoubleSizeLog2);
   1534     ShiftLeftP(dst, src, Operand(kDoubleSizeLog2 - kSmiShift));
   1535 #endif
   1536   }
   1537 
   1538   void SmiToArrayOffset(Register dst, Register src, int elementSizeLog2) {
   1539     if (kSmiShift < elementSizeLog2) {
   1540       ShiftLeftP(dst, src, Operand(elementSizeLog2 - kSmiShift));
   1541     } else if (kSmiShift > elementSizeLog2) {
   1542       ShiftRightArithP(dst, src, Operand(kSmiShift - elementSizeLog2));
   1543     } else if (!dst.is(src)) {
   1544       LoadRR(dst, src);
   1545     }
   1546   }
   1547 
   1548   void IndexToArrayOffset(Register dst, Register src, int elementSizeLog2,
   1549                           bool isSmi, bool keyMaybeNegative) {
   1550     if (isSmi) {
   1551       SmiToArrayOffset(dst, src, elementSizeLog2);
   1552     } else if (keyMaybeNegative ||
   1553           !CpuFeatures::IsSupported(GENERAL_INSTR_EXT)) {
   1554 #if V8_TARGET_ARCH_S390X
   1555       // If array access is dehoisted, the key, being an int32, can contain
   1556       // a negative value, as needs to be sign-extended to 64-bit for
   1557       // memory access.
   1558       //
   1559       // src (key) is a 32-bit integer.  Sign extension ensures
   1560       // upper 32-bit does not contain garbage before being used to
   1561       // reference memory.
   1562       lgfr(src, src);
   1563 #endif
   1564       ShiftLeftP(dst, src, Operand(elementSizeLog2));
   1565     } else {
   1566       // Small optimization to reduce pathlength.  After Bounds Check,
   1567       // the key is guaranteed to be non-negative.  Leverage RISBG,
   1568       // which also performs zero-extension.
   1569       risbg(dst, src, Operand(32 - elementSizeLog2),
   1570             Operand(63 - elementSizeLog2), Operand(elementSizeLog2),
   1571             true);
   1572     }
   1573   }
   1574 
   1575   // Untag the source value into destination and jump if source is a smi.
   1576   // Souce and destination can be the same register.
   1577   void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case);
   1578 
   1579   // Untag the source value into destination and jump if source is not a smi.
   1580   // Souce and destination can be the same register.
   1581   void UntagAndJumpIfNotSmi(Register dst, Register src, Label* non_smi_case);
   1582 
   1583   inline void TestIfSmi(Register value) { tmll(value, Operand(1)); }
   1584 
   1585   inline void TestIfPositiveSmi(Register value, Register scratch) {
   1586     STATIC_ASSERT((kSmiTagMask | kSmiSignMask) ==
   1587                   (intptr_t)(1UL << (kBitsPerPointer - 1) | 1));
   1588     mov(scratch, Operand(kIntptrSignBit | kSmiTagMask));
   1589     AndP(scratch, value);
   1590   }
   1591 
   1592   // Jump the register contains a smi.
   1593   inline void JumpIfSmi(Register value, Label* smi_label) {
   1594     TestIfSmi(value);
   1595     beq(smi_label /*, cr0*/);  // branch if SMI
   1596   }
   1597   // Jump if either of the registers contain a non-smi.
   1598   inline void JumpIfNotSmi(Register value, Label* not_smi_label) {
   1599     TestIfSmi(value);
   1600     bne(not_smi_label /*, cr0*/);
   1601   }
   1602   // Jump if either of the registers contain a non-smi.
   1603   void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi);
   1604   // Jump if either of the registers contain a smi.
   1605   void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
   1606 
   1607   // Abort execution if argument is a number, enabled via --debug-code.
   1608   void AssertNotNumber(Register object);
   1609 
   1610   // Abort execution if argument is a smi, enabled via --debug-code.
