Home | History | Annotate | Download | only in Utils
      1 //===- MemorySSA.h - Build Memory SSA ---------------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // \file
     11 // \brief This file exposes an interface to building/using memory SSA to
     12 // walk memory instructions using a use/def graph.
     13 //
     14 // Memory SSA class builds an SSA form that links together memory access
     15 // instructions such as loads, stores, atomics, and calls. Additionally, it does
     16 // a trivial form of "heap versioning" Every time the memory state changes in
     17 // the program, we generate a new heap version. It generates MemoryDef/Uses/Phis
     18 // that are overlayed on top of the existing instructions.
     19 //
     20 // As a trivial example,
     21 // define i32 @main() #0 {
     22 // entry:
     23 //   %call = call noalias i8* @_Znwm(i64 4) #2
     24 //   %0 = bitcast i8* %call to i32*
     25 //   %call1 = call noalias i8* @_Znwm(i64 4) #2
     26 //   %1 = bitcast i8* %call1 to i32*
     27 //   store i32 5, i32* %0, align 4
     28 //   store i32 7, i32* %1, align 4
     29 //   %2 = load i32* %0, align 4
     30 //   %3 = load i32* %1, align 4
     31 //   %add = add nsw i32 %2, %3
     32 //   ret i32 %add
     33 // }
     34 //
     35 // Will become
     36 // define i32 @main() #0 {
     37 // entry:
     38 //   ; 1 = MemoryDef(0)
     39 //   %call = call noalias i8* @_Znwm(i64 4) #3
     40 //   %2 = bitcast i8* %call to i32*
     41 //   ; 2 = MemoryDef(1)
     42 //   %call1 = call noalias i8* @_Znwm(i64 4) #3
     43 //   %4 = bitcast i8* %call1 to i32*
     44 //   ; 3 = MemoryDef(2)
     45 //   store i32 5, i32* %2, align 4
     46 //   ; 4 = MemoryDef(3)
     47 //   store i32 7, i32* %4, align 4
     48 //   ; MemoryUse(3)
     49 //   %7 = load i32* %2, align 4
     50 //   ; MemoryUse(4)
     51 //   %8 = load i32* %4, align 4
     52 //   %add = add nsw i32 %7, %8
     53 //   ret i32 %add
     54 // }
     55 //
     56 // Given this form, all the stores that could ever effect the load at %8 can be
     57 // gotten by using the MemoryUse associated with it, and walking from use to def
     58 // until you hit the top of the function.
     59 //
     60 // Each def also has a list of users associated with it, so you can walk from
     61 // both def to users, and users to defs. Note that we disambiguate MemoryUses,
     62 // but not the RHS of MemoryDefs. You can see this above at %7, which would
     63 // otherwise be a MemoryUse(4). Being disambiguated means that for a given
     64 // store, all the MemoryUses on its use lists are may-aliases of that store (but
     65 // the MemoryDefs on its use list may not be).
     66 //
     67 // MemoryDefs are not disambiguated because it would require multiple reaching
     68 // definitions, which would require multiple phis, and multiple memoryaccesses
     69 // per instruction.
     70 //===----------------------------------------------------------------------===//
     71 
     72 #ifndef LLVM_TRANSFORMS_UTILS_MEMORYSSA_H
     73 #define LLVM_TRANSFORMS_UTILS_MEMORYSSA_H
     74 
     75 #include "llvm/ADT/DenseMap.h"
     76 #include "llvm/ADT/GraphTraits.h"
     77 #include "llvm/ADT/SmallPtrSet.h"
     78 #include "llvm/ADT/SmallVector.h"
     79 #include "llvm/ADT/ilist.h"
     80 #include "llvm/ADT/ilist_node.h"
     81 #include "llvm/ADT/iterator.h"
     82 #include "llvm/Analysis/AliasAnalysis.h"
     83 #include "llvm/Analysis/MemoryLocation.h"
     84 #include "llvm/Analysis/PHITransAddr.h"
     85 #include "llvm/IR/BasicBlock.h"
     86 #include "llvm/IR/Dominators.h"
     87 #include "llvm/IR/Module.h"
     88 #include "llvm/IR/OperandTraits.h"
     89 #include "llvm/IR/Type.h"
     90 #include "llvm/IR/Use.h"
     91 #include "llvm/IR/User.h"
     92 #include "llvm/IR/Value.h"
     93 #include "llvm/Pass.h"
     94 #include "llvm/PassAnalysisSupport.h"
     95 #include "llvm/Support/Casting.h"
     96 #include "llvm/Support/Compiler.h"
     97 #include "llvm/Support/ErrorHandling.h"
     98 #include <algorithm>
     99 #include <cassert>
    100 #include <cstddef>
    101 #include <iterator>
    102 #include <memory>
    103 #include <utility>
    104 
    105 namespace llvm {
    106 
    107 class DominatorTree;
    108 class Function;
    109 class Instruction;
    110 class MemoryAccess;
    111 class LLVMContext;
    112 class raw_ostream;
    113 
    114 template <class T> class memoryaccess_def_iterator_base;
    115 using memoryaccess_def_iterator = memoryaccess_def_iterator_base<MemoryAccess>;
    116 using const_memoryaccess_def_iterator =
    117     memoryaccess_def_iterator_base<const MemoryAccess>;
    118 
    119 // \brief The base for all memory accesses. All memory accesses in a block are
    120 // linked together using an intrusive list.
