Home | History | Annotate | Download | only in optimizing
      1 /*
      2  * Copyright (C) 2015 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "code_generator_mips.h"
     18 
     19 #include "arch/mips/entrypoints_direct_mips.h"
     20 #include "arch/mips/instruction_set_features_mips.h"
     21 #include "art_method.h"
     22 #include "code_generator_utils.h"
     23 #include "compiled_method.h"
     24 #include "entrypoints/quick/quick_entrypoints.h"
     25 #include "entrypoints/quick/quick_entrypoints_enum.h"
     26 #include "gc/accounting/card_table.h"
     27 #include "intrinsics.h"
     28 #include "intrinsics_mips.h"
     29 #include "mirror/array-inl.h"
     30 #include "mirror/class-inl.h"
     31 #include "offsets.h"
     32 #include "thread.h"
     33 #include "utils/assembler.h"
     34 #include "utils/mips/assembler_mips.h"
     35 #include "utils/stack_checks.h"
     36 
     37 namespace art {
     38 namespace mips {
     39 
     40 static constexpr int kCurrentMethodStackOffset = 0;
     41 static constexpr Register kMethodRegisterArgument = A0;
     42 
     43 // We'll maximize the range of a single load instruction for dex cache array accesses
     44 // by aligning offset -32768 with the offset of the first used element.
     45 static constexpr uint32_t kDexCacheArrayLwOffset = 0x8000;
     46 
     47 Location MipsReturnLocation(Primitive::Type return_type) {
     48   switch (return_type) {
     49     case Primitive::kPrimBoolean:
     50     case Primitive::kPrimByte:
     51     case Primitive::kPrimChar:
     52     case Primitive::kPrimShort:
     53     case Primitive::kPrimInt:
     54     case Primitive::kPrimNot:
     55       return Location::RegisterLocation(V0);
     56 
     57     case Primitive::kPrimLong:
     58       return Location::RegisterPairLocation(V0, V1);
     59 
     60     case Primitive::kPrimFloat:
     61     case Primitive::kPrimDouble:
     62       return Location::FpuRegisterLocation(F0);
     63 
     64     case Primitive::kPrimVoid:
     65       return Location();
     66   }
     67   UNREACHABLE();
     68 }
     69 
     70 Location InvokeDexCallingConventionVisitorMIPS::GetReturnLocation(Primitive::Type type) const {
     71   return MipsReturnLocation(type);
     72 }
     73 
     74 Location InvokeDexCallingConventionVisitorMIPS::GetMethodLocation() const {
     75   return Location::RegisterLocation(kMethodRegisterArgument);
     76 }
     77 
     78 Location InvokeDexCallingConventionVisitorMIPS::GetNextLocation(Primitive::Type type) {
     79   Location next_location;
     80 
     81   switch (type) {
     82     case Primitive::kPrimBoolean:
     83     case Primitive::kPrimByte:
     84     case Primitive::kPrimChar:
     85     case Primitive::kPrimShort:
     86     case Primitive::kPrimInt:
     87     case Primitive::kPrimNot: {
     88       uint32_t gp_index = gp_index_++;
     89       if (gp_index < calling_convention.GetNumberOfRegisters()) {
     90         next_location = Location::RegisterLocation(calling_convention.GetRegisterAt(gp_index));
     91       } else {
     92         size_t stack_offset = calling_convention.GetStackOffsetOf(stack_index_);
     93         next_location = Location::StackSlot(stack_offset);
     94       }
     95       break;
     96     }
     97 
     98     case Primitive::kPrimLong: {
     99       uint32_t gp_index = gp_index_;
    100       gp_index_ += 2;
    101       if (gp_index + 1 < calling_convention.GetNumberOfRegisters()) {
    102         Register reg = calling_convention.GetRegisterAt(gp_index);
    103         if (reg == A1 || reg == A3) {
    104           gp_index_++;  // Skip A1(A3), and use A2_A3(T0_T1) instead.
    105           gp_index++;
    106         }
    107         Register low_even = calling_convention.GetRegisterAt(gp_index);
    108         Register high_odd = calling_convention.GetRegisterAt(gp_index + 1);
    109         DCHECK_EQ(low_even + 1, high_odd);
    110         next_location = Location::RegisterPairLocation(low_even, high_odd);
    111       } else {
    112         size_t stack_offset = calling_convention.GetStackOffsetOf(stack_index_);
    113         next_location = Location::DoubleStackSlot(stack_offset);
    114       }
    115       break;
    116     }
    117 
    118     // Note: both float and double types are stored in even FPU registers. On 32 bit FPU, double
    119     // will take up the even/odd pair, while floats are stored in even regs only.
    120     // On 64 bit FPU, both double and float are stored in even registers only.
    121     case Primitive::kPrimFloat:
    122     case Primitive::kPrimDouble: {
    123       uint32_t float_index = float_index_++;
    124       if (float_index < calling_convention.GetNumberOfFpuRegisters()) {
    125         next_location = Location::FpuRegisterLocation(
    126             calling_convention.GetFpuRegisterAt(float_index));
    127       } else {
    128         size_t stack_offset = calling_convention.GetStackOffsetOf(stack_index_);
    129         next_location = Primitive::Is64BitType(type) ? Location::DoubleStackSlot(stack_offset)
    130                                                      : Location::StackSlot(stack_offset);
    131       }
    132       break;
    133     }
    134 
    135     case Primitive::kPrimVoid:
    136       LOG(FATAL) << "Unexpected parameter type " << type;
    137       break;
    138   }
    139 
    140   // Space on the stack is reserved for all arguments.
    141   stack_index_ += Primitive::Is64BitType(type) ? 2 : 1;
    142 
    143   return next_location;
    144 }
    145 
    146 Location InvokeRuntimeCallingConvention::GetReturnLocation(Primitive::Type type) {
    147   return MipsReturnLocation(type);
    148 }
    149 
    150 // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy.
    151 #define __ down_cast<CodeGeneratorMIPS*>(codegen)->GetAssembler()->  // NOLINT
    152 #define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kMipsPointerSize, x).Int32Value()
    153 
    154 class BoundsCheckSlowPathMIPS : public SlowPathCodeMIPS {
    155  public:
    156   explicit BoundsCheckSlowPathMIPS(HBoundsCheck* instruction) : SlowPathCodeMIPS(instruction) {}
    157 
    158   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    159     LocationSummary* locations = instruction_->GetLocations();
    160     CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
    161     __ Bind(GetEntryLabel());
    162     if (instruction_->CanThrowIntoCatchBlock()) {
    163       // Live registers will be restored in the catch block if caught.
    164       SaveLiveRegisters(codegen, instruction_->GetLocations());
    165     }
    166     // We're moving two locations to locations that could overlap, so we need a parallel
    167     // move resolver.
    168     InvokeRuntimeCallingConvention calling_convention;
    169     codegen->EmitParallelMoves(locations->InAt(0),
    170                                Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
    171                                Primitive::kPrimInt,
    172                                locations->InAt(1),
    173                                Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
    174                                Primitive::kPrimInt);
    175     QuickEntrypointEnum entrypoint = instruction_->AsBoundsCheck()->IsStringCharAt()
    176         ? kQuickThrowStringBounds
    177         : kQuickThrowArrayBounds;
    178     mips_codegen->InvokeRuntime(entrypoint, instruction_, instruction_->GetDexPc(), this);
    179     CheckEntrypointTypes<kQuickThrowStringBounds, void, int32_t, int32_t>();
    180     CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>();
    181   }
    182 
    183   bool IsFatal() const OVERRIDE { return true; }
    184 
    185   const char* GetDescription() const OVERRIDE { return "BoundsCheckSlowPathMIPS"; }
    186 
    187  private:
    188   DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathMIPS);
    189 };
    190 
    191 class DivZeroCheckSlowPathMIPS : public SlowPathCodeMIPS {
    192  public:
    193   explicit DivZeroCheckSlowPathMIPS(HDivZeroCheck* instruction) : SlowPathCodeMIPS(instruction) {}
    194 
    195   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    196     CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
    197     __ Bind(GetEntryLabel());
    198     mips_codegen->InvokeRuntime(kQuickThrowDivZero, instruction_, instruction_->GetDexPc(), this);
    199     CheckEntrypointTypes<kQuickThrowDivZero, void, void>();
    200   }
    201 
    202   bool IsFatal() const OVERRIDE { return true; }
    203 
    204   const char* GetDescription() const OVERRIDE { return "DivZeroCheckSlowPathMIPS"; }
    205 
    206  private:
    207   DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathMIPS);
    208 };
    209 
    210 class LoadClassSlowPathMIPS : public SlowPathCodeMIPS {
    211  public:
    212   LoadClassSlowPathMIPS(HLoadClass* cls,
    213                         HInstruction* at,
    214                         uint32_t dex_pc,
    215                         bool do_clinit)
    216       : SlowPathCodeMIPS(at), cls_(cls), dex_pc_(dex_pc), do_clinit_(do_clinit) {
    217     DCHECK(at->IsLoadClass() || at->IsClinitCheck());
    218   }
    219 
    220   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    221     LocationSummary* locations = instruction_->GetLocations();
    222     CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
    223 
    224     __ Bind(GetEntryLabel());
    225     SaveLiveRegisters(codegen, locations);
    226 
    227     InvokeRuntimeCallingConvention calling_convention;
    228     dex::TypeIndex type_index = cls_->GetTypeIndex();
    229     __ LoadConst32(calling_convention.GetRegisterAt(0), type_index.index_);
    230 
    231     QuickEntrypointEnum entrypoint = do_clinit_ ? kQuickInitializeStaticStorage
    232                                                 : kQuickInitializeType;
    233     mips_codegen->InvokeRuntime(entrypoint, instruction_, dex_pc_, this);
    234     if (do_clinit_) {
    235       CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, uint32_t>();
    236     } else {
    237       CheckEntrypointTypes<kQuickInitializeType, void*, uint32_t>();
    238     }
    239 
    240     // Move the class to the desired location.
    241     Location out = locations->Out();
    242     if (out.IsValid()) {
    243       DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg()));
    244       Primitive::Type type = instruction_->GetType();
    245       mips_codegen->MoveLocation(out, calling_convention.GetReturnLocation(type), type);
    246     }
    247 
    248     RestoreLiveRegisters(codegen, locations);
    249     // For HLoadClass/kBssEntry, store the resolved Class to the BSS entry.
    250     DCHECK_EQ(instruction_->IsLoadClass(), cls_ == instruction_);
    251     if (cls_ == instruction_ && cls_->GetLoadKind() == HLoadClass::LoadKind::kBssEntry) {
    252       DCHECK(out.IsValid());
    253       // TODO: Change art_quick_initialize_type/art_quick_initialize_static_storage to
    254       // kSaveEverything and use a temporary for the .bss entry address in the fast path,
    255       // so that we can avoid another calculation here.
    256       bool isR6 = mips_codegen->GetInstructionSetFeatures().IsR6();
    257       Register base = isR6 ? ZERO : locations->InAt(0).AsRegister<Register>();
    258       DCHECK_NE(out.AsRegister<Register>(), AT);
    259       CodeGeneratorMIPS::PcRelativePatchInfo* info =
    260           mips_codegen->NewTypeBssEntryPatch(cls_->GetDexFile(), type_index);
    261       bool reordering = __ SetReorder(false);
    262       mips_codegen->EmitPcRelativeAddressPlaceholderHigh(info, TMP, base);
    263       __ StoreToOffset(kStoreWord, out.AsRegister<Register>(), TMP, /* placeholder */ 0x5678);
    264       __ SetReorder(reordering);
    265     }
    266     __ B(GetExitLabel());
    267   }
    268 
    269   const char* GetDescription() const OVERRIDE { return "LoadClassSlowPathMIPS"; }
    270 
    271  private:
    272   // The class this slow path will load.
    273   HLoadClass* const cls_;
    274 
    275   // The dex PC of `at_`.
    276   const uint32_t dex_pc_;
    277 
    278   // Whether to initialize the class.
    279   const bool do_clinit_;
    280 
    281   DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathMIPS);
    282 };
    283 
    284 class LoadStringSlowPathMIPS : public SlowPathCodeMIPS {
    285  public:
    286   explicit LoadStringSlowPathMIPS(HLoadString* instruction) : SlowPathCodeMIPS(instruction) {}
    287 
    288   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    289     LocationSummary* locations = instruction_->GetLocations();
    290     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
    291     CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
    292 
    293     __ Bind(GetEntryLabel());
    294     SaveLiveRegisters(codegen, locations);
    295 
    296     InvokeRuntimeCallingConvention calling_convention;
    297     HLoadString* load = instruction_->AsLoadString();
    298     const dex::StringIndex string_index = load->GetStringIndex();
    299     __ LoadConst32(calling_convention.GetRegisterAt(0), string_index.index_);
    300     mips_codegen->InvokeRuntime(kQuickResolveString, instruction_, instruction_->GetDexPc(), this);
    301     CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
    302     Primitive::Type type = instruction_->GetType();
    303     mips_codegen->MoveLocation(locations->Out(),
    304                                calling_convention.GetReturnLocation(type),
    305                                type);
    306 
    307     RestoreLiveRegisters(codegen, locations);
    308 
    309     // Store the resolved String to the BSS entry.
    310     // TODO: Change art_quick_resolve_string to kSaveEverything and use a temporary for the
    311     // .bss entry address in the fast path, so that we can avoid another calculation here.
    312     bool isR6 = mips_codegen->GetInstructionSetFeatures().IsR6();
    313     Register base = isR6 ? ZERO : locations->InAt(0).AsRegister<Register>();
    314     Register out = locations->Out().AsRegister<Register>();
    315     DCHECK_NE(out, AT);
    316     CodeGeneratorMIPS::PcRelativePatchInfo* info =
    317         mips_codegen->NewPcRelativeStringPatch(load->GetDexFile(), string_index);
    318     bool reordering = __ SetReorder(false);
    319     mips_codegen->EmitPcRelativeAddressPlaceholderHigh(info, TMP, base);
    320     __ StoreToOffset(kStoreWord, out, TMP, /* placeholder */ 0x5678);
    321     __ SetReorder(reordering);
    322 
    323     __ B(GetExitLabel());
    324   }
    325 
    326   const char* GetDescription() const OVERRIDE { return "LoadStringSlowPathMIPS"; }
    327 
    328  private:
    329   DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathMIPS);
    330 };
    331 
    332 class NullCheckSlowPathMIPS : public SlowPathCodeMIPS {
    333  public:
    334   explicit NullCheckSlowPathMIPS(HNullCheck* instr) : SlowPathCodeMIPS(instr) {}
    335 
    336   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    337     CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
    338     __ Bind(GetEntryLabel());
    339     if (instruction_->CanThrowIntoCatchBlock()) {
    340       // Live registers will be restored in the catch block if caught.
    341       SaveLiveRegisters(codegen, instruction_->GetLocations());
    342     }
    343     mips_codegen->InvokeRuntime(kQuickThrowNullPointer,
    344                                 instruction_,
    345                                 instruction_->GetDexPc(),
    346                                 this);
    347     CheckEntrypointTypes<kQuickThrowNullPointer, void, void>();
    348   }
    349 
    350   bool IsFatal() const OVERRIDE { return true; }
    351 
    352   const char* GetDescription() const OVERRIDE { return "NullCheckSlowPathMIPS"; }
    353 
    354  private:
    355   DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathMIPS);
    356 };
    357 
    358 class SuspendCheckSlowPathMIPS : public SlowPathCodeMIPS {
    359  public:
    360   SuspendCheckSlowPathMIPS(HSuspendCheck* instruction, HBasicBlock* successor)
    361       : SlowPathCodeMIPS(instruction), successor_(successor) {}
    362 
    363   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    364     CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
    365     __ Bind(GetEntryLabel());
    366     mips_codegen->InvokeRuntime(kQuickTestSuspend, instruction_, instruction_->GetDexPc(), this);
    367     CheckEntrypointTypes<kQuickTestSuspend, void, void>();
    368     if (successor_ == nullptr) {
    369       __ B(GetReturnLabel());
    370     } else {
    371       __ B(mips_codegen->GetLabelOf(successor_));
    372     }
    373   }
    374 
    375   MipsLabel* GetReturnLabel() {
    376     DCHECK(successor_ == nullptr);
    377     return &return_label_;
    378   }
    379 
    380   const char* GetDescription() const OVERRIDE { return "SuspendCheckSlowPathMIPS"; }
    381 
    382  private:
    383   // If not null, the block to branch to after the suspend check.
    384   HBasicBlock* const successor_;
    385 
    386   // If `successor_` is null, the label to branch to after the suspend check.
    387   MipsLabel return_label_;
    388 
    389   DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathMIPS);
    390 };
    391 
    392 class TypeCheckSlowPathMIPS : public SlowPathCodeMIPS {
    393  public:
    394   explicit TypeCheckSlowPathMIPS(HInstruction* instruction, bool is_fatal)
    395       : SlowPathCodeMIPS(instruction), is_fatal_(is_fatal) {}
    396 
    397   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    398     LocationSummary* locations = instruction_->GetLocations();
    399     uint32_t dex_pc = instruction_->GetDexPc();
    400     DCHECK(instruction_->IsCheckCast()
    401            || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
    402     CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
    403 
    404     __ Bind(GetEntryLabel());
    405     if (!is_fatal_) {
    406       SaveLiveRegisters(codegen, locations);
    407     }
    408 
    409     // We're moving two locations to locations that could overlap, so we need a parallel
    410     // move resolver.
    411     InvokeRuntimeCallingConvention calling_convention;
    412     codegen->EmitParallelMoves(locations->InAt(0),
    413                                Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
    414                                Primitive::kPrimNot,
    415                                locations->InAt(1),
    416                                Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
    417                                Primitive::kPrimNot);
    418     if (instruction_->IsInstanceOf()) {
    419       mips_codegen->InvokeRuntime(kQuickInstanceofNonTrivial, instruction_, dex_pc, this);
    420       CheckEntrypointTypes<kQuickInstanceofNonTrivial, size_t, mirror::Object*, mirror::Class*>();
    421       Primitive::Type ret_type = instruction_->GetType();
    422       Location ret_loc = calling_convention.GetReturnLocation(ret_type);
    423       mips_codegen->MoveLocation(locations->Out(), ret_loc, ret_type);
    424     } else {
    425       DCHECK(instruction_->IsCheckCast());
    426       mips_codegen->InvokeRuntime(kQuickCheckInstanceOf, instruction_, dex_pc, this);
    427       CheckEntrypointTypes<kQuickCheckInstanceOf, void, mirror::Object*, mirror::Class*>();
    428     }
    429 
    430     if (!is_fatal_) {
    431       RestoreLiveRegisters(codegen, locations);
    432       __ B(GetExitLabel());
    433     }
    434   }
    435 
    436   const char* GetDescription() const OVERRIDE { return "TypeCheckSlowPathMIPS"; }
    437 
    438   bool IsFatal() const OVERRIDE { return is_fatal_; }
    439 
    440  private:
    441   const bool is_fatal_;
    442 
    443   DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathMIPS);
    444 };
    445 
    446 class DeoptimizationSlowPathMIPS : public SlowPathCodeMIPS {
    447  public:
    448   explicit DeoptimizationSlowPathMIPS(HDeoptimize* instruction)
    449     : SlowPathCodeMIPS(instruction) {}
    450 
    451   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    452     CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
    453     __ Bind(GetEntryLabel());
    454     LocationSummary* locations = instruction_->GetLocations();
    455     SaveLiveRegisters(codegen, locations);
    456     InvokeRuntimeCallingConvention calling_convention;
    457     __ LoadConst32(calling_convention.GetRegisterAt(0),
    458                    static_cast<uint32_t>(instruction_->AsDeoptimize()->GetDeoptimizationKind()));
    459     mips_codegen->InvokeRuntime(kQuickDeoptimize, instruction_, instruction_->GetDexPc(), this);
    460     CheckEntrypointTypes<kQuickDeoptimize, void, DeoptimizationKind>();
    461   }
    462 
    463   const char* GetDescription() const OVERRIDE { return "DeoptimizationSlowPathMIPS"; }
    464 
    465  private:
    466   DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathMIPS);
    467 };
    468 
    469 class ArraySetSlowPathMIPS : public SlowPathCodeMIPS {
    470  public:
    471   explicit ArraySetSlowPathMIPS(HInstruction* instruction) : SlowPathCodeMIPS(instruction) {}
    472 
    473   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    474     LocationSummary* locations = instruction_->GetLocations();
    475     __ Bind(GetEntryLabel());
    476     SaveLiveRegisters(codegen, locations);
    477 
    478     InvokeRuntimeCallingConvention calling_convention;
    479     HParallelMove parallel_move(codegen->GetGraph()->GetArena());
    480     parallel_move.AddMove(
    481         locations->InAt(0),
    482         Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
    483         Primitive::kPrimNot,
    484         nullptr);
    485     parallel_move.AddMove(
    486         locations->InAt(1),
    487         Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
    488         Primitive::kPrimInt,
    489         nullptr);
    490     parallel_move.AddMove(
    491         locations->InAt(2),
    492         Location::RegisterLocation(calling_convention.GetRegisterAt(2)),
    493         Primitive::kPrimNot,
    494         nullptr);
    495     codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
    496 
    497     CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
    498     mips_codegen->InvokeRuntime(kQuickAputObject, instruction_, instruction_->GetDexPc(), this);
    499     CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>();
    500     RestoreLiveRegisters(codegen, locations);
    501     __ B(GetExitLabel());
    502   }
    503 
    504   const char* GetDescription() const OVERRIDE { return "ArraySetSlowPathMIPS"; }
    505 
    506  private:
    507   DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathMIPS);
    508 };
    509 
    510 // Slow path marking an object reference `ref` during a read
    511 // barrier. The field `obj.field` in the object `obj` holding this
    512 // reference does not get updated by this slow path after marking (see
    513 // ReadBarrierMarkAndUpdateFieldSlowPathMIPS below for that).
    514 //
    515 // This means that after the execution of this slow path, `ref` will
    516 // always be up-to-date, but `obj.field` may not; i.e., after the
    517 // flip, `ref` will be a to-space reference, but `obj.field` will
    518 // probably still be a from-space reference (unless it gets updated by
    519 // another thread, or if another thread installed another object
    520 // reference (different from `ref`) in `obj.field`).
    521 //
    522 // If `entrypoint` is a valid location it is assumed to already be
    523 // holding the entrypoint. The case where the entrypoint is passed in
    524 // is for the GcRoot read barrier.
    525 class ReadBarrierMarkSlowPathMIPS : public SlowPathCodeMIPS {
    526  public:
    527   ReadBarrierMarkSlowPathMIPS(HInstruction* instruction,
    528                               Location ref,
    529                               Location entrypoint = Location::NoLocation())
    530       : SlowPathCodeMIPS(instruction), ref_(ref), entrypoint_(entrypoint) {
    531     DCHECK(kEmitCompilerReadBarrier);
    532   }
    533 
    534   const char* GetDescription() const OVERRIDE { return "ReadBarrierMarkSlowPathMIPS"; }
    535 
    536   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    537     LocationSummary* locations = instruction_->GetLocations();
    538     Register ref_reg = ref_.AsRegister<Register>();
    539     DCHECK(locations->CanCall());
    540     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_reg)) << ref_reg;
    541     DCHECK(instruction_->IsInstanceFieldGet() ||
    542            instruction_->IsStaticFieldGet() ||
    543            instruction_->IsArrayGet() ||
    544            instruction_->IsArraySet() ||
    545            instruction_->IsLoadClass() ||
    546            instruction_->IsLoadString() ||
    547            instruction_->IsInstanceOf() ||
    548            instruction_->IsCheckCast() ||
    549            (instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified()) ||
    550            (instruction_->IsInvokeStaticOrDirect() && instruction_->GetLocations()->Intrinsified()))
    551         << "Unexpected instruction in read barrier marking slow path: "
    552         << instruction_->DebugName();
    553 
    554     __ Bind(GetEntryLabel());
    555     // No need to save live registers; it's taken care of by the
    556     // entrypoint. Also, there is no need to update the stack mask,
    557     // as this runtime call will not trigger a garbage collection.
    558     CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
    559     DCHECK((V0 <= ref_reg && ref_reg <= T7) ||
    560            (S2 <= ref_reg && ref_reg <= S7) ||
    561            (ref_reg == FP)) << ref_reg;
    562     // "Compact" slow path, saving two moves.
    563     //
    564     // Instead of using the standard runtime calling convention (input
    565     // and output in A0 and V0 respectively):
    566     //
    567     //   A0 <- ref
    568     //   V0 <- ReadBarrierMark(A0)
    569     //   ref <- V0
    570     //
    571     // we just use rX (the register containing `ref`) as input and output
    572     // of a dedicated entrypoint:
    573     //
    574     //   rX <- ReadBarrierMarkRegX(rX)
    575     //
    576     if (entrypoint_.IsValid()) {
    577       mips_codegen->ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction_, this);
    578       DCHECK_EQ(entrypoint_.AsRegister<Register>(), T9);
    579       __ Jalr(entrypoint_.AsRegister<Register>());
    580       __ NopIfNoReordering();
    581     } else {
    582       int32_t entry_point_offset =
    583           CodeGenerator::GetReadBarrierMarkEntryPointsOffset<kMipsPointerSize>(ref_reg - 1);
    584       // This runtime call does not require a stack map.
    585       mips_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset,
    586                                                         instruction_,
    587                                                         this,
    588                                                         /* direct */ false);
    589     }
    590     __ B(GetExitLabel());
    591   }
    592 
    593  private:
    594   // The location (register) of the marked object reference.
    595   const Location ref_;
    596 
    597   // The location of the entrypoint if already loaded.
    598   const Location entrypoint_;
    599 
    600   DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkSlowPathMIPS);
    601 };
    602 
    603 // Slow path marking an object reference `ref` during a read barrier,
    604 // and if needed, atomically updating the field `obj.field` in the
    605 // object `obj` holding this reference after marking (contrary to
    606 // ReadBarrierMarkSlowPathMIPS above, which never tries to update
    607 // `obj.field`).
    608 //
    609 // This means that after the execution of this slow path, both `ref`
    610 // and `obj.field` will be up-to-date; i.e., after the flip, both will
    611 // hold the same to-space reference (unless another thread installed
    612 // another object reference (different from `ref`) in `obj.field`).
    613 class ReadBarrierMarkAndUpdateFieldSlowPathMIPS : public SlowPathCodeMIPS {
    614  public:
    615   ReadBarrierMarkAndUpdateFieldSlowPathMIPS(HInstruction* instruction,
    616                                             Location ref,
    617                                             Register obj,
    618                                             Location field_offset,
    619                                             Register temp1)
    620       : SlowPathCodeMIPS(instruction),
    621         ref_(ref),
    622         obj_(obj),
    623         field_offset_(field_offset),
    624         temp1_(temp1) {
    625     DCHECK(kEmitCompilerReadBarrier);
    626   }
    627 
    628   const char* GetDescription() const OVERRIDE {
    629     return "ReadBarrierMarkAndUpdateFieldSlowPathMIPS";
    630   }
    631 
    632   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    633     LocationSummary* locations = instruction_->GetLocations();
    634     Register ref_reg = ref_.AsRegister<Register>();
    635     DCHECK(locations->CanCall());
    636     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_reg)) << ref_reg;
    637     // This slow path is only used by the UnsafeCASObject intrinsic.
    638     DCHECK((instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified()))
    639         << "Unexpected instruction in read barrier marking and field updating slow path: "
    640         << instruction_->DebugName();
    641     DCHECK(instruction_->GetLocations()->Intrinsified());
    642     DCHECK_EQ(instruction_->AsInvoke()->GetIntrinsic(), Intrinsics::kUnsafeCASObject);
    643     DCHECK(field_offset_.IsRegisterPair()) << field_offset_;
    644 
    645     __ Bind(GetEntryLabel());
    646 
    647     // Save the old reference.
    648     // Note that we cannot use AT or TMP to save the old reference, as those
    649     // are used by the code that follows, but we need the old reference after
    650     // the call to the ReadBarrierMarkRegX entry point.
    651     DCHECK_NE(temp1_, AT);
    652     DCHECK_NE(temp1_, TMP);
    653     __ Move(temp1_, ref_reg);
    654 
    655     // No need to save live registers; it's taken care of by the
    656     // entrypoint. Also, there is no need to update the stack mask,
    657     // as this runtime call will not trigger a garbage collection.
    658     CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
    659     DCHECK((V0 <= ref_reg && ref_reg <= T7) ||
    660            (S2 <= ref_reg && ref_reg <= S7) ||
    661            (ref_reg == FP)) << ref_reg;
    662     // "Compact" slow path, saving two moves.
    663     //
    664     // Instead of using the standard runtime calling convention (input
    665     // and output in A0 and V0 respectively):
    666     //
    667     //   A0 <- ref
    668     //   V0 <- ReadBarrierMark(A0)
    669     //   ref <- V0
    670     //
    671     // we just use rX (the register containing `ref`) as input and output
    672     // of a dedicated entrypoint:
    673     //
    674     //   rX <- ReadBarrierMarkRegX(rX)
    675     //
    676     int32_t entry_point_offset =
    677         CodeGenerator::GetReadBarrierMarkEntryPointsOffset<kMipsPointerSize>(ref_reg - 1);
    678     // This runtime call does not require a stack map.
    679     mips_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset,
    680                                                       instruction_,
    681                                                       this,
    682                                                       /* direct */ false);
    683 
    684     // If the new reference is different from the old reference,
    685     // update the field in the holder (`*(obj_ + field_offset_)`).
    686     //
    687     // Note that this field could also hold a different object, if
    688     // another thread had concurrently changed it. In that case, the
    689     // the compare-and-set (CAS) loop below would abort, leaving the
    690     // field as-is.
    691     MipsLabel done;
    692     __ Beq(temp1_, ref_reg, &done);
    693 
    694     // Update the the holder's field atomically.  This may fail if
    695     // mutator updates before us, but it's OK.  This is achieved
    696     // using a strong compare-and-set (CAS) operation with relaxed
    697     // memory synchronization ordering, where the expected value is
    698     // the old reference and the desired value is the new reference.
    699 
    700     // Convenience aliases.
    701     Register base = obj_;
    702     // The UnsafeCASObject intrinsic uses a register pair as field
    703     // offset ("long offset"), of which only the low part contains
    704     // data.
    705     Register offset = field_offset_.AsRegisterPairLow<Register>();
    706     Register expected = temp1_;
    707     Register value = ref_reg;
    708     Register tmp_ptr = TMP;      // Pointer to actual memory.
    709     Register tmp = AT;           // Value in memory.
    710 
    711     __ Addu(tmp_ptr, base, offset);
    712 
    713     if (kPoisonHeapReferences) {
    714       __ PoisonHeapReference(expected);
    715       // Do not poison `value` if it is the same register as
    716       // `expected`, which has just been poisoned.
    717       if (value != expected) {
    718         __ PoisonHeapReference(value);
    719       }
    720     }
    721 
    722     // do {
    723     //   tmp = [r_ptr] - expected;
    724     // } while (tmp == 0 && failure([r_ptr] <- r_new_value));
    725 
    726     bool is_r6 = mips_codegen->GetInstructionSetFeatures().IsR6();
    727     MipsLabel loop_head, exit_loop;
    728     __ Bind(&loop_head);
    729     if (is_r6) {
    730       __ LlR6(tmp, tmp_ptr);
    731     } else {
    732       __ LlR2(tmp, tmp_ptr);
    733     }
    734     __ Bne(tmp, expected, &exit_loop);
    735     __ Move(tmp, value);
    736     if (is_r6) {
    737       __ ScR6(tmp, tmp_ptr);
    738     } else {
    739       __ ScR2(tmp, tmp_ptr);
    740     }
    741     __ Beqz(tmp, &loop_head);
    742     __ Bind(&exit_loop);
    743 
    744     if (kPoisonHeapReferences) {
    745       __ UnpoisonHeapReference(expected);
    746       // Do not unpoison `value` if it is the same register as
    747       // `expected`, which has just been unpoisoned.
    748       if (value != expected) {
    749         __ UnpoisonHeapReference(value);
    750       }
    751     }
    752 
    753     __ Bind(&done);
    754     __ B(GetExitLabel());
    755   }
    756 
    757  private:
    758   // The location (register) of the marked object reference.
    759   const Location ref_;
    760   // The register containing the object holding the marked object reference field.
    761   const Register obj_;
    762   // The location of the offset of the marked reference field within `obj_`.
    763   Location field_offset_;
    764 
    765   const Register temp1_;
    766 
    767   DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkAndUpdateFieldSlowPathMIPS);
    768 };
    769 
    770 // Slow path generating a read barrier for a heap reference.
    771 class ReadBarrierForHeapReferenceSlowPathMIPS : public SlowPathCodeMIPS {
    772  public:
    773   ReadBarrierForHeapReferenceSlowPathMIPS(HInstruction* instruction,
    774                                           Location out,
    775                                           Location ref,
    776                                           Location obj,
    777                                           uint32_t offset,
    778                                           Location index)
    779       : SlowPathCodeMIPS(instruction),
    780         out_(out),
    781         ref_(ref),
    782         obj_(obj),
    783         offset_(offset),
    784         index_(index) {
    785     DCHECK(kEmitCompilerReadBarrier);
    786     // If `obj` is equal to `out` or `ref`, it means the initial object
    787     // has been overwritten by (or after) the heap object reference load
    788     // to be instrumented, e.g.:
    789     //
    790     //   __ LoadFromOffset(kLoadWord, out, out, offset);
    791     //   codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset);
    792     //
    793     // In that case, we have lost the information about the original
    794     // object, and the emitted read barrier cannot work properly.
    795     DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out;
    796     DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref;
    797   }
    798 
    799   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    800     CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
    801     LocationSummary* locations = instruction_->GetLocations();
    802     Register reg_out = out_.AsRegister<Register>();
    803     DCHECK(locations->CanCall());
    804     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out));
    805     DCHECK(instruction_->IsInstanceFieldGet() ||
    806            instruction_->IsStaticFieldGet() ||
    807            instruction_->IsArrayGet() ||
    808            instruction_->IsInstanceOf() ||
    809            instruction_->IsCheckCast() ||
    810            (instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified()))
    811         << "Unexpected instruction in read barrier for heap reference slow path: "
    812         << instruction_->DebugName();
    813 
    814     __ Bind(GetEntryLabel());
    815     SaveLiveRegisters(codegen, locations);
    816 
    817     // We may have to change the index's value, but as `index_` is a
    818     // constant member (like other "inputs" of this slow path),
    819     // introduce a copy of it, `index`.
    820     Location index = index_;
    821     if (index_.IsValid()) {
    822       // Handle `index_` for HArrayGet and UnsafeGetObject/UnsafeGetObjectVolatile intrinsics.
    823       if (instruction_->IsArrayGet()) {
    824         // Compute the actual memory offset and store it in `index`.
    825         Register index_reg = index_.AsRegister<Register>();
    826         DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_reg));
    827         if (codegen->IsCoreCalleeSaveRegister(index_reg)) {
    828           // We are about to change the value of `index_reg` (see the
    829           // calls to art::mips::MipsAssembler::Sll and
    830           // art::mips::MipsAssembler::Addiu32 below), but it has
    831           // not been saved by the previous call to
    832           // art::SlowPathCode::SaveLiveRegisters, as it is a
    833           // callee-save register --
    834           // art::SlowPathCode::SaveLiveRegisters does not consider
    835           // callee-save registers, as it has been designed with the
    836           // assumption that callee-save registers are supposed to be
    837           // handled by the called function.  So, as a callee-save
    838           // register, `index_reg` _would_ eventually be saved onto
    839           // the stack, but it would be too late: we would have
    840           // changed its value earlier.  Therefore, we manually save
    841           // it here into another freely available register,
    842           // `free_reg`, chosen of course among the caller-save
    843           // registers (as a callee-save `free_reg` register would
    844           // exhibit the same problem).
    845           //
    846           // Note we could have requested a temporary register from
    847           // the register allocator instead; but we prefer not to, as
    848           // this is a slow path, and we know we can find a
    849           // caller-save register that is available.
    850           Register free_reg = FindAvailableCallerSaveRegister(codegen);
    851           __ Move(free_reg, index_reg);
    852           index_reg = free_reg;
    853           index = Location::RegisterLocation(index_reg);
    854         } else {
    855           // The initial register stored in `index_` has already been
    856           // saved in the call to art::SlowPathCode::SaveLiveRegisters
    857           // (as it is not a callee-save register), so we can freely
    858           // use it.
    859         }
    860         // Shifting the index value contained in `index_reg` by the scale
    861         // factor (2) cannot overflow in practice, as the runtime is
    862         // unable to allocate object arrays with a size larger than
    863         // 2^26 - 1 (that is, 2^28 - 4 bytes).
    864         __ Sll(index_reg, index_reg, TIMES_4);
    865         static_assert(
    866             sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
    867             "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
    868         __ Addiu32(index_reg, index_reg, offset_);
    869       } else {
    870         // In the case of the UnsafeGetObject/UnsafeGetObjectVolatile
    871         // intrinsics, `index_` is not shifted by a scale factor of 2
    872         // (as in the case of ArrayGet), as it is actually an offset
    873         // to an object field within an object.
    874         DCHECK(instruction_->IsInvoke()) << instruction_->DebugName();
    875         DCHECK(instruction_->GetLocations()->Intrinsified());
    876         DCHECK((instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObject) ||
    877                (instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile))
    878             << instruction_->AsInvoke()->GetIntrinsic();
    879         DCHECK_EQ(offset_, 0U);
    880         DCHECK(index_.IsRegisterPair());
    881         // UnsafeGet's offset location is a register pair, the low
    882         // part contains the correct offset.
    883         index = index_.ToLow();
    884       }
    885     }
    886 
    887     // We're moving two or three locations to locations that could
    888     // overlap, so we need a parallel move resolver.
    889     InvokeRuntimeCallingConvention calling_convention;
    890     HParallelMove parallel_move(codegen->GetGraph()->GetArena());
    891     parallel_move.AddMove(ref_,
    892                           Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
    893                           Primitive::kPrimNot,
    894                           nullptr);
    895     parallel_move.AddMove(obj_,
    896                           Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
    897                           Primitive::kPrimNot,
    898                           nullptr);
    899     if (index.IsValid()) {
    900       parallel_move.AddMove(index,
    901                             Location::RegisterLocation(calling_convention.GetRegisterAt(2)),
    902                             Primitive::kPrimInt,
    903                             nullptr);
    904       codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
    905     } else {
    906       codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
    907       __ LoadConst32(calling_convention.GetRegisterAt(2), offset_);
    908     }
    909     mips_codegen->InvokeRuntime(kQuickReadBarrierSlow,
    910                                 instruction_,
    911                                 instruction_->GetDexPc(),
    912                                 this);
    913     CheckEntrypointTypes<
    914         kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>();
    915     mips_codegen->Move32(out_, calling_convention.GetReturnLocation(Primitive::kPrimNot));
    916 
    917     RestoreLiveRegisters(codegen, locations);
    918     __ B(GetExitLabel());
    919   }
    920 
    921   const char* GetDescription() const OVERRIDE { return "ReadBarrierForHeapReferenceSlowPathMIPS"; }
    922 
    923  private:
    924   Register FindAvailableCallerSaveRegister(CodeGenerator* codegen) {
    925     size_t ref = static_cast<int>(ref_.AsRegister<Register>());
    926     size_t obj = static_cast<int>(obj_.AsRegister<Register>());
    927     for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) {
    928       if (i != ref &&
    929           i != obj &&
    930           !codegen->IsCoreCalleeSaveRegister(i) &&
    931           !codegen->IsBlockedCoreRegister(i)) {
    932         return static_cast<Register>(i);
    933       }
    934     }
    935     // We shall never fail to find a free caller-save register, as
    936     // there are more than two core caller-save registers on MIPS
    937     // (meaning it is possible to find one which is different from
    938     // `ref` and `obj`).
    939     DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u);
    940     LOG(FATAL) << "Could not find a free caller-save register";
    941     UNREACHABLE();
    942   }
    943 
    944   const Location out_;
    945   const Location ref_;
    946   const Location obj_;
    947   const uint32_t offset_;
    948   // An additional location containing an index to an array.
    949   // Only used for HArrayGet and the UnsafeGetObject &
    950   // UnsafeGetObjectVolatile intrinsics.
    951   const Location index_;
    952 
    953   DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathMIPS);
    954 };
    955 
    956 // Slow path generating a read barrier for a GC root.
    957 class ReadBarrierForRootSlowPathMIPS : public SlowPathCodeMIPS {
    958  public:
    959   ReadBarrierForRootSlowPathMIPS(HInstruction* instruction, Location out, Location root)
    960       : SlowPathCodeMIPS(instruction), out_(out), root_(root) {
    961     DCHECK(kEmitCompilerReadBarrier);
    962   }
    963 
    964   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    965     LocationSummary* locations = instruction_->GetLocations();
    966     Register reg_out = out_.AsRegister<Register>();
    967     DCHECK(locations->CanCall());
    968     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out));
    969     DCHECK(instruction_->IsLoadClass() || instruction_->IsLoadString())
    970         << "Unexpected instruction in read barrier for GC root slow path: "
    971         << instruction_->DebugName();
    972 
    973     __ Bind(GetEntryLabel());
    974     SaveLiveRegisters(codegen, locations);
    975 
    976     InvokeRuntimeCallingConvention calling_convention;
    977     CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
    978     mips_codegen->Move32(Location::RegisterLocation(calling_convention.GetRegisterAt(0)), root_);
    979     mips_codegen->InvokeRuntime(kQuickReadBarrierForRootSlow,
    980                                 instruction_,
    981                                 instruction_->GetDexPc(),
    982                                 this);
    983     CheckEntrypointTypes<kQuickReadBarrierForRootSlow, mirror::Object*, GcRoot<mirror::Object>*>();
    984     mips_codegen->Move32(out_, calling_convention.GetReturnLocation(Primitive::kPrimNot));
    985 
    986     RestoreLiveRegisters(codegen, locations);
    987     __ B(GetExitLabel());
    988   }
    989 
    990   const char* GetDescription() const OVERRIDE { return "ReadBarrierForRootSlowPathMIPS"; }
    991 
    992  private:
    993   const Location out_;
    994   const Location root_;
    995 
    996   DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathMIPS);
    997 };
    998 
    999 CodeGeneratorMIPS::CodeGeneratorMIPS(HGraph* graph,
   1000                                      const MipsInstructionSetFeatures& isa_features,
   1001                                      const CompilerOptions& compiler_options,
   1002                                      OptimizingCompilerStats* stats)
   1003     : CodeGenerator(graph,
   1004                     kNumberOfCoreRegisters,
   1005                     kNumberOfFRegisters,
   1006                     kNumberOfRegisterPairs,
   1007                     ComputeRegisterMask(reinterpret_cast<const int*>(kCoreCalleeSaves),
   1008                                         arraysize(kCoreCalleeSaves)),
   1009                     ComputeRegisterMask(reinterpret_cast<const int*>(kFpuCalleeSaves),
   1010                                         arraysize(kFpuCalleeSaves)),
   1011                     compiler_options,
   1012                     stats),
   1013       block_labels_(nullptr),
   1014       location_builder_(graph, this),
   1015       instruction_visitor_(graph, this),
   1016       move_resolver_(graph->GetArena(), this),
   1017       assembler_(graph->GetArena(), &isa_features),
   1018       isa_features_(isa_features),
   1019       uint32_literals_(std::less<uint32_t>(),
   1020                        graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
   1021       pc_relative_dex_cache_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
   1022       boot_image_string_patches_(StringReferenceValueComparator(),
   1023                                  graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
   1024       pc_relative_string_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
   1025       boot_image_type_patches_(TypeReferenceValueComparator(),
   1026                                graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
   1027       pc_relative_type_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
   1028       type_bss_entry_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
   1029       jit_string_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
   1030       jit_class_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
   1031       clobbered_ra_(false) {
   1032   // Save RA (containing the return address) to mimic Quick.
   1033   AddAllocatedRegister(Location::RegisterLocation(RA));
   1034 }
   1035 
   1036 #undef __
   1037 // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy.
   1038 #define __ down_cast<MipsAssembler*>(GetAssembler())->  // NOLINT
   1039 #define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kMipsPointerSize, x).Int32Value()
   1040 
   1041 void CodeGeneratorMIPS::Finalize(CodeAllocator* allocator) {
   1042   // Ensure that we fix up branches.
   1043   __ FinalizeCode();
   1044 
   1045   // Adjust native pc offsets in stack maps.
   1046   for (size_t i = 0, num = stack_map_stream_.GetNumberOfStackMaps(); i != num; ++i) {
   1047     uint32_t old_position =
   1048         stack_map_stream_.GetStackMap(i).native_pc_code_offset.Uint32Value(kMips);
   1049     uint32_t new_position = __ GetAdjustedPosition(old_position);
   1050     DCHECK_GE(new_position, old_position);
   1051     stack_map_stream_.SetStackMapNativePcOffset(i, new_position);
   1052   }
   1053 
   1054   // Adjust pc offsets for the disassembly information.
   1055   if (disasm_info_ != nullptr) {
   1056     GeneratedCodeInterval* frame_entry_interval = disasm_info_->GetFrameEntryInterval();
   1057     frame_entry_interval->start = __ GetAdjustedPosition(frame_entry_interval->start);
   1058     frame_entry_interval->end = __ GetAdjustedPosition(frame_entry_interval->end);
   1059     for (auto& it : *disasm_info_->GetInstructionIntervals()) {
   1060       it.second.start = __ GetAdjustedPosition(it.second.start);
   1061       it.second.end = __ GetAdjustedPosition(it.second.end);
   1062     }
   1063     for (auto& it : *disasm_info_->GetSlowPathIntervals()) {
   1064       it.code_interval.start = __ GetAdjustedPosition(it.code_interval.start);
   1065       it.code_interval.end = __ GetAdjustedPosition(it.code_interval.end);
   1066     }
   1067   }
   1068 
   1069   CodeGenerator::Finalize(allocator);
   1070 }
   1071 
   1072 MipsAssembler* ParallelMoveResolverMIPS::GetAssembler() const {
   1073   return codegen_->GetAssembler();
   1074 }
   1075 
   1076 void ParallelMoveResolverMIPS::EmitMove(size_t index) {
   1077   DCHECK_LT(index, moves_.size());
   1078   MoveOperands* move = moves_[index];
   1079   codegen_->MoveLocation(move->GetDestination(), move->GetSource(), move->GetType());
   1080 }
   1081 
   1082 void ParallelMoveResolverMIPS::EmitSwap(size_t index) {
   1083   DCHECK_LT(index, moves_.size());
   1084   MoveOperands* move = moves_[index];
   1085   Primitive::Type type = move->GetType();
   1086   Location loc1 = move->GetDestination();
   1087   Location loc2 = move->GetSource();
   1088 
   1089   DCHECK(!loc1.IsConstant());
   1090   DCHECK(!loc2.IsConstant());
   1091 
   1092   if (loc1.Equals(loc2)) {
   1093     return;
   1094   }
   1095 
   1096   if (loc1.IsRegister() && loc2.IsRegister()) {
   1097     // Swap 2 GPRs.
   1098     Register r1 = loc1.AsRegister<Register>();
   1099     Register r2 = loc2.AsRegister<Register>();
   1100     __ Move(TMP, r2);
   1101     __ Move(r2, r1);
   1102     __ Move(r1, TMP);
   1103   } else if (loc1.IsFpuRegister() && loc2.IsFpuRegister()) {
   1104     FRegister f1 = loc1.AsFpuRegister<FRegister>();
   1105     FRegister f2 = loc2.AsFpuRegister<FRegister>();
   1106     if (type == Primitive::kPrimFloat) {
   1107       __ MovS(FTMP, f2);
   1108       __ MovS(f2, f1);
   1109       __ MovS(f1, FTMP);
   1110     } else {
   1111       DCHECK_EQ(type, Primitive::kPrimDouble);
   1112       __ MovD(FTMP, f2);
   1113       __ MovD(f2, f1);
   1114       __ MovD(f1, FTMP);
   1115     }
   1116   } else if ((loc1.IsRegister() && loc2.IsFpuRegister()) ||
   1117              (loc1.IsFpuRegister() && loc2.IsRegister())) {
   1118     // Swap FPR and GPR.
   1119     DCHECK_EQ(type, Primitive::kPrimFloat);  // Can only swap a float.
   1120     FRegister f1 = loc1.IsFpuRegister() ? loc1.AsFpuRegister<FRegister>()
   1121                                         : loc2.AsFpuRegister<FRegister>();
   1122     Register r2 = loc1.IsRegister() ? loc1.AsRegister<Register>() : loc2.AsRegister<Register>();
   1123     __ Move(TMP, r2);
   1124     __ Mfc1(r2, f1);
   1125     __ Mtc1(TMP, f1);
   1126   } else if (loc1.IsRegisterPair() && loc2.IsRegisterPair()) {
   1127     // Swap 2 GPR register pairs.
   1128     Register r1 = loc1.AsRegisterPairLow<Register>();
   1129     Register r2 = loc2.AsRegisterPairLow<Register>();
   1130     __ Move(TMP, r2);
   1131     __ Move(r2, r1);
   1132     __ Move(r1, TMP);
   1133     r1 = loc1.AsRegisterPairHigh<Register>();
   1134     r2 = loc2.AsRegisterPairHigh<Register>();
   1135     __ Move(TMP, r2);
   1136     __ Move(r2, r1);
   1137     __ Move(r1, TMP);
   1138   } else if ((loc1.IsRegisterPair() && loc2.IsFpuRegister()) ||
   1139              (loc1.IsFpuRegister() && loc2.IsRegisterPair())) {
   1140     // Swap FPR and GPR register pair.