   1611   void AssertNotSmi(Register object);
   1612   void AssertSmi(Register object);
   1613 
   1614 #if V8_TARGET_ARCH_S390X
   1615   inline void TestIfInt32(Register value, Register scratch) {
   1616     // High bits must be identical to fit into an 32-bit integer
   1617     lgfr(scratch, value);
   1618     CmpP(scratch, value);
   1619   }
   1620 #else
   1621   inline void TestIfInt32(Register hi_word, Register lo_word,
   1622                           Register scratch) {
   1623     // High bits must be identical to fit into an 32-bit integer
   1624     ShiftRightArith(scratch, lo_word, Operand(31));
   1625     CmpP(scratch, hi_word);
   1626   }
   1627 #endif
   1628 
   1629 #if V8_TARGET_ARCH_S390X
   1630   // Ensure it is permissable to read/write int value directly from
   1631   // upper half of the smi.
   1632   STATIC_ASSERT(kSmiTag == 0);
   1633   STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 32);
   1634 #endif
   1635 #if V8_TARGET_LITTLE_ENDIAN
   1636 #define SmiWordOffset(offset) (offset + kPointerSize / 2)
   1637 #else
   1638 #define SmiWordOffset(offset) offset
   1639 #endif
   1640 
   1641   // Abort execution if argument is not a string, enabled via --debug-code.
   1642   void AssertString(Register object);
   1643 
   1644   // Abort execution if argument is not a name, enabled via --debug-code.
   1645   void AssertName(Register object);
   1646 
   1647   void AssertFunction(Register object);
   1648 
   1649   // Abort execution if argument is not a JSBoundFunction,
   1650   // enabled via --debug-code.
   1651   void AssertBoundFunction(Register object);
   1652 
   1653   // Abort execution if argument is not a JSGeneratorObject,
   1654   // enabled via --debug-code.
   1655   void AssertGeneratorObject(Register object);
   1656 
   1657   // Abort execution if argument is not a JSReceiver, enabled via --debug-code.
   1658   void AssertReceiver(Register object);
   1659 
   1660   // Abort execution if argument is not undefined or an AllocationSite, enabled
   1661   // via --debug-code.
   1662   void AssertUndefinedOrAllocationSite(Register object, Register scratch);
   1663 
   1664   // Abort execution if reg is not the root value with the given index,
   1665   // enabled via --debug-code.
   1666   void AssertIsRoot(Register reg, Heap::RootListIndex index);
   1667 
   1668   // ---------------------------------------------------------------------------
   1669   // HeapNumber utilities
   1670 
   1671   void JumpIfNotHeapNumber(Register object, Register heap_number_map,
   1672                            Register scratch, Label* on_not_heap_number);
   1673 
   1674   // ---------------------------------------------------------------------------
   1675   // String utilities
   1676 
   1677   // Checks if both objects are sequential one-byte strings and jumps to label
   1678   // if either is not. Assumes that neither object is a smi.
   1679   void JumpIfNonSmisNotBothSequentialOneByteStrings(Register object1,
   1680                                                     Register object2,
   1681                                                     Register scratch1,
   1682                                                     Register scratch2,
   1683                                                     Label* failure);
   1684 
   1685   // Checks if both objects are sequential one-byte strings and jumps to label
   1686   // if either is not.
   1687   void JumpIfNotBothSequentialOneByteStrings(Register first, Register second,
   1688                                              Register scratch1,
   1689                                              Register scratch2,
   1690                                              Label* not_flat_one_byte_strings);
   1691 
   1692   // Checks if both instance types are sequential one-byte strings and jumps to
   1693   // label if either is not.
   1694   void JumpIfBothInstanceTypesAreNotSequentialOneByte(
   1695       Register first_object_instance_type, Register second_object_instance_type,
   1696       Register scratch1, Register scratch2, Label* failure);
   1697 
   1698   // Check if instance type is sequential one-byte string and jump to label if
   1699   // it is not.