    121 class MemoryAccess : public User, public ilist_node<MemoryAccess> {
    122   void *operator new(size_t, unsigned) = delete;
    123   void *operator new(size_t) = delete;
    124 
    125 public:
    126   // Methods for support type inquiry through isa, cast, and
    127   // dyn_cast
    128   static inline bool classof(const MemoryAccess *) { return true; }
    129   static inline bool classof(const Value *V) {
    130     unsigned ID = V->getValueID();
    131     return ID == MemoryUseVal || ID == MemoryPhiVal || ID == MemoryDefVal;
    132   }
    133 
    134   ~MemoryAccess() override;
    135 
    136   BasicBlock *getBlock() const { return Block; }
    137 
    138   virtual void print(raw_ostream &OS) const = 0;
    139   virtual void dump() const;
    140 
    141   /// \brief The user iterators for a memory access
    142   typedef user_iterator iterator;
    143   typedef const_user_iterator const_iterator;
    144 
    145   /// \brief This iterator walks over all of the defs in a given
    146   /// MemoryAccess. For MemoryPhi nodes, this walks arguments. For
    147   /// MemoryUse/MemoryDef, this walks the defining access.
    148   memoryaccess_def_iterator defs_begin();
    149   const_memoryaccess_def_iterator defs_begin() const;
    150   memoryaccess_def_iterator defs_end();
    151   const_memoryaccess_def_iterator defs_end() const;
    152 
    153 protected:
    154   friend class MemorySSA;
    155   friend class MemoryUseOrDef;
    156   friend class MemoryUse;
    157   friend class MemoryDef;
    158   friend class MemoryPhi;
    159 
    160   /// \brief Used internally to give IDs to MemoryAccesses for printing
    161   virtual unsigned getID() const = 0;
    162 
    163   MemoryAccess(LLVMContext &C, unsigned Vty, BasicBlock *BB,
    164                unsigned NumOperands)
    165       : User(Type::getVoidTy(C), Vty, nullptr, NumOperands), Block(BB) {}
    166 
    167 private:
    168   MemoryAccess(const MemoryAccess &);
    169   void operator=(const MemoryAccess &);
    170   BasicBlock *Block;
    171 };
    172 
    173 template <>
    174 struct ilist_traits<MemoryAccess> : public ilist_default_traits<MemoryAccess> {
    175   /// See details of the instruction class for why this trick works
    176   // FIXME: This downcast is UB. See llvm.org/PR26753.
    177   LLVM_NO_SANITIZE("object-size")
    178   MemoryAccess *createSentinel() const {
    179     return static_cast<MemoryAccess *>(&Sentinel);
    180   }
    181 
    182   static void destroySentinel(MemoryAccess *) {}
    183 
    184   MemoryAccess *provideInitialHead() const { return createSentinel(); }
    185   MemoryAccess *ensureHead(MemoryAccess *) const { return createSentinel(); }
    186   static void noteHead(MemoryAccess *, MemoryAccess *) {}
    187 
    188 private:
    189   mutable ilist_half_node<MemoryAccess> Sentinel;
    190 };
    191 
    192 inline raw_ostream &operator<<(raw_ostream &OS, const MemoryAccess &MA) {
    193   MA.print(OS);
    194   return OS;
    195 }
    196 
    197 /// \brief Class that has the common methods + fields of memory uses/defs. It's
    198 /// a little awkward to have, but there are many cases where we want either a
    199 /// use or def, and there are many cases where uses are needed (defs aren't
    200 /// acceptable), and vice-versa.
    201 ///
    202 /// This class should never be instantiated directly; make a MemoryUse or
    203 /// MemoryDef instead.