   1141     DCHECK_EQ(type, Primitive::kPrimDouble);
   1142     FRegister f1 = loc1.IsFpuRegister() ? loc1.AsFpuRegister<FRegister>()
   1143                                         : loc2.AsFpuRegister<FRegister>();
   1144     Register r2_l = loc1.IsRegisterPair() ? loc1.AsRegisterPairLow<Register>()
   1145                                           : loc2.AsRegisterPairLow<Register>();
   1146     Register r2_h = loc1.IsRegisterPair() ? loc1.AsRegisterPairHigh<Register>()
   1147                                           : loc2.AsRegisterPairHigh<Register>();
   1148     // Use 2 temporary registers because we can't first swap the low 32 bits of an FPR and
   1149     // then swap the high 32 bits of the same FPR. mtc1 makes the high 32 bits of an FPR
   1150     // unpredictable and the following mfch1 will fail.
   1151     __ Mfc1(TMP, f1);
   1152     __ MoveFromFpuHigh(AT, f1);
   1153     __ Mtc1(r2_l, f1);
   1154     __ MoveToFpuHigh(r2_h, f1);
   1155     __ Move(r2_l, TMP);
   1156     __ Move(r2_h, AT);
   1157   } else if (loc1.IsStackSlot() && loc2.IsStackSlot()) {
   1158     Exchange(loc1.GetStackIndex(), loc2.GetStackIndex(), /* double_slot */ false);
   1159   } else if (loc1.IsDoubleStackSlot() && loc2.IsDoubleStackSlot()) {
   1160     Exchange(loc1.GetStackIndex(), loc2.GetStackIndex(), /* double_slot */ true);
   1161   } else if ((loc1.IsRegister() && loc2.IsStackSlot()) ||
   1162              (loc1.IsStackSlot() && loc2.IsRegister())) {
   1163     Register reg = loc1.IsRegister() ? loc1.AsRegister<Register>() : loc2.AsRegister<Register>();
   1164     intptr_t offset = loc1.IsStackSlot() ? loc1.GetStackIndex() : loc2.GetStackIndex();
   1165     __ Move(TMP, reg);
   1166     __ LoadFromOffset(kLoadWord, reg, SP, offset);
   1167     __ StoreToOffset(kStoreWord, TMP, SP, offset);
   1168   } else if ((loc1.IsRegisterPair() && loc2.IsDoubleStackSlot()) ||
   1169              (loc1.IsDoubleStackSlot() && loc2.IsRegisterPair())) {
   1170     Register reg_l = loc1.IsRegisterPair() ? loc1.AsRegisterPairLow<Register>()
   1171                                            : loc2.AsRegisterPairLow<Register>();
   1172     Register reg_h = loc1.IsRegisterPair() ? loc1.AsRegisterPairHigh<Register>()
   1173                                            : loc2.AsRegisterPairHigh<Register>();
   1174     intptr_t offset_l = loc1.IsDoubleStackSlot() ? loc1.GetStackIndex() : loc2.GetStackIndex();
   1175     intptr_t offset_h = loc1.IsDoubleStackSlot() ? loc1.GetHighStackIndex(kMipsWordSize)
   1176                                                  : loc2.GetHighStackIndex(kMipsWordSize);
   1177     __ Move(TMP, reg_l);
   1178     __ LoadFromOffset(kLoadWord, reg_l, SP, offset_l);
   1179     __ StoreToOffset(kStoreWord, TMP, SP, offset_l);
   1180     __ Move(TMP, reg_h);
   1181     __ LoadFromOffset(kLoadWord, reg_h, SP, offset_h);
   1182     __ StoreToOffset(kStoreWord, TMP, SP, offset_h);
   1183   } else if (loc1.IsFpuRegister() || loc2.IsFpuRegister()) {
   1184     FRegister reg = loc1.IsFpuRegister() ? loc1.AsFpuRegister<FRegister>()
   1185                                          : loc2.AsFpuRegister<FRegister>();
   1186     intptr_t offset = loc1.IsFpuRegister() ? loc2.GetStackIndex() : loc1.GetStackIndex();
   1187     if (type == Primitive::kPrimFloat) {
   1188       __ MovS(FTMP, reg);
   1189       __ LoadSFromOffset(reg, SP, offset);
   1190       __ StoreSToOffset(FTMP, SP, offset);
   1191     } else {
   1192       DCHECK_EQ(type, Primitive::kPrimDouble);
   1193       __ MovD(FTMP, reg);
   1194       __ LoadDFromOffset(reg, SP, offset);
   1195       __ StoreDToOffset(FTMP, SP, offset);
   1196     }
   1197   } else {
   1198     LOG(FATAL) << "Swap between " << loc1 << " and " << loc2 << " is unsupported";
   1199   }
   1200 }
   1201 
   1202 void ParallelMoveResolverMIPS::RestoreScratch(int reg) {
   1203   __ Pop(static_cast<Register>(reg));
   1204 }
   1205 
   1206 void ParallelMoveResolverMIPS::SpillScratch(int reg) {
   1207   __ Push(static_cast<Register>(reg));
   1208 }
   1209 
   1210 void ParallelMoveResolverMIPS::Exchange(int index1, int index2, bool double_slot) {
   1211   // Allocate a scratch register other than TMP, if available.
   1212   // Else, spill V0 (arbitrary choice) and use it as a scratch register (it will be
   1213   // automatically unspilled when the scratch scope object is destroyed).
   1214   ScratchRegisterScope ensure_scratch(this, TMP, V0, codegen_->GetNumberOfCoreRegisters());
   1215   // If V0 spills onto the stack, SP-relative offsets need to be adjusted.
   1216   int stack_offset = ensure_scratch.IsSpilled() ? kMipsWordSize : 0;
   1217   for (int i = 0; i <= (double_slot ? 1 : 0); i++, stack_offset += kMipsWordSize) {
   1218     __ LoadFromOffset(kLoadWord,
   1219                       Register(ensure_scratch.GetRegister()),
   1220                       SP,
   1221                       index1 + stack_offset);
   1222     __ LoadFromOffset(kLoadWord,
   1223                       TMP,
   1224                       SP,
   1225                       index2 + stack_offset);
   1226     __ StoreToOffset(kStoreWord,
   1227                      Register(ensure_scratch.GetRegister()),
   1228                      SP,
   1229                      index2 + stack_offset);
   1230     __ StoreToOffset(kStoreWord, TMP, SP, index1 + stack_offset);
   1231   }
   1232 }
   1233 
   1234 void CodeGeneratorMIPS::ComputeSpillMask() {
   1235   core_spill_mask_ = allocated_registers_.GetCoreRegisters() & core_callee_save_mask_;
   1236   fpu_spill_mask_ = allocated_registers_.GetFloatingPointRegisters() & fpu_callee_save_mask_;
   1237   DCHECK_NE(core_spill_mask_, 0u) << "At least the return address register must be saved";
   1238   // If there're FPU callee-saved registers and there's an odd number of GPR callee-saved
   1239   // registers, include the ZERO register to force alignment of FPU callee-saved registers
   1240   // within the stack frame.
   1241   if ((fpu_spill_mask_ != 0) && (POPCOUNT(core_spill_mask_) % 2 != 0)) {
   1242     core_spill_mask_ |= (1 << ZERO);
   1243   }
   1244 }
   1245 
   1246 bool CodeGeneratorMIPS::HasAllocatedCalleeSaveRegisters() const {
   1247   // If RA is clobbered by PC-relative operations on R2 and it's the only spilled register
   1248   // (this can happen in leaf methods), force CodeGenerator::InitializeCodeGeneration()
   1249   // into the path that creates a stack frame so that RA can be explicitly saved and restored.
   1250   // RA can't otherwise be saved/restored when it's the only spilled register.
   1251   return CodeGenerator::HasAllocatedCalleeSaveRegisters() || clobbered_ra_;
   1252 }
   1253 
   1254 static dwarf::Reg DWARFReg(Register reg) {
   1255   return dwarf::Reg::MipsCore(static_cast<int>(reg));
   1256 }
   1257 
   1258 // TODO: mapping of floating-point registers to DWARF.
   1259 
   1260 void CodeGeneratorMIPS::GenerateFrameEntry() {
   1261   __ Bind(&frame_entry_label_);
   1262 
   1263   bool do_overflow_check = FrameNeedsStackCheck(GetFrameSize(), kMips) || !IsLeafMethod();
   1264 
   1265   if (do_overflow_check) {
   1266     __ LoadFromOffset(kLoadWord,
   1267                       ZERO,
   1268                       SP,
   1269                       -static_cast<int32_t>(GetStackOverflowReservedBytes(kMips)));
   1270     RecordPcInfo(nullptr, 0);
   1271   }
   1272 
   1273   if (HasEmptyFrame()) {
   1274     CHECK_EQ(fpu_spill_mask_, 0u);
   1275     CHECK_EQ(core_spill_mask_, 1u << RA);
   1276     CHECK(!clobbered_ra_);
   1277     return;
   1278   }
   1279 
   1280   // Make sure the frame size isn't unreasonably large.
   1281   if (GetFrameSize() > GetStackOverflowReservedBytes(kMips)) {
   1282     LOG(FATAL) << "Stack frame larger than " << GetStackOverflowReservedBytes(kMips) << " bytes";
   1283   }
   1284 
   1285   // Spill callee-saved registers.
   1286 
   1287   uint32_t ofs = GetFrameSize();
   1288   __ IncreaseFrameSize(ofs);
   1289 
   1290   for (uint32_t mask = core_spill_mask_; mask != 0; ) {
   1291     Register reg = static_cast<Register>(MostSignificantBit(mask));
   1292     mask ^= 1u << reg;
   1293     ofs -= kMipsWordSize;
   1294     // The ZERO register is only included for alignment.
   1295     if (reg != ZERO) {
   1296       __ StoreToOffset(kStoreWord, reg, SP, ofs);
   1297       __ cfi().RelOffset(DWARFReg(reg), ofs);
   1298     }
   1299   }
   1300 
   1301   for (uint32_t mask = fpu_spill_mask_; mask != 0; ) {
   1302     FRegister reg = static_cast<FRegister>(MostSignificantBit(mask));
   1303     mask ^= 1u << reg;
   1304     ofs -= kMipsDoublewordSize;
   1305     __ StoreDToOffset(reg, SP, ofs);
   1306     // TODO: __ cfi().RelOffset(DWARFReg(reg), ofs);
   1307   }
   1308 
   1309   // Save the current method if we need it. Note that we do not
   1310   // do this in HCurrentMethod, as the instruction might have been removed
   1311   // in the SSA graph.
   1312   if (RequiresCurrentMethod()) {
   1313     __ StoreToOffset(kStoreWord, kMethodRegisterArgument, SP, kCurrentMethodStackOffset);
   1314   }
   1315 
   1316   if (GetGraph()->HasShouldDeoptimizeFlag()) {
   1317     // Initialize should deoptimize flag to 0.
   1318     __ StoreToOffset(kStoreWord, ZERO, SP, GetStackOffsetOfShouldDeoptimizeFlag());
   1319   }
   1320 }
   1321 
   1322 void CodeGeneratorMIPS::GenerateFrameExit() {
   1323   __ cfi().RememberState();
   1324 
   1325   if (!HasEmptyFrame()) {
   1326     // Restore callee-saved registers.
   1327 
   1328     // For better instruction scheduling restore RA before other registers.
   1329     uint32_t ofs = GetFrameSize();
   1330     for (uint32_t mask = core_spill_mask_; mask != 0; ) {
   1331       Register reg = static_cast<Register>(MostSignificantBit(mask));
   1332       mask ^= 1u << reg;
   1333       ofs -= kMipsWordSize;
   1334       // The ZERO register is only included for alignment.
   1335       if (reg != ZERO) {
   1336         __ LoadFromOffset(kLoadWord, reg, SP, ofs);
   1337         __ cfi().Restore(DWARFReg(reg));
   1338       }
   1339     }
   1340 
   1341     for (uint32_t mask = fpu_spill_mask_; mask != 0; ) {
   1342       FRegister reg = static_cast<FRegister>(MostSignificantBit(mask));
   1343       mask ^= 1u << reg;
   1344       ofs -= kMipsDoublewordSize;
   1345       __ LoadDFromOffset(reg, SP, ofs);
   1346       // TODO: __ cfi().Restore(DWARFReg(reg));
   1347     }
   1348 
   1349     size_t frame_size = GetFrameSize();
   1350     // Adjust the stack pointer in the delay slot if doing so doesn't break CFI.
   1351     bool exchange = IsInt<16>(static_cast<int32_t>(frame_size));
   1352     bool reordering = __ SetReorder(false);
   1353     if (exchange) {
   1354       __ Jr(RA);
   1355       __ DecreaseFrameSize(frame_size);  // Single instruction in delay slot.
   1356     } else {
   1357       __ DecreaseFrameSize(frame_size);
   1358       __ Jr(RA);
   1359       __ Nop();  // In delay slot.
   1360     }
   1361     __ SetReorder(reordering);
   1362   } else {
   1363     __ Jr(RA);
   1364     __ NopIfNoReordering();
   1365   }
   1366 
   1367   __ cfi().RestoreState();
   1368   __ cfi().DefCFAOffset(GetFrameSize());
   1369 }
   1370 
   1371 void CodeGeneratorMIPS::Bind(HBasicBlock* block) {
   1372   __ Bind(GetLabelOf(block));
   1373 }
   1374 
   1375 void CodeGeneratorMIPS::MoveLocation(Location dst, Location src, Primitive::Type dst_type) {
   1376   if (src.Equals(dst)) {
   1377     return;
   1378   }
   1379 
   1380   if (src.IsConstant()) {
   1381     MoveConstant(dst, src.GetConstant());
   1382   } else {
   1383     if (Primitive::Is64BitType(dst_type)) {
   1384       Move64(dst, src);
   1385     } else {
   1386       Move32(dst, src);
   1387     }
   1388   }
   1389 }
   1390 
   1391 void CodeGeneratorMIPS::Move32(Location destination, Location source) {
   1392   if (source.Equals(destination)) {
   1393     return;
   1394   }
   1395 
   1396   if (destination.IsRegister()) {
   1397     if (source.IsRegister()) {
   1398       __ Move(destination.AsRegister<Register>(), source.AsRegister<Register>());
   1399     } else if (source.IsFpuRegister()) {
   1400       __ Mfc1(destination.AsRegister<Register>(), source.AsFpuRegister<FRegister>());
   1401     } else {
   1402       DCHECK(source.IsStackSlot()) << "Cannot move from " << source << " to " << destination;
   1403       __ LoadFromOffset(kLoadWord, destination.AsRegister<Register>(), SP, source.GetStackIndex());
   1404     }
   1405   } else if (destination.IsFpuRegister()) {
   1406     if (source.IsRegister()) {
   1407       __ Mtc1(source.AsRegister<Register>(), destination.AsFpuRegister<FRegister>());
   1408     } else if (source.IsFpuRegister()) {
   1409       __ MovS(destination.AsFpuRegister<FRegister>(), source.AsFpuRegister<FRegister>());
   1410     } else {
   1411       DCHECK(source.IsStackSlot()) << "Cannot move from " << source << " to " << destination;
   1412       __ LoadSFromOffset(destination.AsFpuRegister<FRegister>(), SP, source.GetStackIndex());
   1413     }
   1414   } else {
   1415     DCHECK(destination.IsStackSlot()) << destination;
   1416     if (source.IsRegister()) {
   1417       __ StoreToOffset(kStoreWord, source.AsRegister<Register>(), SP, destination.GetStackIndex());
   1418     } else if (source.IsFpuRegister()) {
   1419       __ StoreSToOffset(source.AsFpuRegister<FRegister>(), SP, destination.GetStackIndex());
   1420     } else {
   1421       DCHECK(source.IsStackSlot()) << "Cannot move from " << source << " to " << destination;
   1422       __ LoadFromOffset(kLoadWord, TMP, SP, source.GetStackIndex());
   1423       __ StoreToOffset(kStoreWord, TMP, SP, destination.GetStackIndex());
   1424     }
   1425   }
   1426 }
   1427 
   1428 void CodeGeneratorMIPS::Move64(Location destination, Location source) {
   1429   if (source.Equals(destination)) {
   1430     return;
   1431   }
   1432 
   1433   if (destination.IsRegisterPair()) {
   1434     if (source.IsRegisterPair()) {
   1435       __ Move(destination.AsRegisterPairHigh<Register>(), source.AsRegisterPairHigh<Register>());
   1436       __ Move(destination.AsRegisterPairLow<Register>(), source.AsRegisterPairLow<Register>());
   1437     } else if (source.IsFpuRegister()) {
   1438       Register dst_high = destination.AsRegisterPairHigh<Register>();
   1439       Register dst_low =  destination.AsRegisterPairLow<Register>();
   1440       FRegister src = source.AsFpuRegister<FRegister>();
   1441       __ Mfc1(dst_low, src);
   1442       __ MoveFromFpuHigh(dst_high, src);
   1443     } else {
   1444       DCHECK(source.IsDoubleStackSlot()) << "Cannot move from " << source << " to " << destination;
   1445       int32_t off = source.GetStackIndex();
   1446       Register r = destination.AsRegisterPairLow<Register>();
   1447       __ LoadFromOffset(kLoadDoubleword, r, SP, off);
   1448     }
   1449   } else if (destination.IsFpuRegister()) {
   1450     if (source.IsRegisterPair()) {
   1451       FRegister dst = destination.AsFpuRegister<FRegister>();
   1452       Register src_high = source.AsRegisterPairHigh<Register>();
   1453       Register src_low = source.AsRegisterPairLow<Register>();
   1454       __ Mtc1(src_low, dst);
   1455       __ MoveToFpuHigh(src_high, dst);
   1456     } else if (source.IsFpuRegister()) {
   1457       __ MovD(destination.AsFpuRegister<FRegister>(), source.AsFpuRegister<FRegister>());
   1458     } else {
   1459       DCHECK(source.IsDoubleStackSlot()) << "Cannot move from " << source << " to " << destination;
   1460       __ LoadDFromOffset(destination.AsFpuRegister<FRegister>(), SP, source.GetStackIndex());
   1461     }
   1462   } else {
   1463     DCHECK(destination.IsDoubleStackSlot()) << destination;
   1464     int32_t off = destination.GetStackIndex();
   1465     if (source.IsRegisterPair()) {
   1466       __ StoreToOffset(kStoreDoubleword, source.AsRegisterPairLow<Register>(), SP, off);
   1467     } else if (source.IsFpuRegister()) {
   1468       __ StoreDToOffset(source.AsFpuRegister<FRegister>(), SP, off);
   1469     } else {
   1470       DCHECK(source.IsDoubleStackSlot()) << "Cannot move from " << source << " to " << destination;
   1471       __ LoadFromOffset(kLoadWord, TMP, SP, source.GetStackIndex());
   1472       __ StoreToOffset(kStoreWord, TMP, SP, off);
   1473       __ LoadFromOffset(kLoadWord, TMP, SP, source.GetStackIndex() + 4);
   1474       __ StoreToOffset(kStoreWord, TMP, SP, off + 4);
   1475     }
   1476   }
   1477 }
   1478 
   1479 void CodeGeneratorMIPS::MoveConstant(Location destination, HConstant* c) {
   1480   if (c->IsIntConstant() || c->IsNullConstant()) {
   1481     // Move 32 bit constant.
   1482     int32_t value = GetInt32ValueOf(c);
   1483     if (destination.IsRegister()) {
   1484       Register dst = destination.AsRegister<Register>();
   1485       __ LoadConst32(dst, value);
   1486     } else {
   1487       DCHECK(destination.IsStackSlot())
   1488           << "Cannot move " << c->DebugName() << " to " << destination;
   1489       __ StoreConstToOffset(kStoreWord, value, SP, destination.GetStackIndex(), TMP);
   1490     }
   1491   } else if (c->IsLongConstant()) {
   1492     // Move 64 bit constant.
   1493     int64_t value = GetInt64ValueOf(c);
   1494     if (destination.IsRegisterPair()) {
   1495       Register r_h = destination.AsRegisterPairHigh<Register>();
   1496       Register r_l = destination.AsRegisterPairLow<Register>();
   1497       __ LoadConst64(r_h, r_l, value);
   1498     } else {
   1499       DCHECK(destination.IsDoubleStackSlot())
   1500           << "Cannot move " << c->DebugName() << " to " << destination;
   1501       __ StoreConstToOffset(kStoreDoubleword, value, SP, destination.GetStackIndex(), TMP);
   1502     }
   1503   } else if (c->IsFloatConstant()) {
   1504     // Move 32 bit float constant.
   1505     int32_t value = GetInt32ValueOf(c);
   1506     if (destination.IsFpuRegister()) {
   1507       __ LoadSConst32(destination.AsFpuRegister<FRegister>(), value, TMP);
   1508     } else {
   1509       DCHECK(destination.IsStackSlot())
   1510           << "Cannot move " << c->DebugName() << " to " << destination;
   1511       __ StoreConstToOffset(kStoreWord, value, SP, destination.GetStackIndex(), TMP);
   1512     }
   1513   } else {
   1514     // Move 64 bit double constant.
   1515     DCHECK(c->IsDoubleConstant()) << c->DebugName();
   1516     int64_t value = GetInt64ValueOf(c);
   1517     if (destination.IsFpuRegister()) {
   1518       FRegister fd = destination.AsFpuRegister<FRegister>();
   1519       __ LoadDConst64(fd, value, TMP);
   1520     } else {
   1521       DCHECK(destination.IsDoubleStackSlot())
   1522           << "Cannot move " << c->DebugName() << " to " << destination;
   1523       __ StoreConstToOffset(kStoreDoubleword, value, SP, destination.GetStackIndex(), TMP);
   1524     }
   1525   }
   1526 }
   1527 
   1528 void CodeGeneratorMIPS::MoveConstant(Location destination, int32_t value) {
   1529   DCHECK(destination.IsRegister());
   1530   Register dst = destination.AsRegister<Register>();
   1531   __ LoadConst32(dst, value);
   1532 }
   1533 
   1534 void CodeGeneratorMIPS::AddLocationAsTemp(Location location, LocationSummary* locations) {
   1535   if (location.IsRegister()) {
   1536     locations->AddTemp(location);
   1537   } else if (location.IsRegisterPair()) {
   1538     locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairLow<Register>()));
   1539     locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairHigh<Register>()));
   1540   } else {
   1541     UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location;
   1542   }
   1543 }
   1544 
   1545 template <LinkerPatch (*Factory)(size_t, const DexFile*, uint32_t, uint32_t)>
   1546 inline void CodeGeneratorMIPS::EmitPcRelativeLinkerPatches(
   1547     const ArenaDeque<PcRelativePatchInfo>& infos,
   1548     ArenaVector<LinkerPatch>* linker_patches) {
   1549   for (const PcRelativePatchInfo& info : infos) {
   1550     const DexFile& dex_file = info.target_dex_file;
   1551     size_t offset_or_index = info.offset_or_index;
   1552     DCHECK(info.high_label.IsBound());
   1553     uint32_t high_offset = __ GetLabelLocation(&info.high_label);
   1554     // On R2 we use HMipsComputeBaseMethodAddress and patch relative to
   1555     // the assembler's base label used for PC-relative addressing.
   1556     uint32_t pc_rel_offset = info.pc_rel_label.IsBound()
   1557         ? __ GetLabelLocation(&info.pc_rel_label)
   1558         : __ GetPcRelBaseLabelLocation();
   1559     linker_patches->push_back(Factory(high_offset, &dex_file, pc_rel_offset, offset_or_index));
   1560   }
   1561 }
   1562 
   1563 void CodeGeneratorMIPS::EmitLinkerPatches(ArenaVector<LinkerPatch>* linker_patches) {
   1564   DCHECK(linker_patches->empty());
   1565   size_t size =
   1566       pc_relative_dex_cache_patches_.size() +
   1567       pc_relative_string_patches_.size() +
   1568       pc_relative_type_patches_.size() +
   1569       type_bss_entry_patches_.size() +
   1570       boot_image_string_patches_.size() +
   1571       boot_image_type_patches_.size();
   1572   linker_patches->reserve(size);
   1573   EmitPcRelativeLinkerPatches<LinkerPatch::DexCacheArrayPatch>(pc_relative_dex_cache_patches_,
   1574                                                                linker_patches);
   1575   if (!GetCompilerOptions().IsBootImage()) {
   1576     DCHECK(pc_relative_type_patches_.empty());
   1577     EmitPcRelativeLinkerPatches<LinkerPatch::StringBssEntryPatch>(pc_relative_string_patches_,
   1578                                                                   linker_patches);
   1579   } else {
   1580     EmitPcRelativeLinkerPatches<LinkerPatch::RelativeTypePatch>(pc_relative_type_patches_,
   1581                                                                 linker_patches);
   1582     EmitPcRelativeLinkerPatches<LinkerPatch::RelativeStringPatch>(pc_relative_string_patches_,
   1583                                                                   linker_patches);
   1584   }
   1585   EmitPcRelativeLinkerPatches<LinkerPatch::TypeBssEntryPatch>(type_bss_entry_patches_,
   1586                                                               linker_patches);
   1587   for (const auto& entry : boot_image_string_patches_) {
   1588     const StringReference& target_string = entry.first;
   1589     Literal* literal = entry.second;
   1590     DCHECK(literal->GetLabel()->IsBound());
   1591     uint32_t literal_offset = __ GetLabelLocation(literal->GetLabel());
   1592     linker_patches->push_back(LinkerPatch::StringPatch(literal_offset,
   1593                                                        target_string.dex_file,
   1594                                                        target_string.string_index.index_));
   1595   }
   1596   for (const auto& entry : boot_image_type_patches_) {
   1597     const TypeReference& target_type = entry.first;
   1598     Literal* literal = entry.second;
   1599     DCHECK(literal->GetLabel()->IsBound());
   1600     uint32_t literal_offset = __ GetLabelLocation(literal->GetLabel());
   1601     linker_patches->push_back(LinkerPatch::TypePatch(literal_offset,
   1602                                                      target_type.dex_file,
   1603                                                      target_type.type_index.index_));
   1604   }
   1605   DCHECK_EQ(size, linker_patches->size());
   1606 }
   1607 
   1608 CodeGeneratorMIPS::PcRelativePatchInfo* CodeGeneratorMIPS::NewPcRelativeStringPatch(
   1609     const DexFile& dex_file, dex::StringIndex string_index) {
   1610   return NewPcRelativePatch(dex_file, string_index.index_, &pc_relative_string_patches_);
   1611 }
   1612 
   1613 CodeGeneratorMIPS::PcRelativePatchInfo* CodeGeneratorMIPS::NewPcRelativeTypePatch(
   1614     const DexFile& dex_file, dex::TypeIndex type_index) {
   1615   return NewPcRelativePatch(dex_file, type_index.index_, &pc_relative_type_patches_);
   1616 }
   1617 
   1618 CodeGeneratorMIPS::PcRelativePatchInfo* CodeGeneratorMIPS::NewTypeBssEntryPatch(
   1619     const DexFile& dex_file, dex::TypeIndex type_index) {
   1620   return NewPcRelativePatch(dex_file, type_index.index_, &type_bss_entry_patches_);
   1621 }
   1622 
   1623 CodeGeneratorMIPS::PcRelativePatchInfo* CodeGeneratorMIPS::NewPcRelativeDexCacheArrayPatch(
   1624     const DexFile& dex_file, uint32_t element_offset) {
   1625   return NewPcRelativePatch(dex_file, element_offset, &pc_relative_dex_cache_patches_);
   1626 }
   1627 
   1628 CodeGeneratorMIPS::PcRelativePatchInfo* CodeGeneratorMIPS::NewPcRelativePatch(
   1629     const DexFile& dex_file, uint32_t offset_or_index, ArenaDeque<PcRelativePatchInfo>* patches) {
   1630   patches->emplace_back(dex_file, offset_or_index);
   1631   return &patches->back();
   1632 }
   1633 
   1634 Literal* CodeGeneratorMIPS::DeduplicateUint32Literal(uint32_t value, Uint32ToLiteralMap* map) {
   1635   return map->GetOrCreate(
   1636       value,
   1637       [this, value]() { return __ NewLiteral<uint32_t>(value); });
   1638 }
   1639 
   1640 Literal* CodeGeneratorMIPS::DeduplicateMethodLiteral(MethodReference target_method,
   1641                                                      MethodToLiteralMap* map) {
   1642   return map->GetOrCreate(
   1643       target_method,
   1644       [this]() { return __ NewLiteral<uint32_t>(/* placeholder */ 0u); });
   1645 }
   1646 
   1647 Literal* CodeGeneratorMIPS::DeduplicateBootImageStringLiteral(const DexFile& dex_file,
   1648                                                               dex::StringIndex string_index) {
   1649   return boot_image_string_patches_.GetOrCreate(
   1650       StringReference(&dex_file, string_index),
   1651       [this]() { return __ NewLiteral<uint32_t>(/* placeholder */ 0u); });
   1652 }
   1653 
   1654 Literal* CodeGeneratorMIPS::DeduplicateBootImageTypeLiteral(const DexFile& dex_file,
   1655                                                             dex::TypeIndex type_index) {
   1656   return boot_image_type_patches_.GetOrCreate(
   1657       TypeReference(&dex_file, type_index),
   1658       [this]() { return __ NewLiteral<uint32_t>(/* placeholder */ 0u); });
   1659 }
   1660 
   1661 Literal* CodeGeneratorMIPS::DeduplicateBootImageAddressLiteral(uint32_t address) {
   1662   return DeduplicateUint32Literal(dchecked_integral_cast<uint32_t>(address), &uint32_literals_);
   1663 }
   1664 
   1665 void CodeGeneratorMIPS::EmitPcRelativeAddressPlaceholderHigh(PcRelativePatchInfo* info,
   1666                                                              Register out,
   1667                                                              Register base) {
   1668   if (GetInstructionSetFeatures().IsR6()) {
   1669     DCHECK_EQ(base, ZERO);
   1670     __ Bind(&info->high_label);
   1671     __ Bind(&info->pc_rel_label);
   1672     // Add the high half of a 32-bit offset to PC.
   1673     __ Auipc(out, /* placeholder */ 0x1234);
   1674   } else {
   1675     // If base is ZERO, emit NAL to obtain the actual base.
   1676     if (base == ZERO) {
   1677       // Generate a dummy PC-relative call to obtain PC.
   1678       __ Nal();
   1679     }
   1680     __ Bind(&info->high_label);
   1681     __ Lui(out, /* placeholder */ 0x1234);
   1682     // If we emitted the NAL, bind the pc_rel_label, otherwise base is a register holding
   1683     // the HMipsComputeBaseMethodAddress which has its own label stored in MipsAssembler.
   1684     if (base == ZERO) {
   1685       __ Bind(&info->pc_rel_label);
   1686     }
   1687     // Add the high half of a 32-bit offset to PC.
   1688     __ Addu(out, out, (base == ZERO) ? RA : base);
   1689   }
   1690   // The immediately following instruction will add the sign-extended low half of the 32-bit
   1691   // offset to `out` (e.g. lw, jialc, addiu).
   1692 }
   1693 
   1694 CodeGeneratorMIPS::JitPatchInfo* CodeGeneratorMIPS::NewJitRootStringPatch(
   1695     const DexFile& dex_file,
   1696     dex::StringIndex dex_index,
   1697     Handle<mirror::String> handle) {
   1698   jit_string_roots_.Overwrite(StringReference(&dex_file, dex_index),
   1699                               reinterpret_cast64<uint64_t>(handle.GetReference()));
   1700   jit_string_patches_.emplace_back(dex_file, dex_index.index_);
   1701   return &jit_string_patches_.back();
   1702 }
   1703 
   1704 CodeGeneratorMIPS::JitPatchInfo* CodeGeneratorMIPS::NewJitRootClassPatch(
   1705     const DexFile& dex_file,
   1706     dex::TypeIndex dex_index,
   1707     Handle<mirror::Class> handle) {
   1708   jit_class_roots_.Overwrite(TypeReference(&dex_file, dex_index),
   1709                              reinterpret_cast64<uint64_t>(handle.GetReference()));
   1710   jit_class_patches_.emplace_back(dex_file, dex_index.index_);
   1711   return &jit_class_patches_.back();
   1712 }
   1713 
   1714 void CodeGeneratorMIPS::PatchJitRootUse(uint8_t* code,
   1715                                         const uint8_t* roots_data,
   1716                                         const CodeGeneratorMIPS::JitPatchInfo& info,
   1717                                         uint64_t index_in_table) const {
   1718   uint32_t literal_offset = GetAssembler().GetLabelLocation(&info.high_label);
   1719   uintptr_t address =
   1720       reinterpret_cast<uintptr_t>(roots_data) + index_in_table * sizeof(GcRoot<mirror::Object>);
   1721   uint32_t addr32 = dchecked_integral_cast<uint32_t>(address);
   1722   // lui reg, addr32_high
   1723   DCHECK_EQ(code[literal_offset + 0], 0x34);
   1724   DCHECK_EQ(code[literal_offset + 1], 0x12);
   1725   DCHECK_EQ((code[literal_offset + 2] & 0xE0), 0x00);
   1726   DCHECK_EQ(code[literal_offset + 3], 0x3C);
   1727   // lw reg, reg, addr32_low
   1728   DCHECK_EQ(code[literal_offset + 4], 0x78);
   1729   DCHECK_EQ(code[literal_offset + 5], 0x56);
   1730   DCHECK_EQ((code[literal_offset + 7] & 0xFC), 0x8C);
   1731   addr32 += (addr32 & 0x8000) << 1;  // Account for sign extension in "lw reg, reg, addr32_low".
   1732   // lui reg, addr32_high
   1733   code[literal_offset + 0] = static_cast<uint8_t>(addr32 >> 16);
   1734   code[literal_offset + 1] = static_cast<uint8_t>(addr32 >> 24);
   1735   // lw reg, reg, addr32_low
   1736   code[literal_offset + 4] = static_cast<uint8_t>(addr32 >> 0);
   1737   code[literal_offset + 5] = static_cast<uint8_t>(addr32 >> 8);
   1738 }
   1739 
   1740 void CodeGeneratorMIPS::EmitJitRootPatches(uint8_t* code, const uint8_t* roots_data) {
   1741   for (const JitPatchInfo& info : jit_string_patches_) {
   1742     const auto& it = jit_string_roots_.find(StringReference(&info.target_dex_file,
   1743                                                             dex::StringIndex(info.index)));
   1744     DCHECK(it != jit_string_roots_.end());
   1745     PatchJitRootUse(code, roots_data, info, it->second);
   1746   }
   1747   for (const JitPatchInfo& info : jit_class_patches_) {
   1748     const auto& it = jit_class_roots_.find(TypeReference(&info.target_dex_file,
   1749                                                          dex::TypeIndex(info.index)));
   1750     DCHECK(it != jit_class_roots_.end());
   1751     PatchJitRootUse(code, roots_data, info, it->second);
   1752   }
   1753 }
   1754 
   1755 void CodeGeneratorMIPS::MarkGCCard(Register object,
   1756                                    Register value,
   1757                                    bool value_can_be_null) {
   1758   MipsLabel done;
   1759   Register card = AT;
   1760   Register temp = TMP;
   1761   if (value_can_be_null) {
   1762     __ Beqz(value, &done);
   1763   }
   1764   __ LoadFromOffset(kLoadWord,
   1765                     card,
   1766                     TR,
   1767                     Thread::CardTableOffset<kMipsPointerSize>().Int32Value());
   1768   __ Srl(temp, object, gc::accounting::CardTable::kCardShift);
   1769   __ Addu(temp, card, temp);
   1770   __ Sb(card, temp, 0);
   1771   if (value_can_be_null) {
   1772     __ Bind(&done);
   1773   }
   1774 }
   1775 
   1776 void CodeGeneratorMIPS::SetupBlockedRegisters() const {
   1777   // ZERO, K0, K1, GP, SP, RA are always reserved and can't be allocated.
   1778   blocked_core_registers_[ZERO] = true;
   1779   blocked_core_registers_[K0] = true;
   1780   blocked_core_registers_[K1] = true;
   1781   blocked_core_registers_[GP] = true;
   1782   blocked_core_registers_[SP] = true;
   1783   blocked_core_registers_[RA] = true;
   1784 
   1785   // AT and TMP(T8) are used as temporary/scratch registers
   1786   // (similar to how AT is used by MIPS assemblers).
   1787   blocked_core_registers_[AT] = true;
   1788   blocked_core_registers_[TMP] = true;
   1789   blocked_fpu_registers_[FTMP] = true;
   1790 
   1791   // Reserve suspend and thread registers.
   1792   blocked_core_registers_[S0] = true;
   1793   blocked_core_registers_[TR] = true;
   1794 
   1795   // Reserve T9 for function calls
   1796   blocked_core_registers_[T9] = true;
   1797 
   1798   // Reserve odd-numbered FPU registers.
   1799   for (size_t i = 1; i < kNumberOfFRegisters; i += 2) {
   1800     blocked_fpu_registers_[i] = true;
   1801   }
   1802 
   1803   if (GetGraph()->IsDebuggable()) {
   1804     // Stubs do not save callee-save floating point registers. If the graph
   1805     // is debuggable, we need to deal with these registers differently. For
   1806     // now, just block them.
   1807     for (size_t i = 0; i < arraysize(kFpuCalleeSaves); ++i) {
   1808       blocked_fpu_registers_[kFpuCalleeSaves[i]] = true;
   1809     }
   1810   }
   1811 }
   1812 
   1813 size_t CodeGeneratorMIPS::SaveCoreRegister(size_t stack_index, uint32_t reg_id) {
   1814   __ StoreToOffset(kStoreWord, Register(reg_id), SP, stack_index);
   1815   return kMipsWordSize;
   1816 }
   1817 
   1818 size_t CodeGeneratorMIPS::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) {
   1819   __ LoadFromOffset(kLoadWord, Register(reg_id), SP, stack_index);
   1820   return kMipsWordSize;
   1821 }
   1822 
   1823 size_t CodeGeneratorMIPS::SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
   1824   __ StoreDToOffset(FRegister(reg_id), SP, stack_index);
   1825   return kMipsDoublewordSize;
   1826 }
   1827 
   1828 size_t CodeGeneratorMIPS::RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
   1829   __ LoadDFromOffset(FRegister(reg_id), SP, stack_index);
   1830   return kMipsDoublewordSize;
   1831 }
   1832 
   1833 void CodeGeneratorMIPS::DumpCoreRegister(std::ostream& stream, int reg) const {
   1834   stream << Register(reg);
   1835 }
   1836 
   1837 void CodeGeneratorMIPS::DumpFloatingPointRegister(std::ostream& stream, int reg) const {
   1838   stream << FRegister(reg);
   1839 }
   1840 
   1841 constexpr size_t kMipsDirectEntrypointRuntimeOffset = 16;
   1842 
   1843 void CodeGeneratorMIPS::InvokeRuntime(QuickEntrypointEnum entrypoint,
   1844                                       HInstruction* instruction,
   1845                                       uint32_t dex_pc,
   1846                                       SlowPathCode* slow_path) {
   1847   ValidateInvokeRuntime(entrypoint, instruction, slow_path);
   1848   GenerateInvokeRuntime(GetThreadOffset<kMipsPointerSize>(entrypoint).Int32Value(),
   1849                         IsDirectEntrypoint(entrypoint));
   1850   if (EntrypointRequiresStackMap(entrypoint)) {
   1851     RecordPcInfo(instruction, dex_pc, slow_path);
   1852   }
   1853 }
   1854 
   1855 void CodeGeneratorMIPS::InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset,
   1856                                                             HInstruction* instruction,
   1857                                                             SlowPathCode* slow_path,
   1858                                                             bool direct) {
   1859   ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction, slow_path);
   1860   GenerateInvokeRuntime(entry_point_offset, direct);
   1861 }
   1862 
   1863 void CodeGeneratorMIPS::GenerateInvokeRuntime(int32_t entry_point_offset, bool direct) {
   1864   bool reordering = __ SetReorder(false);
   1865   __ LoadFromOffset(kLoadWord, T9, TR, entry_point_offset);
   1866   __ Jalr(T9);
   1867   if (direct) {
   1868     // Reserve argument space on stack (for $a0-$a3) for
   1869     // entrypoints that directly reference native implementations.
   1870     // Called function may use this space to store $a0-$a3 regs.
   1871     __ IncreaseFrameSize(kMipsDirectEntrypointRuntimeOffset);  // Single instruction in delay slot.
   1872     __ DecreaseFrameSize(kMipsDirectEntrypointRuntimeOffset);
   1873   } else {
   1874     __ Nop();  // In delay slot.
   1875   }
   1876   __ SetReorder(reordering);
   1877 }
   1878 
   1879 void InstructionCodeGeneratorMIPS::GenerateClassInitializationCheck(SlowPathCodeMIPS* slow_path,
   1880                                                                     Register class_reg) {
   1881   __ LoadFromOffset(kLoadWord, TMP, class_reg, mirror::Class::StatusOffset().Int32Value());
   1882   __ LoadConst32(AT, mirror::Class::kStatusInitialized);
   1883   __ Blt(TMP, AT, slow_path->GetEntryLabel());
   1884   // Even if the initialized flag is set, we need to ensure consistent memory ordering.
   1885   __ Sync(0);
   1886   __ Bind(slow_path->GetExitLabel());
   1887 }
   1888 
   1889 void InstructionCodeGeneratorMIPS::GenerateMemoryBarrier(MemBarrierKind kind ATTRIBUTE_UNUSED) {
   1890   __ Sync(0);  // Only stype 0 is supported.
   1891 }
   1892 
   1893 void InstructionCodeGeneratorMIPS::GenerateSuspendCheck(HSuspendCheck* instruction,
   1894                                                         HBasicBlock* successor) {
   1895   SuspendCheckSlowPathMIPS* slow_path =
   1896     new (GetGraph()->GetArena()) SuspendCheckSlowPathMIPS(instruction, successor);
   1897   codegen_->AddSlowPath(slow_path);
   1898 
   1899   __ LoadFromOffset(kLoadUnsignedHalfword,
   1900                     TMP,
   1901                     TR,
   1902                     Thread::ThreadFlagsOffset<kMipsPointerSize>().Int32Value());
   1903   if (successor == nullptr) {
   1904     __ Bnez(TMP, slow_path->GetEntryLabel());
   1905     __ Bind(slow_path->GetReturnLabel());
   1906   } else {
   1907     __ Beqz(TMP, codegen_->GetLabelOf(successor));
   1908     __ B(slow_path->GetEntryLabel());
   1909     // slow_path will return to GetLabelOf(successor).
   1910   }
   1911 }
   1912 
   1913 InstructionCodeGeneratorMIPS::InstructionCodeGeneratorMIPS(HGraph* graph,
   1914                                                            CodeGeneratorMIPS* codegen)
   1915       : InstructionCodeGenerator(graph, codegen),
   1916         assembler_(codegen->GetAssembler()),
   1917         codegen_(codegen) {}
   1918 
   1919 void LocationsBuilderMIPS::HandleBinaryOp(HBinaryOperation* instruction) {
   1920   DCHECK_EQ(instruction->InputCount(), 2U);
   1921   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
   1922   Primitive::Type type = instruction->GetResultType();
   1923   switch (type) {
   1924     case Primitive::kPrimInt: {
   1925       locations->SetInAt(0, Location::RequiresRegister());
   1926       HInstruction* right = instruction->InputAt(1);
   1927       bool can_use_imm = false;
   1928       if (right->IsConstant()) {
   1929         int32_t imm = CodeGenerator::GetInt32ValueOf(right->AsConstant());
   1930         if (instruction->IsAnd() || instruction->IsOr() || instruction->IsXor()) {
   1931           can_use_imm = IsUint<16>(imm);
   1932         } else if (instruction->IsAdd()) {
   1933           can_use_imm = IsInt<16>(imm);
   1934         } else {
   1935           DCHECK(instruction->IsSub());
   1936           can_use_imm = IsInt<16>(-imm);
   1937         }
   1938       }
   1939       if (can_use_imm)
   1940         locations->SetInAt(1, Location::ConstantLocation(right->AsConstant()));
   1941       else
   1942         locations->SetInAt(1, Location::RequiresRegister());
   1943       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   1944       break;
   1945     }
   1946 
   1947     case Primitive::kPrimLong: {
   1948       locations->SetInAt(0, Location::RequiresRegister());
   1949       locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
   1950       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   1951       break;
   1952     }
   1953 
   1954     case Primitive::kPrimFloat:
   1955     case Primitive::kPrimDouble:
   1956       DCHECK(instruction->IsAdd() || instruction->IsSub());
   1957       locations->SetInAt(0, Location::RequiresFpuRegister());
   1958       locations->SetInAt(1, Location::RequiresFpuRegister());
   1959       locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
   1960       break;
   1961 
   1962     default:
   1963       LOG(FATAL) << "Unexpected " << instruction->DebugName() << " type " << type;
   1964   }
   1965 }
   1966 
   1967 void InstructionCodeGeneratorMIPS::HandleBinaryOp(HBinaryOperation* instruction) {
   1968   Primitive::Type type = instruction->GetType();
   1969   LocationSummary* locations = instruction->GetLocations();
   1970 
   1971   switch (type) {
   1972     case Primitive::kPrimInt: {
   1973       Register dst = locations->Out().AsRegister<Register>();
   1974       Register lhs = locations->InAt(0).AsRegister<Register>();
   1975       Location rhs_location = locations->InAt(1);
   1976 
   1977       Register rhs_reg = ZERO;
   1978       int32_t rhs_imm = 0;
   1979       bool use_imm = rhs_location.IsConstant();
   1980       if (use_imm) {
   1981         rhs_imm = CodeGenerator::GetInt32ValueOf(rhs_location.GetConstant());
   1982       } else {
   1983         rhs_reg = rhs_location.AsRegister<Register>();
   1984       }
   1985 
   1986       if (instruction->IsAnd()) {
   1987         if (use_imm)
   1988           __ Andi(dst, lhs, rhs_imm);
   1989         else
   1990           __ And(dst, lhs, rhs_reg);
   1991       } else if (instruction->IsOr()) {
   1992         if (use_imm)
   1993           __ Ori(dst, lhs, rhs_imm);
   1994         else
   1995           __ Or(dst, lhs, rhs_reg);
   1996       } else if (instruction->IsXor()) {
   1997         if (use_imm)
   1998           __ Xori(dst, lhs, rhs_imm);
   1999         else
   2000           __ Xor(dst, lhs, rhs_reg);
   2001       } else if (instruction->IsAdd()) {
   2002         if (use_imm)
   2003           __ Addiu(dst, lhs, rhs_imm);
   2004         else
   2005           __ Addu(dst, lhs, rhs_reg);
   2006       } else {
   2007         DCHECK(instruction->IsSub());
   2008         if (use_imm)
   2009           __ Addiu(dst, lhs, -rhs_imm);
   2010         else
   2011           __ Subu(dst, lhs, rhs_reg);
   2012       }
   2013       break;
   2014     }
   2015 
   2016     case Primitive::kPrimLong: {
   2017       Register dst_high = locations->Out().AsRegisterPairHigh<Register>();
   2018       Register dst_low = locations->Out().AsRegisterPairLow<Register>();
   2019       Register lhs_high = locations->InAt(0).AsRegisterPairHigh<Register>();
   2020       Register lhs_low = locations->InAt(0).AsRegisterPairLow<Register>();
   2021       Location rhs_location = locations->InAt(1);
   2022       bool use_imm = rhs_location.IsConstant();
   2023       if (!use_imm) {
   2024         Register rhs_high = rhs_location.AsRegisterPairHigh<Register>();
   2025         Register rhs_low = rhs_location.AsRegisterPairLow<Register>();
   2026         if (instruction->IsAnd()) {
   2027           __ And(dst_low, lhs_low, rhs_low);
   2028           __ And(dst_high, lhs_high, rhs_high);
   2029         } else if (instruction->IsOr()) {
   2030           __ Or(dst_low, lhs_low, rhs_low);
   2031           __ Or(dst_high, lhs_high, rhs_high);
   2032         } else if (instruction->IsXor()) {
   2033           __ Xor(dst_low, lhs_low, rhs_low);
   2034           __ Xor(dst_high, lhs_high, rhs_high);
   2035         } else if (instruction->IsAdd()) {
   2036           if (lhs_low == rhs_low) {
   2037             // Special case for lhs = rhs and the sum potentially overwriting both lhs and rhs.
   2038             __ Slt(TMP, lhs_low, ZERO);
   2039             __ Addu(dst_low, lhs_low, rhs_low);
   2040           } else {
   2041             __ Addu(dst_low, lhs_low, rhs_low);
   2042             // If the sum overwrites rhs, lhs remains unchanged, otherwise rhs remains unchanged.