   1700   void JumpIfInstanceTypeIsNotSequentialOneByte(Register type, Register scratch,
   1701                                                 Label* failure);
   1702 
   1703   void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name);
   1704 
   1705   void EmitSeqStringSetCharCheck(Register string, Register index,
   1706                                  Register value, uint32_t encoding_mask);
   1707 
   1708   // ---------------------------------------------------------------------------
   1709   // Patching helpers.
   1710 
   1711   void ClampUint8(Register output_reg, Register input_reg);
   1712 
   1713   // Saturate a value into 8-bit unsigned integer
   1714   //   if input_value < 0, output_value is 0
   1715   //   if input_value > 255, output_value is 255
   1716   //   otherwise output_value is the (int)input_value (round to nearest)
   1717   void ClampDoubleToUint8(Register result_reg, DoubleRegister input_reg,
   1718                           DoubleRegister temp_double_reg);
   1719 
   1720   void LoadInstanceDescriptors(Register map, Register descriptors);
   1721   void EnumLength(Register dst, Register map);
   1722   void NumberOfOwnDescriptors(Register dst, Register map);
   1723   void LoadAccessor(Register dst, Register holder, int accessor_index,
   1724                     AccessorComponent accessor);
   1725 
   1726   template <typename Field>
   1727   void DecodeField(Register dst, Register src) {
   1728     ExtractBitRange(dst, src, Field::kShift + Field::kSize - 1, Field::kShift);
   1729   }
   1730 
   1731   template <typename Field>
   1732   void DecodeField(Register reg) {
   1733     DecodeField<Field>(reg, reg);
   1734   }
   1735 
   1736   template <typename Field>
   1737   void DecodeFieldToSmi(Register dst, Register src) {
   1738     // TODO(joransiu): Optimize into single instruction
   1739     DecodeField<Field>(dst, src);
   1740     SmiTag(dst);
   1741   }
   1742 
   1743   template <typename Field>
   1744   void DecodeFieldToSmi(Register reg) {
   1745     DecodeFieldToSmi<Field>(reg, reg);
   1746   }
   1747 
   1748   // Load the type feedback vector from a JavaScript frame.
   1749   void EmitLoadTypeFeedbackVector(Register vector);
   1750 
   1751   // Activation support.
   1752   void EnterFrame(StackFrame::Type type,
   1753                   bool load_constant_pool_pointer_reg = false);
   1754   // Returns the pc offset at which the frame ends.
   1755   int LeaveFrame(StackFrame::Type type, int stack_adjustment = 0);
   1756 
   1757   void EnterBuiltinFrame(Register context, Register target, Register argc);
   1758   void LeaveBuiltinFrame(Register context, Register target, Register argc);
   1759 
   1760   // Expects object in r2 and returns map with validated enum cache
   1761   // in r2.  Assumes that any other register can be used as a scratch.
   1762   void CheckEnumCache(Label* call_runtime);
   1763 
   1764   // AllocationMemento support. Arrays may have an associated
   1765   // AllocationMemento object that can be checked for in order to pretransition
   1766   // to another type.
   1767   // On entry, receiver_reg should point to the array object.
   1768   // scratch_reg gets clobbered.
   1769   // If allocation info is present, condition flags are set to eq.
   1770   void TestJSArrayForAllocationMemento(Register receiver_reg,
   1771                                        Register scratch_reg,
   1772                                        Register scratch2_reg,
   1773                                        Label* no_memento_found);
   1774 
   1775   void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
   1776                                          Register scratch_reg,
   1777                                          Register scratch2_reg,
   1778                                          Label* memento_found) {
   1779     Label no_memento_found;
   1780     TestJSArrayForAllocationMemento(receiver_reg, scratch_reg, scratch2_reg,
   1781                                     &no_memento_found);
   1782     beq(memento_found);
   1783     bind(&no_memento_found);
   1784   }
   1785 
   1786   // Jumps to found label if a prototype map has dictionary elements.