    204 class MemoryUseOrDef : public MemoryAccess {
    205   void *operator new(size_t, unsigned) = delete;
    206   void *operator new(size_t) = delete;
    207 
    208 public:
    209   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
    210 
    211   /// \brief Get the instruction that this MemoryUse represents.
    212   Instruction *getMemoryInst() const { return MemoryInst; }
    213 
    214   /// \brief Get the access that produces the memory state used by this Use.
    215   MemoryAccess *getDefiningAccess() const { return getOperand(0); }
    216 
    217   static inline bool classof(const MemoryUseOrDef *) { return true; }
    218   static inline bool classof(const Value *MA) {
    219     return MA->getValueID() == MemoryUseVal || MA->getValueID() == MemoryDefVal;
    220   }
    221 
    222 protected:
    223   friend class MemorySSA;
    224 
    225   MemoryUseOrDef(LLVMContext &C, MemoryAccess *DMA, unsigned Vty,
    226                  Instruction *MI, BasicBlock *BB)
    227       : MemoryAccess(C, Vty, BB, 1), MemoryInst(MI) {
    228     setDefiningAccess(DMA);
    229   }
    230 
    231   void setDefiningAccess(MemoryAccess *DMA) { setOperand(0, DMA); }
    232 
    233 private:
    234   Instruction *MemoryInst;
    235 };
    236 
    237 template <>
    238 struct OperandTraits<MemoryUseOrDef>
    239     : public FixedNumOperandTraits<MemoryUseOrDef, 1> {};
    240 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryUseOrDef, MemoryAccess)
    241 
    242 /// \brief Represents read-only accesses to memory
    243 ///
    244 /// In particular, the set of Instructions that will be represented by
    245 /// MemoryUse's is exactly the set of Instructions for which
    246 /// AliasAnalysis::getModRefInfo returns "Ref".
    247 class MemoryUse final : public MemoryUseOrDef {
    248   void *operator new(size_t, unsigned) = delete;
    249 
    250 public:
    251   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
    252 
    253   // allocate space for exactly one operand
    254   void *operator new(size_t s) { return User::operator new(s, 1); }
    255 
    256   MemoryUse(LLVMContext &C, MemoryAccess *DMA, Instruction *MI, BasicBlock *BB)
    257       : MemoryUseOrDef(C, DMA, MemoryUseVal, MI, BB) {}
    258 
    259   static inline bool classof(const MemoryUse *) { return true; }
    260   static inline bool classof(const Value *MA) {
    261     return MA->getValueID() == MemoryUseVal;
    262   }
    263 
    264   void print(raw_ostream &OS) const override;
    265 
    266 protected:
    267   friend class MemorySSA;
    268 
    269   unsigned getID() const override {
    270     llvm_unreachable("MemoryUses do not have IDs");
    271   }
    272 };
    273 
    274 template <>
    275 struct OperandTraits<MemoryUse> : public FixedNumOperandTraits<MemoryUse, 1> {};
    276 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryUse, MemoryAccess)
    277 
    278 /// \brief Represents a read-write access to memory, whether it is a must-alias,
    279 /// or a may-alias.
    280 ///
    281 /// In particular, the set of Instructions that will be represented by
    282 /// MemoryDef's is exactly the set of Instructions for which
    283 /// AliasAnalysis::getModRefInfo returns "Mod" or "ModRef".
    284 /// Note that, in order to provide def-def chains, all defs also have a use
    285 /// associated with them. This use points to the nearest reaching
    286 /// MemoryDef/MemoryPhi.
    287 class MemoryDef final : public MemoryUseOrDef {
    288   void *operator new(size_t, unsigned) = delete;
    289 
    290 public:
    291   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
    292 
    293   // allocate space for exactly one operand
    294   void *operator new(size_t s) { return User::operator new(s, 1); }
    295 
    296   MemoryDef(LLVMContext &C, MemoryAccess *DMA, Instruction *MI, BasicBlock *BB,
    297             unsigned Ver)
    298       : MemoryUseOrDef(C, DMA, MemoryDefVal, MI, BB), ID(Ver) {}
    299 
    300   static inline bool classof(const MemoryDef *) { return true; }
    301   static inline bool classof(const Value *MA) {
    302     return MA->getValueID() == MemoryDefVal;
    303   }
    304 
    305   void print(raw_ostream &OS) const override;
    306 
    307 protected:
    308   friend class MemorySSA;
    309 
    310   // For debugging only. This gets used to give memory accesses pretty numbers
    311   // when printing them out
    312   unsigned getID() const override { return ID; }
    313 
    314 private:
    315   const unsigned ID;
    316 };
    317 
    318 template <>
    319 struct OperandTraits<MemoryDef> : public FixedNumOperandTraits<MemoryDef, 1> {};
    320 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryDef, MemoryAccess)
    321 
    322 /// \brief Represents phi nodes for memory accesses.