   2043             __ Sltu(TMP, dst_low, (dst_low == rhs_low) ? lhs_low : rhs_low);
   2044           }
   2045           __ Addu(dst_high, lhs_high, rhs_high);
   2046           __ Addu(dst_high, dst_high, TMP);
   2047         } else {
   2048           DCHECK(instruction->IsSub());
   2049           __ Sltu(TMP, lhs_low, rhs_low);
   2050           __ Subu(dst_low, lhs_low, rhs_low);
   2051           __ Subu(dst_high, lhs_high, rhs_high);
   2052           __ Subu(dst_high, dst_high, TMP);
   2053         }
   2054       } else {
   2055         int64_t value = CodeGenerator::GetInt64ValueOf(rhs_location.GetConstant()->AsConstant());
   2056         if (instruction->IsOr()) {
   2057           uint32_t low = Low32Bits(value);
   2058           uint32_t high = High32Bits(value);
   2059           if (IsUint<16>(low)) {
   2060             if (dst_low != lhs_low || low != 0) {
   2061               __ Ori(dst_low, lhs_low, low);
   2062             }
   2063           } else {
   2064             __ LoadConst32(TMP, low);
   2065             __ Or(dst_low, lhs_low, TMP);
   2066           }
   2067           if (IsUint<16>(high)) {
   2068             if (dst_high != lhs_high || high != 0) {
   2069               __ Ori(dst_high, lhs_high, high);
   2070             }
   2071           } else {
   2072             if (high != low) {
   2073               __ LoadConst32(TMP, high);
   2074             }
   2075             __ Or(dst_high, lhs_high, TMP);
   2076           }
   2077         } else if (instruction->IsXor()) {
   2078           uint32_t low = Low32Bits(value);
   2079           uint32_t high = High32Bits(value);
   2080           if (IsUint<16>(low)) {
   2081             if (dst_low != lhs_low || low != 0) {
   2082               __ Xori(dst_low, lhs_low, low);
   2083             }
   2084           } else {
   2085             __ LoadConst32(TMP, low);
   2086             __ Xor(dst_low, lhs_low, TMP);
   2087           }
   2088           if (IsUint<16>(high)) {
   2089             if (dst_high != lhs_high || high != 0) {
   2090               __ Xori(dst_high, lhs_high, high);
   2091             }
   2092           } else {
   2093             if (high != low) {
   2094               __ LoadConst32(TMP, high);
   2095             }
   2096             __ Xor(dst_high, lhs_high, TMP);
   2097           }
   2098         } else if (instruction->IsAnd()) {
   2099           uint32_t low = Low32Bits(value);
   2100           uint32_t high = High32Bits(value);
   2101           if (IsUint<16>(low)) {
   2102             __ Andi(dst_low, lhs_low, low);
   2103           } else if (low != 0xFFFFFFFF) {
   2104             __ LoadConst32(TMP, low);
   2105             __ And(dst_low, lhs_low, TMP);
   2106           } else if (dst_low != lhs_low) {
   2107             __ Move(dst_low, lhs_low);
   2108           }
   2109           if (IsUint<16>(high)) {
   2110             __ Andi(dst_high, lhs_high, high);
   2111           } else if (high != 0xFFFFFFFF) {
   2112             if (high != low) {
   2113               __ LoadConst32(TMP, high);
   2114             }
   2115             __ And(dst_high, lhs_high, TMP);
   2116           } else if (dst_high != lhs_high) {
   2117             __ Move(dst_high, lhs_high);
   2118           }
   2119         } else {
   2120           if (instruction->IsSub()) {
   2121             value = -value;
   2122           } else {
   2123             DCHECK(instruction->IsAdd());
   2124           }
   2125           int32_t low = Low32Bits(value);
   2126           int32_t high = High32Bits(value);
   2127           if (IsInt<16>(low)) {
   2128             if (dst_low != lhs_low || low != 0) {
   2129               __ Addiu(dst_low, lhs_low, low);
   2130             }
   2131             if (low != 0) {
   2132               __ Sltiu(AT, dst_low, low);
   2133             }
   2134           } else {
   2135             __ LoadConst32(TMP, low);
   2136             __ Addu(dst_low, lhs_low, TMP);
   2137             __ Sltu(AT, dst_low, TMP);
   2138           }
   2139           if (IsInt<16>(high)) {
   2140             if (dst_high != lhs_high || high != 0) {
   2141               __ Addiu(dst_high, lhs_high, high);
   2142             }
   2143           } else {
   2144             if (high != low) {
   2145               __ LoadConst32(TMP, high);
   2146             }
   2147             __ Addu(dst_high, lhs_high, TMP);
   2148           }
   2149           if (low != 0) {
   2150             __ Addu(dst_high, dst_high, AT);
   2151           }
   2152         }
   2153       }
   2154       break;
   2155     }
   2156 
   2157     case Primitive::kPrimFloat:
   2158     case Primitive::kPrimDouble: {
   2159       FRegister dst = locations->Out().AsFpuRegister<FRegister>();
   2160       FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>();
   2161       FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>();
   2162       if (instruction->IsAdd()) {
   2163         if (type == Primitive::kPrimFloat) {
   2164           __ AddS(dst, lhs, rhs);
   2165         } else {
   2166           __ AddD(dst, lhs, rhs);
   2167         }
   2168       } else {
   2169         DCHECK(instruction->IsSub());
   2170         if (type == Primitive::kPrimFloat) {
   2171           __ SubS(dst, lhs, rhs);
   2172         } else {
   2173           __ SubD(dst, lhs, rhs);
   2174         }
   2175       }
   2176       break;
   2177     }
   2178 
   2179     default:
   2180       LOG(FATAL) << "Unexpected binary operation type " << type;
   2181   }
   2182 }
   2183 
   2184 void LocationsBuilderMIPS::HandleShift(HBinaryOperation* instr) {
   2185   DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr() || instr->IsRor());
   2186 
   2187   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instr);
   2188   Primitive::Type type = instr->GetResultType();
   2189   switch (type) {
   2190     case Primitive::kPrimInt:
   2191       locations->SetInAt(0, Location::RequiresRegister());
   2192       locations->SetInAt(1, Location::RegisterOrConstant(instr->InputAt(1)));
   2193       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   2194       break;
   2195     case Primitive::kPrimLong:
   2196       locations->SetInAt(0, Location::RequiresRegister());
   2197       locations->SetInAt(1, Location::RegisterOrConstant(instr->InputAt(1)));
   2198       locations->SetOut(Location::RequiresRegister());
   2199       break;
   2200     default:
   2201       LOG(FATAL) << "Unexpected shift type " << type;
   2202   }
   2203 }
   2204 
   2205 static constexpr size_t kMipsBitsPerWord = kMipsWordSize * kBitsPerByte;
   2206 
   2207 void InstructionCodeGeneratorMIPS::HandleShift(HBinaryOperation* instr) {
   2208   DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr() || instr->IsRor());
   2209   LocationSummary* locations = instr->GetLocations();
   2210   Primitive::Type type = instr->GetType();
   2211 
   2212   Location rhs_location = locations->InAt(1);
   2213   bool use_imm = rhs_location.IsConstant();
   2214   Register rhs_reg = use_imm ? ZERO : rhs_location.AsRegister<Register>();
   2215   int64_t rhs_imm = use_imm ? CodeGenerator::GetInt64ValueOf(rhs_location.GetConstant()) : 0;
   2216   const uint32_t shift_mask =
   2217       (type == Primitive::kPrimInt) ? kMaxIntShiftDistance : kMaxLongShiftDistance;
   2218   const uint32_t shift_value = rhs_imm & shift_mask;
   2219   // Are the INS (Insert Bit Field) and ROTR instructions supported?
   2220   bool has_ins_rotr = codegen_->GetInstructionSetFeatures().IsMipsIsaRevGreaterThanEqual2();
   2221 
   2222   switch (type) {
   2223     case Primitive::kPrimInt: {
   2224       Register dst = locations->Out().AsRegister<Register>();
   2225       Register lhs = locations->InAt(0).AsRegister<Register>();
   2226       if (use_imm) {
   2227         if (shift_value == 0) {
   2228           if (dst != lhs) {
   2229             __ Move(dst, lhs);
   2230           }
   2231         } else if (instr->IsShl()) {
   2232           __ Sll(dst, lhs, shift_value);
   2233         } else if (instr->IsShr()) {
   2234           __ Sra(dst, lhs, shift_value);
   2235         } else if (instr->IsUShr()) {
   2236           __ Srl(dst, lhs, shift_value);
   2237         } else {
   2238           if (has_ins_rotr) {
   2239             __ Rotr(dst, lhs, shift_value);
   2240           } else {
   2241             __ Sll(TMP, lhs, (kMipsBitsPerWord - shift_value) & shift_mask);
   2242             __ Srl(dst, lhs, shift_value);
   2243             __ Or(dst, dst, TMP);
   2244           }
   2245         }
   2246       } else {
   2247         if (instr->IsShl()) {
   2248           __ Sllv(dst, lhs, rhs_reg);
   2249         } else if (instr->IsShr()) {
   2250           __ Srav(dst, lhs, rhs_reg);
   2251         } else if (instr->IsUShr()) {
   2252           __ Srlv(dst, lhs, rhs_reg);
   2253         } else {
   2254           if (has_ins_rotr) {
   2255             __ Rotrv(dst, lhs, rhs_reg);
   2256           } else {
   2257             __ Subu(TMP, ZERO, rhs_reg);
   2258             // 32-bit shift instructions use the 5 least significant bits of the shift count, so
   2259             // shifting by `-rhs_reg` is equivalent to shifting by `(32 - rhs_reg) & 31`. The case
   2260             // when `rhs_reg & 31 == 0` is OK even though we don't shift `lhs` left all the way out
   2261             // by 32, because the result in this case is computed as `(lhs >> 0) | (lhs << 0)`,
   2262             // IOW, the OR'd values are equal.
   2263             __ Sllv(TMP, lhs, TMP);
   2264             __ Srlv(dst, lhs, rhs_reg);
   2265             __ Or(dst, dst, TMP);
   2266           }
   2267         }
   2268       }
   2269       break;
   2270     }
   2271 
   2272     case Primitive::kPrimLong: {
   2273       Register dst_high = locations->Out().AsRegisterPairHigh<Register>();
   2274       Register dst_low = locations->Out().AsRegisterPairLow<Register>();
   2275       Register lhs_high = locations->InAt(0).AsRegisterPairHigh<Register>();
   2276       Register lhs_low = locations->InAt(0).AsRegisterPairLow<Register>();
   2277       if (use_imm) {
   2278           if (shift_value == 0) {
   2279             codegen_->Move64(locations->Out(), locations->InAt(0));
   2280           } else if (shift_value < kMipsBitsPerWord) {
   2281             if (has_ins_rotr) {
   2282               if (instr->IsShl()) {
   2283                 __ Srl(dst_high, lhs_low, kMipsBitsPerWord - shift_value);
   2284                 __ Ins(dst_high, lhs_high, shift_value, kMipsBitsPerWord - shift_value);
   2285                 __ Sll(dst_low, lhs_low, shift_value);
   2286               } else if (instr->IsShr()) {
   2287                 __ Srl(dst_low, lhs_low, shift_value);
   2288                 __ Ins(dst_low, lhs_high, kMipsBitsPerWord - shift_value, shift_value);
   2289                 __ Sra(dst_high, lhs_high, shift_value);
   2290               } else if (instr->IsUShr()) {
   2291                 __ Srl(dst_low, lhs_low, shift_value);
   2292                 __ Ins(dst_low, lhs_high, kMipsBitsPerWord - shift_value, shift_value);
   2293                 __ Srl(dst_high, lhs_high, shift_value);
   2294               } else {
   2295                 __ Srl(dst_low, lhs_low, shift_value);
   2296                 __ Ins(dst_low, lhs_high, kMipsBitsPerWord - shift_value, shift_value);
   2297                 __ Srl(dst_high, lhs_high, shift_value);
   2298                 __ Ins(dst_high, lhs_low, kMipsBitsPerWord - shift_value, shift_value);
   2299               }
   2300             } else {
   2301               if (instr->IsShl()) {
   2302                 __ Sll(dst_low, lhs_low, shift_value);
   2303                 __ Srl(TMP, lhs_low, kMipsBitsPerWord - shift_value);
   2304                 __ Sll(dst_high, lhs_high, shift_value);
   2305                 __ Or(dst_high, dst_high, TMP);
   2306               } else if (instr->IsShr()) {
   2307                 __ Sra(dst_high, lhs_high, shift_value);
   2308                 __ Sll(TMP, lhs_high, kMipsBitsPerWord - shift_value);
   2309                 __ Srl(dst_low, lhs_low, shift_value);
   2310                 __ Or(dst_low, dst_low, TMP);
   2311               } else if (instr->IsUShr()) {
   2312                 __ Srl(dst_high, lhs_high, shift_value);
   2313                 __ Sll(TMP, lhs_high, kMipsBitsPerWord - shift_value);
   2314                 __ Srl(dst_low, lhs_low, shift_value);
   2315                 __ Or(dst_low, dst_low, TMP);
   2316               } else {
   2317                 __ Srl(TMP, lhs_low, shift_value);
   2318                 __ Sll(dst_low, lhs_high, kMipsBitsPerWord - shift_value);
   2319                 __ Or(dst_low, dst_low, TMP);
   2320                 __ Srl(TMP, lhs_high, shift_value);
   2321                 __ Sll(dst_high, lhs_low, kMipsBitsPerWord - shift_value);
   2322                 __ Or(dst_high, dst_high, TMP);
   2323               }
   2324             }
   2325           } else {
   2326             const uint32_t shift_value_high = shift_value - kMipsBitsPerWord;
   2327             if (instr->IsShl()) {
   2328               __ Sll(dst_high, lhs_low, shift_value_high);
   2329               __ Move(dst_low, ZERO);
   2330             } else if (instr->IsShr()) {
   2331               __ Sra(dst_low, lhs_high, shift_value_high);
   2332               __ Sra(dst_high, dst_low, kMipsBitsPerWord - 1);
   2333             } else if (instr->IsUShr()) {
   2334               __ Srl(dst_low, lhs_high, shift_value_high);
   2335               __ Move(dst_high, ZERO);
   2336             } else {
   2337               if (shift_value == kMipsBitsPerWord) {
   2338                 // 64-bit rotation by 32 is just a swap.
   2339                 __ Move(dst_low, lhs_high);
   2340                 __ Move(dst_high, lhs_low);
   2341               } else {
   2342                 if (has_ins_rotr) {
   2343                   __ Srl(dst_low, lhs_high, shift_value_high);
   2344                   __ Ins(dst_low, lhs_low, kMipsBitsPerWord - shift_value_high, shift_value_high);
   2345                   __ Srl(dst_high, lhs_low, shift_value_high);
   2346                   __ Ins(dst_high, lhs_high, kMipsBitsPerWord - shift_value_high, shift_value_high);
   2347                 } else {
   2348                   __ Sll(TMP, lhs_low, kMipsBitsPerWord - shift_value_high);
   2349                   __ Srl(dst_low, lhs_high, shift_value_high);
   2350                   __ Or(dst_low, dst_low, TMP);
   2351                   __ Sll(TMP, lhs_high, kMipsBitsPerWord - shift_value_high);
   2352                   __ Srl(dst_high, lhs_low, shift_value_high);
   2353                   __ Or(dst_high, dst_high, TMP);
   2354                 }
   2355               }
   2356             }
   2357           }
   2358       } else {
   2359         MipsLabel done;
   2360         if (instr->IsShl()) {
   2361           __ Sllv(dst_low, lhs_low, rhs_reg);
   2362           __ Nor(AT, ZERO, rhs_reg);
   2363           __ Srl(TMP, lhs_low, 1);
   2364           __ Srlv(TMP, TMP, AT);
   2365           __ Sllv(dst_high, lhs_high, rhs_reg);
   2366           __ Or(dst_high, dst_high, TMP);
   2367           __ Andi(TMP, rhs_reg, kMipsBitsPerWord);
   2368           __ Beqz(TMP, &done);
   2369           __ Move(dst_high, dst_low);
   2370           __ Move(dst_low, ZERO);
   2371         } else if (instr->IsShr()) {
   2372           __ Srav(dst_high, lhs_high, rhs_reg);
   2373           __ Nor(AT, ZERO, rhs_reg);
   2374           __ Sll(TMP, lhs_high, 1);
   2375           __ Sllv(TMP, TMP, AT);
   2376           __ Srlv(dst_low, lhs_low, rhs_reg);
   2377           __ Or(dst_low, dst_low, TMP);
   2378           __ Andi(TMP, rhs_reg, kMipsBitsPerWord);
   2379           __ Beqz(TMP, &done);
   2380           __ Move(dst_low, dst_high);
   2381           __ Sra(dst_high, dst_high, 31);
   2382         } else if (instr->IsUShr()) {
   2383           __ Srlv(dst_high, lhs_high, rhs_reg);
   2384           __ Nor(AT, ZERO, rhs_reg);
   2385           __ Sll(TMP, lhs_high, 1);
   2386           __ Sllv(TMP, TMP, AT);
   2387           __ Srlv(dst_low, lhs_low, rhs_reg);
   2388           __ Or(dst_low, dst_low, TMP);
   2389           __ Andi(TMP, rhs_reg, kMipsBitsPerWord);
   2390           __ Beqz(TMP, &done);
   2391           __ Move(dst_low, dst_high);
   2392           __ Move(dst_high, ZERO);
   2393         } else {
   2394           __ Nor(AT, ZERO, rhs_reg);
   2395           __ Srlv(TMP, lhs_low, rhs_reg);
   2396           __ Sll(dst_low, lhs_high, 1);
   2397           __ Sllv(dst_low, dst_low, AT);
   2398           __ Or(dst_low, dst_low, TMP);
   2399           __ Srlv(TMP, lhs_high, rhs_reg);
   2400           __ Sll(dst_high, lhs_low, 1);
   2401           __ Sllv(dst_high, dst_high, AT);
   2402           __ Or(dst_high, dst_high, TMP);
   2403           __ Andi(TMP, rhs_reg, kMipsBitsPerWord);
   2404           __ Beqz(TMP, &done);
   2405           __ Move(TMP, dst_high);
   2406           __ Move(dst_high, dst_low);
   2407           __ Move(dst_low, TMP);
   2408         }
   2409         __ Bind(&done);
   2410       }
   2411       break;
   2412     }
   2413 
   2414     default:
   2415       LOG(FATAL) << "Unexpected shift operation type " << type;
   2416   }
   2417 }
   2418 
   2419 void LocationsBuilderMIPS::VisitAdd(HAdd* instruction) {
   2420   HandleBinaryOp(instruction);
   2421 }
   2422 
   2423 void InstructionCodeGeneratorMIPS::VisitAdd(HAdd* instruction) {
   2424   HandleBinaryOp(instruction);
   2425 }
   2426 
   2427 void LocationsBuilderMIPS::VisitAnd(HAnd* instruction) {
   2428   HandleBinaryOp(instruction);
   2429 }
   2430 
   2431 void InstructionCodeGeneratorMIPS::VisitAnd(HAnd* instruction) {
   2432   HandleBinaryOp(instruction);
   2433 }
   2434 
   2435 void LocationsBuilderMIPS::VisitArrayGet(HArrayGet* instruction) {
   2436   Primitive::Type type = instruction->GetType();
   2437   bool object_array_get_with_read_barrier =
   2438       kEmitCompilerReadBarrier && (type == Primitive::kPrimNot);
   2439   LocationSummary* locations =
   2440       new (GetGraph()->GetArena()) LocationSummary(instruction,
   2441                                                    object_array_get_with_read_barrier
   2442                                                        ? LocationSummary::kCallOnSlowPath
   2443                                                        : LocationSummary::kNoCall);
   2444   locations->SetInAt(0, Location::RequiresRegister());
   2445   locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
   2446   if (Primitive::IsFloatingPointType(type)) {
   2447     locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
   2448   } else {
   2449     // The output overlaps in the case of an object array get with
   2450     // read barriers enabled: we do not want the move to overwrite the
   2451     // array's location, as we need it to emit the read barrier.
   2452     locations->SetOut(Location::RequiresRegister(),
   2453                       object_array_get_with_read_barrier
   2454                           ? Location::kOutputOverlap
   2455                           : Location::kNoOutputOverlap);
   2456   }
   2457   // We need a temporary register for the read barrier marking slow
   2458   // path in CodeGeneratorMIPS::GenerateArrayLoadWithBakerReadBarrier.
   2459   if (object_array_get_with_read_barrier && kUseBakerReadBarrier) {
   2460     locations->AddTemp(Location::RequiresRegister());
   2461   }
   2462 }
   2463 
   2464 static auto GetImplicitNullChecker(HInstruction* instruction, CodeGeneratorMIPS* codegen) {
   2465   auto null_checker = [codegen, instruction]() {
   2466     codegen->MaybeRecordImplicitNullCheck(instruction);
   2467   };
   2468   return null_checker;
   2469 }
   2470 
   2471 void InstructionCodeGeneratorMIPS::VisitArrayGet(HArrayGet* instruction) {
   2472   LocationSummary* locations = instruction->GetLocations();
   2473   Location obj_loc = locations->InAt(0);
   2474   Register obj = obj_loc.AsRegister<Register>();
   2475   Location out_loc = locations->Out();
   2476   Location index = locations->InAt(1);
   2477   uint32_t data_offset = CodeGenerator::GetArrayDataOffset(instruction);
   2478   auto null_checker = GetImplicitNullChecker(instruction, codegen_);
   2479 
   2480   Primitive::Type type = instruction->GetType();
   2481   const bool maybe_compressed_char_at = mirror::kUseStringCompression &&
   2482                                         instruction->IsStringCharAt();
   2483   switch (type) {
   2484     case Primitive::kPrimBoolean: {
   2485       Register out = out_loc.AsRegister<Register>();
   2486       if (index.IsConstant()) {
   2487         size_t offset =
   2488             (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset;
   2489         __ LoadFromOffset(kLoadUnsignedByte, out, obj, offset, null_checker);
   2490       } else {
   2491         __ Addu(TMP, obj, index.AsRegister<Register>());
   2492         __ LoadFromOffset(kLoadUnsignedByte, out, TMP, data_offset, null_checker);
   2493       }
   2494       break;
   2495     }
   2496 
   2497     case Primitive::kPrimByte: {
   2498       Register out = out_loc.AsRegister<Register>();
   2499       if (index.IsConstant()) {
   2500         size_t offset =
   2501             (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset;
   2502         __ LoadFromOffset(kLoadSignedByte, out, obj, offset, null_checker);
   2503       } else {
   2504         __ Addu(TMP, obj, index.AsRegister<Register>());
   2505         __ LoadFromOffset(kLoadSignedByte, out, TMP, data_offset, null_checker);
   2506       }
   2507       break;
   2508     }
   2509 
   2510     case Primitive::kPrimShort: {
   2511       Register out = out_loc.AsRegister<Register>();
   2512       if (index.IsConstant()) {
   2513         size_t offset =
   2514             (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + data_offset;
   2515         __ LoadFromOffset(kLoadSignedHalfword, out, obj, offset, null_checker);
   2516       } else {
   2517         __ ShiftAndAdd(TMP, index.AsRegister<Register>(), obj, TIMES_2, TMP);
   2518         __ LoadFromOffset(kLoadSignedHalfword, out, TMP, data_offset, null_checker);
   2519       }
   2520       break;
   2521     }
   2522 
   2523     case Primitive::kPrimChar: {
   2524       Register out = out_loc.AsRegister<Register>();
   2525       if (maybe_compressed_char_at) {
   2526         uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
   2527         __ LoadFromOffset(kLoadWord, TMP, obj, count_offset, null_checker);
   2528         __ Sll(TMP, TMP, 31);    // Extract compression flag into the most significant bit of TMP.
   2529         static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
   2530                       "Expecting 0=compressed, 1=uncompressed");
   2531       }
   2532       if (index.IsConstant()) {
   2533         int32_t const_index = index.GetConstant()->AsIntConstant()->GetValue();
   2534         if (maybe_compressed_char_at) {
   2535           MipsLabel uncompressed_load, done;
   2536           __ Bnez(TMP, &uncompressed_load);
   2537           __ LoadFromOffset(kLoadUnsignedByte,
   2538                             out,
   2539                             obj,
   2540                             data_offset + (const_index << TIMES_1));
   2541           __ B(&done);
   2542           __ Bind(&uncompressed_load);
   2543           __ LoadFromOffset(kLoadUnsignedHalfword,
   2544                             out,
   2545                             obj,
   2546                             data_offset + (const_index << TIMES_2));
   2547           __ Bind(&done);
   2548         } else {
   2549           __ LoadFromOffset(kLoadUnsignedHalfword,
   2550                             out,
   2551                             obj,
   2552                             data_offset + (const_index << TIMES_2),
   2553                             null_checker);
   2554         }
   2555       } else {
   2556         Register index_reg = index.AsRegister<Register>();
   2557         if (maybe_compressed_char_at) {
   2558           MipsLabel uncompressed_load, done;
   2559           __ Bnez(TMP, &uncompressed_load);
   2560           __ Addu(TMP, obj, index_reg);
   2561           __ LoadFromOffset(kLoadUnsignedByte, out, TMP, data_offset);
   2562           __ B(&done);
   2563           __ Bind(&uncompressed_load);
   2564           __ ShiftAndAdd(TMP, index_reg, obj, TIMES_2, TMP);
   2565           __ LoadFromOffset(kLoadUnsignedHalfword, out, TMP, data_offset);
   2566           __ Bind(&done);
   2567         } else {
   2568           __ ShiftAndAdd(TMP, index_reg, obj, TIMES_2, TMP);
   2569           __ LoadFromOffset(kLoadUnsignedHalfword, out, TMP, data_offset, null_checker);
   2570         }
   2571       }
   2572       break;
   2573     }
   2574 
   2575     case Primitive::kPrimInt: {
   2576       DCHECK_EQ(sizeof(mirror::HeapReference<mirror::Object>), sizeof(int32_t));
   2577       Register out = out_loc.AsRegister<Register>();
   2578       if (index.IsConstant()) {
   2579         size_t offset =
   2580             (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
   2581         __ LoadFromOffset(kLoadWord, out, obj, offset, null_checker);
   2582       } else {
   2583         __ ShiftAndAdd(TMP, index.AsRegister<Register>(), obj, TIMES_4, TMP);
   2584         __ LoadFromOffset(kLoadWord, out, TMP, data_offset, null_checker);
   2585       }
   2586       break;
   2587     }
   2588 
   2589     case Primitive::kPrimNot: {
   2590       static_assert(
   2591           sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
   2592           "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
   2593       // /* HeapReference<Object> */ out =
   2594       //     *(obj + data_offset + index * sizeof(HeapReference<Object>))
   2595       if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
   2596         Location temp = locations->GetTemp(0);
   2597         // Note that a potential implicit null check is handled in this
   2598         // CodeGeneratorMIPS::GenerateArrayLoadWithBakerReadBarrier call.
   2599         codegen_->GenerateArrayLoadWithBakerReadBarrier(instruction,
   2600                                                         out_loc,
   2601                                                         obj,
   2602                                                         data_offset,
   2603                                                         index,
   2604                                                         temp,
   2605                                                         /* needs_null_check */ true);
   2606       } else {
   2607         Register out = out_loc.AsRegister<Register>();
   2608         if (index.IsConstant()) {
   2609           size_t offset =
   2610               (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
   2611           __ LoadFromOffset(kLoadWord, out, obj, offset, null_checker);
   2612           // If read barriers are enabled, emit read barriers other than
   2613           // Baker's using a slow path (and also unpoison the loaded
   2614           // reference, if heap poisoning is enabled).
   2615           codegen_->MaybeGenerateReadBarrierSlow(instruction, out_loc, out_loc, obj_loc, offset);
   2616         } else {
   2617           __ ShiftAndAdd(TMP, index.AsRegister<Register>(), obj, TIMES_4, TMP);
   2618           __ LoadFromOffset(kLoadWord, out, TMP, data_offset, null_checker);
   2619           // If read barriers are enabled, emit read barriers other than
   2620           // Baker's using a slow path (and also unpoison the loaded
   2621           // reference, if heap poisoning is enabled).
   2622           codegen_->MaybeGenerateReadBarrierSlow(instruction,
   2623                                                  out_loc,
   2624                                                  out_loc,
   2625                                                  obj_loc,
   2626                                                  data_offset,
   2627                                                  index);
   2628         }
   2629       }
   2630       break;
   2631     }
   2632 
   2633     case Primitive::kPrimLong: {
   2634       Register out = out_loc.AsRegisterPairLow<Register>();
   2635       if (index.IsConstant()) {
   2636         size_t offset =
   2637             (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
   2638         __ LoadFromOffset(kLoadDoubleword, out, obj, offset, null_checker);
   2639       } else {
   2640         __ ShiftAndAdd(TMP, index.AsRegister<Register>(), obj, TIMES_8, TMP);
   2641         __ LoadFromOffset(kLoadDoubleword, out, TMP, data_offset, null_checker);
   2642       }
   2643       break;
   2644     }
   2645 
   2646     case Primitive::kPrimFloat: {
   2647       FRegister out = out_loc.AsFpuRegister<FRegister>();
   2648       if (index.IsConstant()) {
   2649         size_t offset =
   2650             (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
   2651         __ LoadSFromOffset(out, obj, offset, null_checker);
   2652       } else {
   2653         __ ShiftAndAdd(TMP, index.AsRegister<Register>(), obj, TIMES_4, TMP);
   2654         __ LoadSFromOffset(out, TMP, data_offset, null_checker);
   2655       }
   2656       break;
   2657     }
   2658 
   2659     case Primitive::kPrimDouble: {
   2660       FRegister out = out_loc.AsFpuRegister<FRegister>();
   2661       if (index.IsConstant()) {
   2662         size_t offset =
   2663             (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
   2664         __ LoadDFromOffset(out, obj, offset, null_checker);
   2665       } else {
   2666         __ ShiftAndAdd(TMP, index.AsRegister<Register>(), obj, TIMES_8, TMP);
   2667         __ LoadDFromOffset(out, TMP, data_offset, null_checker);
   2668       }
   2669       break;
   2670     }
   2671 
   2672     case Primitive::kPrimVoid:
   2673       LOG(FATAL) << "Unreachable type " << instruction->GetType();
   2674       UNREACHABLE();
   2675   }
   2676 }
   2677 
   2678 void LocationsBuilderMIPS::VisitArrayLength(HArrayLength* instruction) {
   2679   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
   2680   locations->SetInAt(0, Location::RequiresRegister());
   2681   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   2682 }
   2683 
   2684 void InstructionCodeGeneratorMIPS::VisitArrayLength(HArrayLength* instruction) {
   2685   LocationSummary* locations = instruction->GetLocations();
   2686   uint32_t offset = CodeGenerator::GetArrayLengthOffset(instruction);
   2687   Register obj = locations->InAt(0).AsRegister<Register>();
   2688   Register out = locations->Out().AsRegister<Register>();
   2689   __ LoadFromOffset(kLoadWord, out, obj, offset);
   2690   codegen_->MaybeRecordImplicitNullCheck(instruction);
   2691   // Mask out compression flag from String's array length.
   2692   if (mirror::kUseStringCompression && instruction->IsStringLength()) {
   2693     __ Srl(out, out, 1u);
   2694   }
   2695 }
   2696 
   2697 Location LocationsBuilderMIPS::RegisterOrZeroConstant(HInstruction* instruction) {
   2698   return (instruction->IsConstant() && instruction->AsConstant()->IsZeroBitPattern())
   2699       ? Location::ConstantLocation(instruction->AsConstant())
   2700       : Location::RequiresRegister();
   2701 }
   2702 
   2703 Location LocationsBuilderMIPS::FpuRegisterOrConstantForStore(HInstruction* instruction) {
   2704   // We can store 0.0 directly (from the ZERO register) without loading it into an FPU register.
   2705   // We can store a non-zero float or double constant without first loading it into the FPU,
   2706   // but we should only prefer this if the constant has a single use.
   2707   if (instruction->IsConstant() &&
   2708       (instruction->AsConstant()->IsZeroBitPattern() ||
   2709        instruction->GetUses().HasExactlyOneElement())) {
   2710     return Location::ConstantLocation(instruction->AsConstant());
   2711     // Otherwise fall through and require an FPU register for the constant.
   2712   }
   2713   return Location::RequiresFpuRegister();
   2714 }
   2715 
   2716 void LocationsBuilderMIPS::VisitArraySet(HArraySet* instruction) {
   2717   Primitive::Type value_type = instruction->GetComponentType();
   2718 
   2719   bool needs_write_barrier =
   2720       CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
   2721   bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck();
   2722 
   2723   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(
   2724       instruction,
   2725       may_need_runtime_call_for_type_check ?
   2726           LocationSummary::kCallOnSlowPath :
   2727           LocationSummary::kNoCall);
   2728 
   2729   locations->SetInAt(0, Location::RequiresRegister());
   2730   locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
   2731   if (Primitive::IsFloatingPointType(instruction->InputAt(2)->GetType())) {
   2732     locations->SetInAt(2, FpuRegisterOrConstantForStore(instruction->InputAt(2)));
   2733   } else {
   2734     locations->SetInAt(2, RegisterOrZeroConstant(instruction->InputAt(2)));
   2735   }
   2736   if (needs_write_barrier) {
   2737     // Temporary register for the write barrier.
   2738     locations->AddTemp(Location::RequiresRegister());  // Possibly used for ref. poisoning too.
   2739   }
   2740 }
   2741 
   2742 void InstructionCodeGeneratorMIPS::VisitArraySet(HArraySet* instruction) {
   2743   LocationSummary* locations = instruction->GetLocations();
   2744   Register obj = locations->InAt(0).AsRegister<Register>();
   2745   Location index = locations->InAt(1);
   2746   Location value_location = locations->InAt(2);
   2747   Primitive::Type value_type = instruction->GetComponentType();
   2748   bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck();
   2749   bool needs_write_barrier =
   2750       CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
   2751   auto null_checker = GetImplicitNullChecker(instruction, codegen_);
   2752   Register base_reg = index.IsConstant() ? obj : TMP;
   2753 
   2754   switch (value_type) {
   2755     case Primitive::kPrimBoolean:
   2756     case Primitive::kPrimByte: {
   2757       uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint8_t)).Uint32Value();
   2758       if (index.IsConstant()) {
   2759         data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1;
   2760       } else {
   2761         __ Addu(base_reg, obj, index.AsRegister<Register>());
   2762       }
   2763       if (value_location.IsConstant()) {
   2764         int32_t value = CodeGenerator::GetInt32ValueOf(value_location.GetConstant());
   2765         __ StoreConstToOffset(kStoreByte, value, base_reg, data_offset, TMP, null_checker);
   2766       } else {
   2767         Register value = value_location.AsRegister<Register>();
   2768         __ StoreToOffset(kStoreByte, value, base_reg, data_offset, null_checker);
   2769       }
   2770       break;
   2771     }
   2772 
   2773     case Primitive::kPrimShort:
   2774     case Primitive::kPrimChar: {
   2775       uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Uint32Value();
   2776       if (index.IsConstant()) {
   2777         data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2;
   2778       } else {
   2779         __ ShiftAndAdd(base_reg, index.AsRegister<Register>(), obj, TIMES_2, base_reg);
   2780       }
   2781       if (value_location.IsConstant()) {
   2782         int32_t value = CodeGenerator::GetInt32ValueOf(value_location.GetConstant());
   2783         __ StoreConstToOffset(kStoreHalfword, value, base_reg, data_offset, TMP, null_checker);
   2784       } else {
   2785         Register value = value_location.AsRegister<Register>();
   2786         __ StoreToOffset(kStoreHalfword, value, base_reg, data_offset, null_checker);
   2787       }
   2788       break;
   2789     }
   2790 
   2791     case Primitive::kPrimInt: {
   2792       uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value();
   2793       if (index.IsConstant()) {
   2794         data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4;
   2795       } else {
   2796         __ ShiftAndAdd(base_reg, index.AsRegister<Register>(), obj, TIMES_4, base_reg);
   2797       }
   2798       if (value_location.IsConstant()) {
   2799         int32_t value = CodeGenerator::GetInt32ValueOf(value_location.GetConstant());
   2800         __ StoreConstToOffset(kStoreWord, value, base_reg, data_offset, TMP, null_checker);
   2801       } else {
   2802         Register value = value_location.AsRegister<Register>();
   2803         __ StoreToOffset(kStoreWord, value, base_reg, data_offset, null_checker);
   2804       }
   2805       break;
   2806     }
   2807 
   2808     case Primitive::kPrimNot: {
   2809       if (value_location.IsConstant()) {
   2810         // Just setting null.
   2811         uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value();
   2812         if (index.IsConstant()) {
   2813           data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4;
   2814         } else {
   2815           __ ShiftAndAdd(base_reg, index.AsRegister<Register>(), obj, TIMES_4, base_reg);
   2816         }
   2817         int32_t value = CodeGenerator::GetInt32ValueOf(value_location.GetConstant());
   2818         DCHECK_EQ(value, 0);
   2819         __ StoreConstToOffset(kStoreWord, value, base_reg, data_offset, TMP, null_checker);
   2820         DCHECK(!needs_write_barrier);
   2821         DCHECK(!may_need_runtime_call_for_type_check);
   2822         break;
   2823       }
   2824 
   2825       DCHECK(needs_write_barrier);
   2826       Register value = value_location.AsRegister<Register>();
   2827       Register temp1 = locations->GetTemp(0).AsRegister<Register>();
   2828       Register temp2 = TMP;  // Doesn't need to survive slow path.
   2829       uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
   2830       uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
   2831       uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
   2832       MipsLabel done;
   2833       SlowPathCodeMIPS* slow_path = nullptr;
   2834 
   2835       if (may_need_runtime_call_for_type_check) {
   2836         slow_path = new (GetGraph()->GetArena()) ArraySetSlowPathMIPS(instruction);
   2837         codegen_->AddSlowPath(slow_path);
   2838         if (instruction->GetValueCanBeNull()) {
   2839           MipsLabel non_zero;
   2840           __ Bnez(value, &non_zero);
   2841           uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value();
   2842           if (index.IsConstant()) {
   2843             data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4;
   2844           } else {
   2845             __ ShiftAndAdd(base_reg, index.AsRegister<Register>(), obj, TIMES_4, base_reg);
   2846           }
   2847           __ StoreToOffset(kStoreWord, value, base_reg, data_offset, null_checker);
   2848           __ B(&done);
   2849           __ Bind(&non_zero);
   2850         }
   2851 
   2852         // Note that when read barriers are enabled, the type checks
   2853         // are performed without read barriers.  This is fine, even in
   2854         // the case where a class object is in the from-space after
   2855         // the flip, as a comparison involving such a type would not
   2856         // produce a false positive; it may of course produce a false
   2857         // negative, in which case we would take the ArraySet slow
   2858         // path.
   2859 
   2860         // /* HeapReference<Class> */ temp1 = obj->klass_
   2861         __ LoadFromOffset(kLoadWord, temp1, obj, class_offset, null_checker);
   2862         __ MaybeUnpoisonHeapReference(temp1);
   2863 
   2864         // /* HeapReference<Class> */ temp1 = temp1->component_type_
   2865         __ LoadFromOffset(kLoadWord, temp1, temp1, component_offset);
   2866         // /* HeapReference<Class> */ temp2 = value->klass_
   2867         __ LoadFromOffset(kLoadWord, temp2, value, class_offset);
   2868         // If heap poisoning is enabled, no need to unpoison `temp1`
   2869         // nor `temp2`, as we are comparing two poisoned references.
   2870 
   2871         if (instruction->StaticTypeOfArrayIsObjectArray()) {
   2872           MipsLabel do_put;
   2873           __ Beq(temp1, temp2, &do_put);
   2874           // If heap poisoning is enabled, the `temp1` reference has
   2875           // not been unpoisoned yet; unpoison it now.
   2876           __ MaybeUnpoisonHeapReference(temp1);
   2877 
   2878           // /* HeapReference<Class> */ temp1 = temp1->super_class_
   2879           __ LoadFromOffset(kLoadWord, temp1, temp1, super_offset);
   2880           // If heap poisoning is enabled, no need to unpoison
   2881           // `temp1`, as we are comparing against null below.
   2882           __ Bnez(temp1, slow_path->GetEntryLabel());
   2883           __ Bind(&do_put);
   2884         } else {
   2885           __ Bne(temp1, temp2, slow_path->GetEntryLabel());
   2886         }
   2887       }
   2888 
   2889       Register source = value;
   2890       if (kPoisonHeapReferences) {
   2891         // Note that in the case where `value` is a null reference,
   2892         // we do not enter this block, as a null reference does not
   2893         // need poisoning.
   2894         __ Move(temp1, value);
   2895         __ PoisonHeapReference(temp1);
   2896         source = temp1;
   2897       }
   2898 
   2899       uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value();
   2900       if (index.IsConstant()) {
   2901         data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4;
   2902       } else {
   2903         __ ShiftAndAdd(base_reg, index.AsRegister<Register>(), obj, TIMES_4, base_reg);
   2904       }
   2905       __ StoreToOffset(kStoreWord, source, base_reg, data_offset);
   2906 
   2907       if (!may_need_runtime_call_for_type_check) {
   2908         codegen_->MaybeRecordImplicitNullCheck(instruction);
   2909       }
   2910 
   2911       codegen_->MarkGCCard(obj, value, instruction->GetValueCanBeNull());
   2912 
   2913       if (done.IsLinked()) {
   2914         __ Bind(&done);
   2915       }
   2916 
   2917       if (slow_path != nullptr) {
   2918         __ Bind(slow_path->GetExitLabel());
   2919       }
   2920       break;
   2921     }
   2922 
   2923     case Primitive::kPrimLong: {
   2924       uint32_t data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Uint32Value();
   2925       if (index.IsConstant()) {
   2926         data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8;
   2927       } else {
   2928         __ ShiftAndAdd(base_reg, index.AsRegister<Register>(), obj, TIMES_8, base_reg);
   2929       }
   2930       if (value_location.IsConstant()) {
   2931         int64_t value = CodeGenerator::GetInt64ValueOf(value_location.GetConstant());
   2932         __ StoreConstToOffset(kStoreDoubleword, value, base_reg, data_offset, TMP, null_checker);
   2933       } else {
   2934         Register value = value_location.AsRegisterPairLow<Register>();
   2935         __ StoreToOffset(kStoreDoubleword, value, base_reg, data_offset, null_checker);
   2936       }
   2937       break;
   2938     }
   2939 
   2940     case Primitive::kPrimFloat: {
   2941       uint32_t data_offset = mirror::Array::DataOffset(sizeof(float)).Uint32Value();
   2942       if (index.IsConstant()) {
   2943         data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4;
   2944       } else {
   2945         __ ShiftAndAdd(base_reg, index.AsRegister<Register>(), obj, TIMES_4, base_reg);
   2946       }
   2947       if (value_location.IsConstant()) {
   2948         int32_t value = CodeGenerator::GetInt32ValueOf(value_location.GetConstant());
   2949         __ StoreConstToOffset(kStoreWord, value, base_reg, data_offset, TMP, null_checker);
   2950       } else {
   2951         FRegister value = value_location.AsFpuRegister<FRegister>();
   2952         __ StoreSToOffset(value, base_reg, data_offset, null_checker);
   2953       }
   2954       break;
   2955     }
   2956 
   2957     case Primitive::kPrimDouble: {
   2958       uint32_t data_offset = mirror::Array::DataOffset(sizeof(double)).Uint32Value();
   2959       if (index.IsConstant()) {
   2960         data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8;
   2961       } else {
   2962         __ ShiftAndAdd(base_reg, index.AsRegister<Register>(), obj, TIMES_8, base_reg);
   2963       }
   2964       if (value_location.IsConstant()) {
   2965         int64_t value = CodeGenerator::GetInt64ValueOf(value_location.GetConstant());
   2966         __ StoreConstToOffset(kStoreDoubleword, value, base_reg, data_offset, TMP, null_checker);
   2967       } else {
   2968         FRegister value = value_location.AsFpuRegister<FRegister>();
   2969         __ StoreDToOffset(value, base_reg, data_offset, null_checker);
   2970       }
   2971       break;
   2972     }
   2973 
   2974     case Primitive::kPrimVoid:
   2975       LOG(FATAL) << "Unreachable type " << instruction->GetType();
   2976       UNREACHABLE();
   2977   }
   2978 }
   2979 
   2980 void LocationsBuilderMIPS::VisitBoundsCheck(HBoundsCheck* instruction) {
   2981   RegisterSet caller_saves = RegisterSet::Empty();
   2982   InvokeRuntimeCallingConvention calling_convention;
   2983   caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
   2984   caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
   2985   LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction, caller_saves);
   2986   locations->SetInAt(0, Location::RequiresRegister());
   2987   locations->SetInAt(1, Location::RequiresRegister());
   2988 }
   2989 
   2990 void InstructionCodeGeneratorMIPS::VisitBoundsCheck(HBoundsCheck* instruction) {
   2991   LocationSummary* locations = instruction->GetLocations();
   2992   BoundsCheckSlowPathMIPS* slow_path =
   2993       new (GetGraph()->GetArena()) BoundsCheckSlowPathMIPS(instruction);
   2994   codegen_->AddSlowPath(slow_path);
   2995 
   2996   Register index = locations->InAt(0).AsRegister<Register>();
   2997   Register length = locations->InAt(1).AsRegister<Register>();
   2998 
   2999   // length is limited by the maximum positive signed 32-bit integer.
   3000   // Unsigned comparison of length and index checks for index < 0
   3001   // and for length <= index simultaneously.
   3002   __ Bgeu(index, length, slow_path->GetEntryLabel());
   3003 }
   3004 
   3005 // Temp is used for read barrier.
   3006 static size_t NumberOfInstanceOfTemps(TypeCheckKind type_check_kind) {
   3007   if (kEmitCompilerReadBarrier &&
   3008       (kUseBakerReadBarrier ||
   3009        type_check_kind == TypeCheckKind::kAbstractClassCheck ||
   3010        type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
   3011        type_check_kind == TypeCheckKind::kArrayObjectCheck)) {
   3012     return 1;
   3013   }
   3014   return 0;
   3015 }
   3016 
   3017 // Extra temp is used for read barrier.
   3018 static size_t NumberOfCheckCastTemps(TypeCheckKind type_check_kind) {
   3019   return 1 + NumberOfInstanceOfTemps(type_check_kind);
   3020 }
   3021 
   3022 void LocationsBuilderMIPS::VisitCheckCast(HCheckCast* instruction) {
   3023   LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
   3024   bool throws_into_catch = instruction->CanThrowIntoCatchBlock();
   3025 
   3026   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
   3027   switch (type_check_kind) {
   3028     case TypeCheckKind::kExactCheck:
   3029     case TypeCheckKind::kAbstractClassCheck:
   3030     case TypeCheckKind::kClassHierarchyCheck:
   3031     case TypeCheckKind::kArrayObjectCheck:
   3032       call_kind = (throws_into_catch || kEmitCompilerReadBarrier)
   3033           ? LocationSummary::kCallOnSlowPath
   3034           : LocationSummary::kNoCall;  // In fact, call on a fatal (non-returning) slow path.
   3035       break;
   3036     case TypeCheckKind::kArrayCheck:
   3037     case TypeCheckKind::kUnresolvedCheck:
   3038     case TypeCheckKind::kInterfaceCheck:
   3039       call_kind = LocationSummary::kCallOnSlowPath;
   3040       break;
   3041   }
   3042 
   3043   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
   3044   locations->SetInAt(0, Location::RequiresRegister());
   3045   locations->SetInAt(1, Location::RequiresRegister());
   3046   locations->AddRegisterTemps(NumberOfCheckCastTemps(type_check_kind));
   3047 }
   3048 
   3049 void InstructionCodeGeneratorMIPS::VisitCheckCast(HCheckCast* instruction) {
   3050   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
   3051   LocationSummary* locations = instruction->GetLocations();
   3052   Location obj_loc = locations->InAt(0);
   3053   Register obj = obj_loc.AsRegister<Register>();
   3054   Register cls = locations->InAt(1).AsRegister<Register>();
   3055   Location temp_loc = locations->GetTemp(0);
   3056   Register temp = temp_loc.AsRegister<Register>();
   3057   const size_t num_temps = NumberOfCheckCastTemps(type_check_kind);
   3058   DCHECK_LE(num_temps, 2u);
   3059   Location maybe_temp2_loc = (num_temps >= 2) ? locations->GetTemp(1) : Location::NoLocation();
   3060   const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
   3061   const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
   3062   const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
   3063   const uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
   3064   const uint32_t iftable_offset = mirror::Class::IfTableOffset().Uint32Value();
   3065   const uint32_t array_length_offset = mirror::Array::LengthOffset().Uint32Value();
   3066   const uint32_t object_array_data_offset =
   3067       mirror::Array::DataOffset(kHeapReferenceSize).Uint32Value();
   3068   MipsLabel done;
   3069 
   3070   // Always false for read barriers since we may need to go to the entrypoint for non-fatal cases
   3071   // from false negatives. The false negatives may come from avoiding read barriers below. Avoiding
   3072   // read barriers is done for performance and code size reasons.
   3073   bool is_type_check_slow_path_fatal = false;
   3074   if (!kEmitCompilerReadBarrier) {
   3075     is_type_check_slow_path_fatal =
   3076         (type_check_kind == TypeCheckKind::kExactCheck ||
   3077          type_check_kind == TypeCheckKind::kAbstractClassCheck ||
   3078          type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
   3079          type_check_kind == TypeCheckKind::kArrayObjectCheck) &&
   3080         !instruction->CanThrowIntoCatchBlock();
   3081   }
   3082   SlowPathCodeMIPS* slow_path =
   3083       new (GetGraph()->GetArena()) TypeCheckSlowPathMIPS(instruction,
   3084                                                          is_type_check_slow_path_fatal);
   3085   codegen_->AddSlowPath(slow_path);
   3086 
   3087   // Avoid this check if we know `obj` is not null.