   1787   void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
   1788                                         Register scratch1, Label* found);
   1789 
   1790  private:
   1791   static const int kSmiShift = kSmiTagSize + kSmiShiftSize;
   1792 
   1793   void CallCFunctionHelper(Register function, int num_reg_arguments,
   1794                            int num_double_arguments);
   1795 
   1796   void Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond = al,
   1797             CRegister cr = cr7);
   1798 
   1799   // Helper functions for generating invokes.
   1800   void InvokePrologue(const ParameterCount& expected,
   1801                       const ParameterCount& actual, Label* done,
   1802                       bool* definitely_mismatches, InvokeFlag flag,
   1803                       const CallWrapper& call_wrapper);
   1804 
   1805   void InitializeNewString(Register string, Register length,
   1806                            Heap::RootListIndex map_index, Register scratch1,
   1807                            Register scratch2);
   1808 
   1809   // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
   1810   void InNewSpace(Register object, Register scratch,
   1811                   Condition cond,  // eq for new space, ne otherwise.
   1812                   Label* branch);
   1813 
   1814   // Helper for finding the mark bits for an address.  Afterwards, the
   1815   // bitmap register points at the word with the mark bits and the mask
   1816   // the position of the first bit.  Leaves addr_reg unchanged.
   1817   inline void GetMarkBits(Register addr_reg, Register bitmap_reg,
   1818                           Register mask_reg);
   1819 
   1820   static const RegList kSafepointSavedRegisters;
   1821   static const int kNumSafepointSavedRegisters;
   1822 
   1823   // Compute memory operands for safepoint stack slots.
   1824   static int SafepointRegisterStackIndex(int reg_code);
   1825   MemOperand SafepointRegisterSlot(Register reg);
   1826   MemOperand SafepointRegistersAndDoublesSlot(Register reg);
   1827 
   1828   bool generating_stub_;
   1829   bool has_frame_;
   1830   // This handle will be patched with the code object on installation.
   1831   Handle<Object> code_object_;
   1832 
   1833   // Needs access to SafepointRegisterStackIndex for compiled frame
   1834   // traversal.
   1835   friend class StandardFrame;
   1836 };
   1837 
   1838 // The code patcher is used to patch (typically) small parts of code e.g. for
   1839 // debugging and other types of instrumentation. When using the code patcher
   1840 // the exact number of bytes specified must be emitted. It is not legal to emit
   1841 // relocation information. If any of these constraints are violated it causes
   1842 // an assertion to fail.
   1843 class CodePatcher {
   1844  public:
   1845   enum FlushICache { FLUSH, DONT_FLUSH };
   1846 
   1847   CodePatcher(Isolate* isolate, byte* address, int instructions,
   1848               FlushICache flush_cache = FLUSH);
   1849   ~CodePatcher();
   1850 
   1851   // Macro assembler to emit code.
   1852   MacroAssembler* masm() { return &masm_; }
   1853 
   1854  private:
   1855   byte* address_;            // The address of the code being patched.
   1856   int size_;                 // Number of bytes of the expected patch size.
   1857   MacroAssembler masm_;      // Macro assembler used to generate the code.
   1858   FlushICache flush_cache_;  // Whether to flush the I cache after patching.
   1859 };
   1860 
   1861 // -----------------------------------------------------------------------------
   1862 // Static helper functions.
   1863 
   1864 inline MemOperand ContextMemOperand(Register context, int index = 0) {
   1865   return MemOperand(context, Context::SlotOffset(index));
   1866 }
   1867 
   1868 inline MemOperand NativeContextMemOperand() {
   1869   return ContextMemOperand(cp, Context::NATIVE_CONTEXT_INDEX);
   1870 }
   1871 
   1872 #define ACCESS_MASM(masm) masm->
   1873 
   1874 }  // namespace internal
   1875 }  // namespace v8
   1876 
   1877 #endif  // V8_S390_MACRO_ASSEMBLER_S390_H_
   1878