    323 ///
    324 /// These have the same semantic as regular phi nodes, with the exception that
    325 /// only one phi will ever exist in a given basic block.
    326 /// Guaranteeing one phi per block means guaranteeing there is only ever one
    327 /// valid reaching MemoryDef/MemoryPHI along each path to the phi node.
    328 /// This is ensured by not allowing disambiguation of the RHS of a MemoryDef or
    329 /// a MemoryPhi's operands.
    330 /// That is, given
    331 /// if (a) {
    332 ///   store %a
    333 ///   store %b
    334 /// }
    335 /// it *must* be transformed into
    336 /// if (a) {
    337 ///    1 = MemoryDef(liveOnEntry)
    338 ///    store %a
    339 ///    2 = MemoryDef(1)
    340 ///    store %b
    341 /// }
    342 /// and *not*
    343 /// if (a) {
    344 ///    1 = MemoryDef(liveOnEntry)
    345 ///    store %a
    346 ///    2 = MemoryDef(liveOnEntry)
    347 ///    store %b
    348 /// }
    349 /// even if the two stores do not conflict. Otherwise, both 1 and 2 reach the
    350 /// end of the branch, and if there are not two phi nodes, one will be
    351 /// disconnected completely from the SSA graph below that point.
    352 /// Because MemoryUse's do not generate new definitions, they do not have this
    353 /// issue.
    354 class MemoryPhi final : public MemoryAccess {
    355   void *operator new(size_t, unsigned) = delete;
    356   // allocate space for exactly zero operands
    357   void *operator new(size_t s) { return User::operator new(s); }
    358 
    359 public:
    360   /// Provide fast operand accessors
    361   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
    362 
    363   MemoryPhi(LLVMContext &C, BasicBlock *BB, unsigned Ver, unsigned NumPreds = 0)
    364       : MemoryAccess(C, MemoryPhiVal, BB, 0), ID(Ver), ReservedSpace(NumPreds) {
    365     allocHungoffUses(ReservedSpace);
    366   }
    367 
    368   // Block iterator interface. This provides access to the list of incoming
    369   // basic blocks, which parallels the list of incoming values.
    370   typedef BasicBlock **block_iterator;
    371   typedef BasicBlock *const *const_block_iterator;
    372 
    373   block_iterator block_begin() {
    374     auto *Ref = reinterpret_cast<Use::UserRef *>(op_begin() + ReservedSpace);
    375     return reinterpret_cast<block_iterator>(Ref + 1);
    376   }
    377 
    378   const_block_iterator block_begin() const {
    379     const auto *Ref =
    380         reinterpret_cast<const Use::UserRef *>(op_begin() + ReservedSpace);
    381     return reinterpret_cast<const_block_iterator>(Ref + 1);
    382   }
    383 
    384   block_iterator block_end() { return block_begin() + getNumOperands(); }
    385 
    386   const_block_iterator block_end() const {
    387     return block_begin() + getNumOperands();
    388   }
    389 
    390   op_range incoming_values() { return operands(); }
    391 
    392   const_op_range incoming_values() const { return operands(); }
    393 
    394   /// \brief Return the number of incoming edges
    395   unsigned getNumIncomingValues() const { return getNumOperands(); }
    396 
    397   /// \brief Return incoming value number x
    398   MemoryAccess *getIncomingValue(unsigned I) const { return getOperand(I); }
    399   void setIncomingValue(unsigned I, MemoryAccess *V) {
    400     assert(V && "PHI node got a null value!");
    401     setOperand(I, V);
    402   }
    403   static unsigned getOperandNumForIncomingValue(unsigned I) { return I; }
    404   static unsigned getIncomingValueNumForOperand(unsigned I) { return I; }
    405 
    406   /// \brief Return incoming basic block number @p i.
    407   BasicBlock *getIncomingBlock(unsigned I) const { return block_begin()[I]; }
    408 
    409   /// \brief Return incoming basic block corresponding
    410   /// to an operand of the PHI.
    411   BasicBlock *getIncomingBlock(const Use &U) const {
    412     assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?");
    413     return getIncomingBlock(unsigned(&U - op_begin()));
    414   }
    415 
    416   /// \brief Return incoming basic block corresponding
    417   /// to value use iterator.