   3088   if (instruction->MustDoNullCheck()) {
   3089     __ Beqz(obj, &done);
   3090   }
   3091 
   3092   switch (type_check_kind) {
   3093     case TypeCheckKind::kExactCheck:
   3094     case TypeCheckKind::kArrayCheck: {
   3095       // /* HeapReference<Class> */ temp = obj->klass_
   3096       GenerateReferenceLoadTwoRegisters(instruction,
   3097                                         temp_loc,
   3098                                         obj_loc,
   3099                                         class_offset,
   3100                                         maybe_temp2_loc,
   3101                                         kWithoutReadBarrier);
   3102       // Jump to slow path for throwing the exception or doing a
   3103       // more involved array check.
   3104       __ Bne(temp, cls, slow_path->GetEntryLabel());
   3105       break;
   3106     }
   3107 
   3108     case TypeCheckKind::kAbstractClassCheck: {
   3109       // /* HeapReference<Class> */ temp = obj->klass_
   3110       GenerateReferenceLoadTwoRegisters(instruction,
   3111                                         temp_loc,
   3112                                         obj_loc,
   3113                                         class_offset,
   3114                                         maybe_temp2_loc,
   3115                                         kWithoutReadBarrier);
   3116       // If the class is abstract, we eagerly fetch the super class of the
   3117       // object to avoid doing a comparison we know will fail.
   3118       MipsLabel loop;
   3119       __ Bind(&loop);
   3120       // /* HeapReference<Class> */ temp = temp->super_class_
   3121       GenerateReferenceLoadOneRegister(instruction,
   3122                                        temp_loc,
   3123                                        super_offset,
   3124                                        maybe_temp2_loc,
   3125                                        kWithoutReadBarrier);
   3126       // If the class reference currently in `temp` is null, jump to the slow path to throw the
   3127       // exception.
   3128       __ Beqz(temp, slow_path->GetEntryLabel());
   3129       // Otherwise, compare the classes.
   3130       __ Bne(temp, cls, &loop);
   3131       break;
   3132     }
   3133 
   3134     case TypeCheckKind::kClassHierarchyCheck: {
   3135       // /* HeapReference<Class> */ temp = obj->klass_
   3136       GenerateReferenceLoadTwoRegisters(instruction,
   3137                                         temp_loc,
   3138                                         obj_loc,
   3139                                         class_offset,
   3140                                         maybe_temp2_loc,
   3141                                         kWithoutReadBarrier);
   3142       // Walk over the class hierarchy to find a match.
   3143       MipsLabel loop;
   3144       __ Bind(&loop);
   3145       __ Beq(temp, cls, &done);
   3146       // /* HeapReference<Class> */ temp = temp->super_class_
   3147       GenerateReferenceLoadOneRegister(instruction,
   3148                                        temp_loc,
   3149                                        super_offset,
   3150                                        maybe_temp2_loc,
   3151                                        kWithoutReadBarrier);
   3152       // If the class reference currently in `temp` is null, jump to the slow path to throw the
   3153       // exception. Otherwise, jump to the beginning of the loop.
   3154       __ Bnez(temp, &loop);
   3155       __ B(slow_path->GetEntryLabel());
   3156       break;
   3157     }
   3158 
   3159     case TypeCheckKind::kArrayObjectCheck: {
   3160       // /* HeapReference<Class> */ temp = obj->klass_
   3161       GenerateReferenceLoadTwoRegisters(instruction,
   3162                                         temp_loc,
   3163                                         obj_loc,
   3164                                         class_offset,
   3165                                         maybe_temp2_loc,
   3166                                         kWithoutReadBarrier);
   3167       // Do an exact check.
   3168       __ Beq(temp, cls, &done);
   3169       // Otherwise, we need to check that the object's class is a non-primitive array.
   3170       // /* HeapReference<Class> */ temp = temp->component_type_
   3171       GenerateReferenceLoadOneRegister(instruction,
   3172                                        temp_loc,
   3173                                        component_offset,
   3174                                        maybe_temp2_loc,
   3175                                        kWithoutReadBarrier);
   3176       // If the component type is null, jump to the slow path to throw the exception.
   3177       __ Beqz(temp, slow_path->GetEntryLabel());
   3178       // Otherwise, the object is indeed an array, further check that this component
   3179       // type is not a primitive type.
   3180       __ LoadFromOffset(kLoadUnsignedHalfword, temp, temp, primitive_offset);
   3181       static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
   3182       __ Bnez(temp, slow_path->GetEntryLabel());
   3183       break;
   3184     }
   3185 
   3186     case TypeCheckKind::kUnresolvedCheck:
   3187       // We always go into the type check slow path for the unresolved check case.
   3188       // We cannot directly call the CheckCast runtime entry point
   3189       // without resorting to a type checking slow path here (i.e. by
   3190       // calling InvokeRuntime directly), as it would require to
   3191       // assign fixed registers for the inputs of this HInstanceOf
   3192       // instruction (following the runtime calling convention), which
   3193       // might be cluttered by the potential first read barrier
   3194       // emission at the beginning of this method.
   3195       __ B(slow_path->GetEntryLabel());
   3196       break;
   3197 
   3198     case TypeCheckKind::kInterfaceCheck: {
   3199       // Avoid read barriers to improve performance of the fast path. We can not get false
   3200       // positives by doing this.
   3201       // /* HeapReference<Class> */ temp = obj->klass_
   3202       GenerateReferenceLoadTwoRegisters(instruction,
   3203                                         temp_loc,
   3204                                         obj_loc,
   3205                                         class_offset,
   3206                                         maybe_temp2_loc,
   3207                                         kWithoutReadBarrier);
   3208       // /* HeapReference<Class> */ temp = temp->iftable_
   3209       GenerateReferenceLoadTwoRegisters(instruction,
   3210                                         temp_loc,
   3211                                         temp_loc,
   3212                                         iftable_offset,
   3213                                         maybe_temp2_loc,
   3214                                         kWithoutReadBarrier);
   3215       // Iftable is never null.
   3216       __ Lw(TMP, temp, array_length_offset);
   3217       // Loop through the iftable and check if any class matches.
   3218       MipsLabel loop;
   3219       __ Bind(&loop);
   3220       __ Addiu(temp, temp, 2 * kHeapReferenceSize);  // Possibly in delay slot on R2.
   3221       __ Beqz(TMP, slow_path->GetEntryLabel());
   3222       __ Lw(AT, temp, object_array_data_offset - 2 * kHeapReferenceSize);
   3223       __ MaybeUnpoisonHeapReference(AT);
   3224       // Go to next interface.
   3225       __ Addiu(TMP, TMP, -2);
   3226       // Compare the classes and continue the loop if they do not match.
   3227       __ Bne(AT, cls, &loop);
   3228       break;
   3229     }
   3230   }
   3231 
   3232   __ Bind(&done);
   3233   __ Bind(slow_path->GetExitLabel());
   3234 }
   3235 
   3236 void LocationsBuilderMIPS::VisitClinitCheck(HClinitCheck* check) {
   3237   LocationSummary* locations =
   3238       new (GetGraph()->GetArena()) LocationSummary(check, LocationSummary::kCallOnSlowPath);
   3239   locations->SetInAt(0, Location::RequiresRegister());
   3240   if (check->HasUses()) {
   3241     locations->SetOut(Location::SameAsFirstInput());
   3242   }
   3243 }
   3244 
   3245 void InstructionCodeGeneratorMIPS::VisitClinitCheck(HClinitCheck* check) {
   3246   // We assume the class is not null.
   3247   SlowPathCodeMIPS* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathMIPS(
   3248       check->GetLoadClass(),
   3249       check,
   3250       check->GetDexPc(),
   3251       true);
   3252   codegen_->AddSlowPath(slow_path);
   3253   GenerateClassInitializationCheck(slow_path,
   3254                                    check->GetLocations()->InAt(0).AsRegister<Register>());
   3255 }
   3256 
   3257 void LocationsBuilderMIPS::VisitCompare(HCompare* compare) {
   3258   Primitive::Type in_type = compare->InputAt(0)->GetType();
   3259 
   3260   LocationSummary* locations =
   3261       new (GetGraph()->GetArena()) LocationSummary(compare, LocationSummary::kNoCall);
   3262 
   3263   switch (in_type) {
   3264     case Primitive::kPrimBoolean:
   3265     case Primitive::kPrimByte:
   3266     case Primitive::kPrimShort:
   3267     case Primitive::kPrimChar:
   3268     case Primitive::kPrimInt:
   3269       locations->SetInAt(0, Location::RequiresRegister());
   3270       locations->SetInAt(1, Location::RequiresRegister());
   3271       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   3272       break;
   3273 
   3274     case Primitive::kPrimLong:
   3275       locations->SetInAt(0, Location::RequiresRegister());
   3276       locations->SetInAt(1, Location::RequiresRegister());
   3277       // Output overlaps because it is written before doing the low comparison.
   3278       locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
   3279       break;
   3280 
   3281     case Primitive::kPrimFloat:
   3282     case Primitive::kPrimDouble:
   3283       locations->SetInAt(0, Location::RequiresFpuRegister());
   3284       locations->SetInAt(1, Location::RequiresFpuRegister());
   3285       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   3286       break;
   3287 
   3288     default:
   3289       LOG(FATAL) << "Unexpected type for compare operation " << in_type;
   3290   }
   3291 }
   3292 
   3293 void InstructionCodeGeneratorMIPS::VisitCompare(HCompare* instruction) {
   3294   LocationSummary* locations = instruction->GetLocations();
   3295   Register res = locations->Out().AsRegister<Register>();
   3296   Primitive::Type in_type = instruction->InputAt(0)->GetType();
   3297   bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
   3298 
   3299   //  0 if: left == right
   3300   //  1 if: left  > right
   3301   // -1 if: left  < right
   3302   switch (in_type) {
   3303     case Primitive::kPrimBoolean:
   3304     case Primitive::kPrimByte:
   3305     case Primitive::kPrimShort:
   3306     case Primitive::kPrimChar:
   3307     case Primitive::kPrimInt: {
   3308       Register lhs = locations->InAt(0).AsRegister<Register>();
   3309       Register rhs = locations->InAt(1).AsRegister<Register>();
   3310       __ Slt(TMP, lhs, rhs);
   3311       __ Slt(res, rhs, lhs);
   3312       __ Subu(res, res, TMP);
   3313       break;
   3314     }
   3315     case Primitive::kPrimLong: {
   3316       MipsLabel done;
   3317       Register lhs_high = locations->InAt(0).AsRegisterPairHigh<Register>();
   3318       Register lhs_low  = locations->InAt(0).AsRegisterPairLow<Register>();
   3319       Register rhs_high = locations->InAt(1).AsRegisterPairHigh<Register>();
   3320       Register rhs_low  = locations->InAt(1).AsRegisterPairLow<Register>();
   3321       // TODO: more efficient (direct) comparison with a constant.
   3322       __ Slt(TMP, lhs_high, rhs_high);
   3323       __ Slt(AT, rhs_high, lhs_high);  // Inverted: is actually gt.
   3324       __ Subu(res, AT, TMP);           // Result -1:1:0 for [ <, >, == ].
   3325       __ Bnez(res, &done);             // If we compared ==, check if lower bits are also equal.
   3326       __ Sltu(TMP, lhs_low, rhs_low);
   3327       __ Sltu(AT, rhs_low, lhs_low);   // Inverted: is actually gt.
   3328       __ Subu(res, AT, TMP);           // Result -1:1:0 for [ <, >, == ].
   3329       __ Bind(&done);
   3330       break;
   3331     }
   3332 
   3333     case Primitive::kPrimFloat: {
   3334       bool gt_bias = instruction->IsGtBias();
   3335       FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>();
   3336       FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>();
   3337       MipsLabel done;
   3338       if (isR6) {
   3339         __ CmpEqS(FTMP, lhs, rhs);
   3340         __ LoadConst32(res, 0);
   3341         __ Bc1nez(FTMP, &done);
   3342         if (gt_bias) {
   3343           __ CmpLtS(FTMP, lhs, rhs);
   3344           __ LoadConst32(res, -1);
   3345           __ Bc1nez(FTMP, &done);
   3346           __ LoadConst32(res, 1);
   3347         } else {
   3348           __ CmpLtS(FTMP, rhs, lhs);
   3349           __ LoadConst32(res, 1);
   3350           __ Bc1nez(FTMP, &done);
   3351           __ LoadConst32(res, -1);
   3352         }
   3353       } else {
   3354         if (gt_bias) {
   3355           __ ColtS(0, lhs, rhs);
   3356           __ LoadConst32(res, -1);
   3357           __ Bc1t(0, &done);
   3358           __ CeqS(0, lhs, rhs);
   3359           __ LoadConst32(res, 1);
   3360           __ Movt(res, ZERO, 0);
   3361         } else {
   3362           __ ColtS(0, rhs, lhs);
   3363           __ LoadConst32(res, 1);
   3364           __ Bc1t(0, &done);
   3365           __ CeqS(0, lhs, rhs);
   3366           __ LoadConst32(res, -1);
   3367           __ Movt(res, ZERO, 0);
   3368         }
   3369       }
   3370       __ Bind(&done);
   3371       break;
   3372     }
   3373     case Primitive::kPrimDouble: {
   3374       bool gt_bias = instruction->IsGtBias();
   3375       FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>();
   3376       FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>();
   3377       MipsLabel done;
   3378       if (isR6) {
   3379         __ CmpEqD(FTMP, lhs, rhs);
   3380         __ LoadConst32(res, 0);
   3381         __ Bc1nez(FTMP, &done);
   3382         if (gt_bias) {
   3383           __ CmpLtD(FTMP, lhs, rhs);
   3384           __ LoadConst32(res, -1);
   3385           __ Bc1nez(FTMP, &done);
   3386           __ LoadConst32(res, 1);
   3387         } else {
   3388           __ CmpLtD(FTMP, rhs, lhs);
   3389           __ LoadConst32(res, 1);
   3390           __ Bc1nez(FTMP, &done);
   3391           __ LoadConst32(res, -1);
   3392         }
   3393       } else {
   3394         if (gt_bias) {
   3395           __ ColtD(0, lhs, rhs);
   3396           __ LoadConst32(res, -1);
   3397           __ Bc1t(0, &done);
   3398           __ CeqD(0, lhs, rhs);
   3399           __ LoadConst32(res, 1);
   3400           __ Movt(res, ZERO, 0);
   3401         } else {
   3402           __ ColtD(0, rhs, lhs);
   3403           __ LoadConst32(res, 1);
   3404           __ Bc1t(0, &done);
   3405           __ CeqD(0, lhs, rhs);
   3406           __ LoadConst32(res, -1);
   3407           __ Movt(res, ZERO, 0);
   3408         }
   3409       }
   3410       __ Bind(&done);
   3411       break;
   3412     }
   3413 
   3414     default:
   3415       LOG(FATAL) << "Unimplemented compare type " << in_type;
   3416   }
   3417 }
   3418 
   3419 void LocationsBuilderMIPS::HandleCondition(HCondition* instruction) {
   3420   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
   3421   switch (instruction->InputAt(0)->GetType()) {
   3422     default:
   3423     case Primitive::kPrimLong:
   3424       locations->SetInAt(0, Location::RequiresRegister());
   3425       locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
   3426       break;
   3427 
   3428     case Primitive::kPrimFloat:
   3429     case Primitive::kPrimDouble:
   3430       locations->SetInAt(0, Location::RequiresFpuRegister());
   3431       locations->SetInAt(1, Location::RequiresFpuRegister());
   3432       break;
   3433   }
   3434   if (!instruction->IsEmittedAtUseSite()) {
   3435     locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   3436   }
   3437 }
   3438 
   3439 void InstructionCodeGeneratorMIPS::HandleCondition(HCondition* instruction) {
   3440   if (instruction->IsEmittedAtUseSite()) {
   3441     return;
   3442   }
   3443 
   3444   Primitive::Type type = instruction->InputAt(0)->GetType();
   3445   LocationSummary* locations = instruction->GetLocations();
   3446   Register dst = locations->Out().AsRegister<Register>();
   3447   MipsLabel true_label;
   3448 
   3449   switch (type) {
   3450     default:
   3451       // Integer case.
   3452       GenerateIntCompare(instruction->GetCondition(), locations);
   3453       return;
   3454 
   3455     case Primitive::kPrimLong:
   3456       // TODO: don't use branches.
   3457       GenerateLongCompareAndBranch(instruction->GetCondition(), locations, &true_label);
   3458       break;
   3459 
   3460     case Primitive::kPrimFloat:
   3461     case Primitive::kPrimDouble:
   3462       GenerateFpCompare(instruction->GetCondition(), instruction->IsGtBias(), type, locations);
   3463       return;
   3464   }
   3465 
   3466   // Convert the branches into the result.
   3467   MipsLabel done;
   3468 
   3469   // False case: result = 0.
   3470   __ LoadConst32(dst, 0);
   3471   __ B(&done);
   3472 
   3473   // True case: result = 1.
   3474   __ Bind(&true_label);
   3475   __ LoadConst32(dst, 1);
   3476   __ Bind(&done);
   3477 }
   3478 
   3479 void InstructionCodeGeneratorMIPS::DivRemOneOrMinusOne(HBinaryOperation* instruction) {
   3480   DCHECK(instruction->IsDiv() || instruction->IsRem());
   3481   DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimInt);
   3482 
   3483   LocationSummary* locations = instruction->GetLocations();
   3484   Location second = locations->InAt(1);
   3485   DCHECK(second.IsConstant());
   3486 
   3487   Register out = locations->Out().AsRegister<Register>();
   3488   Register dividend = locations->InAt(0).AsRegister<Register>();
   3489   int32_t imm = second.GetConstant()->AsIntConstant()->GetValue();
   3490   DCHECK(imm == 1 || imm == -1);
   3491 
   3492   if (instruction->IsRem()) {
   3493     __ Move(out, ZERO);
   3494   } else {
   3495     if (imm == -1) {
   3496       __ Subu(out, ZERO, dividend);
   3497     } else if (out != dividend) {
   3498       __ Move(out, dividend);
   3499     }
   3500   }
   3501 }
   3502 
   3503 void InstructionCodeGeneratorMIPS::DivRemByPowerOfTwo(HBinaryOperation* instruction) {
   3504   DCHECK(instruction->IsDiv() || instruction->IsRem());
   3505   DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimInt);
   3506 
   3507   LocationSummary* locations = instruction->GetLocations();
   3508   Location second = locations->InAt(1);
   3509   DCHECK(second.IsConstant());
   3510 
   3511   Register out = locations->Out().AsRegister<Register>();
   3512   Register dividend = locations->InAt(0).AsRegister<Register>();
   3513   int32_t imm = second.GetConstant()->AsIntConstant()->GetValue();
   3514   uint32_t abs_imm = static_cast<uint32_t>(AbsOrMin(imm));
   3515   int ctz_imm = CTZ(abs_imm);
   3516 
   3517   if (instruction->IsDiv()) {
   3518     if (ctz_imm == 1) {
   3519       // Fast path for division by +/-2, which is very common.
   3520       __ Srl(TMP, dividend, 31);
   3521     } else {
   3522       __ Sra(TMP, dividend, 31);
   3523       __ Srl(TMP, TMP, 32 - ctz_imm);
   3524     }
   3525     __ Addu(out, dividend, TMP);
   3526     __ Sra(out, out, ctz_imm);
   3527     if (imm < 0) {
   3528       __ Subu(out, ZERO, out);
   3529     }
   3530   } else {
   3531     if (ctz_imm == 1) {
   3532       // Fast path for modulo +/-2, which is very common.
   3533       __ Sra(TMP, dividend, 31);
   3534       __ Subu(out, dividend, TMP);
   3535       __ Andi(out, out, 1);
   3536       __ Addu(out, out, TMP);
   3537     } else {
   3538       __ Sra(TMP, dividend, 31);
   3539       __ Srl(TMP, TMP, 32 - ctz_imm);
   3540       __ Addu(out, dividend, TMP);
   3541       if (IsUint<16>(abs_imm - 1)) {
   3542         __ Andi(out, out, abs_imm - 1);
   3543       } else {
   3544         __ Sll(out, out, 32 - ctz_imm);
   3545         __ Srl(out, out, 32 - ctz_imm);
   3546       }
   3547       __ Subu(out, out, TMP);
   3548     }
   3549   }
   3550 }
   3551 
   3552 void InstructionCodeGeneratorMIPS::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) {
   3553   DCHECK(instruction->IsDiv() || instruction->IsRem());
   3554   DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimInt);
   3555 
   3556   LocationSummary* locations = instruction->GetLocations();
   3557   Location second = locations->InAt(1);
   3558   DCHECK(second.IsConstant());
   3559 
   3560   Register out = locations->Out().AsRegister<Register>();
   3561   Register dividend = locations->InAt(0).AsRegister<Register>();
   3562   int32_t imm = second.GetConstant()->AsIntConstant()->GetValue();
   3563 
   3564   int64_t magic;
   3565   int shift;
   3566   CalculateMagicAndShiftForDivRem(imm, false /* is_long */, &magic, &shift);
   3567 
   3568   bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
   3569 
   3570   __ LoadConst32(TMP, magic);
   3571   if (isR6) {
   3572     __ MuhR6(TMP, dividend, TMP);
   3573   } else {
   3574     __ MultR2(dividend, TMP);
   3575     __ Mfhi(TMP);
   3576   }
   3577   if (imm > 0 && magic < 0) {
   3578     __ Addu(TMP, TMP, dividend);
   3579   } else if (imm < 0 && magic > 0) {
   3580     __ Subu(TMP, TMP, dividend);
   3581   }
   3582 
   3583   if (shift != 0) {
   3584     __ Sra(TMP, TMP, shift);
   3585   }
   3586 
   3587   if (instruction->IsDiv()) {
   3588     __ Sra(out, TMP, 31);
   3589     __ Subu(out, TMP, out);
   3590   } else {
   3591     __ Sra(AT, TMP, 31);
   3592     __ Subu(AT, TMP, AT);
   3593     __ LoadConst32(TMP, imm);
   3594     if (isR6) {
   3595       __ MulR6(TMP, AT, TMP);
   3596     } else {
   3597       __ MulR2(TMP, AT, TMP);
   3598     }
   3599     __ Subu(out, dividend, TMP);
   3600   }
   3601 }
   3602 
   3603 void InstructionCodeGeneratorMIPS::GenerateDivRemIntegral(HBinaryOperation* instruction) {
   3604   DCHECK(instruction->IsDiv() || instruction->IsRem());
   3605   DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimInt);
   3606 
   3607   LocationSummary* locations = instruction->GetLocations();
   3608   Register out = locations->Out().AsRegister<Register>();
   3609   Location second = locations->InAt(1);
   3610 
   3611   if (second.IsConstant()) {
   3612     int32_t imm = second.GetConstant()->AsIntConstant()->GetValue();
   3613     if (imm == 0) {
   3614       // Do not generate anything. DivZeroCheck would prevent any code to be executed.
   3615     } else if (imm == 1 || imm == -1) {
   3616       DivRemOneOrMinusOne(instruction);
   3617     } else if (IsPowerOfTwo(AbsOrMin(imm))) {
   3618       DivRemByPowerOfTwo(instruction);
   3619     } else {
   3620       DCHECK(imm <= -2 || imm >= 2);
   3621       GenerateDivRemWithAnyConstant(instruction);
   3622     }
   3623   } else {
   3624     Register dividend = locations->InAt(0).AsRegister<Register>();
   3625     Register divisor = second.AsRegister<Register>();
   3626     bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
   3627     if (instruction->IsDiv()) {
   3628       if (isR6) {
   3629         __ DivR6(out, dividend, divisor);
   3630       } else {
   3631         __ DivR2(out, dividend, divisor);
   3632       }
   3633     } else {
   3634       if (isR6) {
   3635         __ ModR6(out, dividend, divisor);
   3636       } else {
   3637         __ ModR2(out, dividend, divisor);
   3638       }
   3639     }
   3640   }
   3641 }
   3642 
   3643 void LocationsBuilderMIPS::VisitDiv(HDiv* div) {
   3644   Primitive::Type type = div->GetResultType();
   3645   LocationSummary::CallKind call_kind = (type == Primitive::kPrimLong)
   3646       ? LocationSummary::kCallOnMainOnly
   3647       : LocationSummary::kNoCall;
   3648 
   3649   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(div, call_kind);
   3650 
   3651   switch (type) {
   3652     case Primitive::kPrimInt:
   3653       locations->SetInAt(0, Location::RequiresRegister());
   3654       locations->SetInAt(1, Location::RegisterOrConstant(div->InputAt(1)));
   3655       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   3656       break;
   3657 
   3658     case Primitive::kPrimLong: {
   3659       InvokeRuntimeCallingConvention calling_convention;
   3660       locations->SetInAt(0, Location::RegisterPairLocation(
   3661           calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
   3662       locations->SetInAt(1, Location::RegisterPairLocation(
   3663           calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
   3664       locations->SetOut(calling_convention.GetReturnLocation(type));
   3665       break;
   3666     }
   3667 
   3668     case Primitive::kPrimFloat:
   3669     case Primitive::kPrimDouble:
   3670       locations->SetInAt(0, Location::RequiresFpuRegister());
   3671       locations->SetInAt(1, Location::RequiresFpuRegister());
   3672       locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
   3673       break;
   3674 
   3675     default:
   3676       LOG(FATAL) << "Unexpected div type " << type;
   3677   }
   3678 }
   3679 
   3680 void InstructionCodeGeneratorMIPS::VisitDiv(HDiv* instruction) {
   3681   Primitive::Type type = instruction->GetType();
   3682   LocationSummary* locations = instruction->GetLocations();
   3683 
   3684   switch (type) {
   3685     case Primitive::kPrimInt:
   3686       GenerateDivRemIntegral(instruction);
   3687       break;
   3688     case Primitive::kPrimLong: {
   3689       codegen_->InvokeRuntime(kQuickLdiv, instruction, instruction->GetDexPc());
   3690       CheckEntrypointTypes<kQuickLdiv, int64_t, int64_t, int64_t>();
   3691       break;
   3692     }
   3693     case Primitive::kPrimFloat:
   3694     case Primitive::kPrimDouble: {
   3695       FRegister dst = locations->Out().AsFpuRegister<FRegister>();
   3696       FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>();
   3697       FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>();
   3698       if (type == Primitive::kPrimFloat) {
   3699         __ DivS(dst, lhs, rhs);
   3700       } else {
   3701         __ DivD(dst, lhs, rhs);
   3702       }
   3703       break;
   3704     }
   3705     default:
   3706       LOG(FATAL) << "Unexpected div type " << type;
   3707   }
   3708 }
   3709 
   3710 void LocationsBuilderMIPS::VisitDivZeroCheck(HDivZeroCheck* instruction) {
   3711   LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction);
   3712   locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0)));
   3713 }
   3714 
   3715 void InstructionCodeGeneratorMIPS::VisitDivZeroCheck(HDivZeroCheck* instruction) {
   3716   SlowPathCodeMIPS* slow_path = new (GetGraph()->GetArena()) DivZeroCheckSlowPathMIPS(instruction);
   3717   codegen_->AddSlowPath(slow_path);
   3718   Location value = instruction->GetLocations()->InAt(0);
   3719   Primitive::Type type = instruction->GetType();
   3720 
   3721   switch (type) {
   3722     case Primitive::kPrimBoolean:
   3723     case Primitive::kPrimByte:
   3724     case Primitive::kPrimChar:
   3725     case Primitive::kPrimShort:
   3726     case Primitive::kPrimInt: {
   3727       if (value.IsConstant()) {
   3728         if (value.GetConstant()->AsIntConstant()->GetValue() == 0) {
   3729           __ B(slow_path->GetEntryLabel());
   3730         } else {
   3731           // A division by a non-null constant is valid. We don't need to perform
   3732           // any check, so simply fall through.
   3733         }
   3734       } else {
   3735         DCHECK(value.IsRegister()) << value;
   3736         __ Beqz(value.AsRegister<Register>(), slow_path->GetEntryLabel());
   3737       }
   3738       break;
   3739     }
   3740     case Primitive::kPrimLong: {
   3741       if (value.IsConstant()) {
   3742         if (value.GetConstant()->AsLongConstant()->GetValue() == 0) {
   3743           __ B(slow_path->GetEntryLabel());
   3744         } else {
   3745           // A division by a non-null constant is valid. We don't need to perform
   3746           // any check, so simply fall through.
   3747         }
   3748       } else {
   3749         DCHECK(value.IsRegisterPair()) << value;
   3750         __ Or(TMP, value.AsRegisterPairHigh<Register>(), value.AsRegisterPairLow<Register>());
   3751         __ Beqz(TMP, slow_path->GetEntryLabel());
   3752       }
   3753       break;
   3754     }
   3755     default:
   3756       LOG(FATAL) << "Unexpected type " << type << " for DivZeroCheck.";
   3757   }
   3758 }
   3759 
   3760 void LocationsBuilderMIPS::VisitDoubleConstant(HDoubleConstant* constant) {
   3761   LocationSummary* locations =
   3762       new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
   3763   locations->SetOut(Location::ConstantLocation(constant));
   3764 }
   3765 
   3766 void InstructionCodeGeneratorMIPS::VisitDoubleConstant(HDoubleConstant* cst ATTRIBUTE_UNUSED) {
   3767   // Will be generated at use site.
   3768 }
   3769 
   3770 void LocationsBuilderMIPS::VisitExit(HExit* exit) {
   3771   exit->SetLocations(nullptr);
   3772 }
   3773 
   3774 void InstructionCodeGeneratorMIPS::VisitExit(HExit* exit ATTRIBUTE_UNUSED) {
   3775 }
   3776 
   3777 void LocationsBuilderMIPS::VisitFloatConstant(HFloatConstant* constant) {
   3778   LocationSummary* locations =
   3779       new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
   3780   locations->SetOut(Location::ConstantLocation(constant));
   3781 }
   3782 
   3783 void InstructionCodeGeneratorMIPS::VisitFloatConstant(HFloatConstant* constant ATTRIBUTE_UNUSED) {
   3784   // Will be generated at use site.
   3785 }
   3786 
   3787 void LocationsBuilderMIPS::VisitGoto(HGoto* got) {
   3788   got->SetLocations(nullptr);
   3789 }
   3790 
   3791 void InstructionCodeGeneratorMIPS::HandleGoto(HInstruction* got, HBasicBlock* successor) {
   3792   DCHECK(!successor->IsExitBlock());
   3793   HBasicBlock* block = got->GetBlock();
   3794   HInstruction* previous = got->GetPrevious();
   3795   HLoopInformation* info = block->GetLoopInformation();
   3796 
   3797   if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) {
   3798     codegen_->ClearSpillSlotsFromLoopPhisInStackMap(info->GetSuspendCheck());
   3799     GenerateSuspendCheck(info->GetSuspendCheck(), successor);
   3800     return;
   3801   }
   3802   if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) {
   3803     GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr);
   3804   }
   3805   if (!codegen_->GoesToNextBlock(block, successor)) {
   3806     __ B(codegen_->GetLabelOf(successor));
   3807   }
   3808 }
   3809 
   3810 void InstructionCodeGeneratorMIPS::VisitGoto(HGoto* got) {
   3811   HandleGoto(got, got->GetSuccessor());
   3812 }
   3813 
   3814 void LocationsBuilderMIPS::VisitTryBoundary(HTryBoundary* try_boundary) {
   3815   try_boundary->SetLocations(nullptr);
   3816 }
   3817 
   3818 void InstructionCodeGeneratorMIPS::VisitTryBoundary(HTryBoundary* try_boundary) {
   3819   HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor();
   3820   if (!successor->IsExitBlock()) {
   3821     HandleGoto(try_boundary, successor);
   3822   }
   3823 }
   3824 
   3825 void InstructionCodeGeneratorMIPS::GenerateIntCompare(IfCondition cond,
   3826                                                       LocationSummary* locations) {
   3827   Register dst = locations->Out().AsRegister<Register>();
   3828   Register lhs = locations->InAt(0).AsRegister<Register>();
   3829   Location rhs_location = locations->InAt(1);
   3830   Register rhs_reg = ZERO;
   3831   int64_t rhs_imm = 0;
   3832   bool use_imm = rhs_location.IsConstant();
   3833   if (use_imm) {
   3834     rhs_imm = CodeGenerator::GetInt32ValueOf(rhs_location.GetConstant());
   3835   } else {
   3836     rhs_reg = rhs_location.AsRegister<Register>();
   3837   }
   3838 
   3839   switch (cond) {
   3840     case kCondEQ:
   3841     case kCondNE:
   3842       if (use_imm && IsInt<16>(-rhs_imm)) {
   3843         if (rhs_imm == 0) {
   3844           if (cond == kCondEQ) {
   3845             __ Sltiu(dst, lhs, 1);
   3846           } else {
   3847             __ Sltu(dst, ZERO, lhs);
   3848           }
   3849         } else {
   3850           __ Addiu(dst, lhs, -rhs_imm);
   3851           if (cond == kCondEQ) {
   3852             __ Sltiu(dst, dst, 1);
   3853           } else {
   3854             __ Sltu(dst, ZERO, dst);
   3855           }
   3856         }
   3857       } else {
   3858         if (use_imm && IsUint<16>(rhs_imm)) {
   3859           __ Xori(dst, lhs, rhs_imm);
   3860         } else {
   3861           if (use_imm) {
   3862             rhs_reg = TMP;
   3863             __ LoadConst32(rhs_reg, rhs_imm);
   3864           }
   3865           __ Xor(dst, lhs, rhs_reg);
   3866         }
   3867         if (cond == kCondEQ) {
   3868           __ Sltiu(dst, dst, 1);
   3869         } else {
   3870           __ Sltu(dst, ZERO, dst);
   3871         }
   3872       }
   3873       break;
   3874 
   3875     case kCondLT:
   3876     case kCondGE:
   3877       if (use_imm && IsInt<16>(rhs_imm)) {
   3878         __ Slti(dst, lhs, rhs_imm);
   3879       } else {
   3880         if (use_imm) {
   3881           rhs_reg = TMP;
   3882           __ LoadConst32(rhs_reg, rhs_imm);
   3883         }
   3884         __ Slt(dst, lhs, rhs_reg);
   3885       }
   3886       if (cond == kCondGE) {
   3887         // Simulate lhs >= rhs via !(lhs < rhs) since there's
   3888         // only the slt instruction but no sge.
   3889         __ Xori(dst, dst, 1);
   3890       }
   3891       break;
   3892 
   3893     case kCondLE:
   3894     case kCondGT:
   3895       if (use_imm && IsInt<16>(rhs_imm + 1)) {
   3896         // Simulate lhs <= rhs via lhs < rhs + 1.
   3897         __ Slti(dst, lhs, rhs_imm + 1);
   3898         if (cond == kCondGT) {
   3899           // Simulate lhs > rhs via !(lhs <= rhs) since there's
   3900           // only the slti instruction but no sgti.
   3901           __ Xori(dst, dst, 1);
   3902         }
   3903       } else {
   3904         if (use_imm) {
   3905           rhs_reg = TMP;
   3906           __ LoadConst32(rhs_reg, rhs_imm);
   3907         }
   3908         __ Slt(dst, rhs_reg, lhs);
   3909         if (cond == kCondLE) {
   3910           // Simulate lhs <= rhs via !(rhs < lhs) since there's
   3911           // only the slt instruction but no sle.
   3912           __ Xori(dst, dst, 1);
   3913         }
   3914       }
   3915       break;
   3916 
   3917     case kCondB:
   3918     case kCondAE:
   3919       if (use_imm && IsInt<16>(rhs_imm)) {
   3920         // Sltiu sign-extends its 16-bit immediate operand before
   3921         // the comparison and thus lets us compare directly with
   3922         // unsigned values in the ranges [0, 0x7fff] and
   3923         // [0xffff8000, 0xffffffff].
   3924         __ Sltiu(dst, lhs, rhs_imm);
   3925       } else {
   3926         if (use_imm) {
   3927           rhs_reg = TMP;
   3928           __ LoadConst32(rhs_reg, rhs_imm);
   3929         }
   3930         __ Sltu(dst, lhs, rhs_reg);
   3931       }
   3932       if (cond == kCondAE) {
   3933         // Simulate lhs >= rhs via !(lhs < rhs) since there's
   3934         // only the sltu instruction but no sgeu.
   3935         __ Xori(dst, dst, 1);
   3936       }
   3937       break;
   3938 
   3939     case kCondBE:
   3940     case kCondA:
   3941       if (use_imm && (rhs_imm != -1) && IsInt<16>(rhs_imm + 1)) {
   3942         // Simulate lhs <= rhs via lhs < rhs + 1.
   3943         // Note that this only works if rhs + 1 does not overflow
   3944         // to 0, hence the check above.
   3945         // Sltiu sign-extends its 16-bit immediate operand before
   3946         // the comparison and thus lets us compare directly with
   3947         // unsigned values in the ranges [0, 0x7fff] and
   3948         // [0xffff8000, 0xffffffff].
   3949         __ Sltiu(dst, lhs, rhs_imm + 1);
   3950         if (cond == kCondA) {
   3951           // Simulate lhs > rhs via !(lhs <= rhs) since there's
   3952           // only the sltiu instruction but no sgtiu.
   3953           __ Xori(dst, dst, 1);
   3954         }
   3955       } else {
   3956         if (use_imm) {
   3957           rhs_reg = TMP;
   3958           __ LoadConst32(rhs_reg, rhs_imm);
   3959         }
   3960         __ Sltu(dst, rhs_reg, lhs);
   3961         if (cond == kCondBE) {
   3962           // Simulate lhs <= rhs via !(rhs < lhs) since there's
   3963           // only the sltu instruction but no sleu.
   3964           __ Xori(dst, dst, 1);
   3965         }
   3966       }
   3967       break;
   3968   }
   3969 }
   3970 
   3971 bool InstructionCodeGeneratorMIPS::MaterializeIntCompare(IfCondition cond,
   3972                                                          LocationSummary* input_locations,
   3973                                                          Register dst) {
   3974   Register lhs = input_locations->InAt(0).AsRegister<Register>();
   3975   Location rhs_location = input_locations->InAt(1);
   3976   Register rhs_reg = ZERO;
   3977   int64_t rhs_imm = 0;
   3978   bool use_imm = rhs_location.IsConstant();
   3979   if (use_imm) {
   3980     rhs_imm = CodeGenerator::GetInt32ValueOf(rhs_location.GetConstant());
   3981   } else {
   3982     rhs_reg = rhs_location.AsRegister<Register>();
   3983   }
   3984 
   3985   switch (cond) {
   3986     case kCondEQ:
   3987     case kCondNE:
   3988       if (use_imm && IsInt<16>(-rhs_imm)) {
   3989         __ Addiu(dst, lhs, -rhs_imm);
   3990       } else if (use_imm && IsUint<16>(rhs_imm)) {
   3991         __ Xori(dst, lhs, rhs_imm);
   3992       } else {
   3993         if (use_imm) {
   3994           rhs_reg = TMP;
   3995           __ LoadConst32(rhs_reg, rhs_imm);
   3996         }
   3997         __ Xor(dst, lhs, rhs_reg);
   3998       }
   3999       return (cond == kCondEQ);
   4000 
   4001     case kCondLT:
   4002     case kCondGE:
   4003       if (use_imm && IsInt<16>(rhs_imm)) {
   4004         __ Slti(dst, lhs, rhs_imm);
   4005       } else {
   4006         if (use_imm) {
   4007           rhs_reg = TMP;
   4008           __ LoadConst32(rhs_reg, rhs_imm);
   4009         }
   4010         __ Slt(dst, lhs, rhs_reg);
   4011       }
   4012       return (cond == kCondGE);
   4013 
   4014     case kCondLE:
   4015     case kCondGT:
   4016       if (use_imm && IsInt<16>(rhs_imm + 1)) {
   4017         // Simulate lhs <= rhs via lhs < rhs + 1.
   4018         __ Slti(dst, lhs, rhs_imm + 1);
   4019         return (cond == kCondGT);
   4020       } else {
   4021         if (use_imm) {
   4022           rhs_reg = TMP;
   4023           __ LoadConst32(rhs_reg, rhs_imm);
   4024         }
   4025         __ Slt(dst, rhs_reg, lhs);
   4026         return (cond == kCondLE);
   4027       }
   4028 
   4029     case kCondB:
   4030     case kCondAE:
   4031       if (use_imm && IsInt<16>(rhs_imm)) {
   4032         // Sltiu sign-extends its 16-bit immediate operand before
   4033         // the comparison and thus lets us compare directly with
   4034         // unsigned values in the ranges [0, 0x7fff] and
   4035         // [0xffff8000, 0xffffffff].
   4036         __ Sltiu(dst, lhs, rhs_imm);
   4037       } else {
   4038         if (use_imm) {
   4039           rhs_reg = TMP;
   4040           __ LoadConst32(rhs_reg, rhs_imm);
   4041         }
   4042         __ Sltu(dst, lhs, rhs_reg);
   4043       }
   4044       return (cond == kCondAE);
   4045 
   4046     case kCondBE:
   4047     case kCondA:
   4048       if (use_imm && (rhs_imm != -1) && IsInt<16>(rhs_imm + 1)) {
   4049         // Simulate lhs <= rhs via lhs < rhs + 1.
   4050         // Note that this only works if rhs + 1 does not overflow
   4051         // to 0, hence the check above.
   4052         // Sltiu sign-extends its 16-bit immediate operand before
   4053         // the comparison and thus lets us compare directly with
   4054         // unsigned values in the ranges [0, 0x7fff] and
   4055         // [0xffff8000, 0xffffffff].
   4056         __ Sltiu(dst, lhs, rhs_imm + 1);
   4057         return (cond == kCondA);
   4058       } else {
   4059         if (use_imm) {
   4060           rhs_reg = TMP;
   4061           __ LoadConst32(rhs_reg, rhs_imm);
   4062         }
   4063         __ Sltu(dst, rhs_reg, lhs);
   4064         return (cond == kCondBE);
   4065       }
   4066   }
   4067 }
   4068 
   4069 void InstructionCodeGeneratorMIPS::GenerateIntCompareAndBranch(IfCondition cond,
   4070                                                                LocationSummary* locations,
   4071                                                                MipsLabel* label) {
   4072   Register lhs = locations->InAt(0).AsRegister<Register>();
   4073   Location rhs_location = locations->InAt(1);
   4074   Register rhs_reg = ZERO;
   4075   int64_t rhs_imm = 0;
   4076   bool use_imm = rhs_location.IsConstant();
   4077   if (use_imm) {
   4078     rhs_imm = CodeGenerator::GetInt32ValueOf(rhs_location.GetConstant());
   4079   } else {
   4080     rhs_reg = rhs_location.AsRegister<Register>();
   4081   }
   4082 
   4083   if (use_imm && rhs_imm == 0) {
   4084     switch (cond) {
   4085       case kCondEQ:
   4086       case kCondBE:  // <= 0 if zero
   4087         __ Beqz(lhs, label);
   4088         break;
   4089       case kCondNE:
   4090       case kCondA:  // > 0 if non-zero
   4091         __ Bnez(lhs, label);
   4092         break;
   4093       case kCondLT:
   4094         __ Bltz(lhs, label);
   4095         break;
   4096       case kCondGE:
   4097         __ Bgez(lhs, label);
   4098         break;
   4099       case kCondLE:
   4100         __ Blez(lhs, label);
   4101         break;
   4102       case kCondGT:
   4103         __ Bgtz(lhs, label);
   4104         break;
   4105       case kCondB:  // always false
   4106         break;
   4107       case kCondAE:  // always true
   4108         __ B(label);
   4109         break;
   4110     }
   4111   } else {
   4112     bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
   4113     if (isR6 || !use_imm) {
   4114       if (use_imm) {
   4115         rhs_reg = TMP;
   4116         __ LoadConst32(rhs_reg, rhs_imm);
   4117       }
   4118       switch (cond) {
   4119         case kCondEQ:
   4120           __ Beq(lhs, rhs_reg, label);
   4121           break;
   4122         case kCondNE:
   4123           __ Bne(lhs, rhs_reg, label);
   4124           break;
   4125         case kCondLT:
   4126           __ Blt(lhs, rhs_reg, label);
   4127           break;
   4128         case kCondGE:
   4129           __ Bge(lhs, rhs_reg, label);
   4130           break;
   4131         case kCondLE:
   4132           __ Bge(rhs_reg, lhs, label);
   4133           break;
   4134         case kCondGT:
   4135           __ Blt(rhs_reg, lhs, label);
   4136           break;
   4137         case kCondB:
   4138           __ Bltu(lhs, rhs_reg, label);
   4139           break;
   4140         case kCondAE:
   4141           __ Bgeu(lhs, rhs_reg, label);
   4142           break;
   4143         case kCondBE:
   4144           __ Bgeu(rhs_reg, lhs, label);
   4145           break;
   4146         case kCondA:
   4147           __ Bltu(rhs_reg, lhs, label);
   4148           break;
   4149       }
   4150     } else {
   4151       // Special cases for more efficient comparison with constants on R2.
   4152       switch (cond) {
   4153         case kCondEQ:
   4154           __ LoadConst32(TMP, rhs_imm);
   4155           __ Beq(lhs, TMP, label);
   4156           break;
   4157         case kCondNE:
   4158           __ LoadConst32(TMP, rhs_imm);
   4159           __ Bne(lhs, TMP, label);
   4160           break;
   4161         case kCondLT:
   4162           if (IsInt<16>(rhs_imm)) {
   4163             __ Slti(TMP, lhs, rhs_imm);
   4164             __ Bnez(TMP, label);
   4165           } else {
   4166             __ LoadConst32(TMP, rhs_imm);
   4167             __ Blt(lhs, TMP, label);
   4168           }
   4169           break;
   4170         case kCondGE:
   4171           if (IsInt<16>(rhs_imm)) {
   4172             __ Slti(TMP, lhs, rhs_imm);
   4173             __ Beqz(TMP, label);
   4174           } else {
   4175             __ LoadConst32(TMP, rhs_imm);
   4176             __ Bge(lhs, TMP, label);
   4177           }
   4178           break;
   4179         case kCondLE:
   4180           if (IsInt<16>(rhs_imm + 1)) {
   4181             // Simulate lhs <= rhs via lhs < rhs + 1.
   4182             __ Slti(TMP, lhs, rhs_imm + 1);
   4183             __ Bnez(TMP, label);
   4184           } else {
   4185             __ LoadConst32(TMP, rhs_imm);
   4186             __ Bge(TMP, lhs, label);
   4187           }
   4188           break;
   4189         case kCondGT:
   4190           if (IsInt<16>(rhs_imm + 1)) {
   4191             // Simulate lhs > rhs via !(lhs < rhs + 1).
   4192             __ Slti(TMP, lhs, rhs_imm + 1);
   4193             __ Beqz(TMP, label);
   4194           } else {
   4195             __ LoadConst32(TMP, rhs_imm);
   4196             __ Blt(TMP, lhs, label);
   4197           }
   4198           break;
   4199         case kCondB:
   4200           if (IsInt<16>(rhs_imm)) {
   4201             __ Sltiu(TMP, lhs, rhs_imm);
   4202             __ Bnez(TMP, label);
   4203           } else {
   4204             __ LoadConst32(TMP, rhs_imm);
   4205             __ Bltu(lhs, TMP, label);
   4206           }
   4207           break;
   4208         case kCondAE:
   4209           if (IsInt<16>(rhs_imm)) {
   4210             __ Sltiu(TMP, lhs, rhs_imm);
   4211             __ Beqz(TMP, label);
   4212           } else {
   4213             __ LoadConst32(TMP, rhs_imm);
   4214             __ Bgeu(lhs, TMP, label);
   4215           }
   4216           break;
   4217         case kCondBE:
   4218           if ((rhs_imm != -1) && IsInt<16>(rhs_imm + 1)) {
   4219             // Simulate lhs <= rhs via lhs < rhs + 1.
   4220             // Note that this only works if rhs + 1 does not overflow
   4221             // to 0, hence the check above.
   4222             __ Sltiu(TMP, lhs, rhs_imm + 1);
   4223             __ Bnez(TMP, label);
   4224           } else {
   4225             __ LoadConst32(TMP, rhs_imm);
   4226             __ Bgeu(TMP, lhs, label);
   4227           }
   4228           break;
   4229         case kCondA:
   4230           if ((rhs_imm != -1) && IsInt<16>(rhs_imm + 1)) {
   4231             // Simulate lhs > rhs via !(lhs < rhs + 1).
   4232             // Note that this only works if rhs + 1 does not overflow
   4233             // to 0, hence the check above.