    418   BasicBlock *getIncomingBlock(MemoryAccess::const_user_iterator I) const {
    419     return getIncomingBlock(I.getUse());
    420   }
    421 
    422   void setIncomingBlock(unsigned I, BasicBlock *BB) {
    423     assert(BB && "PHI node got a null basic block!");
    424     block_begin()[I] = BB;
    425   }
    426 
    427   /// \brief Add an incoming value to the end of the PHI list
    428   void addIncoming(MemoryAccess *V, BasicBlock *BB) {
    429     if (getNumOperands() == ReservedSpace)
    430       growOperands(); // Get more space!
    431     // Initialize some new operands.
    432     setNumHungOffUseOperands(getNumOperands() + 1);
    433     setIncomingValue(getNumOperands() - 1, V);
    434     setIncomingBlock(getNumOperands() - 1, BB);
    435   }
    436 
    437   /// \brief Return the first index of the specified basic
    438   /// block in the value list for this PHI.  Returns -1 if no instance.
    439   int getBasicBlockIndex(const BasicBlock *BB) const {
    440     for (unsigned I = 0, E = getNumOperands(); I != E; ++I)
    441       if (block_begin()[I] == BB)
    442         return I;
    443     return -1;
    444   }
    445 
    446   Value *getIncomingValueForBlock(const BasicBlock *BB) const {
    447     int Idx = getBasicBlockIndex(BB);
    448     assert(Idx >= 0 && "Invalid basic block argument!");
    449     return getIncomingValue(Idx);
    450   }
    451 
    452   static inline bool classof(const MemoryPhi *) { return true; }
    453   static inline bool classof(const Value *V) {
    454     return V->getValueID() == MemoryPhiVal;
    455   }
    456 
    457   void print(raw_ostream &OS) const override;
    458 
    459 protected:
    460   friend class MemorySSA;
    461   /// \brief this is more complicated than the generic
    462   /// User::allocHungoffUses, because we have to allocate Uses for the incoming
    463   /// values and pointers to the incoming blocks, all in one allocation.
    464   void allocHungoffUses(unsigned N) {
    465     User::allocHungoffUses(N, /* IsPhi */ true);
    466   }
    467 
    468   /// For debugging only. This gets used to give memory accesses pretty numbers
    469   /// when printing them out
    470   unsigned getID() const final { return ID; }
    471 
    472 private:
    473   // For debugging only
    474   const unsigned ID;
    475   unsigned ReservedSpace;
    476 
    477   /// \brief This grows the operand list in response to a push_back style of
    478   /// operation.  This grows the number of ops by 1.5 times.
    479   void growOperands() {
    480     unsigned E = getNumOperands();
    481     // 2 op PHI nodes are VERY common, so reserve at least enough for that.
    482     ReservedSpace = std::max(E + E / 2, 2u);
    483     growHungoffUses(ReservedSpace, /* IsPhi */ true);
    484   }
    485 };
    486 
    487 template <> struct OperandTraits<MemoryPhi> : public HungoffOperandTraits<2> {};
    488 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryPhi, MemoryAccess)
    489 
    490 class MemorySSAWalker;
    491 
    492 /// \brief Encapsulates MemorySSA, including all data associated with memory
    493 /// accesses.
    494 class MemorySSA {
    495 public:
    496   MemorySSA(Function &, AliasAnalysis *, DominatorTree *);
    497   MemorySSA(MemorySSA &&);
    498   ~MemorySSA();
    499 
    500   MemorySSAWalker *getWalker();
    501 
    502   /// \brief Given a memory Mod/Ref'ing instruction, get the MemorySSA
    503   /// access associated with it. If passed a basic block gets the memory phi
    504   /// node that exists for that block, if there is one. Otherwise, this will get
    505   /// a MemoryUseOrDef.
    506   MemoryAccess *getMemoryAccess(const Value *) const;
    507   MemoryPhi *getMemoryAccess(const BasicBlock *BB) const;
    508 
    509   void dump() const;
    510   void print(raw_ostream &) const;
    511 
    512   /// \brief Return true if \p MA represents the live on entry value
    513   ///
    514   /// Loads and stores from pointer arguments and other global values may be
    515   /// defined by memory operations that do not occur in the current function, so
    516   /// they may be live on entry to the function. MemorySSA represents such
    517   /// memory state by the live on entry definition, which is guaranteed to occur
    518   /// before any other memory access in the function.