   4234             __ Sltiu(TMP, lhs, rhs_imm + 1);
   4235             __ Beqz(TMP, label);
   4236           } else {
   4237             __ LoadConst32(TMP, rhs_imm);
   4238             __ Bltu(TMP, lhs, label);
   4239           }
   4240           break;
   4241       }
   4242     }
   4243   }
   4244 }
   4245 
   4246 void InstructionCodeGeneratorMIPS::GenerateLongCompareAndBranch(IfCondition cond,
   4247                                                                 LocationSummary* locations,
   4248                                                                 MipsLabel* label) {
   4249   Register lhs_high = locations->InAt(0).AsRegisterPairHigh<Register>();
   4250   Register lhs_low = locations->InAt(0).AsRegisterPairLow<Register>();
   4251   Location rhs_location = locations->InAt(1);
   4252   Register rhs_high = ZERO;
   4253   Register rhs_low = ZERO;
   4254   int64_t imm = 0;
   4255   uint32_t imm_high = 0;
   4256   uint32_t imm_low = 0;
   4257   bool use_imm = rhs_location.IsConstant();
   4258   if (use_imm) {
   4259     imm = rhs_location.GetConstant()->AsLongConstant()->GetValue();
   4260     imm_high = High32Bits(imm);
   4261     imm_low = Low32Bits(imm);
   4262   } else {
   4263     rhs_high = rhs_location.AsRegisterPairHigh<Register>();
   4264     rhs_low = rhs_location.AsRegisterPairLow<Register>();
   4265   }
   4266 
   4267   if (use_imm && imm == 0) {
   4268     switch (cond) {
   4269       case kCondEQ:
   4270       case kCondBE:  // <= 0 if zero
   4271         __ Or(TMP, lhs_high, lhs_low);
   4272         __ Beqz(TMP, label);
   4273         break;
   4274       case kCondNE:
   4275       case kCondA:  // > 0 if non-zero
   4276         __ Or(TMP, lhs_high, lhs_low);
   4277         __ Bnez(TMP, label);
   4278         break;
   4279       case kCondLT:
   4280         __ Bltz(lhs_high, label);
   4281         break;
   4282       case kCondGE:
   4283         __ Bgez(lhs_high, label);
   4284         break;
   4285       case kCondLE:
   4286         __ Or(TMP, lhs_high, lhs_low);
   4287         __ Sra(AT, lhs_high, 31);
   4288         __ Bgeu(AT, TMP, label);
   4289         break;
   4290       case kCondGT:
   4291         __ Or(TMP, lhs_high, lhs_low);
   4292         __ Sra(AT, lhs_high, 31);
   4293         __ Bltu(AT, TMP, label);
   4294         break;
   4295       case kCondB:  // always false
   4296         break;
   4297       case kCondAE:  // always true
   4298         __ B(label);
   4299         break;
   4300     }
   4301   } else if (use_imm) {
   4302     // TODO: more efficient comparison with constants without loading them into TMP/AT.
   4303     switch (cond) {
   4304       case kCondEQ:
   4305         __ LoadConst32(TMP, imm_high);
   4306         __ Xor(TMP, TMP, lhs_high);
   4307         __ LoadConst32(AT, imm_low);
   4308         __ Xor(AT, AT, lhs_low);
   4309         __ Or(TMP, TMP, AT);
   4310         __ Beqz(TMP, label);
   4311         break;
   4312       case kCondNE:
   4313         __ LoadConst32(TMP, imm_high);
   4314         __ Xor(TMP, TMP, lhs_high);
   4315         __ LoadConst32(AT, imm_low);
   4316         __ Xor(AT, AT, lhs_low);
   4317         __ Or(TMP, TMP, AT);
   4318         __ Bnez(TMP, label);
   4319         break;
   4320       case kCondLT:
   4321         __ LoadConst32(TMP, imm_high);
   4322         __ Blt(lhs_high, TMP, label);
   4323         __ Slt(TMP, TMP, lhs_high);
   4324         __ LoadConst32(AT, imm_low);
   4325         __ Sltu(AT, lhs_low, AT);
   4326         __ Blt(TMP, AT, label);
   4327         break;
   4328       case kCondGE:
   4329         __ LoadConst32(TMP, imm_high);
   4330         __ Blt(TMP, lhs_high, label);
   4331         __ Slt(TMP, lhs_high, TMP);
   4332         __ LoadConst32(AT, imm_low);
   4333         __ Sltu(AT, lhs_low, AT);
   4334         __ Or(TMP, TMP, AT);
   4335         __ Beqz(TMP, label);
   4336         break;
   4337       case kCondLE:
   4338         __ LoadConst32(TMP, imm_high);
   4339         __ Blt(lhs_high, TMP, label);
   4340         __ Slt(TMP, TMP, lhs_high);
   4341         __ LoadConst32(AT, imm_low);
   4342         __ Sltu(AT, AT, lhs_low);
   4343         __ Or(TMP, TMP, AT);
   4344         __ Beqz(TMP, label);
   4345         break;
   4346       case kCondGT:
   4347         __ LoadConst32(TMP, imm_high);
   4348         __ Blt(TMP, lhs_high, label);
   4349         __ Slt(TMP, lhs_high, TMP);
   4350         __ LoadConst32(AT, imm_low);
   4351         __ Sltu(AT, AT, lhs_low);
   4352         __ Blt(TMP, AT, label);
   4353         break;
   4354       case kCondB:
   4355         __ LoadConst32(TMP, imm_high);
   4356         __ Bltu(lhs_high, TMP, label);
   4357         __ Sltu(TMP, TMP, lhs_high);
   4358         __ LoadConst32(AT, imm_low);
   4359         __ Sltu(AT, lhs_low, AT);
   4360         __ Blt(TMP, AT, label);
   4361         break;
   4362       case kCondAE:
   4363         __ LoadConst32(TMP, imm_high);
   4364         __ Bltu(TMP, lhs_high, label);
   4365         __ Sltu(TMP, lhs_high, TMP);
   4366         __ LoadConst32(AT, imm_low);
   4367         __ Sltu(AT, lhs_low, AT);
   4368         __ Or(TMP, TMP, AT);
   4369         __ Beqz(TMP, label);
   4370         break;
   4371       case kCondBE:
   4372         __ LoadConst32(TMP, imm_high);
   4373         __ Bltu(lhs_high, TMP, label);
   4374         __ Sltu(TMP, TMP, lhs_high);
   4375         __ LoadConst32(AT, imm_low);
   4376         __ Sltu(AT, AT, lhs_low);
   4377         __ Or(TMP, TMP, AT);
   4378         __ Beqz(TMP, label);
   4379         break;
   4380       case kCondA:
   4381         __ LoadConst32(TMP, imm_high);
   4382         __ Bltu(TMP, lhs_high, label);
   4383         __ Sltu(TMP, lhs_high, TMP);
   4384         __ LoadConst32(AT, imm_low);
   4385         __ Sltu(AT, AT, lhs_low);
   4386         __ Blt(TMP, AT, label);
   4387         break;
   4388     }
   4389   } else {
   4390     switch (cond) {
   4391       case kCondEQ:
   4392         __ Xor(TMP, lhs_high, rhs_high);
   4393         __ Xor(AT, lhs_low, rhs_low);
   4394         __ Or(TMP, TMP, AT);
   4395         __ Beqz(TMP, label);
   4396         break;
   4397       case kCondNE:
   4398         __ Xor(TMP, lhs_high, rhs_high);
   4399         __ Xor(AT, lhs_low, rhs_low);
   4400         __ Or(TMP, TMP, AT);
   4401         __ Bnez(TMP, label);
   4402         break;
   4403       case kCondLT:
   4404         __ Blt(lhs_high, rhs_high, label);
   4405         __ Slt(TMP, rhs_high, lhs_high);
   4406         __ Sltu(AT, lhs_low, rhs_low);
   4407         __ Blt(TMP, AT, label);
   4408         break;
   4409       case kCondGE:
   4410         __ Blt(rhs_high, lhs_high, label);
   4411         __ Slt(TMP, lhs_high, rhs_high);
   4412         __ Sltu(AT, lhs_low, rhs_low);
   4413         __ Or(TMP, TMP, AT);
   4414         __ Beqz(TMP, label);
   4415         break;
   4416       case kCondLE:
   4417         __ Blt(lhs_high, rhs_high, label);
   4418         __ Slt(TMP, rhs_high, lhs_high);
   4419         __ Sltu(AT, rhs_low, lhs_low);
   4420         __ Or(TMP, TMP, AT);
   4421         __ Beqz(TMP, label);
   4422         break;
   4423       case kCondGT:
   4424         __ Blt(rhs_high, lhs_high, label);
   4425         __ Slt(TMP, lhs_high, rhs_high);
   4426         __ Sltu(AT, rhs_low, lhs_low);
   4427         __ Blt(TMP, AT, label);
   4428         break;
   4429       case kCondB:
   4430         __ Bltu(lhs_high, rhs_high, label);
   4431         __ Sltu(TMP, rhs_high, lhs_high);
   4432         __ Sltu(AT, lhs_low, rhs_low);
   4433         __ Blt(TMP, AT, label);
   4434         break;
   4435       case kCondAE:
   4436         __ Bltu(rhs_high, lhs_high, label);
   4437         __ Sltu(TMP, lhs_high, rhs_high);
   4438         __ Sltu(AT, lhs_low, rhs_low);
   4439         __ Or(TMP, TMP, AT);
   4440         __ Beqz(TMP, label);
   4441         break;
   4442       case kCondBE:
   4443         __ Bltu(lhs_high, rhs_high, label);
   4444         __ Sltu(TMP, rhs_high, lhs_high);
   4445         __ Sltu(AT, rhs_low, lhs_low);
   4446         __ Or(TMP, TMP, AT);
   4447         __ Beqz(TMP, label);
   4448         break;
   4449       case kCondA:
   4450         __ Bltu(rhs_high, lhs_high, label);
   4451         __ Sltu(TMP, lhs_high, rhs_high);
   4452         __ Sltu(AT, rhs_low, lhs_low);
   4453         __ Blt(TMP, AT, label);
   4454         break;
   4455     }
   4456   }
   4457 }
   4458 
   4459 void InstructionCodeGeneratorMIPS::GenerateFpCompare(IfCondition cond,
   4460                                                      bool gt_bias,
   4461                                                      Primitive::Type type,
   4462                                                      LocationSummary* locations) {
   4463   Register dst = locations->Out().AsRegister<Register>();
   4464   FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>();
   4465   FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>();
   4466   bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
   4467   if (type == Primitive::kPrimFloat) {
   4468     if (isR6) {
   4469       switch (cond) {
   4470         case kCondEQ:
   4471           __ CmpEqS(FTMP, lhs, rhs);
   4472           __ Mfc1(dst, FTMP);
   4473           __ Andi(dst, dst, 1);
   4474           break;
   4475         case kCondNE:
   4476           __ CmpEqS(FTMP, lhs, rhs);
   4477           __ Mfc1(dst, FTMP);
   4478           __ Addiu(dst, dst, 1);
   4479           break;
   4480         case kCondLT:
   4481           if (gt_bias) {
   4482             __ CmpLtS(FTMP, lhs, rhs);
   4483           } else {
   4484             __ CmpUltS(FTMP, lhs, rhs);
   4485           }
   4486           __ Mfc1(dst, FTMP);
   4487           __ Andi(dst, dst, 1);
   4488           break;
   4489         case kCondLE:
   4490           if (gt_bias) {
   4491             __ CmpLeS(FTMP, lhs, rhs);
   4492           } else {
   4493             __ CmpUleS(FTMP, lhs, rhs);
   4494           }
   4495           __ Mfc1(dst, FTMP);
   4496           __ Andi(dst, dst, 1);
   4497           break;
   4498         case kCondGT:
   4499           if (gt_bias) {
   4500             __ CmpUltS(FTMP, rhs, lhs);
   4501           } else {
   4502             __ CmpLtS(FTMP, rhs, lhs);
   4503           }
   4504           __ Mfc1(dst, FTMP);
   4505           __ Andi(dst, dst, 1);
   4506           break;
   4507         case kCondGE:
   4508           if (gt_bias) {
   4509             __ CmpUleS(FTMP, rhs, lhs);
   4510           } else {
   4511             __ CmpLeS(FTMP, rhs, lhs);
   4512           }
   4513           __ Mfc1(dst, FTMP);
   4514           __ Andi(dst, dst, 1);
   4515           break;
   4516         default:
   4517           LOG(FATAL) << "Unexpected non-floating-point condition " << cond;
   4518           UNREACHABLE();
   4519       }
   4520     } else {
   4521       switch (cond) {
   4522         case kCondEQ:
   4523           __ CeqS(0, lhs, rhs);
   4524           __ LoadConst32(dst, 1);
   4525           __ Movf(dst, ZERO, 0);
   4526           break;
   4527         case kCondNE:
   4528           __ CeqS(0, lhs, rhs);
   4529           __ LoadConst32(dst, 1);
   4530           __ Movt(dst, ZERO, 0);
   4531           break;
   4532         case kCondLT:
   4533           if (gt_bias) {
   4534             __ ColtS(0, lhs, rhs);
   4535           } else {
   4536             __ CultS(0, lhs, rhs);
   4537           }
   4538           __ LoadConst32(dst, 1);
   4539           __ Movf(dst, ZERO, 0);
   4540           break;
   4541         case kCondLE:
   4542           if (gt_bias) {
   4543             __ ColeS(0, lhs, rhs);
   4544           } else {
   4545             __ CuleS(0, lhs, rhs);
   4546           }
   4547           __ LoadConst32(dst, 1);
   4548           __ Movf(dst, ZERO, 0);
   4549           break;
   4550         case kCondGT:
   4551           if (gt_bias) {
   4552             __ CultS(0, rhs, lhs);
   4553           } else {
   4554             __ ColtS(0, rhs, lhs);
   4555           }
   4556           __ LoadConst32(dst, 1);
   4557           __ Movf(dst, ZERO, 0);
   4558           break;
   4559         case kCondGE:
   4560           if (gt_bias) {
   4561             __ CuleS(0, rhs, lhs);
   4562           } else {
   4563             __ ColeS(0, rhs, lhs);
   4564           }
   4565           __ LoadConst32(dst, 1);
   4566           __ Movf(dst, ZERO, 0);
   4567           break;
   4568         default:
   4569           LOG(FATAL) << "Unexpected non-floating-point condition " << cond;
   4570           UNREACHABLE();
   4571       }
   4572     }
   4573   } else {
   4574     DCHECK_EQ(type, Primitive::kPrimDouble);
   4575     if (isR6) {
   4576       switch (cond) {
   4577         case kCondEQ:
   4578           __ CmpEqD(FTMP, lhs, rhs);
   4579           __ Mfc1(dst, FTMP);
   4580           __ Andi(dst, dst, 1);
   4581           break;
   4582         case kCondNE:
   4583           __ CmpEqD(FTMP, lhs, rhs);
   4584           __ Mfc1(dst, FTMP);
   4585           __ Addiu(dst, dst, 1);
   4586           break;
   4587         case kCondLT:
   4588           if (gt_bias) {
   4589             __ CmpLtD(FTMP, lhs, rhs);
   4590           } else {
   4591             __ CmpUltD(FTMP, lhs, rhs);
   4592           }
   4593           __ Mfc1(dst, FTMP);
   4594           __ Andi(dst, dst, 1);
   4595           break;
   4596         case kCondLE:
   4597           if (gt_bias) {
   4598             __ CmpLeD(FTMP, lhs, rhs);
   4599           } else {
   4600             __ CmpUleD(FTMP, lhs, rhs);
   4601           }
   4602           __ Mfc1(dst, FTMP);
   4603           __ Andi(dst, dst, 1);
   4604           break;
   4605         case kCondGT:
   4606           if (gt_bias) {
   4607             __ CmpUltD(FTMP, rhs, lhs);
   4608           } else {
   4609             __ CmpLtD(FTMP, rhs, lhs);
   4610           }
   4611           __ Mfc1(dst, FTMP);
   4612           __ Andi(dst, dst, 1);
   4613           break;
   4614         case kCondGE:
   4615           if (gt_bias) {
   4616             __ CmpUleD(FTMP, rhs, lhs);
   4617           } else {
   4618             __ CmpLeD(FTMP, rhs, lhs);
   4619           }
   4620           __ Mfc1(dst, FTMP);
   4621           __ Andi(dst, dst, 1);
   4622           break;
   4623         default:
   4624           LOG(FATAL) << "Unexpected non-floating-point condition " << cond;
   4625           UNREACHABLE();
   4626       }
   4627     } else {
   4628       switch (cond) {
   4629         case kCondEQ:
   4630           __ CeqD(0, lhs, rhs);
   4631           __ LoadConst32(dst, 1);
   4632           __ Movf(dst, ZERO, 0);
   4633           break;
   4634         case kCondNE:
   4635           __ CeqD(0, lhs, rhs);
   4636           __ LoadConst32(dst, 1);
   4637           __ Movt(dst, ZERO, 0);
   4638           break;
   4639         case kCondLT:
   4640           if (gt_bias) {
   4641             __ ColtD(0, lhs, rhs);
   4642           } else {
   4643             __ CultD(0, lhs, rhs);
   4644           }
   4645           __ LoadConst32(dst, 1);
   4646           __ Movf(dst, ZERO, 0);
   4647           break;
   4648         case kCondLE:
   4649           if (gt_bias) {
   4650             __ ColeD(0, lhs, rhs);
   4651           } else {
   4652             __ CuleD(0, lhs, rhs);
   4653           }
   4654           __ LoadConst32(dst, 1);
   4655           __ Movf(dst, ZERO, 0);
   4656           break;
   4657         case kCondGT:
   4658           if (gt_bias) {
   4659             __ CultD(0, rhs, lhs);
   4660           } else {
   4661             __ ColtD(0, rhs, lhs);
   4662           }
   4663           __ LoadConst32(dst, 1);
   4664           __ Movf(dst, ZERO, 0);
   4665           break;
   4666         case kCondGE:
   4667           if (gt_bias) {
   4668             __ CuleD(0, rhs, lhs);
   4669           } else {
   4670             __ ColeD(0, rhs, lhs);
   4671           }
   4672           __ LoadConst32(dst, 1);
   4673           __ Movf(dst, ZERO, 0);
   4674           break;
   4675         default:
   4676           LOG(FATAL) << "Unexpected non-floating-point condition " << cond;
   4677           UNREACHABLE();
   4678       }
   4679     }
   4680   }
   4681 }
   4682 
   4683 bool InstructionCodeGeneratorMIPS::MaterializeFpCompareR2(IfCondition cond,
   4684                                                           bool gt_bias,
   4685                                                           Primitive::Type type,
   4686                                                           LocationSummary* input_locations,
   4687                                                           int cc) {
   4688   FRegister lhs = input_locations->InAt(0).AsFpuRegister<FRegister>();
   4689   FRegister rhs = input_locations->InAt(1).AsFpuRegister<FRegister>();
   4690   CHECK(!codegen_->GetInstructionSetFeatures().IsR6());
   4691   if (type == Primitive::kPrimFloat) {
   4692     switch (cond) {
   4693       case kCondEQ:
   4694         __ CeqS(cc, lhs, rhs);
   4695         return false;
   4696       case kCondNE:
   4697         __ CeqS(cc, lhs, rhs);
   4698         return true;
   4699       case kCondLT:
   4700         if (gt_bias) {
   4701           __ ColtS(cc, lhs, rhs);
   4702         } else {
   4703           __ CultS(cc, lhs, rhs);
   4704         }
   4705         return false;
   4706       case kCondLE:
   4707         if (gt_bias) {
   4708           __ ColeS(cc, lhs, rhs);
   4709         } else {
   4710           __ CuleS(cc, lhs, rhs);
   4711         }
   4712         return false;
   4713       case kCondGT:
   4714         if (gt_bias) {
   4715           __ CultS(cc, rhs, lhs);
   4716         } else {
   4717           __ ColtS(cc, rhs, lhs);
   4718         }
   4719         return false;
   4720       case kCondGE:
   4721         if (gt_bias) {
   4722           __ CuleS(cc, rhs, lhs);
   4723         } else {
   4724           __ ColeS(cc, rhs, lhs);
   4725         }
   4726         return false;
   4727       default:
   4728         LOG(FATAL) << "Unexpected non-floating-point condition";
   4729         UNREACHABLE();
   4730     }
   4731   } else {
   4732     DCHECK_EQ(type, Primitive::kPrimDouble);
   4733     switch (cond) {
   4734       case kCondEQ:
   4735         __ CeqD(cc, lhs, rhs);
   4736         return false;
   4737       case kCondNE:
   4738         __ CeqD(cc, lhs, rhs);
   4739         return true;
   4740       case kCondLT:
   4741         if (gt_bias) {
   4742           __ ColtD(cc, lhs, rhs);
   4743         } else {
   4744           __ CultD(cc, lhs, rhs);
   4745         }
   4746         return false;
   4747       case kCondLE:
   4748         if (gt_bias) {
   4749           __ ColeD(cc, lhs, rhs);
   4750         } else {
   4751           __ CuleD(cc, lhs, rhs);
   4752         }
   4753         return false;
   4754       case kCondGT:
   4755         if (gt_bias) {
   4756           __ CultD(cc, rhs, lhs);
   4757         } else {
   4758           __ ColtD(cc, rhs, lhs);
   4759         }
   4760         return false;
   4761       case kCondGE:
   4762         if (gt_bias) {
   4763           __ CuleD(cc, rhs, lhs);
   4764         } else {
   4765           __ ColeD(cc, rhs, lhs);
   4766         }
   4767         return false;
   4768       default:
   4769         LOG(FATAL) << "Unexpected non-floating-point condition";
   4770         UNREACHABLE();
   4771     }
   4772   }
   4773 }
   4774 
   4775 bool InstructionCodeGeneratorMIPS::MaterializeFpCompareR6(IfCondition cond,
   4776                                                           bool gt_bias,
   4777                                                           Primitive::Type type,
   4778                                                           LocationSummary* input_locations,
   4779                                                           FRegister dst) {
   4780   FRegister lhs = input_locations->InAt(0).AsFpuRegister<FRegister>();
   4781   FRegister rhs = input_locations->InAt(1).AsFpuRegister<FRegister>();
   4782   CHECK(codegen_->GetInstructionSetFeatures().IsR6());
   4783   if (type == Primitive::kPrimFloat) {
   4784     switch (cond) {
   4785       case kCondEQ:
   4786         __ CmpEqS(dst, lhs, rhs);
   4787         return false;
   4788       case kCondNE:
   4789         __ CmpEqS(dst, lhs, rhs);
   4790         return true;
   4791       case kCondLT:
   4792         if (gt_bias) {
   4793           __ CmpLtS(dst, lhs, rhs);
   4794         } else {
   4795           __ CmpUltS(dst, lhs, rhs);
   4796         }
   4797         return false;
   4798       case kCondLE:
   4799         if (gt_bias) {
   4800           __ CmpLeS(dst, lhs, rhs);
   4801         } else {
   4802           __ CmpUleS(dst, lhs, rhs);
   4803         }
   4804         return false;
   4805       case kCondGT:
   4806         if (gt_bias) {
   4807           __ CmpUltS(dst, rhs, lhs);
   4808         } else {
   4809           __ CmpLtS(dst, rhs, lhs);
   4810         }
   4811         return false;
   4812       case kCondGE:
   4813         if (gt_bias) {
   4814           __ CmpUleS(dst, rhs, lhs);
   4815         } else {
   4816           __ CmpLeS(dst, rhs, lhs);
   4817         }
   4818         return false;
   4819       default:
   4820         LOG(FATAL) << "Unexpected non-floating-point condition";
   4821         UNREACHABLE();
   4822     }
   4823   } else {
   4824     DCHECK_EQ(type, Primitive::kPrimDouble);
   4825     switch (cond) {
   4826       case kCondEQ:
   4827         __ CmpEqD(dst, lhs, rhs);
   4828         return false;
   4829       case kCondNE:
   4830         __ CmpEqD(dst, lhs, rhs);
   4831         return true;
   4832       case kCondLT:
   4833         if (gt_bias) {
   4834           __ CmpLtD(dst, lhs, rhs);
   4835         } else {
   4836           __ CmpUltD(dst, lhs, rhs);
   4837         }
   4838         return false;
   4839       case kCondLE:
   4840         if (gt_bias) {
   4841           __ CmpLeD(dst, lhs, rhs);
   4842         } else {
   4843           __ CmpUleD(dst, lhs, rhs);
   4844         }
   4845         return false;
   4846       case kCondGT:
   4847         if (gt_bias) {
   4848           __ CmpUltD(dst, rhs, lhs);
   4849         } else {
   4850           __ CmpLtD(dst, rhs, lhs);
   4851         }
   4852         return false;
   4853       case kCondGE:
   4854         if (gt_bias) {
   4855           __ CmpUleD(dst, rhs, lhs);
   4856         } else {
   4857           __ CmpLeD(dst, rhs, lhs);
   4858         }
   4859         return false;
   4860       default:
   4861         LOG(FATAL) << "Unexpected non-floating-point condition";
   4862         UNREACHABLE();
   4863     }
   4864   }
   4865 }
   4866 
   4867 void InstructionCodeGeneratorMIPS::GenerateFpCompareAndBranch(IfCondition cond,
   4868                                                               bool gt_bias,
   4869                                                               Primitive::Type type,
   4870                                                               LocationSummary* locations,
   4871                                                               MipsLabel* label) {
   4872   FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>();
   4873   FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>();
   4874   bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
   4875   if (type == Primitive::kPrimFloat) {
   4876     if (isR6) {
   4877       switch (cond) {
   4878         case kCondEQ:
   4879           __ CmpEqS(FTMP, lhs, rhs);
   4880           __ Bc1nez(FTMP, label);
   4881           break;
   4882         case kCondNE:
   4883           __ CmpEqS(FTMP, lhs, rhs);
   4884           __ Bc1eqz(FTMP, label);
   4885           break;
   4886         case kCondLT:
   4887           if (gt_bias) {
   4888             __ CmpLtS(FTMP, lhs, rhs);
   4889           } else {
   4890             __ CmpUltS(FTMP, lhs, rhs);
   4891           }
   4892           __ Bc1nez(FTMP, label);
   4893           break;
   4894         case kCondLE:
   4895           if (gt_bias) {
   4896             __ CmpLeS(FTMP, lhs, rhs);
   4897           } else {
   4898             __ CmpUleS(FTMP, lhs, rhs);
   4899           }
   4900           __ Bc1nez(FTMP, label);
   4901           break;
   4902         case kCondGT:
   4903           if (gt_bias) {
   4904             __ CmpUltS(FTMP, rhs, lhs);
   4905           } else {
   4906             __ CmpLtS(FTMP, rhs, lhs);
   4907           }
   4908           __ Bc1nez(FTMP, label);
   4909           break;
   4910         case kCondGE:
   4911           if (gt_bias) {
   4912             __ CmpUleS(FTMP, rhs, lhs);
   4913           } else {
   4914             __ CmpLeS(FTMP, rhs, lhs);
   4915           }
   4916           __ Bc1nez(FTMP, label);
   4917           break;
   4918         default:
   4919           LOG(FATAL) << "Unexpected non-floating-point condition";
   4920           UNREACHABLE();
   4921       }
   4922     } else {
   4923       switch (cond) {
   4924         case kCondEQ:
   4925           __ CeqS(0, lhs, rhs);
   4926           __ Bc1t(0, label);
   4927           break;
   4928         case kCondNE:
   4929           __ CeqS(0, lhs, rhs);
   4930           __ Bc1f(0, label);
   4931           break;
   4932         case kCondLT:
   4933           if (gt_bias) {
   4934             __ ColtS(0, lhs, rhs);
   4935           } else {
   4936             __ CultS(0, lhs, rhs);
   4937           }
   4938           __ Bc1t(0, label);
   4939           break;
   4940         case kCondLE:
   4941           if (gt_bias) {
   4942             __ ColeS(0, lhs, rhs);
   4943           } else {
   4944             __ CuleS(0, lhs, rhs);
   4945           }
   4946           __ Bc1t(0, label);
   4947           break;
   4948         case kCondGT:
   4949           if (gt_bias) {
   4950             __ CultS(0, rhs, lhs);
   4951           } else {
   4952             __ ColtS(0, rhs, lhs);
   4953           }
   4954           __ Bc1t(0, label);
   4955           break;
   4956         case kCondGE:
   4957           if (gt_bias) {
   4958             __ CuleS(0, rhs, lhs);
   4959           } else {
   4960             __ ColeS(0, rhs, lhs);
   4961           }
   4962           __ Bc1t(0, label);
   4963           break;
   4964         default:
   4965           LOG(FATAL) << "Unexpected non-floating-point condition";
   4966           UNREACHABLE();
   4967       }
   4968     }
   4969   } else {
   4970     DCHECK_EQ(type, Primitive::kPrimDouble);
   4971     if (isR6) {
   4972       switch (cond) {
   4973         case kCondEQ:
   4974           __ CmpEqD(FTMP, lhs, rhs);
   4975           __ Bc1nez(FTMP, label);
   4976           break;
   4977         case kCondNE:
   4978           __ CmpEqD(FTMP, lhs, rhs);
   4979           __ Bc1eqz(FTMP, label);
   4980           break;
   4981         case kCondLT:
   4982           if (gt_bias) {
   4983             __ CmpLtD(FTMP, lhs, rhs);
   4984           } else {
   4985             __ CmpUltD(FTMP, lhs, rhs);
   4986           }
   4987           __ Bc1nez(FTMP, label);
   4988           break;
   4989         case kCondLE:
   4990           if (gt_bias) {
   4991             __ CmpLeD(FTMP, lhs, rhs);
   4992           } else {
   4993             __ CmpUleD(FTMP, lhs, rhs);
   4994           }
   4995           __ Bc1nez(FTMP, label);
   4996           break;
   4997         case kCondGT:
   4998           if (gt_bias) {
   4999             __ CmpUltD(FTMP, rhs, lhs);
   5000           } else {
   5001             __ CmpLtD(FTMP, rhs, lhs);
   5002           }
   5003           __ Bc1nez(FTMP, label);
   5004           break;
   5005         case kCondGE:
   5006           if (gt_bias) {
   5007             __ CmpUleD(FTMP, rhs, lhs);
   5008           } else {
   5009             __ CmpLeD(FTMP, rhs, lhs);
   5010           }
   5011           __ Bc1nez(FTMP, label);
   5012           break;
   5013         default:
   5014           LOG(FATAL) << "Unexpected non-floating-point condition";
   5015           UNREACHABLE();
   5016       }
   5017     } else {
   5018       switch (cond) {
   5019         case kCondEQ:
   5020           __ CeqD(0, lhs, rhs);
   5021           __ Bc1t(0, label);
   5022           break;
   5023         case kCondNE:
   5024           __ CeqD(0, lhs, rhs);
   5025           __ Bc1f(0, label);
   5026           break;
   5027         case kCondLT:
   5028           if (gt_bias) {
   5029             __ ColtD(0, lhs, rhs);
   5030           } else {
   5031             __ CultD(0, lhs, rhs);
   5032           }
   5033           __ Bc1t(0, label);
   5034           break;
   5035         case kCondLE:
   5036           if (gt_bias) {
   5037             __ ColeD(0, lhs, rhs);
   5038           } else {
   5039             __ CuleD(0, lhs, rhs);
   5040           }
   5041           __ Bc1t(0, label);
   5042           break;
   5043         case kCondGT:
   5044           if (gt_bias) {
   5045             __ CultD(0, rhs, lhs);
   5046           } else {
   5047             __ ColtD(0, rhs, lhs);
   5048           }
   5049           __ Bc1t(0, label);
   5050           break;
   5051         case kCondGE:
   5052           if (gt_bias) {
   5053             __ CuleD(0, rhs, lhs);
   5054           } else {
   5055             __ ColeD(0, rhs, lhs);
   5056           }
   5057           __ Bc1t(0, label);
   5058           break;
   5059         default:
   5060           LOG(FATAL) << "Unexpected non-floating-point condition";
   5061           UNREACHABLE();
   5062       }
   5063     }
   5064   }
   5065 }
   5066 
   5067 void InstructionCodeGeneratorMIPS::GenerateTestAndBranch(HInstruction* instruction,
   5068                                                          size_t condition_input_index,
   5069                                                          MipsLabel* true_target,
   5070                                                          MipsLabel* false_target) {
   5071   HInstruction* cond = instruction->InputAt(condition_input_index);
   5072 
   5073   if (true_target == nullptr && false_target == nullptr) {
   5074     // Nothing to do. The code always falls through.
   5075     return;
   5076   } else if (cond->IsIntConstant()) {
   5077     // Constant condition, statically compared against "true" (integer value 1).
   5078     if (cond->AsIntConstant()->IsTrue()) {
   5079       if (true_target != nullptr) {
   5080         __ B(true_target);
   5081       }
   5082     } else {
   5083       DCHECK(cond->AsIntConstant()->IsFalse()) << cond->AsIntConstant()->GetValue();
   5084       if (false_target != nullptr) {
   5085         __ B(false_target);
   5086       }
   5087     }
   5088     return;
   5089   }
   5090 
   5091   // The following code generates these patterns:
   5092   //  (1) true_target == nullptr && false_target != nullptr
   5093   //        - opposite condition true => branch to false_target
   5094   //  (2) true_target != nullptr && false_target == nullptr
   5095   //        - condition true => branch to true_target
   5096   //  (3) true_target != nullptr && false_target != nullptr
   5097   //        - condition true => branch to true_target
   5098   //        - branch to false_target
   5099   if (IsBooleanValueOrMaterializedCondition(cond)) {
   5100     // The condition instruction has been materialized, compare the output to 0.
   5101     Location cond_val = instruction->GetLocations()->InAt(condition_input_index);
   5102     DCHECK(cond_val.IsRegister());
   5103     if (true_target == nullptr) {
   5104       __ Beqz(cond_val.AsRegister<Register>(), false_target);
   5105     } else {
   5106       __ Bnez(cond_val.AsRegister<Register>(), true_target);
   5107     }
   5108   } else {
   5109     // The condition instruction has not been materialized, use its inputs as
   5110     // the comparison and its condition as the branch condition.
   5111     HCondition* condition = cond->AsCondition();
   5112     Primitive::Type type = condition->InputAt(0)->GetType();
   5113     LocationSummary* locations = cond->GetLocations();
   5114     IfCondition if_cond = condition->GetCondition();
   5115     MipsLabel* branch_target = true_target;
   5116 
   5117     if (true_target == nullptr) {
   5118       if_cond = condition->GetOppositeCondition();
   5119       branch_target = false_target;
   5120     }
   5121 
   5122     switch (type) {
   5123       default:
   5124         GenerateIntCompareAndBranch(if_cond, locations, branch_target);
   5125         break;
   5126       case Primitive::kPrimLong:
   5127         GenerateLongCompareAndBranch(if_cond, locations, branch_target);
   5128         break;
   5129       case Primitive::kPrimFloat:
   5130       case Primitive::kPrimDouble:
   5131         GenerateFpCompareAndBranch(if_cond, condition->IsGtBias(), type, locations, branch_target);
   5132         break;
   5133     }
   5134   }
   5135 
   5136   // If neither branch falls through (case 3), the conditional branch to `true_target`
   5137   // was already emitted (case 2) and we need to emit a jump to `false_target`.
   5138   if (true_target != nullptr && false_target != nullptr) {
   5139     __ B(false_target);
   5140   }
   5141 }
   5142 
   5143 void LocationsBuilderMIPS::VisitIf(HIf* if_instr) {
   5144   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(if_instr);
   5145   if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) {
   5146     locations->SetInAt(0, Location::RequiresRegister());
   5147   }
   5148 }
   5149 
   5150 void InstructionCodeGeneratorMIPS::VisitIf(HIf* if_instr) {
   5151   HBasicBlock* true_successor = if_instr->IfTrueSuccessor();
   5152   HBasicBlock* false_successor = if_instr->IfFalseSuccessor();
   5153   MipsLabel* true_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor) ?
   5154       nullptr : codegen_->GetLabelOf(true_successor);
   5155   MipsLabel* false_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor) ?
   5156       nullptr : codegen_->GetLabelOf(false_successor);
   5157   GenerateTestAndBranch(if_instr, /* condition_input_index */ 0, true_target, false_target);
   5158 }
   5159 
   5160 void LocationsBuilderMIPS::VisitDeoptimize(HDeoptimize* deoptimize) {
   5161   LocationSummary* locations = new (GetGraph()->GetArena())
   5162       LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath);
   5163   InvokeRuntimeCallingConvention calling_convention;
   5164   RegisterSet caller_saves = RegisterSet::Empty();
   5165   caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
   5166   locations->SetCustomSlowPathCallerSaves(caller_saves);
   5167   if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) {
   5168     locations->SetInAt(0, Location::RequiresRegister());
   5169   }
   5170 }
   5171 
   5172 void InstructionCodeGeneratorMIPS::VisitDeoptimize(HDeoptimize* deoptimize) {
   5173   SlowPathCodeMIPS* slow_path =
   5174       deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathMIPS>(deoptimize);
   5175   GenerateTestAndBranch(deoptimize,
   5176                         /* condition_input_index */ 0,
   5177                         slow_path->GetEntryLabel(),
   5178                         /* false_target */ nullptr);
   5179 }
   5180 
   5181 // This function returns true if a conditional move can be generated for HSelect.
   5182 // Otherwise it returns false and HSelect must be implemented in terms of conditonal
   5183 // branches and regular moves.
   5184 //
   5185 // If `locations_to_set` isn't nullptr, its inputs and outputs are set for HSelect.
   5186 //
   5187 // While determining feasibility of a conditional move and setting inputs/outputs
   5188 // are two distinct tasks, this function does both because they share quite a bit
   5189 // of common logic.
   5190 static bool CanMoveConditionally(HSelect* select, bool is_r6, LocationSummary* locations_to_set) {
   5191   bool materialized = IsBooleanValueOrMaterializedCondition(select->GetCondition());
   5192   HInstruction* cond = select->InputAt(/* condition_input_index */ 2);
   5193   HCondition* condition = cond->AsCondition();
   5194 
   5195   Primitive::Type cond_type = materialized ? Primitive::kPrimInt : condition->InputAt(0)->GetType();
   5196   Primitive::Type dst_type = select->GetType();
   5197 
   5198   HConstant* cst_true_value = select->GetTrueValue()->AsConstant();
   5199   HConstant* cst_false_value = select->GetFalseValue()->AsConstant();
   5200   bool is_true_value_zero_constant =
   5201       (cst_true_value != nullptr && cst_true_value->IsZeroBitPattern());
   5202   bool is_false_value_zero_constant =
   5203       (cst_false_value != nullptr && cst_false_value->IsZeroBitPattern());
   5204 
   5205   bool can_move_conditionally = false;
   5206   bool use_const_for_false_in = false;
   5207   bool use_const_for_true_in = false;
   5208 
   5209   if (!cond->IsConstant()) {
   5210     switch (cond_type) {
   5211       default:
   5212         switch (dst_type) {
   5213           default:
   5214             // Moving int on int condition.
   5215             if (is_r6) {
   5216               if (is_true_value_zero_constant) {
   5217                 // seleqz out_reg, false_reg, cond_reg
   5218                 can_move_conditionally = true;
   5219                 use_const_for_true_in = true;
   5220               } else if (is_false_value_zero_constant) {
   5221                 // selnez out_reg, true_reg, cond_reg
   5222                 can_move_conditionally = true;
   5223                 use_const_for_false_in = true;
   5224               } else if (materialized) {
   5225                 // Not materializing unmaterialized int conditions
   5226                 // to keep the instruction count low.
   5227                 // selnez AT, true_reg, cond_reg
   5228                 // seleqz TMP, false_reg, cond_reg
   5229                 // or out_reg, AT, TMP
   5230                 can_move_conditionally = true;
   5231               }
   5232             } else {
   5233               // movn out_reg, true_reg/ZERO, cond_reg
   5234               can_move_conditionally = true;
   5235               use_const_for_true_in = is_true_value_zero_constant;
   5236             }
   5237             break;
   5238           case Primitive::kPrimLong:
   5239             // Moving long on int condition.
   5240             if (is_r6) {
   5241               if (is_true_value_zero_constant) {
   5242                 // seleqz out_reg_lo, false_reg_lo, cond_reg
   5243                 // seleqz out_reg_hi, false_reg_hi, cond_reg
   5244                 can_move_conditionally = true;
   5245                 use_const_for_true_in = true;
   5246               } else if (is_false_value_zero_constant) {
   5247                 // selnez out_reg_lo, true_reg_lo, cond_reg
   5248                 // selnez out_reg_hi, true_reg_hi, cond_reg
   5249                 can_move_conditionally = true;
   5250                 use_const_for_false_in = true;
   5251               }
   5252               // Other long conditional moves would generate 6+ instructions,
   5253               // which is too many.
   5254             } else {
   5255               // movn out_reg_lo, true_reg_lo/ZERO, cond_reg
   5256               // movn out_reg_hi, true_reg_hi/ZERO, cond_reg
   5257               can_move_conditionally = true;
   5258               use_const_for_true_in = is_true_value_zero_constant;
   5259             }
   5260             break;
   5261           case Primitive::kPrimFloat:
   5262           case Primitive::kPrimDouble:
   5263             // Moving float/double on int condition.
   5264             if (is_r6) {
   5265               if (materialized) {
   5266                 // Not materializing unmaterialized int conditions
   5267                 // to keep the instruction count low.
   5268                 can_move_conditionally = true;
   5269                 if (is_true_value_zero_constant) {
   5270                   // sltu TMP, ZERO, cond_reg
   5271                   // mtc1 TMP, temp_cond_reg
   5272                   // seleqz.fmt out_reg, false_reg, temp_cond_reg
   5273                   use_const_for_true_in = true;
   5274                 } else if (is_false_value_zero_constant) {
   5275                   // sltu TMP, ZERO, cond_reg
   5276                   // mtc1 TMP, temp_cond_reg
   5277                   // selnez.fmt out_reg, true_reg, temp_cond_reg
   5278                   use_const_for_false_in = true;
   5279                 } else {
   5280                   // sltu TMP, ZERO, cond_reg
   5281                   // mtc1 TMP, temp_cond_reg
   5282                   // sel.fmt temp_cond_reg, false_reg, true_reg
   5283                   // mov.fmt out_reg, temp_cond_reg
   5284                 }
   5285               }
   5286             } else {
   5287               // movn.fmt out_reg, true_reg, cond_reg
   5288               can_move_conditionally = true;
   5289             }
   5290             break;
   5291         }
   5292         break;
   5293       case Primitive::kPrimLong:
   5294         // We don't materialize long comparison now
   5295         // and use conditional branches instead.
   5296         break;
   5297       case Primitive::kPrimFloat:
   5298       case Primitive::kPrimDouble:
   5299         switch (dst_type) {
   5300           default:
   5301             // Moving int on float/double condition.
   5302             if (is_r6) {
   5303               if (is_true_value_zero_constant) {
   5304                 // mfc1 TMP, temp_cond_reg
   5305                 // seleqz out_reg, false_reg, TMP
   5306                 can_move_conditionally = true;
   5307                 use_const_for_true_in = true;
   5308               } else if (is_false_value_zero_constant) {
   5309                 // mfc1 TMP, temp_cond_reg
   5310                 // selnez out_reg, true_reg, TMP
   5311                 can_move_conditionally = true;
   5312                 use_const_for_false_in = true;
   5313               } else {
   5314                 // mfc1 TMP, temp_cond_reg
   5315                 // selnez AT, true_reg, TMP
   5316                 // seleqz TMP, false_reg, TMP
   5317                 // or out_reg, AT, TMP
   5318                 can_move_conditionally = true;
   5319               }
   5320             } else {
   5321               // movt out_reg, true_reg/ZERO, cc
   5322               can_move_conditionally = true;
   5323               use_const_for_true_in = is_true_value_zero_constant;
   5324             }
   5325             break;
   5326           case Primitive::kPrimLong:
   5327             // Moving long on float/double condition.
   5328             if (is_r6) {
   5329               if (is_true_value_zero_constant) {
   5330                 // mfc1 TMP, temp_cond_reg
   5331                 // seleqz out_reg_lo, false_reg_lo, TMP
   5332                 // seleqz out_reg_hi, false_reg_hi, TMP
   5333                 can_move_conditionally = true;
   5334                 use_const_for_true_in = true;
   5335               } else if (is_false_value_zero_constant) {
   5336                 // mfc1 TMP, temp_cond_reg
   5337                 // selnez out_reg_lo, true_reg_lo, TMP
   5338                 // selnez out_reg_hi, true_reg_hi, TMP
   5339                 can_move_conditionally = true;
   5340                 use_const_for_false_in = true;
   5341               }
   5342               // Other long conditional moves would generate 6+ instructions,
   5343               // which is too many.
   5344             } else {
   5345               // movt out_reg_lo, true_reg_lo/ZERO, cc
   5346               // movt out_reg_hi, true_reg_hi/ZERO, cc
   5347               can_move_conditionally = true;
   5348               use_const_for_true_in = is_true_value_zero_constant;
   5349             }
   5350             break;
   5351           case Primitive::kPrimFloat:
   5352           case Primitive::kPrimDouble:
   5353             // Moving float/double on float/double condition.
   5354             if (is_r6) {
   5355               can_move_conditionally = true;
   5356               if (is_true_value_zero_constant) {
   5357                 // seleqz.fmt out_reg, false_reg, temp_cond_reg
   5358                 use_const_for_true_in = true;
   5359               } else if (is_false_value_zero_constant) {
   5360                 // selnez.fmt out_reg, true_reg, temp_cond_reg
   5361                 use_const_for_false_in = true;
   5362               } else {
   5363                 // sel.fmt temp_cond_reg, false_reg, true_reg
   5364                 // mov.fmt out_reg, temp_cond_reg
   5365               }
   5366             } else {
   5367               // movt.fmt out_reg, true_reg, cc
   5368               can_move_conditionally = true;
   5369             }
   5370             break;
   5371         }
   5372         break;
   5373     }
   5374   }
   5375 
   5376   if (can_move_conditionally) {
   5377     DCHECK(!use_const_for_false_in || !use_const_for_true_in);
   5378   } else {
   5379     DCHECK(!use_const_for_false_in);
   5380     DCHECK(!use_const_for_true_in);
   5381   }
   5382 
   5383   if (locations_to_set != nullptr) {
   5384     if (use_const_for_false_in) {
   5385       locations_to_set->SetInAt(0, Location::ConstantLocation(cst_false_value));
   5386     } else {
   5387       locations_to_set->SetInAt(0,
   5388                                 Primitive::IsFloatingPointType(dst_type)
   5389                                     ? Location::RequiresFpuRegister()
   5390                                     : Location::RequiresRegister());
   5391     }
   5392     if (use_const_for_true_in) {
   5393       locations_to_set->SetInAt(1, Location::ConstantLocation(cst_true_value));
   5394     } else {
   5395       locations_to_set->SetInAt(1,
   5396                                 Primitive::IsFloatingPointType(dst_type)
   5397                                     ? Location::RequiresFpuRegister()
   5398                                     : Location::RequiresRegister());
   5399     }
   5400     if (materialized) {
   5401       locations_to_set->SetInAt(2, Location::RequiresRegister());
   5402     }
   5403     // On R6 we don't require the output to be the same as the
   5404     // first input for conditional moves unlike on R2.
   5405     bool is_out_same_as_first_in = !can_move_conditionally || !is_r6;
   5406     if (is_out_same_as_first_in) {
   5407       locations_to_set->SetOut(Location::SameAsFirstInput());
   5408     } else {
   5409       locations_to_set->SetOut(Primitive::IsFloatingPointType(dst_type)
   5410                                    ? Location::RequiresFpuRegister()
   5411                                    : Location::RequiresRegister());
   5412     }
   5413   }
   5414 
   5415   return can_move_conditionally;
   5416 }
   5417 
   5418 void InstructionCodeGeneratorMIPS::GenConditionalMoveR2(HSelect* select) {
   5419   LocationSummary* locations = select->GetLocations();
   5420   Location dst = locations->Out();
   5421   Location src = locations->InAt(1);
   5422   Register src_reg = ZERO;
   5423   Register src_reg_high = ZERO;
   5424   HInstruction* cond = select->InputAt(/* condition_input_index */ 2);
   5425   Register cond_reg = TMP;
   5426   int cond_cc = 0;
   5427   Primitive::Type cond_type = Primitive::kPrimInt;
   5428   bool cond_inverted = false;
   5429   Primitive::Type dst_type = select->GetType();
   5430 
   5431   if (IsBooleanValueOrMaterializedCondition(cond)) {
   5432     cond_reg = locations->InAt(/* condition_input_index */ 2).AsRegister<Register>();
   5433   } else {
   5434     HCondition* condition = cond->AsCondition();
   5435     LocationSummary* cond_locations = cond->GetLocations();
   5436     IfCondition if_cond = condition->GetCondition();
   5437     cond_type = condition->InputAt(0)->GetType();
   5438     switch (cond_type) {
   5439       default:
   5440         DCHECK_NE(cond_type, Primitive::kPrimLong);
   5441         cond_inverted = MaterializeIntCompare(if_cond, cond_locations, cond_reg);
   5442         break;
   5443       case Primitive::kPrimFloat:
   5444       case Primitive::kPrimDouble:
   5445         cond_inverted = MaterializeFpCompareR2(if_cond,
   5446                                                condition->IsGtBias(),
   5447                                                cond_type,
   5448                                                cond_locations,
   5449                                                cond_cc);
   5450         break;
   5451     }
   5452   }
   5453 
   5454   DCHECK(dst.Equals(locations->InAt(0)));
   5455   if (src.IsRegister()) {
   5456     src_reg = src.AsRegister<Register>();
   5457   } else if (src.IsRegisterPair()) {
   5458     src_reg = src.AsRegisterPairLow<Register>();
   5459     src_reg_high = src.AsRegisterPairHigh<Register>();
   5460   } else if (src.IsConstant()) {
   5461     DCHECK(src.GetConstant()->IsZeroBitPattern());
   5462   }
   5463 
   5464   switch (cond_type) {
   5465     default:
   5466       switch (dst_type) {
   5467         default:
   5468           if (cond_inverted) {
   5469             __ Movz(dst.AsRegister<Register>(), src_reg, cond_reg);
   5470           } else {
   5471             __ Movn(dst.AsRegister<Register>(), src_reg, cond_reg);
   5472           }
   5473           break;
   5474         case Primitive::kPrimLong:
   5475           if (cond_inverted) {
   5476             __ Movz(dst.AsRegisterPairLow<Register>(), src_reg, cond_reg);
   5477             __ Movz(dst.AsRegisterPairHigh<Register>(), src_reg_high, cond_reg);
   5478           } else {
   5479             __ Movn(dst.AsRegisterPairLow<Register>(), src_reg, cond_reg);
   5480             __ Movn(dst.AsRegisterPairHigh<Register>(), src_reg_high, cond_reg);
   5481           }
   5482           break;
   5483         case Primitive::kPrimFloat:
   5484           if (cond_inverted) {
   5485             __ MovzS(dst.AsFpuRegister<FRegister>(), src.AsFpuRegister<FRegister>(), cond_reg);
   5486           } else {
   5487             __ MovnS(dst.AsFpuRegister<FRegister>(), src.AsFpuRegister<FRegister>(), cond_reg);
   5488           }
   5489           break;
   5490         case Primitive::kPrimDouble:
   5491           if (cond_inverted) {
   5492             __ MovzD(dst.AsFpuRegister<FRegister>(), src.AsFpuRegister<FRegister>(), cond_reg);
   5493           } else {
   5494             __ MovnD(dst.AsFpuRegister<FRegister>(), src.AsFpuRegister<FRegister>(), cond_reg);
   5495           }
   5496           break;
   5497       }
   5498       break;
   5499     case Primitive::kPrimLong:
   5500       LOG(FATAL) << "Unreachable";
   5501       UNREACHABLE();
   5502     case Primitive::kPrimFloat:
   5503     case Primitive::kPrimDouble:
   5504       switch (dst_type) {
   5505         default:
   5506           if (cond_inverted) {
   5507             __ Movf(dst.AsRegister<Register>(), src_reg, cond_cc);
   5508           } else {
   5509             __ Movt(dst.AsRegister<Register>(), src_reg, cond_cc);
   5510           }
   5511           break;
   5512         case Primitive::kPrimLong:
   5513           if (cond_inverted) {
   5514             __ Movf(dst.AsRegisterPairLow<Register>(), src_reg, cond_cc);
   5515             __ Movf(dst.AsRegisterPairHigh<Register>(), src_reg_high, cond_cc);
   5516           } else {
   5517             __ Movt(dst.AsRegisterPairLow<Register>(), src_reg, cond_cc);
   5518             __ Movt(dst.AsRegisterPairHigh<Register>(), src_reg_high, cond_cc);
   5519           }
   5520           break;
   5521         case Primitive::kPrimFloat:
   5522           if (cond_inverted) {
   5523             __ MovfS(dst.AsFpuRegister<FRegister>(), src.AsFpuRegister<FRegister>(), cond_cc);
   5524           } else {
   5525             __ MovtS(dst.AsFpuRegister<FRegister>(), src.AsFpuRegister<FRegister>(), cond_cc);
   5526           }
   5527           break;
   5528         case Primitive::kPrimDouble:
   5529           if (cond_inverted) {
   5530             __ MovfD(dst.AsFpuRegister<FRegister>(), src.AsFpuRegister<FRegister>(), cond_cc);
   5531           } else {
   5532             __ MovtD(dst.AsFpuRegister<FRegister>(), src.AsFpuRegister<FRegister>(), cond_cc);
   5533           }
   5534           break;
   5535       }
   5536       break;
   5537   }
   5538 }
   5539 
   5540 void InstructionCodeGeneratorMIPS::GenConditionalMoveR6(HSelect* select) {
   5541   LocationSummary* locations = select->GetLocations();
   5542   Location dst = locations->Out();
   5543   Location false_src = locations->InAt(0);
   5544   Location true_src = locations->InAt(1);
   5545   HInstruction* cond = select->InputAt(/* condition_input_index */ 2);
   5546   Register cond_reg = TMP;
   5547   FRegister fcond_reg = FTMP;
   5548   Primitive::Type cond_type = Primitive::kPrimInt;
   5549   bool cond_inverted = false;
   5550   Primitive::Type dst_type = select->GetType();
   5551 
   5552   if (IsBooleanValueOrMaterializedCondition(cond)) {
   5553     cond_reg = locations->InAt(/* condition_input_index */ 2).AsRegister<Register>();
   5554   } else {
   5555     HCondition* condition = cond->AsCondition();
   5556     LocationSummary* cond_locations = cond->GetLocations();
   5557     IfCondition if_cond = condition->GetCondition();
   5558     cond_type = condition->InputAt(0)->GetType();
   5559     switch (cond_type) {
   5560       default:
   5561         DCHECK_NE(cond_type, Primitive::kPrimLong);
   5562         cond_inverted = MaterializeIntCompare(if_cond, cond_locations, cond_reg);
   5563         break;
   5564       case Primitive::kPrimFloat:
   5565       case Primitive::kPrimDouble:
   5566         cond_inverted = MaterializeFpCompareR6(if_cond,
   5567                                                condition->IsGtBias(),
   5568                                                cond_type,
   5569                                                cond_locations,
   5570                                                fcond_reg);
   5571         break;
   5572     }
   5573   }
   5574 
   5575   if (true_src.IsConstant()) {
   5576     DCHECK(true_src.GetConstant()->IsZeroBitPattern());
   5577   }
   5578   if (false_src.IsConstant()) {
   5579     DCHECK(false_src.GetConstant()->IsZeroBitPattern());
   5580   }
   5581 
   5582   switch (dst_type) {
   5583     default:
   5584       if (Primitive::IsFloatingPointType(cond_type)) {
   5585         __ Mfc1(cond_reg, fcond_reg);
   5586       }
   5587       if (true_src.IsConstant()) {
   5588         if (cond_inverted) {
   5589           __ Selnez(dst.AsRegister<Register>(), false_src.AsRegister<Register>(), cond_reg);
   5590         } else {
   5591           __ Seleqz(dst.AsRegister<Register>(), false_src.AsRegister<Register>(), cond_reg);
   5592         }
   5593       } else if (false_src.IsConstant()) {
   5594         if (cond_inverted) {
   5595           __ Seleqz(dst.AsRegister<Register>(), true_src.AsRegister<Register>(), cond_reg);
   5596         } else {
   5597           __ Selnez(dst.AsRegister<Register>(), true_src.AsRegister<Register>(), cond_reg);
   5598         }
   5599       } else {
   5600         DCHECK_NE(cond_reg, AT);
   5601         if (cond_inverted) {
   5602           __ Seleqz(AT, true_src.AsRegister<Register>(), cond_reg);
   5603           __ Selnez(TMP, false_src.AsRegister<Register>(), cond_reg);
   5604         } else {
   5605           __ Selnez(AT, true_src.AsRegister<Register>(), cond_reg);
   5606           __ Seleqz(TMP, false_src.AsRegister<Register>(), cond_reg);
   5607         }
   5608         __ Or(dst.AsRegister<Register>(), AT, TMP);
   5609       }
   5610       break;
   5611     case Primitive::kPrimLong: {
   5612       if (Primitive::IsFloatingPointType(cond_type)) {
   5613         __ Mfc1(cond_reg, fcond_reg);
   5614       }
   5615       Register dst_lo = dst.AsRegisterPairLow<Register>();
   5616       Register dst_hi = dst.AsRegisterPairHigh<Register>();
   5617       if (true_src.IsConstant()) {
   5618         Register src_lo = false_src.AsRegisterPairLow<Register>();
   5619         Register src_hi = false_src.AsRegisterPairHigh<Register>();
   5620         if (cond_inverted) {
   5621           __ Selnez(dst_lo, src_lo, cond_reg);
   5622           __ Selnez(dst_hi, src_hi, cond_reg);
   5623         } else {
   5624           __ Seleqz(dst_lo, src_lo, cond_reg);
   5625           __ Seleqz(dst_hi, src_hi, cond_reg);
   5626         }
   5627       } else {
   5628         DCHECK(false_src.IsConstant());
   5629         Register src_lo = true_src.AsRegisterPairLow<Register>();
   5630         Register src_hi = true_src.AsRegisterPairHigh<Register>();
   5631         if (cond_inverted) {
   5632           __ Seleqz(dst_lo, src_lo, cond_reg);
   5633           __ Seleqz(dst_hi, src_hi, cond_reg);
   5634         } else {
   5635           __ Selnez(dst_lo, src_lo, cond_reg);
   5636           __ Selnez(dst_hi, src_hi, cond_reg);
   5637         }
   5638       }
   5639       break;
   5640     }
   5641     case Primitive::kPrimFloat: {
   5642       if (!Primitive::IsFloatingPointType(cond_type)) {
   5643         // sel*.fmt tests bit 0 of the condition register, account for that.
   5644         __ Sltu(TMP, ZERO, cond_reg);
   5645         __ Mtc1(TMP, fcond_reg);
   5646       }
   5647       FRegister dst_reg = dst.AsFpuRegister<FRegister>();
   5648       if (true_src.IsConstant()) {
   5649         FRegister src_reg = false_src.AsFpuRegister<FRegister>();
   5650         if (cond_inverted) {
   5651           __ SelnezS(dst_reg, src_reg, fcond_reg);
   5652         } else {
   5653           __ SeleqzS(dst_reg, src_reg, fcond_reg);
   5654         }
   5655       } else if (false_src.IsConstant()) {
   5656         FRegister src_reg = true_src.AsFpuRegister<FRegister>();
   5657         if (cond_inverted) {
   5658           __ SeleqzS(dst_reg, src_reg, fcond_reg);
   5659         } else {
   5660           __ SelnezS(dst_reg, src_reg, fcond_reg);
   5661         }
   5662       } else {
   5663         if (cond_inverted) {
   5664           __ SelS(fcond_reg,
   5665                   true_src.AsFpuRegister<FRegister>(),
   5666                   false_src.AsFpuRegister<FRegister>());
   5667         } else {
   5668           __ SelS(fcond_reg,
   5669                   false_src.AsFpuRegister<FRegister>(),
   5670                   true_src.AsFpuRegister<FRegister>());
   5671         }
   5672         __ MovS(dst_reg, fcond_reg);
   5673       }
   5674       break;
   5675     }
   5676     case Primitive::kPrimDouble: {
   5677       if (!Primitive::IsFloatingPointType(cond_type)) {
   5678         // sel*.fmt tests bit 0 of the condition register, account for that.
   5679         __ Sltu(TMP, ZERO, cond_reg);
   5680         __ Mtc1(TMP, fcond_reg);
   5681       }
   5682       FRegister dst_reg = dst.AsFpuRegister<FRegister>();
   5683       if (true_src.IsConstant()) {
   5684         FRegister src_reg = false_src.AsFpuRegister<FRegister>();
   5685         if (cond_inverted) {
   5686           __ SelnezD(dst_reg, src_reg, fcond_reg);
   5687         } else {
   5688           __ SeleqzD(dst_reg, src_reg, fcond_reg);
   5689         }
   5690       } else if (false_src.IsConstant()) {
   5691         FRegister src_reg = true_src.AsFpuRegister<FRegister>();
   5692         if (cond_inverted) {
   5693           __ SeleqzD(dst_reg, src_reg, fcond_reg);
   5694         } else {
   5695           __ SelnezD(dst_reg, src_reg, fcond_reg);
   5696         }
   5697       } else {
   5698         if (cond_inverted) {
   5699           __ SelD(fcond_reg,
   5700                   true_src.AsFpuRegister<FRegister>(),
   5701                   false_src.AsFpuRegister<FRegister>());
   5702         } else {
   5703           __ SelD(fcond_reg,
   5704                   false_src.AsFpuRegister<FRegister>(),
   5705                   true_src.AsFpuRegister<FRegister>());
   5706         }
   5707         __ MovD(dst_reg, fcond_reg);
   5708       }
   5709       break;
   5710     }
   5711   }
   5712 }
   5713 
   5714 void LocationsBuilderMIPS::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) {
   5715   LocationSummary* locations = new (GetGraph()->GetArena())
   5716       LocationSummary(flag, LocationSummary::kNoCall);
   5717   locations->SetOut(Location::RequiresRegister());
   5718 }
   5719 
   5720 void InstructionCodeGeneratorMIPS::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) {
   5721   __ LoadFromOffset(kLoadWord,
   5722                     flag->GetLocations()->Out().AsRegister<Register>(),
   5723                     SP,
   5724                     codegen_->GetStackOffsetOfShouldDeoptimizeFlag());
   5725 }
   5726 
   5727 void LocationsBuilderMIPS::VisitSelect(HSelect* select) {
   5728   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(select);
   5729   CanMoveConditionally(select, codegen_->GetInstructionSetFeatures().IsR6(), locations);
   5730 }
   5731 
   5732 void InstructionCodeGeneratorMIPS::VisitSelect(HSelect* select) {
   5733   bool is_r6 = codegen_->GetInstructionSetFeatures().IsR6();
   5734   if (CanMoveConditionally(select, is_r6, /* locations_to_set */ nullptr)) {
   5735     if (is_r6) {
   5736       GenConditionalMoveR6(select);
   5737     } else {
   5738       GenConditionalMoveR2(select);
   5739     }
   5740   } else {
   5741     LocationSummary* locations = select->GetLocations();
   5742     MipsLabel false_target;
   5743     GenerateTestAndBranch(select,
   5744                           /* condition_input_index */ 2,
   5745                           /* true_target */ nullptr,
   5746                           &false_target);
   5747     codegen_->MoveLocation(locations->Out(), locations->InAt(1), select->GetType());
   5748     __ Bind(&false_target);
   5749   }
   5750 }
   5751 
   5752 void LocationsBuilderMIPS::VisitNativeDebugInfo(HNativeDebugInfo* info) {
   5753   new (GetGraph()->GetArena()) LocationSummary(info);
   5754 }
   5755 
   5756 void InstructionCodeGeneratorMIPS::VisitNativeDebugInfo(HNativeDebugInfo*) {
   5757   // MaybeRecordNativeDebugInfo is already called implicitly in CodeGenerator::Compile.
   5758 }
   5759 
   5760 void CodeGeneratorMIPS::GenerateNop() {
   5761   __ Nop();
   5762 }
   5763 
   5764 void LocationsBuilderMIPS::HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info) {
   5765   Primitive::Type field_type = field_info.GetFieldType();
   5766   bool is_wide = (field_type == Primitive::kPrimLong) || (field_type == Primitive::kPrimDouble);
   5767   bool generate_volatile = field_info.IsVolatile() && is_wide;
   5768   bool object_field_get_with_read_barrier =
   5769       kEmitCompilerReadBarrier && (field_type == Primitive::kPrimNot);
   5770   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(
   5771       instruction,
   5772       generate_volatile
   5773           ? LocationSummary::kCallOnMainOnly
   5774           : (object_field_get_with_read_barrier
   5775               ? LocationSummary::kCallOnSlowPath
   5776               : LocationSummary::kNoCall));
   5777 
   5778   locations->SetInAt(0, Location::RequiresRegister());
   5779   if (generate_volatile) {
   5780     InvokeRuntimeCallingConvention calling_convention;
   5781     // need A0 to hold base + offset
   5782     locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
   5783     if (field_type == Primitive::kPrimLong) {
   5784       locations->SetOut(calling_convention.GetReturnLocation(Primitive::kPrimLong));
   5785     } else {
   5786       // Use Location::Any() to prevent situations when running out of available fp registers.
   5787       locations->SetOut(Location::Any());
   5788       // Need some temp core regs since FP results are returned in core registers
   5789       Location reg = calling_convention.GetReturnLocation(Primitive::kPrimLong);
   5790       locations->AddTemp(Location::RegisterLocation(reg.AsRegisterPairLow<Register>()));
   5791       locations->AddTemp(Location::RegisterLocation(reg.AsRegisterPairHigh<Register>()));
   5792     }
   5793   } else {
   5794     if (Primitive::IsFloatingPointType(instruction->GetType())) {
   5795       locations->SetOut(Location::RequiresFpuRegister());
   5796     } else {
   5797       // The output overlaps in the case of an object field get with
   5798       // read barriers enabled: we do not want the move to overwrite the
   5799       // object's location, as we need it to emit the read barrier.
   5800       locations->SetOut(Location::RequiresRegister(),
   5801                         object_field_get_with_read_barrier
   5802                             ? Location::kOutputOverlap
   5803                             : Location::kNoOutputOverlap);
   5804     }
   5805     if (object_field_get_with_read_barrier && kUseBakerReadBarrier) {
   5806       // We need a temporary register for the read barrier marking slow
   5807       // path in CodeGeneratorMIPS::GenerateFieldLoadWithBakerReadBarrier.
   5808       locations->AddTemp(Location::RequiresRegister());
   5809     }
   5810   }
   5811 }
   5812 
   5813 void InstructionCodeGeneratorMIPS::HandleFieldGet(HInstruction* instruction,
   5814                                                   const FieldInfo& field_info,
   5815                                                   uint32_t dex_pc) {
   5816   Primitive::Type type = field_info.GetFieldType();
   5817   LocationSummary* locations = instruction->GetLocations();
   5818   Location obj_loc = locations->InAt(0);
   5819   Register obj = obj_loc.AsRegister<Register>();
   5820   Location dst_loc = locations->Out();
   5821   LoadOperandType load_type = kLoadUnsignedByte;
   5822   bool is_volatile = field_info.IsVolatile();
   5823   uint32_t offset = field_info.GetFieldOffset().Uint32Value();
   5824   auto null_checker = GetImplicitNullChecker(instruction, codegen_);
   5825 
   5826   switch (type) {
   5827     case Primitive::kPrimBoolean:
   5828       load_type = kLoadUnsignedByte;
   5829       break;
   5830     case Primitive::kPrimByte:
   5831       load_type = kLoadSignedByte;
   5832       break;
   5833     case Primitive::kPrimShort:
   5834       load_type = kLoadSignedHalfword;
   5835       break;
   5836     case Primitive::kPrimChar:
   5837       load_type = kLoadUnsignedHalfword;
   5838       break;
   5839     case Primitive::kPrimInt:
   5840     case Primitive::kPrimFloat:
   5841     case Primitive::kPrimNot:
   5842       load_type = kLoadWord;
   5843       break;
   5844     case Primitive::kPrimLong:
   5845     case Primitive::kPrimDouble:
   5846       load_type = kLoadDoubleword;
   5847       break;
   5848     case Primitive::kPrimVoid:
   5849       LOG(FATAL) << "Unreachable type " << type;
   5850       UNREACHABLE();
   5851   }
   5852 
   5853   if (is_volatile && load_type == kLoadDoubleword) {
   5854     InvokeRuntimeCallingConvention calling_convention;
   5855     __ Addiu32(locations->GetTemp(0).AsRegister<Register>(), obj, offset);
   5856     // Do implicit Null check
   5857     __ Lw(ZERO, locations->GetTemp(0).AsRegister<Register>(), 0);
   5858     codegen_->RecordPcInfo(instruction, instruction->GetDexPc());
   5859     codegen_->InvokeRuntime(kQuickA64Load, instruction, dex_pc);
   5860     CheckEntrypointTypes<kQuickA64Load, int64_t, volatile const int64_t*>();
   5861     if (type == Primitive::kPrimDouble) {
   5862       // FP results are returned in core registers. Need to move them.
   5863       if (dst_loc.IsFpuRegister()) {
   5864         __ Mtc1(locations->GetTemp(1).AsRegister<Register>(), dst_loc.AsFpuRegister<FRegister>());
   5865         __ MoveToFpuHigh(locations->GetTemp(2).AsRegister<Register>(),
   5866                          dst_loc.AsFpuRegister<FRegister>());
   5867       } else {
   5868         DCHECK(dst_loc.IsDoubleStackSlot());
   5869         __ StoreToOffset(kStoreWord,
   5870                          locations->GetTemp(1).AsRegister<Register>(),
   5871                          SP,
   5872                          dst_loc.GetStackIndex());
   5873         __ StoreToOffset(kStoreWord,
   5874                          locations->GetTemp(2).AsRegister<Register>(),
   5875                          SP,
   5876                          dst_loc.GetStackIndex() + 4);
   5877       }
   5878     }
   5879   } else {
   5880     if (type == Primitive::kPrimNot) {
   5881       // /* HeapReference<Object> */ dst = *(obj + offset)
   5882       if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
   5883         Location temp_loc = locations->GetTemp(0);
   5884         // Note that a potential implicit null check is handled in this
   5885         // CodeGeneratorMIPS::GenerateFieldLoadWithBakerReadBarrier call.
   5886         codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
   5887                                                         dst_loc,
   5888                                                         obj,
   5889                                                         offset,
   5890                                                         temp_loc,
   5891                                                         /* needs_null_check */ true);
   5892         if (is_volatile) {
   5893           GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
   5894         }
   5895       } else {
   5896         __ LoadFromOffset(kLoadWord, dst_loc.AsRegister<Register>(), obj, offset, null_checker);
   5897         if (is_volatile) {
   5898           GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
   5899         }
   5900         // If read barriers are enabled, emit read barriers other than
   5901         // Baker's using a slow path (and also unpoison the loaded
   5902         // reference, if heap poisoning is enabled).
   5903         codegen_->MaybeGenerateReadBarrierSlow(instruction, dst_loc, dst_loc, obj_loc, offset);
   5904       }
   5905     } else if (!Primitive::IsFloatingPointType(type)) {
   5906       Register dst;
   5907       if (type == Primitive::kPrimLong) {
   5908         DCHECK(dst_loc.IsRegisterPair());
   5909         dst = dst_loc.AsRegisterPairLow<Register>();
   5910       } else {
   5911         DCHECK(dst_loc.IsRegister());
   5912         dst = dst_loc.AsRegister<Register>();
   5913       }
   5914       __ LoadFromOffset(load_type, dst, obj, offset, null_checker);
   5915     } else {
   5916       DCHECK(dst_loc.IsFpuRegister());
   5917       FRegister dst = dst_loc.AsFpuRegister<FRegister>();
   5918       if (type == Primitive::kPrimFloat) {
   5919         __ LoadSFromOffset(dst, obj, offset, null_checker);
   5920       } else {
   5921         __ LoadDFromOffset(dst, obj, offset, null_checker);
   5922       }
   5923     }
   5924   }
   5925 
   5926   // Memory barriers, in the case of references, are handled in the
   5927   // previous switch statement.
   5928   if (is_volatile && (type != Primitive::kPrimNot)) {
   5929     GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
   5930   }
   5931 }
   5932 
   5933 void LocationsBuilderMIPS::HandleFieldSet(HInstruction* instruction, const FieldInfo& field_info) {
   5934   Primitive::Type field_type = field_info.GetFieldType();
   5935   bool is_wide = (field_type == Primitive::kPrimLong) || (field_type == Primitive::kPrimDouble);
   5936   bool generate_volatile = field_info.IsVolatile() && is_wide;
   5937   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(
   5938       instruction, generate_volatile ? LocationSummary::kCallOnMainOnly : LocationSummary::kNoCall);
   5939 
   5940   locations->SetInAt(0, Location::RequiresRegister());
   5941   if (generate_volatile) {
   5942     InvokeRuntimeCallingConvention calling_convention;
   5943     // need A0 to hold base + offset
   5944     locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
   5945     if (field_type == Primitive::kPrimLong) {
   5946       locations->SetInAt(1, Location::RegisterPairLocation(
   5947           calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
   5948     } else {
   5949       // Use Location::Any() to prevent situations when running out of available fp registers.
   5950       locations->SetInAt(1, Location::Any());
   5951       // Pass FP parameters in core registers.
   5952       locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
   5953       locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(3)));
   5954     }
   5955   } else {
   5956     if (Primitive::IsFloatingPointType(field_type)) {
   5957       locations->SetInAt(1, FpuRegisterOrConstantForStore(instruction->InputAt(1)));
   5958     } else {
   5959       locations->SetInAt(1, RegisterOrZeroConstant(instruction->InputAt(1)));
   5960     }
   5961   }
   5962 }
   5963 
   5964 void InstructionCodeGeneratorMIPS::HandleFieldSet(HInstruction* instruction,
   5965                                                   const FieldInfo& field_info,
   5966                                                   uint32_t dex_pc,
   5967                                                   bool value_can_be_null) {
   5968   Primitive::Type type = field_info.GetFieldType();
   5969   LocationSummary* locations = instruction->GetLocations();
   5970   Register obj = locations->InAt(0).AsRegister<Register>();
   5971   Location value_location = locations->InAt(1);
   5972   StoreOperandType store_type = kStoreByte;
   5973   bool is_volatile = field_info.IsVolatile();
   5974   uint32_t offset = field_info.GetFieldOffset().Uint32Value();
   5975   bool needs_write_barrier = CodeGenerator::StoreNeedsWriteBarrier(type, instruction->InputAt(1));
   5976   auto null_checker = GetImplicitNullChecker(instruction, codegen_);
   5977 
   5978   switch (type) {
   5979     case Primitive::kPrimBoolean:
   5980     case Primitive::kPrimByte:
   5981       store_type = kStoreByte;
   5982       break;
   5983     case Primitive::kPrimShort:
   5984     case Primitive::kPrimChar:
   5985       store_type = kStoreHalfword;
   5986       break;
   5987     case Primitive::kPrimInt:
   5988     case Primitive::kPrimFloat:
   5989     case Primitive::kPrimNot:
   5990       store_type = kStoreWord;
   5991       break;
   5992     case Primitive::kPrimLong:
   5993     case Primitive::kPrimDouble:
   5994       store_type = kStoreDoubleword;
   5995       break;
   5996     case Primitive::kPrimVoid:
   5997       LOG(FATAL) << "Unreachable type " << type;
   5998       UNREACHABLE();
   5999   }
   6000 
   6001   if (is_volatile) {
   6002     GenerateMemoryBarrier(MemBarrierKind::kAnyStore);
   6003   }
   6004 
   6005   if (is_volatile && store_type == kStoreDoubleword) {
   6006     InvokeRuntimeCallingConvention calling_convention;
   6007     __ Addiu32(locations->GetTemp(0).AsRegister<Register>(), obj, offset);
   6008     // Do implicit Null check.
   6009     __ Lw(ZERO, locations->GetTemp(0).AsRegister<Register>(), 0);
   6010     codegen_->RecordPcInfo(instruction, instruction->GetDexPc());
   6011     if (type == Primitive::kPrimDouble) {
   6012       // Pass FP parameters in core registers.
   6013       if (value_location.IsFpuRegister()) {
   6014         __ Mfc1(locations->GetTemp(1).AsRegister<Register>(),
   6015                 value_location.AsFpuRegister<FRegister>());
   6016         __ MoveFromFpuHigh(locations->GetTemp(2).AsRegister<Register>(),
   6017                            value_location.AsFpuRegister<FRegister>());
   6018       } else if (value_location.IsDoubleStackSlot()) {
   6019         __ LoadFromOffset(kLoadWord,
   6020                           locations->GetTemp(1).AsRegister<Register>(),
   6021                           SP,
   6022                           value_location.GetStackIndex());
   6023         __ LoadFromOffset(kLoadWord,
   6024                           locations->GetTemp(2).AsRegister<Register>(),
   6025                           SP,
   6026                           value_location.GetStackIndex() + 4);
   6027       } else {
   6028         DCHECK(value_location.IsConstant());
   6029         DCHECK(value_location.GetConstant()->IsDoubleConstant());
   6030         int64_t value = CodeGenerator::GetInt64ValueOf(value_location.GetConstant());
   6031         __ LoadConst64(locations->GetTemp(2).AsRegister<Register>(),
   6032                        locations->GetTemp(1).AsRegister<Register>(),
   6033                        value);
   6034       }
   6035     }
   6036     codegen_->InvokeRuntime(kQuickA64Store, instruction, dex_pc);
   6037     CheckEntrypointTypes<kQuickA64Store, void, volatile int64_t *, int64_t>();
   6038   } else {
   6039     if (value_location.IsConstant()) {
   6040       int64_t value = CodeGenerator::GetInt64ValueOf(value_location.GetConstant());
   6041       __ StoreConstToOffset(store_type, value, obj, offset, TMP, null_checker);
   6042     } else if (!Primitive::IsFloatingPointType(type)) {
   6043       Register src;
   6044       if (type == Primitive::kPrimLong) {
   6045         src = value_location.AsRegisterPairLow<Register>();
   6046       } else {
   6047         src = value_location.AsRegister<Register>();
   6048       }
   6049       if (kPoisonHeapReferences && needs_write_barrier) {
   6050         // Note that in the case where `value` is a null reference,
   6051         // we do not enter this block, as a null reference does not
   6052         // need poisoning.
   6053         DCHECK_EQ(type, Primitive::kPrimNot);
   6054         __ PoisonHeapReference(TMP, src);
   6055         __ StoreToOffset(store_type, TMP, obj, offset, null_checker);
   6056       } else {
   6057         __ StoreToOffset(store_type, src, obj, offset, null_checker);
   6058       }
   6059     } else {
   6060       FRegister src = value_location.AsFpuRegister<FRegister>();
   6061       if (type == Primitive::kPrimFloat) {
   6062         __ StoreSToOffset(src, obj, offset, null_checker);
   6063       } else {
   6064         __ StoreDToOffset(src, obj, offset, null_checker);
   6065       }
   6066     }
   6067   }
   6068 
   6069   if (needs_write_barrier) {
   6070     Register src = value_location.AsRegister<Register>();
   6071     codegen_->MarkGCCard(obj, src, value_can_be_null);
   6072   }
   6073 
   6074   if (is_volatile) {
   6075     GenerateMemoryBarrier(MemBarrierKind::kAnyAny);
   6076   }
   6077 }
   6078 
   6079 void LocationsBuilderMIPS::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
   6080   HandleFieldGet(instruction, instruction->GetFieldInfo());
   6081 }
   6082 
   6083 void InstructionCodeGeneratorMIPS::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
   6084   HandleFieldGet(instruction, instruction->GetFieldInfo(), instruction->GetDexPc());
   6085 }
   6086 
   6087 void LocationsBuilderMIPS::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
   6088   HandleFieldSet(instruction, instruction->GetFieldInfo());
   6089 }
   6090 
   6091 void InstructionCodeGeneratorMIPS::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
   6092   HandleFieldSet(instruction,
   6093                  instruction->GetFieldInfo(),
   6094                  instruction->GetDexPc(),
   6095                  instruction->GetValueCanBeNull());
   6096 }
   6097 
   6098 void InstructionCodeGeneratorMIPS::GenerateReferenceLoadOneRegister(
   6099     HInstruction* instruction,
   6100     Location out,
   6101     uint32_t offset,
   6102     Location maybe_temp,
   6103     ReadBarrierOption read_barrier_option) {
   6104   Register out_reg = out.AsRegister<Register>();
   6105   if (read_barrier_option == kWithReadBarrier) {
   6106     CHECK(kEmitCompilerReadBarrier);
   6107     DCHECK(maybe_temp.IsRegister()) << maybe_temp;
   6108     if (kUseBakerReadBarrier) {
   6109       // Load with fast path based Baker's read barrier.
   6110       // /* HeapReference<Object> */ out = *(out + offset)
   6111       codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
   6112                                                       out,
   6113                                                       out_reg,
   6114                                                       offset,
   6115                                                       maybe_temp,
   6116                                                       /* needs_null_check */ false);
   6117     } else {
   6118       // Load with slow path based read barrier.
   6119       // Save the value of `out` into `maybe_temp` before overwriting it
   6120       // in the following move operation, as we will need it for the
   6121       // read barrier below.
   6122       __ Move(maybe_temp.AsRegister<Register>(), out_reg);
   6123       // /* HeapReference<Object> */ out = *(out + offset)
   6124       __ LoadFromOffset(kLoadWord, out_reg, out_reg, offset);
   6125       codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset);
   6126     }
   6127   } else {
   6128     // Plain load with no read barrier.
   6129     // /* HeapReference<Object> */ out = *(out + offset)
   6130     __ LoadFromOffset(kLoadWord, out_reg, out_reg, offset);
   6131     __ MaybeUnpoisonHeapReference(out_reg);
   6132   }
   6133 }
   6134 
   6135 void InstructionCodeGeneratorMIPS::GenerateReferenceLoadTwoRegisters(
   6136     HInstruction* instruction,
   6137     Location out,
   6138     Location obj,
   6139     uint32_t offset,
   6140     Location maybe_temp,
   6141     ReadBarrierOption read_barrier_option) {
   6142   Register out_reg = out.AsRegister<Register>();
   6143   Register obj_reg = obj.AsRegister<Register>();
   6144   if (read_barrier_option == kWithReadBarrier) {
   6145     CHECK(kEmitCompilerReadBarrier);
   6146     if (kUseBakerReadBarrier) {
   6147       DCHECK(maybe_temp.IsRegister()) << maybe_temp;
   6148       // Load with fast path based Baker's read barrier.
   6149       // /* HeapReference<Object> */ out = *(obj + offset)
   6150       codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
   6151                                                       out,
   6152                                                       obj_reg,
   6153                                                       offset,
   6154                                                       maybe_temp,
   6155                                                       /* needs_null_check */ false);
   6156     } else {
   6157       // Load with slow path based read barrier.
   6158       // /* HeapReference<Object> */ out = *(obj + offset)
   6159       __ LoadFromOffset(kLoadWord, out_reg, obj_reg, offset);
   6160       codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset);
   6161     }
   6162   } else {
   6163     // Plain load with no read barrier.
   6164     // /* HeapReference<Object> */ out = *(obj + offset)
   6165     __ LoadFromOffset(kLoadWord, out_reg, obj_reg, offset);
   6166     __ MaybeUnpoisonHeapReference(out_reg);
   6167   }
   6168 }
   6169 
   6170 void InstructionCodeGeneratorMIPS::GenerateGcRootFieldLoad(HInstruction* instruction,
   6171                                                            Location root,
   6172                                                            Register obj,
   6173                                                            uint32_t offset,
   6174                                                            ReadBarrierOption read_barrier_option) {
   6175   Register root_reg = root.AsRegister<Register>();
   6176   if (read_barrier_option == kWithReadBarrier) {
   6177     DCHECK(kEmitCompilerReadBarrier);
   6178     if (kUseBakerReadBarrier) {
   6179       // Fast path implementation of art::ReadBarrier::BarrierForRoot when
   6180       // Baker's read barrier are used:
   6181       //
   6182       //   root = obj.field;
   6183       //   temp = Thread::Current()->pReadBarrierMarkReg ## root.reg()
   6184       //   if (temp != null) {
   6185       //     root = temp(root)
   6186       //   }
   6187 
   6188       // /* GcRoot<mirror::Object> */ root = *(obj + offset)
   6189       __ LoadFromOffset(kLoadWord, root_reg, obj, offset);
   6190       static_assert(
   6191           sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(GcRoot<mirror::Object>),
   6192           "art::mirror::CompressedReference<mirror::Object> and art::GcRoot<mirror::Object> "
   6193           "have different sizes.");
   6194       static_assert(sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(int32_t),
   6195                     "art::mirror::CompressedReference<mirror::Object> and int32_t "
   6196                     "have different sizes.");
   6197 
   6198       // Slow path marking the GC root `root`.
   6199       Location temp = Location::RegisterLocation(T9);
   6200       SlowPathCodeMIPS* slow_path =
   6201           new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathMIPS(
   6202               instruction,
   6203               root,
   6204               /*entrypoint*/ temp);
   6205       codegen_->AddSlowPath(slow_path);
   6206 
   6207       // temp = Thread::Current()->pReadBarrierMarkReg ## root.reg()
   6208       const int32_t entry_point_offset =
   6209           CodeGenerator::GetReadBarrierMarkEntryPointsOffset<kMipsPointerSize>(root.reg() - 1);
   6210       // Loading the entrypoint does not require a load acquire since it is only changed when
   6211       // threads are suspended or running a checkpoint.
   6212       __ LoadFromOffset(kLoadWord, temp.AsRegister<Register>(), TR, entry_point_offset);
   6213       // The entrypoint is null when the GC is not marking, this prevents one load compared to
   6214       // checking GetIsGcMarking.
   6215       __ Bnez(temp.AsRegister<Register>(), slow_path->GetEntryLabel());
   6216       __ Bind(slow_path->GetExitLabel());
   6217     } else {
   6218       // GC root loaded through a slow path for read barriers other
   6219       // than Baker's.
   6220       // /* GcRoot<mirror::Object>* */ root = obj + offset
   6221       __ Addiu32(root_reg, obj, offset);
   6222       // /* mirror::Object* */ root = root->Read()
   6223       codegen_->GenerateReadBarrierForRootSlow(instruction, root, root);
   6224     }
   6225   } else {
   6226     // Plain GC root load with no read barrier.
   6227     // /* GcRoot<mirror::Object> */ root = *(obj + offset)
   6228     __ LoadFromOffset(kLoadWord, root_reg, obj, offset);
   6229     // Note that GC roots are not affected by heap poisoning, thus we
   6230     // do not have to unpoison `root_reg` here.
   6231   }
   6232 }
   6233 
   6234 void CodeGeneratorMIPS::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction,
   6235                                                               Location ref,
   6236                                                               Register obj,
   6237                                                               uint32_t offset,
   6238                                                               Location temp,
   6239                                                               bool needs_null_check) {
   6240   DCHECK(kEmitCompilerReadBarrier);
   6241   DCHECK(kUseBakerReadBarrier);
   6242 
   6243   // /* HeapReference<Object> */ ref = *(obj + offset)
   6244   Location no_index = Location::NoLocation();
   6245   ScaleFactor no_scale_factor = TIMES_1;
   6246   GenerateReferenceLoadWithBakerReadBarrier(instruction,
   6247                                             ref,
   6248                                             obj,
   6249                                             offset,
   6250                                             no_index,
   6251                                             no_scale_factor,
   6252                                             temp,
   6253                                             needs_null_check);
   6254 }
   6255 
   6256 void CodeGeneratorMIPS::GenerateArrayLoadWithBakerReadBarrier(HInstruction* instruction,
   6257                                                               Location ref,
   6258                                                               Register obj,
   6259                                                               uint32_t data_offset,
   6260                                                               Location index,
   6261                                                               Location temp,
   6262                                                               bool needs_null_check) {
   6263   DCHECK(kEmitCompilerReadBarrier);
   6264   DCHECK(kUseBakerReadBarrier);
   6265 
   6266   static_assert(
   6267       sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
   6268       "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
   6269   // /* HeapReference<Object> */ ref =
   6270   //     *(obj + data_offset + index * sizeof(HeapReference<Object>))
   6271   ScaleFactor scale_factor = TIMES_4;
   6272   GenerateReferenceLoadWithBakerReadBarrier(instruction,
   6273                                             ref,
   6274                                             obj,
   6275                                             data_offset,
   6276                                             index,
   6277                                             scale_factor,
   6278                                             temp,
   6279                                             needs_null_check);
   6280 }
   6281 
   6282 void CodeGeneratorMIPS::GenerateReferenceLoadWithBakerReadBarrier(HInstruction* instruction,
   6283                                                                   Location ref,
   6284                                                                   Register obj,
   6285                                                                   uint32_t offset,
   6286                                                                   Location index,
   6287                                                                   ScaleFactor scale_factor,
   6288                                                                   Location temp,
   6289                                                                   bool needs_null_check,
   6290                                                                   bool always_update_field) {
   6291   DCHECK(kEmitCompilerReadBarrier);
   6292   DCHECK(kUseBakerReadBarrier);
   6293 
   6294   // In slow path based read barriers, the read barrier call is
   6295   // inserted after the original load. However, in fast path based
   6296   // Baker's read barriers, we need to perform the load of
   6297   // mirror::Object::monitor_ *before* the original reference load.
   6298   // This load-load ordering is required by the read barrier.
   6299   // The fast path/slow path (for Baker's algorithm) should look like:
   6300   //
   6301   //   uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState();
   6302   //   lfence;  // Load fence or artificial data dependency to prevent load-load reordering
   6303   //   HeapReference<Object> ref = *src;  // Original reference load.
   6304   //   bool is_gray = (rb_state == ReadBarrier::GrayState());
   6305   //   if (is_gray) {
   6306   //     ref = ReadBarrier::Mark(ref);  // Performed by runtime entrypoint slow path.
   6307   //   }
   6308   //
   6309   // Note: the original implementation in ReadBarrier::Barrier is
   6310   // slightly more complex as it performs additional checks that we do
   6311   // not do here for performance reasons.
   6312 
   6313   Register ref_reg = ref.AsRegister<Register>();
   6314   Register temp_reg = temp.AsRegister<Register>();
   6315   uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value();
   6316 
   6317   // /* int32_t */ monitor = obj->monitor_
   6318   __ LoadFromOffset(kLoadWord, temp_reg, obj, monitor_offset);
   6319   if (needs_null_check) {
   6320     MaybeRecordImplicitNullCheck(instruction);
   6321   }
   6322   // /* LockWord */ lock_word = LockWord(monitor)
   6323   static_assert(sizeof(LockWord) == sizeof(int32_t),
   6324                 "art::LockWord and int32_t have different sizes.");
   6325 
   6326   __ Sync(0);  // Barrier to prevent load-load reordering.
   6327 
   6328   // The actual reference load.
   6329   if (index.IsValid()) {
   6330     // Load types involving an "index": ArrayGet,
   6331     // UnsafeGetObject/UnsafeGetObjectVolatile and UnsafeCASObject
   6332     // intrinsics.
   6333     // /* HeapReference<Object> */ ref = *(obj + offset + (index << scale_factor))
   6334     if (index.IsConstant()) {
   6335       size_t computed_offset =
   6336           (index.GetConstant()->AsIntConstant()->GetValue() << scale_factor) + offset;
   6337       __ LoadFromOffset(kLoadWord, ref_reg, obj, computed_offset);
   6338     } else {
   6339       // Handle the special case of the
   6340       // UnsafeGetObject/UnsafeGetObjectVolatile and UnsafeCASObject
   6341       // intrinsics, which use a register pair as index ("long
   6342       // offset"), of which only the low part contains data.
   6343       Register index_reg = index.IsRegisterPair()
   6344           ? index.AsRegisterPairLow<Register>()
   6345           : index.AsRegister<Register>();
   6346       __ ShiftAndAdd(TMP, index_reg, obj, scale_factor, TMP);
   6347       __ LoadFromOffset(kLoadWord, ref_reg, TMP, offset);
   6348     }
   6349   } else {
   6350     // /* HeapReference<Object> */ ref = *(obj + offset)
   6351     __ LoadFromOffset(kLoadWord, ref_reg, obj, offset);
   6352   }
   6353 
   6354   // Object* ref = ref_addr->AsMirrorPtr()
   6355   __ MaybeUnpoisonHeapReference(ref_reg);
   6356 
   6357   // Slow path marking the object `ref` when it is gray.
   6358   SlowPathCodeMIPS* slow_path;
   6359   if (always_update_field) {
   6360     // ReadBarrierMarkAndUpdateFieldSlowPathMIPS only supports address
   6361     // of the form `obj + field_offset`, where `obj` is a register and
   6362     // `field_offset` is a register pair (of which only the lower half
   6363     // is used). Thus `offset` and `scale_factor` above are expected
   6364     // to be null in this code path.
   6365     DCHECK_EQ(offset, 0u);
   6366     DCHECK_EQ(scale_factor, ScaleFactor::TIMES_1);
   6367     slow_path = new (GetGraph()->GetArena())
   6368         ReadBarrierMarkAndUpdateFieldSlowPathMIPS(instruction,
   6369                                                   ref,
   6370                                                   obj,
   6371                                                   /* field_offset */ index,
   6372                                                   temp_reg);
   6373   } else {
   6374     slow_path = new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathMIPS(instruction, ref);
   6375   }
   6376   AddSlowPath(slow_path);
   6377 
   6378   // if (rb_state == ReadBarrier::GrayState())
   6379   //   ref = ReadBarrier::Mark(ref);
   6380   // Given the numeric representation, it's enough to check the low bit of the
   6381   // rb_state. We do that by shifting the bit into the sign bit (31) and
   6382   // performing a branch on less than zero.
   6383   static_assert(ReadBarrier::WhiteState() == 0, "Expecting white to have value 0");
   6384   static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1");
   6385   static_assert(LockWord::kReadBarrierStateSize == 1, "Expecting 1-bit read barrier state size");
   6386   __ Sll(temp_reg, temp_reg, 31 - LockWord::kReadBarrierStateShift);
   6387   __ Bltz(temp_reg, slow_path->GetEntryLabel());
   6388   __ Bind(slow_path->GetExitLabel());
   6389 }
   6390 
   6391 void CodeGeneratorMIPS::GenerateReadBarrierSlow(HInstruction* instruction,
   6392                                                 Location out,
   6393                                                 Location ref,
   6394                                                 Location obj,
   6395                                                 uint32_t offset,
   6396                                                 Location index) {
   6397   DCHECK(kEmitCompilerReadBarrier);
   6398 
   6399   // Insert a slow path based read barrier *after* the reference load.
   6400   //
   6401   // If heap poisoning is enabled, the unpoisoning of the loaded
   6402   // reference will be carried out by the runtime within the slow
   6403   // path.
   6404   //
   6405   // Note that `ref` currently does not get unpoisoned (when heap
   6406   // poisoning is enabled), which is alright as the `ref` argument is
   6407   // not used by the artReadBarrierSlow entry point.
   6408   //
   6409   // TODO: Unpoison `ref` when it is used by artReadBarrierSlow.
   6410   SlowPathCodeMIPS* slow_path = new (GetGraph()->GetArena())
   6411       ReadBarrierForHeapReferenceSlowPathMIPS(instruction, out, ref, obj, offset, index);
   6412   AddSlowPath(slow_path);
   6413 
   6414   __ B(slow_path->GetEntryLabel());
   6415   __ Bind(slow_path->GetExitLabel());
   6416 }
   6417 
   6418 void CodeGeneratorMIPS::MaybeGenerateReadBarrierSlow(HInstruction* instruction,
   6419                                                      Location out,
   6420                                                      Location ref,
   6421                                                      Location obj,
   6422                                                      uint32_t offset,
   6423                                                      Location index) {
   6424   if (kEmitCompilerReadBarrier) {
   6425     // Baker's read barriers shall be handled by the fast path
   6426     // (CodeGeneratorMIPS::GenerateReferenceLoadWithBakerReadBarrier).
   6427     DCHECK(!kUseBakerReadBarrier);
   6428     // If heap poisoning is enabled, unpoisoning will be taken care of
   6429     // by the runtime within the slow path.
   6430     GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index);
   6431   } else if (kPoisonHeapReferences) {
   6432     __ UnpoisonHeapReference(out.AsRegister<Register>());
   6433   }
   6434 }
   6435 
   6436 void CodeGeneratorMIPS::GenerateReadBarrierForRootSlow(HInstruction* instruction,
   6437                                                        Location out,
   6438                                                        Location root) {
   6439   DCHECK(kEmitCompilerReadBarrier);
   6440 
   6441   // Insert a slow path based read barrier *after* the GC root load.
   6442   //
   6443   // Note that GC roots are not affected by heap poisoning, so we do
   6444   // not need to do anything special for this here.
   6445   SlowPathCodeMIPS* slow_path =
   6446       new (GetGraph()->GetArena()) ReadBarrierForRootSlowPathMIPS(instruction, out, root);
   6447   AddSlowPath(slow_path);
   6448 
   6449   __ B(slow_path->GetEntryLabel());
   6450   __ Bind(slow_path->GetExitLabel());
   6451 }
   6452 
   6453 void LocationsBuilderMIPS::VisitInstanceOf(HInstanceOf* instruction) {
   6454   LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
   6455   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
   6456   switch (type_check_kind) {
   6457     case TypeCheckKind::kExactCheck:
   6458     case TypeCheckKind::kAbstractClassCheck:
   6459     case TypeCheckKind::kClassHierarchyCheck:
   6460     case TypeCheckKind::kArrayObjectCheck:
   6461       call_kind =
   6462           kEmitCompilerReadBarrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall;
   6463       break;
   6464     case TypeCheckKind::kArrayCheck:
   6465     case TypeCheckKind::kUnresolvedCheck:
   6466     case TypeCheckKind::kInterfaceCheck:
   6467       call_kind = LocationSummary::kCallOnSlowPath;
   6468       break;
   6469   }
   6470 
   6471   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
   6472   locations->SetInAt(0, Location::RequiresRegister());
   6473   locations->SetInAt(1, Location::RequiresRegister());
   6474   // The output does overlap inputs.
   6475   // Note that TypeCheckSlowPathMIPS uses this register too.
   6476   locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
   6477   locations->AddRegisterTemps(NumberOfInstanceOfTemps(type_check_kind));
   6478 }
   6479 
   6480 void InstructionCodeGeneratorMIPS::VisitInstanceOf(HInstanceOf* instruction) {
   6481   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
   6482   LocationSummary* locations = instruction->GetLocations();
   6483   Location obj_loc = locations->InAt(0);
   6484   Register obj = obj_loc.AsRegister<Register>();
   6485   Register cls = locations->InAt(1).AsRegister<Register>();
   6486   Location out_loc = locations->Out();
   6487   Register out = out_loc.AsRegister<Register>();
   6488   const size_t num_temps = NumberOfInstanceOfTemps(type_check_kind);
   6489   DCHECK_LE(num_temps, 1u);
   6490   Location maybe_temp_loc = (num_temps >= 1) ? locations->GetTemp(0) : Location::NoLocation();
   6491   uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
   6492   uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
   6493   uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
   6494   uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
   6495   MipsLabel done;
   6496   SlowPathCodeMIPS* slow_path = nullptr;
   6497 
   6498   // Return 0 if `obj` is null.
   6499   // Avoid this check if we know `obj` is not null.
   6500   if (instruction->MustDoNullCheck()) {
   6501     __ Move(out, ZERO);
   6502     __ Beqz(obj, &done);
   6503   }
   6504 
   6505   switch (type_check_kind) {
   6506     case TypeCheckKind::kExactCheck: {
   6507       // /* HeapReference<Class> */ out = obj->klass_
   6508       GenerateReferenceLoadTwoRegisters(instruction,
   6509                                         out_loc,
   6510                                         obj_loc,
   6511                                         class_offset,
   6512                                         maybe_temp_loc,
   6513                                         kCompilerReadBarrierOption);
   6514       // Classes must be equal for the instanceof to succeed.