    519   inline bool isLiveOnEntryDef(const MemoryAccess *MA) const {
    520     return MA == LiveOnEntryDef.get();
    521   }
    522 
    523   inline MemoryAccess *getLiveOnEntryDef() const {
    524     return LiveOnEntryDef.get();
    525   }
    526 
    527   using AccessList = iplist<MemoryAccess>;
    528 
    529   /// \brief Return the list of MemoryAccess's for a given basic block.
    530   ///
    531   /// This list is not modifiable by the user.
    532   const AccessList *getBlockAccesses(const BasicBlock *BB) const {
    533     auto It = PerBlockAccesses.find(BB);
    534     return It == PerBlockAccesses.end() ? nullptr : It->second.get();
    535   }
    536 
    537   /// \brief Create an empty MemoryPhi in MemorySSA
    538   MemoryPhi *createMemoryPhi(BasicBlock *BB);
    539 
    540   enum InsertionPlace { Beginning, End };
    541 
    542   /// \brief Create a MemoryAccess in MemorySSA at a specified point in a block,
    543   /// with a specified clobbering definition.
    544   ///
    545   /// Returns the new MemoryAccess.
    546   /// This should be called when a memory instruction is created that is being
    547   /// used to replace an existing memory instruction. It will *not* create PHI
    548   /// nodes, or verify the clobbering definition. The insertion place is used
    549   /// solely to determine where in the memoryssa access lists the instruction
    550   /// will be placed. The caller is expected to keep ordering the same as
    551   /// instructions.
    552   /// It will return the new MemoryAccess.
    553   MemoryAccess *createMemoryAccessInBB(Instruction *I, MemoryAccess *Definition,
    554                                        const BasicBlock *BB,
    555                                        InsertionPlace Point);
    556   /// \brief Create a MemoryAccess in MemorySSA before or after an existing
    557   /// MemoryAccess.
    558   ///
    559   /// Returns the new MemoryAccess.
    560   /// This should be called when a memory instruction is created that is being
    561   /// used to replace an existing memory instruction. It will *not* create PHI
    562   /// nodes, or verify the clobbering definition.  The clobbering definition
    563   /// must be non-null.
    564   MemoryAccess *createMemoryAccessBefore(Instruction *I,
    565                                          MemoryAccess *Definition,
    566                                          MemoryAccess *InsertPt);
    567   MemoryAccess *createMemoryAccessAfter(Instruction *I,
    568                                         MemoryAccess *Definition,
    569                                         MemoryAccess *InsertPt);
    570 
    571   /// \brief Remove a MemoryAccess from MemorySSA, including updating all
    572   /// definitions and uses.
    573   /// This should be called when a memory instruction that has a MemoryAccess
    574   /// associated with it is erased from the program.  For example, if a store or
    575   /// load is simply erased (not replaced), removeMemoryAccess should be called
    576   /// on the MemoryAccess for that store/load.
    577   void removeMemoryAccess(MemoryAccess *);
    578 
    579   /// \brief Given two memory accesses in the same basic block, determine
    580   /// whether MemoryAccess \p A dominates MemoryAccess \p B.
    581   bool locallyDominates(const MemoryAccess *A, const MemoryAccess *B) const;
    582 
    583   /// \brief Verify that MemorySSA is self consistent (IE definitions dominate
    584   /// all uses, uses appear in the right places).  This is used by unit tests.