   6515       __ Xor(out, out, cls);
   6516       __ Sltiu(out, out, 1);
   6517       break;
   6518     }
   6519 
   6520     case TypeCheckKind::kAbstractClassCheck: {
   6521       // /* HeapReference<Class> */ out = obj->klass_
   6522       GenerateReferenceLoadTwoRegisters(instruction,
   6523                                         out_loc,
   6524                                         obj_loc,
   6525                                         class_offset,
   6526                                         maybe_temp_loc,
   6527                                         kCompilerReadBarrierOption);
   6528       // If the class is abstract, we eagerly fetch the super class of the
   6529       // object to avoid doing a comparison we know will fail.
   6530       MipsLabel loop;
   6531       __ Bind(&loop);
   6532       // /* HeapReference<Class> */ out = out->super_class_
   6533       GenerateReferenceLoadOneRegister(instruction,
   6534                                        out_loc,
   6535                                        super_offset,
   6536                                        maybe_temp_loc,
   6537                                        kCompilerReadBarrierOption);
   6538       // If `out` is null, we use it for the result, and jump to `done`.
   6539       __ Beqz(out, &done);
   6540       __ Bne(out, cls, &loop);
   6541       __ LoadConst32(out, 1);
   6542       break;
   6543     }
   6544 
   6545     case TypeCheckKind::kClassHierarchyCheck: {
   6546       // /* HeapReference<Class> */ out = obj->klass_
   6547       GenerateReferenceLoadTwoRegisters(instruction,
   6548                                         out_loc,
   6549                                         obj_loc,
   6550                                         class_offset,
   6551                                         maybe_temp_loc,
   6552                                         kCompilerReadBarrierOption);
   6553       // Walk over the class hierarchy to find a match.
   6554       MipsLabel loop, success;
   6555       __ Bind(&loop);
   6556       __ Beq(out, cls, &success);
   6557       // /* HeapReference<Class> */ out = out->super_class_
   6558       GenerateReferenceLoadOneRegister(instruction,
   6559                                        out_loc,
   6560                                        super_offset,
   6561                                        maybe_temp_loc,
   6562                                        kCompilerReadBarrierOption);
   6563       __ Bnez(out, &loop);
   6564       // If `out` is null, we use it for the result, and jump to `done`.
   6565       __ B(&done);
   6566       __ Bind(&success);
   6567       __ LoadConst32(out, 1);
   6568       break;
   6569     }
   6570 
   6571     case TypeCheckKind::kArrayObjectCheck: {
   6572       // /* HeapReference<Class> */ out = obj->klass_
   6573       GenerateReferenceLoadTwoRegisters(instruction,
   6574                                         out_loc,
   6575                                         obj_loc,
   6576                                         class_offset,
   6577                                         maybe_temp_loc,
   6578                                         kCompilerReadBarrierOption);
   6579       // Do an exact check.
   6580       MipsLabel success;
   6581       __ Beq(out, cls, &success);
   6582       // Otherwise, we need to check that the object's class is a non-primitive array.
   6583       // /* HeapReference<Class> */ out = out->component_type_
   6584       GenerateReferenceLoadOneRegister(instruction,
   6585                                        out_loc,
   6586                                        component_offset,
   6587                                        maybe_temp_loc,
   6588                                        kCompilerReadBarrierOption);
   6589       // If `out` is null, we use it for the result, and jump to `done`.
   6590       __ Beqz(out, &done);
   6591       __ LoadFromOffset(kLoadUnsignedHalfword, out, out, primitive_offset);
   6592       static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
   6593       __ Sltiu(out, out, 1);
   6594       __ B(&done);
   6595       __ Bind(&success);
   6596       __ LoadConst32(out, 1);
   6597       break;
   6598     }
   6599 
   6600     case TypeCheckKind::kArrayCheck: {
   6601       // No read barrier since the slow path will retry upon failure.
   6602       // /* HeapReference<Class> */ out = obj->klass_
   6603       GenerateReferenceLoadTwoRegisters(instruction,
   6604                                         out_loc,
   6605                                         obj_loc,
   6606                                         class_offset,
   6607                                         maybe_temp_loc,
   6608                                         kWithoutReadBarrier);
   6609       DCHECK(locations->OnlyCallsOnSlowPath());
   6610       slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathMIPS(instruction,
   6611                                                                      /* is_fatal */ false);
   6612       codegen_->AddSlowPath(slow_path);
   6613       __ Bne(out, cls, slow_path->GetEntryLabel());
   6614       __ LoadConst32(out, 1);
   6615       break;
   6616     }
   6617 
   6618     case TypeCheckKind::kUnresolvedCheck:
   6619     case TypeCheckKind::kInterfaceCheck: {
   6620       // Note that we indeed only call on slow path, but we always go
   6621       // into the slow path for the unresolved and interface check
   6622       // cases.
   6623       //
   6624       // We cannot directly call the InstanceofNonTrivial runtime
   6625       // entry point without resorting to a type checking slow path
   6626       // here (i.e. by calling InvokeRuntime directly), as it would
   6627       // require to assign fixed registers for the inputs of this
   6628       // HInstanceOf instruction (following the runtime calling
   6629       // convention), which might be cluttered by the potential first
   6630       // read barrier emission at the beginning of this method.
   6631       //
   6632       // TODO: Introduce a new runtime entry point taking the object
   6633       // to test (instead of its class) as argument, and let it deal
   6634       // with the read barrier issues. This will let us refactor this
   6635       // case of the `switch` code as it was previously (with a direct
   6636       // call to the runtime not using a type checking slow path).
   6637       // This should also be beneficial for the other cases above.
   6638       DCHECK(locations->OnlyCallsOnSlowPath());
   6639       slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathMIPS(instruction,
   6640                                                                      /* is_fatal */ false);
   6641       codegen_->AddSlowPath(slow_path);
   6642       __ B(slow_path->GetEntryLabel());
   6643       break;
   6644     }
   6645   }
   6646 
   6647   __ Bind(&done);
   6648 
   6649   if (slow_path != nullptr) {
   6650     __ Bind(slow_path->GetExitLabel());
   6651   }
   6652 }
   6653 
   6654 void LocationsBuilderMIPS::VisitIntConstant(HIntConstant* constant) {
   6655   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant);
   6656   locations->SetOut(Location::ConstantLocation(constant));
   6657 }
   6658 
   6659 void InstructionCodeGeneratorMIPS::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) {
   6660   // Will be generated at use site.
   6661 }
   6662 
   6663 void LocationsBuilderMIPS::VisitNullConstant(HNullConstant* constant) {
   6664   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant);
   6665   locations->SetOut(Location::ConstantLocation(constant));
   6666 }
   6667 
   6668 void InstructionCodeGeneratorMIPS::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) {
   6669   // Will be generated at use site.
   6670 }
   6671 
   6672 void LocationsBuilderMIPS::HandleInvoke(HInvoke* invoke) {
   6673   InvokeDexCallingConventionVisitorMIPS calling_convention_visitor;
   6674   CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor);
   6675 }
   6676 
   6677 void LocationsBuilderMIPS::VisitInvokeInterface(HInvokeInterface* invoke) {
   6678   HandleInvoke(invoke);
   6679   // The register T7 is required to be used for the hidden argument in
   6680   // art_quick_imt_conflict_trampoline, so add the hidden argument.
   6681   invoke->GetLocations()->AddTemp(Location::RegisterLocation(T7));
   6682 }
   6683 
   6684 void InstructionCodeGeneratorMIPS::VisitInvokeInterface(HInvokeInterface* invoke) {
   6685   // TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError.
   6686   Register temp = invoke->GetLocations()->GetTemp(0).AsRegister<Register>();
   6687   Location receiver = invoke->GetLocations()->InAt(0);
   6688   uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
   6689   Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kMipsPointerSize);
   6690 
   6691   // Set the hidden argument.
   6692   __ LoadConst32(invoke->GetLocations()->GetTemp(1).AsRegister<Register>(),
   6693                  invoke->GetDexMethodIndex());
   6694 
   6695   // temp = object->GetClass();
   6696   if (receiver.IsStackSlot()) {
   6697     __ LoadFromOffset(kLoadWord, temp, SP, receiver.GetStackIndex());
   6698     __ LoadFromOffset(kLoadWord, temp, temp, class_offset);
   6699   } else {
   6700     __ LoadFromOffset(kLoadWord, temp, receiver.AsRegister<Register>(), class_offset);
   6701   }
   6702   codegen_->MaybeRecordImplicitNullCheck(invoke);
   6703   // Instead of simply (possibly) unpoisoning `temp` here, we should
   6704   // emit a read barrier for the previous class reference load.
   6705   // However this is not required in practice, as this is an
   6706   // intermediate/temporary reference and because the current
   6707   // concurrent copying collector keeps the from-space memory
   6708   // intact/accessible until the end of the marking phase (the
   6709   // concurrent copying collector may not in the future).
   6710   __ MaybeUnpoisonHeapReference(temp);
   6711   __ LoadFromOffset(kLoadWord, temp, temp,
   6712       mirror::Class::ImtPtrOffset(kMipsPointerSize).Uint32Value());
   6713   uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
   6714       invoke->GetImtIndex(), kMipsPointerSize));
   6715   // temp = temp->GetImtEntryAt(method_offset);
   6716   __ LoadFromOffset(kLoadWord, temp, temp, method_offset);
   6717   // T9 = temp->GetEntryPoint();
   6718   __ LoadFromOffset(kLoadWord, T9, temp, entry_point.Int32Value());
   6719   // T9();
   6720   __ Jalr(T9);
   6721   __ NopIfNoReordering();
   6722   DCHECK(!codegen_->IsLeafMethod());
   6723   codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
   6724 }
   6725 
   6726 void LocationsBuilderMIPS::VisitInvokeVirtual(HInvokeVirtual* invoke) {
   6727   IntrinsicLocationsBuilderMIPS intrinsic(codegen_);
   6728   if (intrinsic.TryDispatch(invoke)) {
   6729     return;
   6730   }
   6731 
   6732   HandleInvoke(invoke);
   6733 }
   6734 
   6735 void LocationsBuilderMIPS::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
   6736   // Explicit clinit checks triggered by static invokes must have been pruned by
   6737   // art::PrepareForRegisterAllocation.
   6738   DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
   6739 
   6740   bool is_r6 = codegen_->GetInstructionSetFeatures().IsR6();
   6741   bool has_extra_input = invoke->HasPcRelativeDexCache() && !is_r6;
   6742 
   6743   IntrinsicLocationsBuilderMIPS intrinsic(codegen_);
   6744   if (intrinsic.TryDispatch(invoke)) {
   6745     if (invoke->GetLocations()->CanCall() && has_extra_input) {
   6746       invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::Any());
   6747     }
   6748     return;
   6749   }
   6750 
   6751   HandleInvoke(invoke);
   6752 
   6753   // Add the extra input register if either the dex cache array base register
   6754   // or the PC-relative base register for accessing literals is needed.
   6755   if (has_extra_input) {
   6756     invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::RequiresRegister());
   6757   }
   6758 }
   6759 
   6760 void LocationsBuilderMIPS::VisitInvokePolymorphic(HInvokePolymorphic* invoke) {
   6761   HandleInvoke(invoke);
   6762 }
   6763 
   6764 void InstructionCodeGeneratorMIPS::VisitInvokePolymorphic(HInvokePolymorphic* invoke) {
   6765   codegen_->GenerateInvokePolymorphicCall(invoke);
   6766 }
   6767 
   6768 static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorMIPS* codegen) {
   6769   if (invoke->GetLocations()->Intrinsified()) {
   6770     IntrinsicCodeGeneratorMIPS intrinsic(codegen);
   6771     intrinsic.Dispatch(invoke);
   6772     return true;
   6773   }
   6774   return false;
   6775 }
   6776 
   6777 HLoadString::LoadKind CodeGeneratorMIPS::GetSupportedLoadStringKind(
   6778     HLoadString::LoadKind desired_string_load_kind) {
   6779   // We disable PC-relative load on pre-R6 when there is an irreducible loop, as the optimization
   6780   // is incompatible with it.
   6781   // TODO: Create as many MipsDexCacheArraysBase instructions as needed for methods
   6782   // with irreducible loops.
   6783   bool has_irreducible_loops = GetGraph()->HasIrreducibleLoops();
   6784   bool is_r6 = GetInstructionSetFeatures().IsR6();
   6785   bool fallback_load = has_irreducible_loops && !is_r6;
   6786   switch (desired_string_load_kind) {
   6787     case HLoadString::LoadKind::kBootImageLinkTimeAddress:
   6788       DCHECK(!GetCompilerOptions().GetCompilePic());
   6789       break;
   6790     case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
   6791       DCHECK(GetCompilerOptions().GetCompilePic());
   6792       break;
   6793     case HLoadString::LoadKind::kBootImageAddress:
   6794       break;
   6795     case HLoadString::LoadKind::kBssEntry:
   6796       DCHECK(!Runtime::Current()->UseJitCompilation());
   6797       break;
   6798     case HLoadString::LoadKind::kJitTableAddress:
   6799       DCHECK(Runtime::Current()->UseJitCompilation());
   6800       fallback_load = false;
   6801       break;
   6802     case HLoadString::LoadKind::kDexCacheViaMethod:
   6803       fallback_load = false;
   6804       break;
   6805   }
   6806   if (fallback_load) {
   6807     desired_string_load_kind = HLoadString::LoadKind::kDexCacheViaMethod;
   6808   }
   6809   return desired_string_load_kind;
   6810 }
   6811 
   6812 HLoadClass::LoadKind CodeGeneratorMIPS::GetSupportedLoadClassKind(
   6813     HLoadClass::LoadKind desired_class_load_kind) {
   6814   // We disable PC-relative load on pre-R6 when there is an irreducible loop, as the optimization
   6815   // is incompatible with it.
   6816   bool has_irreducible_loops = GetGraph()->HasIrreducibleLoops();
   6817   bool is_r6 = GetInstructionSetFeatures().IsR6();
   6818   bool fallback_load = has_irreducible_loops && !is_r6;
   6819   switch (desired_class_load_kind) {
   6820     case HLoadClass::LoadKind::kInvalid:
   6821       LOG(FATAL) << "UNREACHABLE";
   6822       UNREACHABLE();
   6823     case HLoadClass::LoadKind::kReferrersClass:
   6824       fallback_load = false;
   6825       break;
   6826     case HLoadClass::LoadKind::kBootImageLinkTimeAddress:
   6827       DCHECK(!GetCompilerOptions().GetCompilePic());
   6828       break;
   6829     case HLoadClass::LoadKind::kBootImageLinkTimePcRelative:
   6830       DCHECK(GetCompilerOptions().GetCompilePic());
   6831       break;
   6832     case HLoadClass::LoadKind::kBootImageAddress:
   6833       break;
   6834     case HLoadClass::LoadKind::kBssEntry:
   6835       DCHECK(!Runtime::Current()->UseJitCompilation());
   6836       break;
   6837     case HLoadClass::LoadKind::kJitTableAddress:
   6838       DCHECK(Runtime::Current()->UseJitCompilation());
   6839       fallback_load = false;
   6840       break;
   6841     case HLoadClass::LoadKind::kDexCacheViaMethod:
   6842       fallback_load = false;
   6843       break;
   6844   }
   6845   if (fallback_load) {
   6846     desired_class_load_kind = HLoadClass::LoadKind::kDexCacheViaMethod;
   6847   }
   6848   return desired_class_load_kind;
   6849 }
   6850 
   6851 Register CodeGeneratorMIPS::GetInvokeStaticOrDirectExtraParameter(HInvokeStaticOrDirect* invoke,
   6852                                                                   Register temp) {
   6853   CHECK(!GetInstructionSetFeatures().IsR6());
   6854   CHECK_EQ(invoke->InputCount(), invoke->GetNumberOfArguments() + 1u);
   6855   Location location = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
   6856   if (!invoke->GetLocations()->Intrinsified()) {
   6857     return location.AsRegister<Register>();
   6858   }
   6859   // For intrinsics we allow any location, so it may be on the stack.
   6860   if (!location.IsRegister()) {
   6861     __ LoadFromOffset(kLoadWord, temp, SP, location.GetStackIndex());
   6862     return temp;
   6863   }
   6864   // For register locations, check if the register was saved. If so, get it from the stack.
   6865   // Note: There is a chance that the register was saved but not overwritten, so we could
   6866   // save one load. However, since this is just an intrinsic slow path we prefer this
   6867   // simple and more robust approach rather that trying to determine if that's the case.
   6868   SlowPathCode* slow_path = GetCurrentSlowPath();
   6869   DCHECK(slow_path != nullptr);  // For intrinsified invokes the call is emitted on the slow path.
   6870   if (slow_path->IsCoreRegisterSaved(location.AsRegister<Register>())) {
   6871     int stack_offset = slow_path->GetStackOffsetOfCoreRegister(location.AsRegister<Register>());
   6872     __ LoadFromOffset(kLoadWord, temp, SP, stack_offset);
   6873     return temp;
   6874   }
   6875   return location.AsRegister<Register>();
   6876 }
   6877 
   6878 HInvokeStaticOrDirect::DispatchInfo CodeGeneratorMIPS::GetSupportedInvokeStaticOrDirectDispatch(
   6879       const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info,
   6880       HInvokeStaticOrDirect* invoke ATTRIBUTE_UNUSED) {
   6881   HInvokeStaticOrDirect::DispatchInfo dispatch_info = desired_dispatch_info;
   6882   // We disable PC-relative load on pre-R6 when there is an irreducible loop, as the optimization
   6883   // is incompatible with it.
   6884   bool has_irreducible_loops = GetGraph()->HasIrreducibleLoops();
   6885   bool is_r6 = GetInstructionSetFeatures().IsR6();
   6886   bool fallback_load = has_irreducible_loops && !is_r6;
   6887   switch (dispatch_info.method_load_kind) {
   6888     case HInvokeStaticOrDirect::MethodLoadKind::kDexCachePcRelative:
   6889       break;
   6890     default:
   6891       fallback_load = false;
   6892       break;
   6893   }
   6894   if (fallback_load) {
   6895     dispatch_info.method_load_kind = HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod;
   6896     dispatch_info.method_load_data = 0;
   6897   }
   6898   return dispatch_info;
   6899 }
   6900 
   6901 void CodeGeneratorMIPS::GenerateStaticOrDirectCall(HInvokeStaticOrDirect* invoke, Location temp) {
   6902   // All registers are assumed to be correctly set up per the calling convention.
   6903   Location callee_method = temp;  // For all kinds except kRecursive, callee will be in temp.
   6904   HInvokeStaticOrDirect::MethodLoadKind method_load_kind = invoke->GetMethodLoadKind();
   6905   HInvokeStaticOrDirect::CodePtrLocation code_ptr_location = invoke->GetCodePtrLocation();
   6906   bool is_r6 = GetInstructionSetFeatures().IsR6();
   6907   Register base_reg = (invoke->HasPcRelativeDexCache() && !is_r6)
   6908       ? GetInvokeStaticOrDirectExtraParameter(invoke, temp.AsRegister<Register>())
   6909       : ZERO;
   6910 
   6911   switch (method_load_kind) {
   6912     case HInvokeStaticOrDirect::MethodLoadKind::kStringInit: {
   6913       // temp = thread->string_init_entrypoint
   6914       uint32_t offset =
   6915           GetThreadOffset<kMipsPointerSize>(invoke->GetStringInitEntryPoint()).Int32Value();
   6916       __ LoadFromOffset(kLoadWord,
   6917                         temp.AsRegister<Register>(),
   6918                         TR,
   6919                         offset);
   6920       break;
   6921     }
   6922     case HInvokeStaticOrDirect::MethodLoadKind::kRecursive:
   6923       callee_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
   6924       break;
   6925     case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddress:
   6926       __ LoadConst32(temp.AsRegister<Register>(), invoke->GetMethodAddress());
   6927       break;
   6928     case HInvokeStaticOrDirect::MethodLoadKind::kDexCachePcRelative:
   6929       if (is_r6) {
   6930         uint32_t offset = invoke->GetDexCacheArrayOffset();
   6931         CodeGeneratorMIPS::PcRelativePatchInfo* info =
   6932             NewPcRelativeDexCacheArrayPatch(invoke->GetDexFileForPcRelativeDexCache(), offset);
   6933         bool reordering = __ SetReorder(false);
   6934         EmitPcRelativeAddressPlaceholderHigh(info, TMP, ZERO);
   6935         __ Lw(temp.AsRegister<Register>(), TMP, /* placeholder */ 0x5678);
   6936         __ SetReorder(reordering);
   6937       } else {
   6938         HMipsDexCacheArraysBase* base =
   6939             invoke->InputAt(invoke->GetSpecialInputIndex())->AsMipsDexCacheArraysBase();
   6940         int32_t offset =
   6941             invoke->GetDexCacheArrayOffset() - base->GetElementOffset() - kDexCacheArrayLwOffset;
   6942         __ LoadFromOffset(kLoadWord, temp.AsRegister<Register>(), base_reg, offset);
   6943       }
   6944       break;
   6945     case HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod: {
   6946       Location current_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
   6947       Register reg = temp.AsRegister<Register>();
   6948       Register method_reg;
   6949       if (current_method.IsRegister()) {
   6950         method_reg = current_method.AsRegister<Register>();
   6951       } else {
   6952         // TODO: use the appropriate DCHECK() here if possible.
   6953         // DCHECK(invoke->GetLocations()->Intrinsified());
   6954         DCHECK(!current_method.IsValid());
   6955         method_reg = reg;
   6956         __ Lw(reg, SP, kCurrentMethodStackOffset);
   6957       }
   6958 
   6959       // temp = temp->dex_cache_resolved_methods_;
   6960       __ LoadFromOffset(kLoadWord,
   6961                         reg,
   6962                         method_reg,
   6963                         ArtMethod::DexCacheResolvedMethodsOffset(kMipsPointerSize).Int32Value());
   6964       // temp = temp[index_in_cache];
   6965       // Note: Don't use invoke->GetTargetMethod() as it may point to a different dex file.
   6966       uint32_t index_in_cache = invoke->GetDexMethodIndex();
   6967       __ LoadFromOffset(kLoadWord,
   6968                         reg,
   6969                         reg,
   6970                         CodeGenerator::GetCachePointerOffset(index_in_cache));
   6971       break;
   6972     }
   6973   }
   6974 
   6975   switch (code_ptr_location) {
   6976     case HInvokeStaticOrDirect::CodePtrLocation::kCallSelf:
   6977       __ Bal(&frame_entry_label_);
   6978       break;
   6979     case HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod:
   6980       // T9 = callee_method->entry_point_from_quick_compiled_code_;
   6981       __ LoadFromOffset(kLoadWord,
   6982                         T9,
   6983                         callee_method.AsRegister<Register>(),
   6984                         ArtMethod::EntryPointFromQuickCompiledCodeOffset(
   6985                             kMipsPointerSize).Int32Value());
   6986       // T9()
   6987       __ Jalr(T9);
   6988       __ NopIfNoReordering();
   6989       break;
   6990   }
   6991   DCHECK(!IsLeafMethod());
   6992 }
   6993 
   6994 void InstructionCodeGeneratorMIPS::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
   6995   // Explicit clinit checks triggered by static invokes must have been pruned by
   6996   // art::PrepareForRegisterAllocation.
   6997   DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
   6998 
   6999   if (TryGenerateIntrinsicCode(invoke, codegen_)) {
   7000     return;
   7001   }
   7002 
   7003   LocationSummary* locations = invoke->GetLocations();
   7004   codegen_->GenerateStaticOrDirectCall(invoke,
   7005                                        locations->HasTemps()
   7006                                            ? locations->GetTemp(0)
   7007                                            : Location::NoLocation());
   7008   codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
   7009 }
   7010 
   7011 void CodeGeneratorMIPS::GenerateVirtualCall(HInvokeVirtual* invoke, Location temp_location) {
   7012   // Use the calling convention instead of the location of the receiver, as
   7013   // intrinsics may have put the receiver in a different register. In the intrinsics
   7014   // slow path, the arguments have been moved to the right place, so here we are
   7015   // guaranteed that the receiver is the first register of the calling convention.
   7016   InvokeDexCallingConvention calling_convention;
   7017   Register receiver = calling_convention.GetRegisterAt(0);
   7018 
   7019   Register temp = temp_location.AsRegister<Register>();
   7020   size_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
   7021       invoke->GetVTableIndex(), kMipsPointerSize).SizeValue();
   7022   uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
   7023   Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kMipsPointerSize);
   7024 
   7025   // temp = object->GetClass();
   7026   __ LoadFromOffset(kLoadWord, temp, receiver, class_offset);
   7027   MaybeRecordImplicitNullCheck(invoke);
   7028   // Instead of simply (possibly) unpoisoning `temp` here, we should
   7029   // emit a read barrier for the previous class reference load.
   7030   // However this is not required in practice, as this is an
   7031   // intermediate/temporary reference and because the current
   7032   // concurrent copying collector keeps the from-space memory
   7033   // intact/accessible until the end of the marking phase (the
   7034   // concurrent copying collector may not in the future).
   7035   __ MaybeUnpoisonHeapReference(temp);
   7036   // temp = temp->GetMethodAt(method_offset);
   7037   __ LoadFromOffset(kLoadWord, temp, temp, method_offset);
   7038   // T9 = temp->GetEntryPoint();
   7039   __ LoadFromOffset(kLoadWord, T9, temp, entry_point.Int32Value());
   7040   // T9();
   7041   __ Jalr(T9);
   7042   __ NopIfNoReordering();
   7043 }
   7044 
   7045 void InstructionCodeGeneratorMIPS::VisitInvokeVirtual(HInvokeVirtual* invoke) {
   7046   if (TryGenerateIntrinsicCode(invoke, codegen_)) {
   7047     return;
   7048   }
   7049 
   7050   codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0));
   7051   DCHECK(!codegen_->IsLeafMethod());
   7052   codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
   7053 }
   7054 
   7055 void LocationsBuilderMIPS::VisitLoadClass(HLoadClass* cls) {
   7056   HLoadClass::LoadKind load_kind = cls->GetLoadKind();
   7057   if (load_kind == HLoadClass::LoadKind::kDexCacheViaMethod) {
   7058     InvokeRuntimeCallingConvention calling_convention;
   7059     CodeGenerator::CreateLoadClassRuntimeCallLocationSummary(
   7060         cls,
   7061         Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
   7062         calling_convention.GetReturnLocation(Primitive::kPrimNot));
   7063     return;
   7064   }
   7065   DCHECK(!cls->NeedsAccessCheck());
   7066 
   7067   const bool requires_read_barrier = kEmitCompilerReadBarrier && !cls->IsInBootImage();
   7068   LocationSummary::CallKind call_kind = (cls->NeedsEnvironment() || requires_read_barrier)
   7069       ? LocationSummary::kCallOnSlowPath
   7070       : LocationSummary::kNoCall;
   7071   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(cls, call_kind);
   7072   switch (load_kind) {
   7073     // We need an extra register for PC-relative literals on R2.
   7074     case HLoadClass::LoadKind::kBootImageLinkTimeAddress:
   7075     case HLoadClass::LoadKind::kBootImageLinkTimePcRelative:
   7076     case HLoadClass::LoadKind::kBootImageAddress:
   7077     case HLoadClass::LoadKind::kBssEntry:
   7078       if (codegen_->GetInstructionSetFeatures().IsR6()) {
   7079         break;
   7080       }
   7081       FALLTHROUGH_INTENDED;
   7082     case HLoadClass::LoadKind::kReferrersClass:
   7083       locations->SetInAt(0, Location::RequiresRegister());
   7084       break;
   7085     default:
   7086       break;
   7087   }
   7088   locations->SetOut(Location::RequiresRegister());
   7089 }
   7090 
   7091 // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not
   7092 // move.
   7093 void InstructionCodeGeneratorMIPS::VisitLoadClass(HLoadClass* cls) NO_THREAD_SAFETY_ANALYSIS {
   7094   HLoadClass::LoadKind load_kind = cls->GetLoadKind();
   7095   if (load_kind == HLoadClass::LoadKind::kDexCacheViaMethod) {
   7096     codegen_->GenerateLoadClassRuntimeCall(cls);
   7097     return;
   7098   }
   7099   DCHECK(!cls->NeedsAccessCheck());
   7100 
   7101   LocationSummary* locations = cls->GetLocations();
   7102   Location out_loc = locations->Out();
   7103   Register out = out_loc.AsRegister<Register>();
   7104   Register base_or_current_method_reg;
   7105   bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
   7106   switch (load_kind) {
   7107     // We need an extra register for PC-relative literals on R2.
   7108     case HLoadClass::LoadKind::kBootImageLinkTimeAddress:
   7109     case HLoadClass::LoadKind::kBootImageLinkTimePcRelative:
   7110     case HLoadClass::LoadKind::kBootImageAddress:
   7111     case HLoadClass::LoadKind::kBssEntry:
   7112       base_or_current_method_reg = isR6 ? ZERO : locations->InAt(0).AsRegister<Register>();
   7113       break;
   7114     case HLoadClass::LoadKind::kReferrersClass:
   7115     case HLoadClass::LoadKind::kDexCacheViaMethod:
   7116       base_or_current_method_reg = locations->InAt(0).AsRegister<Register>();
   7117       break;
   7118     default:
   7119       base_or_current_method_reg = ZERO;
   7120       break;
   7121   }
   7122 
   7123   const ReadBarrierOption read_barrier_option = cls->IsInBootImage()
   7124       ? kWithoutReadBarrier
   7125       : kCompilerReadBarrierOption;
   7126   bool generate_null_check = false;
   7127   switch (load_kind) {
   7128     case HLoadClass::LoadKind::kReferrersClass: {
   7129       DCHECK(!cls->CanCallRuntime());
   7130       DCHECK(!cls->MustGenerateClinitCheck());
   7131       // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_
   7132       GenerateGcRootFieldLoad(cls,
   7133                               out_loc,
   7134                               base_or_current_method_reg,
   7135                               ArtMethod::DeclaringClassOffset().Int32Value(),
   7136                               read_barrier_option);
   7137       break;
   7138     }
   7139     case HLoadClass::LoadKind::kBootImageLinkTimeAddress:
   7140       DCHECK(codegen_->GetCompilerOptions().IsBootImage());
   7141       DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
   7142       __ LoadLiteral(out,
   7143                      base_or_current_method_reg,
   7144                      codegen_->DeduplicateBootImageTypeLiteral(cls->GetDexFile(),
   7145                                                                cls->GetTypeIndex()));
   7146       break;
   7147     case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: {
   7148       DCHECK(codegen_->GetCompilerOptions().IsBootImage());
   7149       DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
   7150       CodeGeneratorMIPS::PcRelativePatchInfo* info =
   7151           codegen_->NewPcRelativeTypePatch(cls->GetDexFile(), cls->GetTypeIndex());
   7152       bool reordering = __ SetReorder(false);
   7153       codegen_->EmitPcRelativeAddressPlaceholderHigh(info, out, base_or_current_method_reg);
   7154       __ Addiu(out, out, /* placeholder */ 0x5678);
   7155       __ SetReorder(reordering);
   7156       break;
   7157     }
   7158     case HLoadClass::LoadKind::kBootImageAddress: {
   7159       DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
   7160       uint32_t address = dchecked_integral_cast<uint32_t>(
   7161           reinterpret_cast<uintptr_t>(cls->GetClass().Get()));
   7162       DCHECK_NE(address, 0u);
   7163       __ LoadLiteral(out,
   7164                      base_or_current_method_reg,
   7165                      codegen_->DeduplicateBootImageAddressLiteral(address));
   7166       break;
   7167     }
   7168     case HLoadClass::LoadKind::kBssEntry: {
   7169       CodeGeneratorMIPS::PcRelativePatchInfo* info =
   7170           codegen_->NewTypeBssEntryPatch(cls->GetDexFile(), cls->GetTypeIndex());
   7171       bool reordering = __ SetReorder(false);
   7172       codegen_->EmitPcRelativeAddressPlaceholderHigh(info, out, base_or_current_method_reg);
   7173       GenerateGcRootFieldLoad(cls, out_loc, out, /* placeholder */ 0x5678, read_barrier_option);
   7174       __ SetReorder(reordering);
   7175       generate_null_check = true;
   7176       break;
   7177     }
   7178     case HLoadClass::LoadKind::kJitTableAddress: {
   7179       CodeGeneratorMIPS::JitPatchInfo* info = codegen_->NewJitRootClassPatch(cls->GetDexFile(),
   7180                                                                              cls->GetTypeIndex(),
   7181                                                                              cls->GetClass());
   7182       bool reordering = __ SetReorder(false);
   7183       __ Bind(&info->high_label);
   7184       __ Lui(out, /* placeholder */ 0x1234);
   7185       GenerateGcRootFieldLoad(cls, out_loc, out, /* placeholder */ 0x5678, read_barrier_option);
   7186       __ SetReorder(reordering);
   7187       break;
   7188     }
   7189     case HLoadClass::LoadKind::kDexCacheViaMethod:
   7190     case HLoadClass::LoadKind::kInvalid:
   7191       LOG(FATAL) << "UNREACHABLE";
   7192       UNREACHABLE();
   7193   }
   7194 
   7195   if (generate_null_check || cls->MustGenerateClinitCheck()) {
   7196     DCHECK(cls->CanCallRuntime());
   7197     SlowPathCodeMIPS* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathMIPS(
   7198         cls, cls, cls->GetDexPc(), cls->MustGenerateClinitCheck());
   7199     codegen_->AddSlowPath(slow_path);
   7200     if (generate_null_check) {
   7201       __ Beqz(out, slow_path->GetEntryLabel());
   7202     }
   7203     if (cls->MustGenerateClinitCheck()) {
   7204       GenerateClassInitializationCheck(slow_path, out);
   7205     } else {
   7206       __ Bind(slow_path->GetExitLabel());
   7207     }
   7208   }
   7209 }
   7210 
   7211 static int32_t GetExceptionTlsOffset() {
   7212   return Thread::ExceptionOffset<kMipsPointerSize>().Int32Value();
   7213 }
   7214 
   7215 void LocationsBuilderMIPS::VisitLoadException(HLoadException* load) {
   7216   LocationSummary* locations =
   7217       new (GetGraph()->GetArena()) LocationSummary(load, LocationSummary::kNoCall);
   7218   locations->SetOut(Location::RequiresRegister());
   7219 }
   7220 
   7221 void InstructionCodeGeneratorMIPS::VisitLoadException(HLoadException* load) {
   7222   Register out = load->GetLocations()->Out().AsRegister<Register>();
   7223   __ LoadFromOffset(kLoadWord, out, TR, GetExceptionTlsOffset());
   7224 }
   7225 
   7226 void LocationsBuilderMIPS::VisitClearException(HClearException* clear) {
   7227   new (GetGraph()->GetArena()) LocationSummary(clear, LocationSummary::kNoCall);
   7228 }
   7229 
   7230 void InstructionCodeGeneratorMIPS::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) {
   7231   __ StoreToOffset(kStoreWord, ZERO, TR, GetExceptionTlsOffset());
   7232 }
   7233 
   7234 void LocationsBuilderMIPS::VisitLoadString(HLoadString* load) {
   7235   LocationSummary::CallKind call_kind = CodeGenerator::GetLoadStringCallKind(load);
   7236   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(load, call_kind);
   7237   HLoadString::LoadKind load_kind = load->GetLoadKind();
   7238   switch (load_kind) {
   7239     // We need an extra register for PC-relative literals on R2.
   7240     case HLoadString::LoadKind::kBootImageLinkTimeAddress:
   7241     case HLoadString::LoadKind::kBootImageAddress:
   7242     case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
   7243     case HLoadString::LoadKind::kBssEntry:
   7244       if (codegen_->GetInstructionSetFeatures().IsR6()) {
   7245         break;
   7246       }
   7247       FALLTHROUGH_INTENDED;
   7248     // We need an extra register for PC-relative dex cache accesses.
   7249     case HLoadString::LoadKind::kDexCacheViaMethod:
   7250       locations->SetInAt(0, Location::RequiresRegister());
   7251       break;
   7252     default:
   7253       break;
   7254   }
   7255   if (load_kind == HLoadString::LoadKind::kDexCacheViaMethod) {
   7256     InvokeRuntimeCallingConvention calling_convention;
   7257     locations->SetOut(calling_convention.GetReturnLocation(load->GetType()));
   7258   } else {
   7259     locations->SetOut(Location::RequiresRegister());
   7260   }
   7261 }
   7262 
   7263 // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not
   7264 // move.
   7265 void InstructionCodeGeneratorMIPS::VisitLoadString(HLoadString* load) NO_THREAD_SAFETY_ANALYSIS {
   7266   HLoadString::LoadKind load_kind = load->GetLoadKind();
   7267   LocationSummary* locations = load->GetLocations();
   7268   Location out_loc = locations->Out();
   7269   Register out = out_loc.AsRegister<Register>();
   7270   Register base_or_current_method_reg;
   7271   bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
   7272   switch (load_kind) {
   7273     // We need an extra register for PC-relative literals on R2.
   7274     case HLoadString::LoadKind::kBootImageLinkTimeAddress:
   7275     case HLoadString::LoadKind::kBootImageAddress:
   7276     case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
   7277     case HLoadString::LoadKind::kBssEntry:
   7278       base_or_current_method_reg = isR6 ? ZERO : locations->InAt(0).AsRegister<Register>();
   7279       break;
   7280     default:
   7281       base_or_current_method_reg = ZERO;
   7282       break;
   7283   }
   7284 
   7285   switch (load_kind) {
   7286     case HLoadString::LoadKind::kBootImageLinkTimeAddress:
   7287       DCHECK(codegen_->GetCompilerOptions().IsBootImage());
   7288       __ LoadLiteral(out,
   7289                      base_or_current_method_reg,
   7290                      codegen_->DeduplicateBootImageStringLiteral(load->GetDexFile(),
   7291                                                                  load->GetStringIndex()));
   7292       return;  // No dex cache slow path.
   7293     case HLoadString::LoadKind::kBootImageLinkTimePcRelative: {
   7294       DCHECK(codegen_->GetCompilerOptions().IsBootImage());
   7295       CodeGeneratorMIPS::PcRelativePatchInfo* info =
   7296           codegen_->NewPcRelativeStringPatch(load->GetDexFile(), load->GetStringIndex());
   7297       bool reordering = __ SetReorder(false);
   7298       codegen_->EmitPcRelativeAddressPlaceholderHigh(info, out, base_or_current_method_reg);
   7299       __ Addiu(out, out, /* placeholder */ 0x5678);
   7300       __ SetReorder(reordering);
   7301       return;  // No dex cache slow path.
   7302     }
   7303     case HLoadString::LoadKind::kBootImageAddress: {
   7304       uint32_t address = dchecked_integral_cast<uint32_t>(
   7305           reinterpret_cast<uintptr_t>(load->GetString().Get()));
   7306       DCHECK_NE(address, 0u);
   7307       __ LoadLiteral(out,
   7308                      base_or_current_method_reg,
   7309                      codegen_->DeduplicateBootImageAddressLiteral(address));
   7310       return;  // No dex cache slow path.
   7311     }
   7312     case HLoadString::LoadKind::kBssEntry: {
   7313       DCHECK(!codegen_->GetCompilerOptions().IsBootImage());
   7314       CodeGeneratorMIPS::PcRelativePatchInfo* info =
   7315           codegen_->NewPcRelativeStringPatch(load->GetDexFile(), load->GetStringIndex());
   7316       bool reordering = __ SetReorder(false);
   7317       codegen_->EmitPcRelativeAddressPlaceholderHigh(info, out, base_or_current_method_reg);
   7318       GenerateGcRootFieldLoad(load,
   7319                               out_loc,
   7320                               out,
   7321                               /* placeholder */ 0x5678,
   7322                               kCompilerReadBarrierOption);
   7323       __ SetReorder(reordering);
   7324       SlowPathCodeMIPS* slow_path = new (GetGraph()->GetArena()) LoadStringSlowPathMIPS(load);
   7325       codegen_->AddSlowPath(slow_path);
   7326       __ Beqz(out, slow_path->GetEntryLabel());
   7327       __ Bind(slow_path->GetExitLabel());
   7328       return;
   7329     }
   7330     case HLoadString::LoadKind::kJitTableAddress: {
   7331       CodeGeneratorMIPS::JitPatchInfo* info =
   7332           codegen_->NewJitRootStringPatch(load->GetDexFile(),
   7333                                           load->GetStringIndex(),
   7334                                           load->GetString());
   7335       bool reordering = __ SetReorder(false);
   7336       __ Bind(&info->high_label);
   7337       __ Lui(out, /* placeholder */ 0x1234);
   7338       GenerateGcRootFieldLoad(load,
   7339                               out_loc,
   7340                               out,
   7341                               /* placeholder */ 0x5678,
   7342                               kCompilerReadBarrierOption);
   7343       __ SetReorder(reordering);
   7344       return;
   7345     }
   7346     default:
   7347       break;
   7348   }
   7349 
   7350   // TODO: Re-add the compiler code to do string dex cache lookup again.
   7351   DCHECK(load_kind == HLoadString::LoadKind::kDexCacheViaMethod);
   7352   InvokeRuntimeCallingConvention calling_convention;
   7353   __ LoadConst32(calling_convention.GetRegisterAt(0), load->GetStringIndex().index_);
   7354   codegen_->InvokeRuntime(kQuickResolveString, load, load->GetDexPc());
   7355   CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
   7356 }
   7357 
   7358 void LocationsBuilderMIPS::VisitLongConstant(HLongConstant* constant) {
   7359   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant);
   7360   locations->SetOut(Location::ConstantLocation(constant));
   7361 }
   7362 
   7363 void InstructionCodeGeneratorMIPS::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) {
   7364   // Will be generated at use site.
   7365 }
   7366 
   7367 void LocationsBuilderMIPS::VisitMonitorOperation(HMonitorOperation* instruction) {
   7368   LocationSummary* locations =
   7369       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly);
   7370   InvokeRuntimeCallingConvention calling_convention;
   7371   locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
   7372 }
   7373 
   7374 void InstructionCodeGeneratorMIPS::VisitMonitorOperation(HMonitorOperation* instruction) {
   7375   if (instruction->IsEnter()) {
   7376     codegen_->InvokeRuntime(kQuickLockObject, instruction, instruction->GetDexPc());
   7377     CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>();
   7378   } else {
   7379     codegen_->InvokeRuntime(kQuickUnlockObject, instruction, instruction->GetDexPc());
   7380   }
   7381   CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>();
   7382 }
   7383 
   7384 void LocationsBuilderMIPS::VisitMul(HMul* mul) {
   7385   LocationSummary* locations =
   7386       new (GetGraph()->GetArena()) LocationSummary(mul, LocationSummary::kNoCall);
   7387   switch (mul->GetResultType()) {
   7388     case Primitive::kPrimInt:
   7389     case Primitive::kPrimLong:
   7390       locations->SetInAt(0, Location::RequiresRegister());
   7391       locations->SetInAt(1, Location::RequiresRegister());
   7392       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   7393       break;
   7394 
   7395     case Primitive::kPrimFloat:
   7396     case Primitive::kPrimDouble:
   7397       locations->SetInAt(0, Location::RequiresFpuRegister());
   7398       locations->SetInAt(1, Location::RequiresFpuRegister());
   7399       locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
   7400       break;
   7401 
   7402     default:
   7403       LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
   7404   }
   7405 }
   7406 
   7407 void InstructionCodeGeneratorMIPS::VisitMul(HMul* instruction) {
   7408   Primitive::Type type = instruction->GetType();
   7409   LocationSummary* locations = instruction->GetLocations();
   7410   bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
   7411 
   7412   switch (type) {
   7413     case Primitive::kPrimInt: {
   7414       Register dst = locations->Out().AsRegister<Register>();
   7415       Register lhs = locations->InAt(0).AsRegister<Register>();
   7416       Register rhs = locations->InAt(1).AsRegister<Register>();
   7417 
   7418       if (isR6) {
   7419         __ MulR6(dst, lhs, rhs);
   7420       } else {
   7421         __ MulR2(dst, lhs, rhs);
   7422       }
   7423       break;
   7424     }
   7425     case Primitive::kPrimLong: {
   7426       Register dst_high = locations->Out().AsRegisterPairHigh<Register>();
   7427       Register dst_low = locations->Out().AsRegisterPairLow<Register>();
   7428       Register lhs_high = locations->InAt(0).AsRegisterPairHigh<Register>();
   7429       Register lhs_low = locations->InAt(0).AsRegisterPairLow<Register>();
   7430       Register rhs_high = locations->InAt(1).AsRegisterPairHigh<Register>();
   7431       Register rhs_low = locations->InAt(1).AsRegisterPairLow<Register>();
   7432 
   7433       // Extra checks to protect caused by the existance of A1_A2.
   7434       // The algorithm is wrong if dst_high is either lhs_lo or rhs_lo:
   7435       // (e.g. lhs=a0_a1, rhs=a2_a3 and dst=a1_a2).
   7436       DCHECK_NE(dst_high, lhs_low);
   7437       DCHECK_NE(dst_high, rhs_low);
   7438 
   7439       // A_B * C_D
   7440       // dst_hi:  [ low(A*D) + low(B*C) + hi(B*D) ]
   7441       // dst_lo:  [ low(B*D) ]
   7442       // Note: R2 and R6 MUL produce the low 32 bit of the multiplication result.
   7443 
   7444       if (isR6) {
   7445         __ MulR6(TMP, lhs_high, rhs_low);
   7446         __ MulR6(dst_high, lhs_low, rhs_high);
   7447         __ Addu(dst_high, dst_high, TMP);
   7448         __ MuhuR6(TMP, lhs_low, rhs_low);
   7449         __ Addu(dst_high, dst_high, TMP);
   7450         __ MulR6(dst_low, lhs_low, rhs_low);
   7451       } else {
   7452         __ MulR2(TMP, lhs_high, rhs_low);
   7453         __ MulR2(dst_high, lhs_low, rhs_high);
   7454         __ Addu(dst_high, dst_high, TMP);
   7455         __ MultuR2(lhs_low, rhs_low);
   7456         __ Mfhi(TMP);
   7457         __ Addu(dst_high, dst_high, TMP);
   7458         __ Mflo(dst_low);
   7459       }
   7460       break;
   7461     }
   7462     case Primitive::kPrimFloat:
   7463     case Primitive::kPrimDouble: {
   7464       FRegister dst = locations->Out().AsFpuRegister<FRegister>();
   7465       FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>();
   7466       FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>();
   7467       if (type == Primitive::kPrimFloat) {
   7468         __ MulS(dst, lhs, rhs);
   7469       } else {
   7470         __ MulD(dst, lhs, rhs);
   7471       }
   7472       break;
   7473     }
   7474     default:
   7475       LOG(FATAL) << "Unexpected mul type " << type;
   7476   }
   7477 }
   7478 
   7479 void LocationsBuilderMIPS::VisitNeg(HNeg* neg) {
   7480   LocationSummary* locations =
   7481       new (GetGraph()->GetArena()) LocationSummary(neg, LocationSummary::kNoCall);
   7482   switch (neg->GetResultType()) {
   7483     case Primitive::kPrimInt:
   7484     case Primitive::kPrimLong:
   7485       locations->SetInAt(0, Location::RequiresRegister());
   7486       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   7487       break;
   7488 
   7489     case Primitive::kPrimFloat:
   7490     case Primitive::kPrimDouble:
   7491       locations->SetInAt(0, Location::RequiresFpuRegister());
   7492       locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
   7493       break;
   7494 
   7495     default:
   7496       LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
   7497   }
   7498 }
   7499 
   7500 void InstructionCodeGeneratorMIPS::VisitNeg(HNeg* instruction) {
   7501   Primitive::Type type = instruction->GetType();
   7502   LocationSummary* locations = instruction->GetLocations();
   7503 
   7504   switch (type) {
   7505     case Primitive::kPrimInt: {
   7506       Register dst = locations->Out().AsRegister<Register>();
   7507       Register src = locations->InAt(0).AsRegister<Register>();
   7508       __ Subu(dst, ZERO, src);
   7509       break;
   7510     }
   7511     case Primitive::kPrimLong: {
   7512       Register dst_high = locations->Out().AsRegisterPairHigh<Register>();
   7513       Register dst_low = locations->Out().AsRegisterPairLow<Register>();
   7514       Register src_high = locations->InAt(0).AsRegisterPairHigh<Register>();
   7515       Register src_low = locations->InAt(0).AsRegisterPairLow<Register>();
   7516       __ Subu(dst_low, ZERO, src_low);
   7517       __ Sltu(TMP, ZERO, dst_low);
   7518       __ Subu(dst_high, ZERO, src_high);
   7519       __ Subu(dst_high, dst_high, TMP);
   7520       break;
   7521     }
   7522     case Primitive::kPrimFloat:
   7523     case Primitive::kPrimDouble: {
   7524       FRegister dst = locations->Out().AsFpuRegister<FRegister>();
   7525       FRegister src = locations->InAt(0).AsFpuRegister<FRegister>();
   7526       if (type == Primitive::kPrimFloat) {
   7527         __ NegS(dst, src);
   7528       } else {
   7529         __ NegD(dst, src);
   7530       }
   7531       break;
   7532     }
   7533     default:
   7534       LOG(FATAL) << "Unexpected neg type " << type;
   7535   }
   7536 }
   7537 
   7538 void LocationsBuilderMIPS::VisitNewArray(HNewArray* instruction) {
   7539   LocationSummary* locations =
   7540       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly);
   7541   InvokeRuntimeCallingConvention calling_convention;
   7542   locations->SetOut(calling_convention.GetReturnLocation(Primitive::kPrimNot));
   7543   locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
   7544   locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
   7545 }
   7546 
   7547 void InstructionCodeGeneratorMIPS::VisitNewArray(HNewArray* instruction) {
   7548   // Note: if heap poisoning is enabled, the entry point takes care
   7549   // of poisoning the reference.
   7550   codegen_->InvokeRuntime(kQuickAllocArrayResolved, instruction, instruction->GetDexPc());
   7551   CheckEntrypointTypes<kQuickAllocArrayResolved, void*, mirror::Class*, int32_t>();
   7552 }
   7553 
   7554 void LocationsBuilderMIPS::VisitNewInstance(HNewInstance* instruction) {
   7555   LocationSummary* locations =
   7556       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly);
   7557   InvokeRuntimeCallingConvention calling_convention;
   7558   if (instruction->IsStringAlloc()) {
   7559     locations->AddTemp(Location::RegisterLocation(kMethodRegisterArgument));
   7560   } else {
   7561     locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
   7562   }
   7563   locations->SetOut(calling_convention.GetReturnLocation(Primitive::kPrimNot));
   7564 }
   7565 
   7566 void InstructionCodeGeneratorMIPS::VisitNewInstance(HNewInstance* instruction) {
   7567   // Note: if heap poisoning is enabled, the entry point takes care
   7568   // of poisoning the reference.
   7569   if (instruction->IsStringAlloc()) {
   7570     // String is allocated through StringFactory. Call NewEmptyString entry point.
   7571     Register temp = instruction->GetLocations()->GetTemp(0).AsRegister<Register>();
   7572     MemberOffset code_offset = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kMipsPointerSize);
   7573     __ LoadFromOffset(kLoadWord, temp, TR, QUICK_ENTRY_POINT(pNewEmptyString));
   7574     __ LoadFromOffset(kLoadWord, T9, temp, code_offset.Int32Value());
   7575     __ Jalr(T9);
   7576     __ NopIfNoReordering();
   7577     codegen_->RecordPcInfo(instruction, instruction->GetDexPc());
   7578   } else {
   7579     codegen_->InvokeRuntime(instruction->GetEntrypoint(), instruction, instruction->GetDexPc());
   7580     CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>();
   7581   }
   7582 }
   7583 
   7584 void LocationsBuilderMIPS::VisitNot(HNot* instruction) {
   7585   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
   7586   locations->SetInAt(0, Location::RequiresRegister());
   7587   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   7588 }
   7589 
   7590 void InstructionCodeGeneratorMIPS::VisitNot(HNot* instruction) {
   7591   Primitive::Type type = instruction->GetType();
   7592   LocationSummary* locations = instruction->GetLocations();
   7593 
   7594   switch (type) {
   7595     case Primitive::kPrimInt: {
   7596       Register dst = locations->Out().AsRegister<Register>();
   7597       Register src = locations->InAt(0).AsRegister<Register>();
   7598       __ Nor(dst, src, ZERO);
   7599       break;
   7600     }
   7601 
   7602     case Primitive::kPrimLong: {
   7603       Register dst_high = locations->Out().AsRegisterPairHigh<Register>();
   7604       Register dst_low = locations->Out().AsRegisterPairLow<Register>();
   7605       Register src_high = locations->InAt(0).AsRegisterPairHigh<Register>();
   7606       Register src_low = locations->InAt(0).AsRegisterPairLow<Register>();
   7607       __ Nor(dst_high, src_high, ZERO);
   7608       __ Nor(dst_low, src_low, ZERO);
   7609       break;
   7610     }
   7611 
   7612     default:
   7613       LOG(FATAL) << "Unexpected type for not operation " << instruction->GetResultType();
   7614   }
   7615 }
   7616 
   7617 void LocationsBuilderMIPS::VisitBooleanNot(HBooleanNot* instruction) {
   7618   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
   7619   locations->SetInAt(0, Location::RequiresRegister());
   7620   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   7621 }
   7622 
   7623 void InstructionCodeGeneratorMIPS::VisitBooleanNot(HBooleanNot* instruction) {
   7624   LocationSummary* locations = instruction->GetLocations();
   7625   __ Xori(locations->Out().AsRegister<Register>(),
   7626           locations->InAt(0).AsRegister<Register>(),
   7627           1);
   7628 }
   7629 
   7630 void LocationsBuilderMIPS::VisitNullCheck(HNullCheck* instruction) {
   7631   LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction);
   7632   locations->SetInAt(0, Location::RequiresRegister());
   7633 }
   7634 
   7635 void CodeGeneratorMIPS::GenerateImplicitNullCheck(HNullCheck* instruction) {
   7636   if (CanMoveNullCheckToUser(instruction)) {
   7637     return;
   7638   }
   7639   Location obj = instruction->GetLocations()->InAt(0);
   7640 
   7641   __ Lw(ZERO, obj.AsRegister<Register>(), 0);
   7642   RecordPcInfo(instruction, instruction->GetDexPc());
   7643 }
   7644 
   7645 void CodeGeneratorMIPS::GenerateExplicitNullCheck(HNullCheck* instruction) {
   7646   SlowPathCodeMIPS* slow_path = new (GetGraph()->GetArena()) NullCheckSlowPathMIPS(instruction);
   7647   AddSlowPath(slow_path);
   7648 
   7649   Location obj = instruction->GetLocations()->InAt(0);
   7650 
   7651   __ Beqz(obj.AsRegister<Register>(), slow_path->GetEntryLabel());
   7652 }
   7653 
   7654 void InstructionCodeGeneratorMIPS::VisitNullCheck(HNullCheck* instruction) {
   7655   codegen_->GenerateNullCheck(instruction);
   7656 }
   7657 
   7658 void LocationsBuilderMIPS::VisitOr(HOr* instruction) {
   7659   HandleBinaryOp(instruction);
   7660 }
   7661 
   7662 void InstructionCodeGeneratorMIPS::VisitOr(HOr* instruction) {
   7663   HandleBinaryOp(instruction);
   7664 }
   7665 
   7666 void LocationsBuilderMIPS::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) {
   7667   LOG(FATAL) << "Unreachable";
   7668 }
   7669 
   7670 void InstructionCodeGeneratorMIPS::VisitParallelMove(HParallelMove* instruction) {
   7671   codegen_->GetMoveResolver()->EmitNativeCode(instruction);
   7672 }
   7673 
   7674 void LocationsBuilderMIPS::VisitParameterValue(HParameterValue* instruction) {
   7675   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
   7676   Location location = parameter_visitor_.GetNextLocation(instruction->GetType());
   7677   if (location.IsStackSlot()) {
   7678     location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
   7679   } else if (location.IsDoubleStackSlot()) {
   7680     location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
   7681   }
   7682   locations->SetOut(location);
   7683 }
   7684 
   7685 void InstructionCodeGeneratorMIPS::VisitParameterValue(HParameterValue* instruction
   7686                                                          ATTRIBUTE_UNUSED) {
   7687   // Nothing to do, the parameter is already at its location.
   7688 }
   7689 
   7690 void LocationsBuilderMIPS::VisitCurrentMethod(HCurrentMethod* instruction) {
   7691   LocationSummary* locations =
   7692       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
   7693   locations->SetOut(Location::RegisterLocation(kMethodRegisterArgument));
   7694 }
   7695 
   7696 void InstructionCodeGeneratorMIPS::VisitCurrentMethod(HCurrentMethod* instruction
   7697                                                         ATTRIBUTE_UNUSED) {
   7698   // Nothing to do, the method is already at its location.
   7699 }
   7700 
   7701 void LocationsBuilderMIPS::VisitPhi(HPhi* instruction) {
   7702   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
   7703   for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) {
   7704     locations->SetInAt(i, Location::Any());
   7705   }
   7706   locations->SetOut(Location::Any());
   7707 }
   7708 
   7709 void InstructionCodeGeneratorMIPS::VisitPhi(HPhi* instruction ATTRIBUTE_UNUSED) {
   7710   LOG(FATAL) << "Unreachable";
   7711 }
   7712 
   7713 void LocationsBuilderMIPS::VisitRem(HRem* rem) {
   7714   Primitive::Type type = rem->GetResultType();
   7715   LocationSummary::CallKind call_kind =
   7716       (type == Primitive::kPrimInt) ? LocationSummary::kNoCall : LocationSummary::kCallOnMainOnly;
   7717   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(rem, call_kind);
   7718 
   7719   switch (type) {
   7720     case Primitive::kPrimInt:
   7721       locations->SetInAt(0, Location::RequiresRegister());
   7722       locations->SetInAt(1, Location::RegisterOrConstant(rem->InputAt(1)));
   7723       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   7724       break;
   7725 
   7726     case Primitive::kPrimLong: {
   7727       InvokeRuntimeCallingConvention calling_convention;
   7728       locations->SetInAt(0, Location::RegisterPairLocation(
   7729           calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
   7730       locations->SetInAt(1, Location::RegisterPairLocation(
   7731           calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
   7732       locations->SetOut(calling_convention.GetReturnLocation(type));
   7733       break;
   7734     }
   7735 
   7736     case Primitive::kPrimFloat:
   7737     case Primitive::kPrimDouble: {
   7738       InvokeRuntimeCallingConvention calling_convention;
   7739       locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0)));
   7740       locations->SetInAt(1, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(1)));
   7741       locations->SetOut(calling_convention.GetReturnLocation(type));
   7742       break;
   7743     }
   7744 
   7745     default:
   7746       LOG(FATAL) << "Unexpected rem type " << type;
   7747   }
   7748 }
   7749 
   7750 void InstructionCodeGeneratorMIPS::VisitRem(HRem* instruction) {
   7751   Primitive::Type type = instruction->GetType();
   7752 
   7753   switch (type) {
   7754     case Primitive::kPrimInt:
   7755       GenerateDivRemIntegral(instruction);
   7756       break;
   7757     case Primitive::kPrimLong: {
   7758       codegen_->InvokeRuntime(kQuickLmod, instruction, instruction->GetDexPc());
   7759       CheckEntrypointTypes<kQuickLmod, int64_t, int64_t, int64_t>();
   7760       break;
   7761     }
   7762     case Primitive::kPrimFloat: {
   7763       codegen_->InvokeRuntime(kQuickFmodf, instruction, instruction->GetDexPc());
   7764       CheckEntrypointTypes<kQuickFmodf, float, float, float>();
   7765       break;
   7766     }
   7767     case Primitive::kPrimDouble: {
   7768       codegen_->InvokeRuntime(kQuickFmod, instruction, instruction->GetDexPc());
   7769       CheckEntrypointTypes<kQuickFmod, double, double, double>();
   7770       break;
   7771     }
   7772     default:
   7773       LOG(FATAL) << "Unexpected rem type " << type;
   7774   }
   7775 }
   7776 
   7777 void LocationsBuilderMIPS::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
   7778   memory_barrier->SetLocations(nullptr);
   7779 }
   7780 
   7781 void InstructionCodeGeneratorMIPS::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
   7782   GenerateMemoryBarrier(memory_barrier->GetBarrierKind());
   7783 }
   7784 
   7785 void LocationsBuilderMIPS::VisitReturn(HReturn* ret) {
   7786   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(ret);
   7787   Primitive::Type return_type = ret->InputAt(0)->GetType();
   7788   locations->SetInAt(0, MipsReturnLocation(return_type));
   7789 }
   7790 
   7791 void InstructionCodeGeneratorMIPS::VisitReturn(HReturn* ret ATTRIBUTE_UNUSED) {
   7792   codegen_->GenerateFrameExit();
   7793 }
   7794 
   7795 void LocationsBuilderMIPS::VisitReturnVoid(HReturnVoid* ret) {
   7796   ret->SetLocations(nullptr);
   7797 }
   7798 
   7799 void InstructionCodeGeneratorMIPS::VisitReturnVoid(HReturnVoid* ret ATTRIBUTE_UNUSED) {
   7800   codegen_->GenerateFrameExit();
   7801 }
   7802 
   7803 void LocationsBuilderMIPS::VisitRor(HRor* ror) {
   7804   HandleShift(ror);
   7805 }
   7806 
   7807 void InstructionCodeGeneratorMIPS::VisitRor(HRor* ror) {
   7808   HandleShift(ror);
   7809 }
   7810 
   7811 void LocationsBuilderMIPS::VisitShl(HShl* shl) {
   7812   HandleShift(shl);
   7813 }
   7814 
   7815 void InstructionCodeGeneratorMIPS::VisitShl(HShl* shl) {
   7816   HandleShift(shl);
   7817 }
   7818 
   7819 void LocationsBuilderMIPS::VisitShr(HShr* shr) {
   7820   HandleShift(shr);
   7821 }
   7822 
   7823 void InstructionCodeGeneratorMIPS::VisitShr(HShr* shr) {
   7824   HandleShift(shr);
   7825 }
   7826 
   7827 void LocationsBuilderMIPS::VisitSub(HSub* instruction) {
   7828   HandleBinaryOp(instruction);
   7829 }
   7830 
   7831 void InstructionCodeGeneratorMIPS::VisitSub(HSub* instruction) {
   7832   HandleBinaryOp(instruction);
   7833 }
   7834 
   7835 void LocationsBuilderMIPS::VisitStaticFieldGet(HStaticFieldGet* instruction) {
   7836   HandleFieldGet(instruction, instruction->GetFieldInfo());
   7837 }
   7838 
   7839 void InstructionCodeGeneratorMIPS::VisitStaticFieldGet(HStaticFieldGet* instruction) {
   7840   HandleFieldGet(instruction, instruction->GetFieldInfo(), instruction->GetDexPc());
   7841 }
   7842 
   7843 void LocationsBuilderMIPS::VisitStaticFieldSet(HStaticFieldSet* instruction) {
   7844   HandleFieldSet(instruction, instruction->GetFieldInfo());
   7845 }
   7846 
   7847 void InstructionCodeGeneratorMIPS::VisitStaticFieldSet(HStaticFieldSet* instruction) {
   7848   HandleFieldSet(instruction,
   7849                  instruction->GetFieldInfo(),
   7850                  instruction->GetDexPc(),
   7851                  instruction->GetValueCanBeNull());
   7852 }
   7853 
   7854 void LocationsBuilderMIPS::VisitUnresolvedInstanceFieldGet(
   7855     HUnresolvedInstanceFieldGet* instruction) {
   7856   FieldAccessCallingConventionMIPS calling_convention;
   7857   codegen_->CreateUnresolvedFieldLocationSummary(instruction,
   7858                                                  instruction->GetFieldType(),
   7859                                                  calling_convention);
   7860 }
   7861 
   7862 void InstructionCodeGeneratorMIPS::VisitUnresolvedInstanceFieldGet(
   7863     HUnresolvedInstanceFieldGet* instruction) {
   7864   FieldAccessCallingConventionMIPS calling_convention;
   7865   codegen_->GenerateUnresolvedFieldAccess(instruction,
   7866                                           instruction->GetFieldType(),
   7867                                           instruction->GetFieldIndex(),
   7868                                           instruction->GetDexPc(),
   7869                                           calling_convention);
   7870 }
   7871 
   7872 void LocationsBuilderMIPS::VisitUnresolvedInstanceFieldSet(
   7873     HUnresolvedInstanceFieldSet* instruction) {
   7874   FieldAccessCallingConventionMIPS calling_convention;
   7875   codegen_->CreateUnresolvedFieldLocationSummary(instruction,
   7876                                                  instruction->GetFieldType(),
   7877                                                  calling_convention);
   7878 }
   7879 
   7880 void InstructionCodeGeneratorMIPS::VisitUnresolvedInstanceFieldSet(
   7881     HUnresolvedInstanceFieldSet* instruction) {
   7882   FieldAccessCallingConventionMIPS calling_convention;
   7883   codegen_->GenerateUnresolvedFieldAccess(instruction,
   7884                                           instruction->GetFieldType(),
   7885                                           instruction->GetFieldIndex(),
   7886                                           instruction->GetDexPc(),
   7887                                           calling_convention);
   7888 }
   7889 
   7890 void LocationsBuilderMIPS::VisitUnresolvedStaticFieldGet(
   7891     HUnresolvedStaticFieldGet* instruction) {
   7892   FieldAccessCallingConventionMIPS calling_convention;
   7893   codegen_->CreateUnresolvedFieldLocationSummary(instruction,
   7894                                                  instruction->GetFieldType(),
   7895                                                  calling_convention);
   7896 }
   7897 
   7898 void InstructionCodeGeneratorMIPS::VisitUnresolvedStaticFieldGet(
   7899     HUnresolvedStaticFieldGet* instruction) {
   7900   FieldAccessCallingConventionMIPS calling_convention;
   7901   codegen_->GenerateUnresolvedFieldAccess(instruction,
   7902                                           instruction->GetFieldType(),
   7903                                           instruction->GetFieldIndex(),
   7904                                           instruction->GetDexPc(),
   7905                                           calling_convention);
   7906 }
   7907 
   7908 void LocationsBuilderMIPS::VisitUnresolvedStaticFieldSet(
   7909     HUnresolvedStaticFieldSet* instruction) {
   7910   FieldAccessCallingConventionMIPS calling_convention;
   7911   codegen_->CreateUnresolvedFieldLocationSummary(instruction,
   7912                                                  instruction->GetFieldType(),
   7913                                                  calling_convention);
   7914 }
   7915 
   7916 void InstructionCodeGeneratorMIPS::VisitUnresolvedStaticFieldSet(
   7917     HUnresolvedStaticFieldSet* instruction) {
   7918   FieldAccessCallingConventionMIPS calling_convention;
   7919   codegen_->GenerateUnresolvedFieldAccess(instruction,
   7920                                           instruction->GetFieldType(),
   7921                                           instruction->GetFieldIndex(),
   7922                                           instruction->GetDexPc(),
   7923                                           calling_convention);
   7924 }
   7925 
   7926 void LocationsBuilderMIPS::VisitSuspendCheck(HSuspendCheck* instruction) {
   7927   LocationSummary* locations =
   7928       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnSlowPath);
   7929   locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers.
   7930 }
   7931 
   7932 void InstructionCodeGeneratorMIPS::VisitSuspendCheck(HSuspendCheck* instruction) {
   7933   HBasicBlock* block = instruction->GetBlock();
   7934   if (block->GetLoopInformation() != nullptr) {
   7935     DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction);
   7936     // The back edge will generate the suspend check.
   7937     return;
   7938   }
   7939   if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) {
   7940     // The goto will generate the suspend check.
   7941     return;
   7942   }
   7943   GenerateSuspendCheck(instruction, nullptr);
   7944 }
   7945 
   7946 void LocationsBuilderMIPS::VisitThrow(HThrow* instruction) {
   7947   LocationSummary* locations =
   7948       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly);
   7949   InvokeRuntimeCallingConvention calling_convention;
   7950   locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
   7951 }
   7952 
   7953 void InstructionCodeGeneratorMIPS::VisitThrow(HThrow* instruction) {
   7954   codegen_->InvokeRuntime(kQuickDeliverException, instruction, instruction->GetDexPc());
   7955   CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>();
   7956 }
   7957 
   7958 void LocationsBuilderMIPS::VisitTypeConversion(HTypeConversion* conversion) {
   7959   Primitive::Type input_type = conversion->GetInputType();
   7960   Primitive::Type result_type = conversion->GetResultType();
   7961   DCHECK_NE(input_type, result_type);
   7962   bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
   7963 
   7964   if ((input_type == Primitive::kPrimNot) || (input_type == Primitive::kPrimVoid) ||
   7965       (result_type == Primitive::kPrimNot) || (result_type == Primitive::kPrimVoid)) {
   7966     LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type;
   7967   }
   7968 
   7969   LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
   7970   if (!isR6 &&
   7971       ((Primitive::IsFloatingPointType(result_type) && input_type == Primitive::kPrimLong) ||
   7972        (result_type == Primitive::kPrimLong && Primitive::IsFloatingPointType(input_type)))) {
   7973     call_kind = LocationSummary::kCallOnMainOnly;
   7974   }
   7975 
   7976   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(conversion, call_kind);
   7977 
   7978   if (call_kind == LocationSummary::kNoCall) {
   7979     if (Primitive::IsFloatingPointType(input_type)) {
   7980       locations->SetInAt(0, Location::RequiresFpuRegister());
   7981     } else {
   7982       locations->SetInAt(0, Location::RequiresRegister());
   7983     }
   7984 
   7985     if (Primitive::IsFloatingPointType(result_type)) {
   7986       locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
   7987     } else {
   7988       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   7989     }
   7990   } else {
   7991     InvokeRuntimeCallingConvention calling_convention;
   7992 
   7993     if (Primitive::IsFloatingPointType(input_type)) {
   7994       locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0)));
   7995     } else {
   7996       DCHECK_EQ(input_type, Primitive::kPrimLong);
   7997       locations->SetInAt(0, Location::RegisterPairLocation(
   7998                  calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
   7999     }
   8000 
   8001     locations->SetOut(calling_convention.GetReturnLocation(result_type));
   8002   }
   8003 }
   8004 
   8005 void InstructionCodeGeneratorMIPS::VisitTypeConversion(HTypeConversion* conversion) {
   8006   LocationSummary* locations = conversion->GetLocations();
   8007   Primitive::Type result_type = conversion->GetResultType();
   8008   Primitive::Type input_type = conversion->GetInputType();
   8009   bool has_sign_extension = codegen_->GetInstructionSetFeatures().IsMipsIsaRevGreaterThanEqual2();
   8010   bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
   8011 
   8012   DCHECK_NE(input_type, result_type);
   8013 
   8014   if (result_type == Primitive::kPrimLong && Primitive::IsIntegralType(input_type)) {
   8015     Register dst_high = locations->Out().AsRegisterPairHigh<Register>();
   8016     Register dst_low = locations->Out().AsRegisterPairLow<Register>();
   8017     Register src = locations->InAt(0).AsRegister<Register>();
   8018 
   8019     if (dst_low != src) {
   8020       __ Move(dst_low, src);
   8021     }
   8022     __ Sra(dst_high, src, 31);
   8023   } else if (Primitive::IsIntegralType(result_type) && Primitive::IsIntegralType(input_type)) {
   8024     Register dst = locations->Out().AsRegister<Register>();
   8025     Register src = (input_type == Primitive::kPrimLong)
   8026         ? locations->InAt(0).AsRegisterPairLow<Register>()
   8027         : locations->InAt(0).AsRegister<Register>();
   8028 
   8029     switch (result_type) {
   8030       case Primitive::kPrimChar:
   8031         __ Andi(dst, src, 0xFFFF);
   8032         break;
   8033       case Primitive::kPrimByte:
   8034         if (has_sign_extension) {
   8035           __ Seb(dst, src);
   8036         } else {
   8037           __ Sll(dst, src, 24);
   8038           __ Sra(dst, dst, 24);
   8039         }
   8040         break;
   8041       case Primitive::kPrimShort:
   8042         if (has_sign_extension) {
   8043           __ Seh(dst, src);
   8044         } else {
   8045           __ Sll(dst, src, 16);
   8046           __ Sra(dst, dst, 16);
   8047         }
   8048         break;
   8049       case Primitive::kPrimInt:
   8050         if (dst != src) {
   8051           __ Move(dst, src);
   8052         }
   8053         break;
   8054 
   8055       default:
   8056         LOG(FATAL) << "Unexpected type conversion from " << input_type
   8057                    << " to " << result_type;
   8058     }
   8059   } else if (Primitive::IsFloatingPointType(result_type) && Primitive::IsIntegralType(input_type)) {
   8060     if (input_type == Primitive::kPrimLong) {
   8061       if (isR6) {
   8062         // cvt.s.l/cvt.d.l requires MIPSR2+ with FR=1. MIPS32R6 is implemented as a secondary
   8063         // architecture on top of MIPS64R6, which has FR=1, and therefore can use the instruction.
   8064         Register src_high = locations->InAt(0).AsRegisterPairHigh<Register>();
   8065         Register src_low = locations->InAt(0).AsRegisterPairLow<Register>();
   8066         FRegister dst = locations->Out().AsFpuRegister<FRegister>();
   8067         __ Mtc1(src_low, FTMP);
   8068         __ Mthc1(src_high, FTMP);
   8069         if (result_type == Primitive::kPrimFloat) {
   8070           __ Cvtsl(dst, FTMP);
   8071         } else {
   8072           __ Cvtdl(dst, FTMP);
   8073         }
   8074       } else {
   8075         QuickEntrypointEnum entrypoint = (result_type == Primitive::kPrimFloat) ? kQuickL2f
   8076                                                                                 : kQuickL2d;
   8077         codegen_->InvokeRuntime(entrypoint, conversion, conversion->GetDexPc());
   8078         if (result_type == Primitive::kPrimFloat) {
   8079           CheckEntrypointTypes<kQuickL2f, float, int64_t>();
   8080         } else {
   8081           CheckEntrypointTypes<kQuickL2d, double, int64_t>();
   8082         }
   8083       }
   8084     } else {
   8085       Register src = locations->InAt(0).AsRegister<Register>();
   8086       FRegister dst = locations->Out().AsFpuRegister<FRegister>();
   8087       __ Mtc1(src, FTMP);
   8088       if (result_type == Primitive::kPrimFloat) {
   8089         __ Cvtsw(dst, FTMP);
   8090       } else {
   8091         __ Cvtdw(dst, FTMP);
   8092       }
   8093     }
   8094   } else if (Primitive::IsIntegralType(result_type) && Primitive::IsFloatingPointType(input_type)) {
   8095     CHECK(result_type == Primitive::kPrimInt || result_type == Primitive::kPrimLong);
   8096     if (result_type == Primitive::kPrimLong) {
   8097       if (isR6) {
   8098         // trunc.l.s/trunc.l.d requires MIPSR2+ with FR=1. MIPS32R6 is implemented as a secondary
   8099         // architecture on top of MIPS64R6, which has FR=1, and therefore can use the instruction.
   8100         FRegister src = locations->InAt(0).AsFpuRegister<FRegister>();
   8101         Register dst_high = locations->Out().AsRegisterPairHigh<Register>();
   8102         Register dst_low = locations->Out().AsRegisterPairLow<Register>();
   8103         MipsLabel truncate;
   8104         MipsLabel done;
   8105 
   8106         // When NAN2008=0 (R2 and before), the truncate instruction produces the maximum positive
   8107         // value when the input is either a NaN or is outside of the range of the output type
   8108         // after the truncation. IOW, the three special cases (NaN, too small, too big) produce
   8109         // the same result.
   8110         //
   8111         // When NAN2008=1 (R6), the truncate instruction caps the output at the minimum/maximum
   8112         // value of the output type if the input is outside of the range after the truncation or
   8113         // produces 0 when the input is a NaN. IOW, the three special cases produce three distinct
   8114         // results. This matches the desired float/double-to-int/long conversion exactly.
   8115         //
   8116         // So, NAN2008 affects handling of negative values and NaNs by the truncate instruction.
   8117         //
   8118         // The following code supports both NAN2008=0 and NAN2008=1 behaviors of the truncate
   8119         // instruction, the reason being that the emulator implements NAN2008=0 on MIPS64R6,
   8120         // even though it must be NAN2008=1 on R6.
   8121         //
   8122         // The code takes care of the different behaviors by first comparing the input to the
   8123         // minimum output value (-2**-63 for truncating to long, -2**-31 for truncating to int).
   8124         // If the input is greater than or equal to the minimum, it procedes to the truncate
   8125         // instruction, which will handle such an input the same way irrespective of NAN2008.
   8126         // Otherwise the input is compared to itself to determine whether it is a NaN or not
   8127         // in order to return either zero or the minimum value.
   8128         //
   8129         // TODO: simplify this when the emulator correctly implements NAN2008=1 behavior of the
   8130         // truncate instruction for MIPS64R6.
   8131         if (input_type == Primitive::kPrimFloat) {
   8132           uint32_t min_val = bit_cast<uint32_t, float>(std::numeric_limits<int64_t>::min());
   8133           __ LoadConst32(TMP, min_val);
   8134           __ Mtc1(TMP, FTMP);
   8135           __ CmpLeS(FTMP, FTMP, src);
   8136         } else {
   8137           uint64_t min_val = bit_cast<uint64_t, double>(std::numeric_limits<int64_t>::min());
   8138           __ LoadConst32(TMP, High32Bits(min_val));
   8139           __ Mtc1(ZERO, FTMP);
   8140           __ Mthc1(TMP, FTMP);
   8141           __ CmpLeD(FTMP, FTMP, src);
   8142         }
   8143 
   8144         __ Bc1nez(FTMP, &truncate);
   8145 
   8146         if (input_type == Primitive::kPrimFloat) {
   8147           __ CmpEqS(FTMP, src, src);
   8148         } else {
   8149           __ CmpEqD(FTMP, src, src);
   8150         }
   8151         __ Move(dst_low, ZERO);
   8152         __ LoadConst32(dst_high, std::numeric_limits<int32_t>::min());
   8153         __ Mfc1(TMP, FTMP);
   8154         __ And(dst_high, dst_high, TMP);
   8155 
   8156         __ B(&done);
   8157 
   8158         __ Bind(&truncate);
   8159 
   8160         if (input_type == Primitive::kPrimFloat) {
   8161           __ TruncLS(FTMP, src);
   8162         } else {
   8163           __ TruncLD(FTMP, src);
   8164         }
   8165         __ Mfc1(dst_low, FTMP);
   8166         __ Mfhc1(dst_high, FTMP);
   8167 
   8168         __ Bind(&done);
   8169       } else {
   8170         QuickEntrypointEnum entrypoint = (input_type == Primitive::kPrimFloat) ? kQuickF2l
   8171                                                                                : kQuickD2l;
   8172         codegen_->InvokeRuntime(entrypoint, conversion, conversion->GetDexPc());
   8173         if (input_type == Primitive::kPrimFloat) {
   8174           CheckEntrypointTypes<kQuickF2l, int64_t, float>();
   8175         } else {
   8176           CheckEntrypointTypes<kQuickD2l, int64_t, double>();
   8177         }
   8178       }
   8179     } else {
   8180       FRegister src = locations->InAt(0).AsFpuRegister<FRegister>();
   8181       Register dst = locations->Out().AsRegister<Register>();
   8182       MipsLabel truncate;
   8183       MipsLabel done;
   8184 
   8185       // The following code supports both NAN2008=0 and NAN2008=1 behaviors of the truncate
   8186       // instruction, the reason being that the emulator implements NAN2008=0 on MIPS64R6,
   8187       // even though it must be NAN2008=1 on R6.
   8188       //
   8189       // For details see the large comment above for the truncation of float/double to long on R6.
   8190       //
   8191       // TODO: simplify this when the emulator correctly implements NAN2008=1 behavior of the
   8192       // truncate instruction for MIPS64R6.
   8193       if (input_type == Primitive::kPrimFloat) {
   8194         uint32_t min_val = bit_cast<uint32_t, float>(std::numeric_limits<int32_t>::min());
   8195         __ LoadConst32(TMP, min_val);
   8196         __ Mtc1(TMP, FTMP);
   8197       } else {
   8198         uint64_t min_val = bit_cast<uint64_t, double>(std::numeric_limits<int32_t>::min());
   8199         __ LoadConst32(TMP, High32Bits(min_val));
   8200         __ Mtc1(ZERO, FTMP);
   8201         __ MoveToFpuHigh(TMP, FTMP);
   8202       }
   8203 
   8204       if (isR6) {
   8205         if (input_type == Primitive::kPrimFloat) {
   8206           __ CmpLeS(FTMP, FTMP, src);
   8207         } else {
   8208           __ CmpLeD(FTMP, FTMP, src);
   8209         }
   8210         __ Bc1nez(FTMP, &truncate);
   8211 
   8212         if (input_type == Primitive::kPrimFloat) {
   8213           __ CmpEqS(FTMP, src, src);
   8214         } else {
   8215           __ CmpEqD(FTMP, src, src);
   8216         }
   8217         __ LoadConst32(dst, std::numeric_limits<int32_t>::min());
   8218         __ Mfc1(TMP, FTMP);
   8219         __ And(dst, dst, TMP);
   8220       } else {
   8221         if (input_type == Primitive::kPrimFloat) {
   8222           __ ColeS(0, FTMP, src);
   8223         } else {
   8224           __ ColeD(0, FTMP, src);
   8225         }
   8226         __ Bc1t(0, &truncate);
   8227 
   8228         if (input_type == Primitive::kPrimFloat) {
   8229           __ CeqS(0, src, src);
   8230         } else {
   8231           __ CeqD(0, src, src);
   8232         }
   8233         __ LoadConst32(dst, std::numeric_limits<int32_t>::min());
   8234         __ Movf(dst, ZERO, 0);
   8235       }
   8236 
   8237       __ B(&done);
   8238 
   8239       __ Bind(&truncate);
   8240 
   8241       if (input_type == Primitive::kPrimFloat) {
   8242         __ TruncWS(FTMP, src);
   8243       } else {
   8244         __ TruncWD(FTMP, src);
   8245       }
   8246       __ Mfc1(dst, FTMP);
   8247 
   8248       __ Bind(&done);
   8249     }
   8250   } else if (Primitive::IsFloatingPointType(result_type) &&
   8251              Primitive::IsFloatingPointType(input_type)) {
   8252     FRegister dst = locations->Out().AsFpuRegister<FRegister>();
   8253     FRegister src = locations->InAt(0).AsFpuRegister<FRegister>();
   8254     if (result_type == Primitive::kPrimFloat) {
   8255       __ Cvtsd(dst, src);
   8256     } else {
   8257       __ Cvtds(dst, src);
   8258     }
   8259   } else {
   8260     LOG(FATAL) << "Unexpected or unimplemented type conversion from " << input_type
   8261                 << " to " << result_type;
   8262   }
   8263 }
   8264 
   8265 void LocationsBuilderMIPS::VisitUShr(HUShr* ushr) {
   8266   HandleShift(ushr);
   8267 }
   8268 
   8269 void InstructionCodeGeneratorMIPS::VisitUShr(HUShr* ushr) {
   8270   HandleShift(ushr);
   8271 }
   8272 
   8273 void LocationsBuilderMIPS::VisitXor(HXor* instruction) {
   8274   HandleBinaryOp(instruction);
   8275 }
   8276 
   8277 void InstructionCodeGeneratorMIPS::VisitXor(HXor* instruction) {
   8278   HandleBinaryOp(instruction);
   8279 }
   8280 
   8281 void LocationsBuilderMIPS::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
   8282   // Nothing to do, this should be removed during prepare for register allocator.
   8283   LOG(FATAL) << "Unreachable";
   8284 }
   8285 
   8286 void InstructionCodeGeneratorMIPS::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
   8287   // Nothing to do, this should be removed during prepare for register allocator.
   8288   LOG(FATAL) << "Unreachable";
   8289 }
   8290 
   8291 void LocationsBuilderMIPS::VisitEqual(HEqual* comp) {
   8292   HandleCondition(comp);
   8293 }
   8294 
   8295 void InstructionCodeGeneratorMIPS::VisitEqual(HEqual* comp) {
   8296   HandleCondition(comp);
   8297 }
   8298 
   8299 void LocationsBuilderMIPS::VisitNotEqual(HNotEqual* comp) {
   8300   HandleCondition(comp);
   8301 }
   8302 
   8303 void InstructionCodeGeneratorMIPS::VisitNotEqual(HNotEqual* comp) {
   8304   HandleCondition(comp);
   8305 }
   8306 
   8307 void LocationsBuilderMIPS::VisitLessThan(HLessThan* comp) {
   8308   HandleCondition(comp);
   8309 }
   8310 
   8311 void InstructionCodeGeneratorMIPS::VisitLessThan(HLessThan* comp) {
   8312   HandleCondition(comp);
   8313 }
   8314 
   8315 void LocationsBuilderMIPS::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
   8316   HandleCondition(comp);
   8317 }
   8318 
   8319 void InstructionCodeGeneratorMIPS::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
   8320   HandleCondition(comp);
   8321 }
   8322 
   8323 void LocationsBuilderMIPS::VisitGreaterThan(HGreaterThan* comp) {
   8324   HandleCondition(comp);
   8325 }
   8326 
   8327 void InstructionCodeGeneratorMIPS::VisitGreaterThan(HGreaterThan* comp) {
   8328   HandleCondition(comp);
   8329 }
   8330 
   8331 void LocationsBuilderMIPS::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
   8332   HandleCondition(comp);
   8333 }
   8334 
   8335 void InstructionCodeGeneratorMIPS::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
   8336   HandleCondition(comp);
   8337 }
   8338 
   8339 void LocationsBuilderMIPS::VisitBelow(HBelow* comp) {
   8340   HandleCondition(comp);
   8341 }
   8342 
   8343 void InstructionCodeGeneratorMIPS::VisitBelow(HBelow* comp) {
   8344   HandleCondition(comp);
   8345 }
   8346 
   8347 void LocationsBuilderMIPS::VisitBelowOrEqual(HBelowOrEqual* comp) {
   8348   HandleCondition(comp);
   8349 }
   8350 
   8351 void InstructionCodeGeneratorMIPS::VisitBelowOrEqual(HBelowOrEqual* comp) {
   8352   HandleCondition(comp);
   8353 }
   8354 
   8355 void LocationsBuilderMIPS::VisitAbove(HAbove* comp) {
   8356   HandleCondition(comp);
   8357 }
   8358 
   8359 void InstructionCodeGeneratorMIPS::VisitAbove(HAbove* comp) {
   8360   HandleCondition(comp);
   8361 }
   8362 
   8363 void LocationsBuilderMIPS::VisitAboveOrEqual(HAboveOrEqual* comp) {
   8364   HandleCondition(comp);
   8365 }
   8366 
   8367 void InstructionCodeGeneratorMIPS::VisitAboveOrEqual(HAboveOrEqual* comp) {
   8368   HandleCondition(comp);
   8369 }
   8370 
   8371 void LocationsBuilderMIPS::VisitPackedSwitch(HPackedSwitch* switch_instr) {
   8372   LocationSummary* locations =
   8373       new (GetGraph()->GetArena()) LocationSummary(switch_instr, LocationSummary::kNoCall);
   8374   locations->SetInAt(0, Location::RequiresRegister());
   8375 }
   8376 
   8377 void InstructionCodeGeneratorMIPS::GenPackedSwitchWithCompares(Register value_reg,
   8378                                                                int32_t lower_bound,
   8379                                                                uint32_t num_entries,
   8380                                                                HBasicBlock* switch_block,
   8381                                                                HBasicBlock* default_block) {
   8382   // Create a set of compare/jumps.
   8383   Register temp_reg = TMP;
   8384   __ Addiu32(temp_reg, value_reg, -lower_bound);
   8385   // Jump to default if index is negative
   8386   // Note: We don't check the case that index is positive while value < lower_bound, because in
   8387   // this case, index >= num_entries must be true. So that we can save one branch instruction.
   8388   __ Bltz(temp_reg, codegen_->GetLabelOf(default_block));
   8389 
   8390   const ArenaVector<HBasicBlock*>& successors = switch_block->GetSuccessors();
   8391   // Jump to successors[0] if value == lower_bound.
   8392   __ Beqz(temp_reg, codegen_->GetLabelOf(successors[0]));
   8393   int32_t last_index = 0;
   8394   for (; num_entries - last_index > 2; last_index += 2) {
   8395     __ Addiu(temp_reg, temp_reg, -2);
   8396     // Jump to successors[last_index + 1] if value < case_value[last_index + 2].
   8397     __ Bltz(temp_reg, codegen_->GetLabelOf(successors[last_index + 1]));
   8398     // Jump to successors[last_index + 2] if value == case_value[last_index + 2].
   8399     __ Beqz(temp_reg, codegen_->GetLabelOf(successors[last_index + 2]));
   8400   }
   8401   if (num_entries - last_index == 2) {
   8402     // The last missing case_value.
   8403     __ Addiu(temp_reg, temp_reg, -1);
   8404     __ Beqz(temp_reg, codegen_->GetLabelOf(successors[last_index + 1]));
   8405   }
   8406 
   8407   // And the default for any other value.
   8408   if (!codegen_->GoesToNextBlock(switch_block, default_block)) {
   8409     __ B(codegen_->GetLabelOf(default_block));
   8410   }
   8411 }
   8412 
   8413 void InstructionCodeGeneratorMIPS::GenTableBasedPackedSwitch(Register value_reg,
   8414                                                              Register constant_area,
   8415                                                              int32_t lower_bound,
   8416                                                              uint32_t num_entries,
   8417                                                              HBasicBlock* switch_block,
   8418                                                              HBasicBlock* default_block) {
   8419   // Create a jump table.
   8420   std::vector<MipsLabel*> labels(num_entries);
   8421   const ArenaVector<HBasicBlock*>& successors = switch_block->GetSuccessors();
   8422   for (uint32_t i = 0; i < num_entries; i++) {
   8423     labels[i] = codegen_->GetLabelOf(successors[i]);
   8424   }
   8425   JumpTable* table = __ CreateJumpTable(std::move(labels));
   8426 
   8427   // Is the value in range?
   8428   __ Addiu32(TMP, value_reg, -lower_bound);
   8429   if (IsInt<16>(static_cast<int32_t>(num_entries))) {
   8430     __ Sltiu(AT, TMP, num_entries);
   8431     __ Beqz(AT, codegen_->GetLabelOf(default_block));
   8432   } else {
   8433     __ LoadConst32(AT, num_entries);
   8434     __ Bgeu(TMP, AT, codegen_->GetLabelOf(default_block));
   8435   }
   8436 
   8437   // We are in the range of the table.
   8438   // Load the target address from the jump table, indexing by the value.
   8439   __ LoadLabelAddress(AT, constant_area, table->GetLabel());
   8440   __ ShiftAndAdd(TMP, TMP, AT, 2, TMP);
   8441   __ Lw(TMP, TMP, 0);
   8442   // Compute the absolute target address by adding the table start address
   8443   // (the table contains offsets to targets relative to its start).
   8444   __ Addu(TMP, TMP, AT);
   8445   // And jump.
   8446   __ Jr(TMP);
   8447   __ NopIfNoReordering();
   8448 }
   8449 
   8450 void InstructionCodeGeneratorMIPS::VisitPackedSwitch(HPackedSwitch* switch_instr) {
   8451   int32_t lower_bound = switch_instr->GetStartValue();
   8452   uint32_t num_entries = switch_instr->GetNumEntries();
   8453   LocationSummary* locations = switch_instr->GetLocations();
   8454   Register value_reg = locations->InAt(0).AsRegister<Register>();
   8455   HBasicBlock* switch_block = switch_instr->GetBlock();
   8456   HBasicBlock* default_block = switch_instr->GetDefaultBlock();
   8457 
   8458   if (codegen_->GetInstructionSetFeatures().IsR6() &&
   8459       num_entries > kPackedSwitchJumpTableThreshold) {
   8460     // R6 uses PC-relative addressing to access the jump table.
   8461     // R2, OTOH, requires an HMipsComputeBaseMethodAddress input to access
   8462     // the jump table and it is implemented by changing HPackedSwitch to
   8463     // HMipsPackedSwitch, which bears HMipsComputeBaseMethodAddress.
   8464     // See VisitMipsPackedSwitch() for the table-based implementation on R2.
   8465     GenTableBasedPackedSwitch(value_reg,
   8466                               ZERO,
   8467                               lower_bound,
   8468                               num_entries,
   8469                               switch_block,
   8470                               default_block);
   8471   } else {
   8472     GenPackedSwitchWithCompares(value_reg,
   8473                                 lower_bound,
   8474                                 num_entries,
   8475                                 switch_block,
   8476                                 default_block);
   8477   }
   8478 }
   8479 
   8480 void LocationsBuilderMIPS::VisitMipsPackedSwitch(HMipsPackedSwitch* switch_instr) {
   8481   LocationSummary* locations =
   8482       new (GetGraph()->GetArena()) LocationSummary(switch_instr, LocationSummary::kNoCall);
   8483   locations->SetInAt(0, Location::RequiresRegister());
   8484   // Constant area pointer (HMipsComputeBaseMethodAddress).
   8485   locations->SetInAt(1, Location::RequiresRegister());
   8486 }
   8487 
   8488 void InstructionCodeGeneratorMIPS::VisitMipsPackedSwitch(HMipsPackedSwitch* switch_instr) {
   8489   int32_t lower_bound = switch_instr->GetStartValue();
   8490   uint32_t num_entries = switch_instr->GetNumEntries();
   8491   LocationSummary* locations = switch_instr->GetLocations();
   8492   Register value_reg = locations->InAt(0).AsRegister<Register>();
   8493   Register constant_area = locations->InAt(1).AsRegister<Register>();
   8494   HBasicBlock* switch_block = switch_instr->GetBlock();
   8495   HBasicBlock* default_block = switch_instr->GetDefaultBlock();
   8496 
   8497   // This is an R2-only path. HPackedSwitch has been changed to
   8498   // HMipsPackedSwitch, which bears HMipsComputeBaseMethodAddress
   8499   // required to address the jump table relative to PC.
   8500   GenTableBasedPackedSwitch(value_reg,
   8501                             constant_area,
   8502                             lower_bound,
   8503                             num_entries,
   8504                             switch_block,
   8505                             default_block);
   8506 }
   8507 
   8508 void LocationsBuilderMIPS::VisitMipsComputeBaseMethodAddress(
   8509     HMipsComputeBaseMethodAddress* insn) {
   8510   LocationSummary* locations =
   8511       new (GetGraph()->GetArena()) LocationSummary(insn, LocationSummary::kNoCall);
   8512   locations->SetOut(Location::RequiresRegister());
   8513 }
   8514 
   8515 void InstructionCodeGeneratorMIPS::VisitMipsComputeBaseMethodAddress(
   8516     HMipsComputeBaseMethodAddress* insn) {
   8517   LocationSummary* locations = insn->GetLocations();
   8518   Register reg = locations->Out().AsRegister<Register>();
   8519 
   8520   CHECK(!codegen_->GetInstructionSetFeatures().IsR6());
   8521 
   8522   // Generate a dummy PC-relative call to obtain PC.
   8523   __ Nal();
   8524   // Grab the return address off RA.
   8525   __ Move(reg, RA);
   8526   // TODO: Can we share this code with that of VisitMipsDexCacheArraysBase()?
   8527 
   8528   // Remember this offset (the obtained PC value) for later use with constant area.
   8529   __ BindPcRelBaseLabel();
   8530 }
   8531 
   8532 void LocationsBuilderMIPS::VisitMipsDexCacheArraysBase(HMipsDexCacheArraysBase* base) {
   8533   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(base);
   8534   locations->SetOut(Location::RequiresRegister());
   8535 }
   8536 
   8537 void InstructionCodeGeneratorMIPS::VisitMipsDexCacheArraysBase(HMipsDexCacheArraysBase* base) {
   8538   Register reg = base->GetLocations()->Out().AsRegister<Register>();
   8539   CodeGeneratorMIPS::PcRelativePatchInfo* info =
   8540       codegen_->NewPcRelativeDexCacheArrayPatch(base->GetDexFile(), base->GetElementOffset());
   8541   CHECK(!codegen_->GetInstructionSetFeatures().IsR6());
   8542   bool reordering = __ SetReorder(false);
   8543   // TODO: Reuse MipsComputeBaseMethodAddress on R2 instead of passing ZERO to force emitting NAL.
   8544   codegen_->EmitPcRelativeAddressPlaceholderHigh(info, reg, ZERO);
   8545   __ Addiu(reg, reg, /* placeholder */ 0x5678);
   8546   __ SetReorder(reordering);
   8547 }
   8548 
   8549 void LocationsBuilderMIPS::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
   8550   // The trampoline uses the same calling convention as dex calling conventions,
   8551   // except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain
   8552   // the method_idx.
   8553   HandleInvoke(invoke);
   8554 }
   8555 
   8556 void InstructionCodeGeneratorMIPS::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
   8557   codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke);
   8558 }
   8559 
   8560 void LocationsBuilderMIPS::VisitClassTableGet(HClassTableGet* instruction) {
   8561   LocationSummary* locations =
   8562       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
   8563   locations->SetInAt(0, Location::RequiresRegister());
   8564   locations->SetOut(Location::RequiresRegister());
   8565 }
   8566 
   8567 void InstructionCodeGeneratorMIPS::VisitClassTableGet(HClassTableGet* instruction) {
   8568   LocationSummary* locations = instruction->GetLocations();
   8569   if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) {
   8570     uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
   8571         instruction->GetIndex(), kMipsPointerSize).SizeValue();
   8572     __ LoadFromOffset(kLoadWord,
   8573                       locations->Out().AsRegister<Register>(),
   8574                       locations->InAt(0).AsRegister<Register>(),
   8575                       method_offset);
   8576   } else {
   8577     uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
   8578         instruction->GetIndex(), kMipsPointerSize));
   8579     __ LoadFromOffset(kLoadWord,
   8580                       locations->Out().AsRegister<Register>(),
   8581                       locations->InAt(0).AsRegister<Register>(),
   8582                       mirror::Class::ImtPtrOffset(kMipsPointerSize).Uint32Value());
   8583     __ LoadFromOffset(kLoadWord,
   8584                       locations->Out().AsRegister<Register>(),
   8585                       locations->Out().AsRegister<Register>(),
   8586                       method_offset);
   8587   }
   8588 }
   8589 
   8590 #undef __
   8591 #undef QUICK_ENTRY_POINT
   8592 
   8593 }  // namespace mips
   8594 }  // namespace art
   8595