    585   void verifyMemorySSA() const;
    586 
    587 protected:
    588   // Used by Memory SSA annotater, dumpers, and wrapper pass
    589   friend class MemorySSAAnnotatedWriter;
    590   friend class MemorySSAPrinterLegacyPass;
    591   void verifyDefUses(Function &F) const;
    592   void verifyDomination(Function &F) const;
    593   void verifyOrdering(Function &F) const;
    594 
    595 private:
    596   class CachingWalker;
    597   void buildMemorySSA();
    598   void verifyUseInDefs(MemoryAccess *, MemoryAccess *) const;
    599   using AccessMap = DenseMap<const BasicBlock *, std::unique_ptr<AccessList>>;
    600 
    601   void
    602   determineInsertionPoint(const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks);
    603   void computeDomLevels(DenseMap<DomTreeNode *, unsigned> &DomLevels);
    604   void markUnreachableAsLiveOnEntry(BasicBlock *BB);
    605   bool dominatesUse(const MemoryAccess *, const MemoryAccess *) const;
    606   MemoryUseOrDef *createNewAccess(Instruction *);
    607   MemoryUseOrDef *createDefinedAccess(Instruction *, MemoryAccess *);
    608   MemoryAccess *findDominatingDef(BasicBlock *, enum InsertionPlace);
    609   void removeFromLookups(MemoryAccess *);
    610 
    611   MemoryAccess *renameBlock(BasicBlock *, MemoryAccess *);
    612   void renamePass(DomTreeNode *, MemoryAccess *IncomingVal,
    613                   SmallPtrSet<BasicBlock *, 16> &Visited);
    614   AccessList *getOrCreateAccessList(const BasicBlock *);
    615   AliasAnalysis *AA;
    616   DominatorTree *DT;
    617   Function &F;
    618 
    619   // Memory SSA mappings
    620   DenseMap<const Value *, MemoryAccess *> ValueToMemoryAccess;
    621   AccessMap PerBlockAccesses;
    622   std::unique_ptr<MemoryAccess> LiveOnEntryDef;
    623 
    624   // Memory SSA building info
    625   std::unique_ptr<CachingWalker> Walker;
    626   unsigned NextID;
    627 };
    628 
    629 // This pass does eager building and then printing of MemorySSA. It is used by
    630 // the tests to be able to build, dump, and verify Memory SSA.
    631 class MemorySSAPrinterLegacyPass : public FunctionPass {
    632 public:
    633   MemorySSAPrinterLegacyPass();
    634 
    635   static char ID;
    636   bool runOnFunction(Function &) override;
    637   void getAnalysisUsage(AnalysisUsage &AU) const override;
    638 };
    639 
    640 /// An analysis that produces \c MemorySSA for a function.
    641 ///
    642 class MemorySSAAnalysis : public AnalysisInfoMixin<MemorySSAAnalysis> {
    643   friend AnalysisInfoMixin<MemorySSAAnalysis>;
    644   static char PassID;
    645 
    646 public:
    647   typedef MemorySSA Result;
    648 
    649   MemorySSA run(Function &F, AnalysisManager<Function> &AM);
    650 };
    651 
    652 /// \brief Printer pass for \c MemorySSA.
    653 class MemorySSAPrinterPass : public PassInfoMixin<MemorySSAPrinterPass> {
    654   raw_ostream &OS;
    655 
    656 public:
    657   explicit MemorySSAPrinterPass(raw_ostream &OS) : OS(OS) {}
    658   PreservedAnalyses run(Function &F, AnalysisManager<Function> &AM);
    659 };
    660 
    661 /// \brief Verifier pass for \c MemorySSA.
    662 struct MemorySSAVerifierPass : PassInfoMixin<MemorySSAVerifierPass> {
    663   PreservedAnalyses run(Function &F, AnalysisManager<Function> &AM);
    664 };
    665 
    666 /// \brief Legacy analysis pass which computes \c MemorySSA.
    667 class MemorySSAWrapperPass : public FunctionPass {
    668 public:
    669   MemorySSAWrapperPass();
    670 
    671   static char ID;
    672   bool runOnFunction(Function &) override;
    673   void releaseMemory() override;
    674   MemorySSA &getMSSA() { return *MSSA; }
    675   const MemorySSA &getMSSA() const { return *MSSA; }
    676 
    677   void getAnalysisUsage(AnalysisUsage &AU) const override;
    678 
    679   void verifyAnalysis() const override;
    680   void print(raw_ostream &OS, const Module *M = nullptr) const override;
    681 
    682 private:
    683   std::unique_ptr<MemorySSA> MSSA;
    684 };
    685 
    686 /// \brief This is the generic walker interface for walkers of MemorySSA.
    687 /// Walkers are used to be able to further disambiguate the def-use chains
    688 /// MemorySSA gives you, or otherwise produce better info than MemorySSA gives
    689 /// you.
    690 /// In particular, while the def-use chains provide basic information, and are
    691 /// guaranteed to give, for example, the nearest may-aliasing MemoryDef for a
    692 /// MemoryUse as AliasAnalysis considers it, a user mant want better or other
    693 /// information. In particular, they may want to use SCEV info to further
    694 /// disambiguate memory accesses, or they may want the nearest dominating
    695 /// may-aliasing MemoryDef for a call or a store. This API enables a
    696 /// standardized interface to getting and using that info.
    697 class MemorySSAWalker {
    698 public:
    699   MemorySSAWalker(MemorySSA *);
    700   virtual ~MemorySSAWalker() {}
    701 
    702   using MemoryAccessSet = SmallVector<MemoryAccess *, 8>;
    703 
    704   /// \brief Given a memory Mod/Ref/ModRef'ing instruction, calling this
    705   /// will give you the nearest dominating MemoryAccess that Mod's the location
    706   /// the instruction accesses (by skipping any def which AA can prove does not
    707   /// alias the location(s) accessed by the instruction given).
    708   ///
    709   /// Note that this will return a single access, and it must dominate the
    710   /// Instruction, so if an operand of a MemoryPhi node Mod's the instruction,
    711   /// this will return the MemoryPhi, not the operand. This means that
    712   /// given:
    713   /// if (a) {
    714   ///   1 = MemoryDef(liveOnEntry)
    715   ///   store %a
    716   /// } else {
    717   ///   2 = MemoryDef(liveOnEntry)
    718   ///    store %b
    719   /// }
    720   /// 3 = MemoryPhi(2, 1)
    721   /// MemoryUse(3)
    722   /// load %a
    723   ///
    724   /// calling this API on load(%a) will return the MemoryPhi, not the MemoryDef
    725   /// in the if (a) branch.
    726   virtual MemoryAccess *getClobberingMemoryAccess(const Instruction *) = 0;
    727 
    728   /// \brief Given a potentially clobbering memory access and a new location,
    729   /// calling this will give you the nearest dominating clobbering MemoryAccess
    730   /// (by skipping non-aliasing def links).
    731   ///
    732   /// This version of the function is mainly used to disambiguate phi translated
    733   /// pointers, where the value of a pointer may have changed from the initial
    734   /// memory access. Note that this expects to be handed either a MemoryUse,
    735   /// or an already potentially clobbering access. Unlike the above API, if
    736   /// given a MemoryDef that clobbers the pointer as the starting access, it
    737   /// will return that MemoryDef, whereas the above would return the clobber
    738   /// starting from the use side of  the memory def.
    739   virtual MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
    740                                                   MemoryLocation &) = 0;
    741 
    742   /// \brief Given a memory access, invalidate anything this walker knows about
    743   /// that access.
    744   /// This API is used by walkers that store information to perform basic cache
    745   /// invalidation.  This will be called by MemorySSA at appropriate times for
    746   /// the walker it uses or returns.
    747   virtual void invalidateInfo(MemoryAccess *) {}
    748 
    749 protected:
    750   friend class MemorySSA; // For updating MSSA pointer in MemorySSA move
    751                           // constructor.
    752   MemorySSA *MSSA;
    753 };
    754 
    755 /// \brief A MemorySSAWalker that does no alias queries, or anything else. It
    756 /// simply returns the links as they were constructed by the builder.
    757 class DoNothingMemorySSAWalker final : public MemorySSAWalker {
    758 public:
    759   MemoryAccess *getClobberingMemoryAccess(const Instruction *) override;
    760   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
    761                                           MemoryLocation &) override;
    762 };
    763 
    764 using MemoryAccessPair = std::pair<MemoryAccess *, MemoryLocation>;
    765 using ConstMemoryAccessPair = std::pair<const MemoryAccess *, MemoryLocation>;
    766 
    767 /// \brief Iterator base class used to implement const and non-const iterators
    768 /// over the defining accesses of a MemoryAccess.
    769 template <class T>
    770 class memoryaccess_def_iterator_base
    771     : public iterator_facade_base<memoryaccess_def_iterator_base<T>,
    772                                   std::forward_iterator_tag, T, ptrdiff_t, T *,
    773                                   T *> {
    774   using BaseT = typename memoryaccess_def_iterator_base::iterator_facade_base;
    775 
    776 public:
    777   memoryaccess_def_iterator_base(T *Start) : Access(Start), ArgNo(0) {}
    778   memoryaccess_def_iterator_base() : Access(nullptr), ArgNo(0) {}
    779   bool operator==(const memoryaccess_def_iterator_base &Other) const {
    780     return Access == Other.Access && (!Access || ArgNo == Other.ArgNo);
    781   }
    782 
    783   // This is a bit ugly, but for MemoryPHI's, unlike PHINodes, you can't get the
    784   // block from the operand in constant time (In a PHINode, the uselist has
    785   // both, so it's just subtraction). We provide it as part of the
    786   // iterator to avoid callers having to linear walk to get the block.
    787   // If the operation becomes constant time on MemoryPHI's, this bit of
    788   // abstraction breaking should be removed.
    789   BasicBlock *getPhiArgBlock() const {
    790     MemoryPhi *MP = dyn_cast<MemoryPhi>(Access);
    791     assert(MP && "Tried to get phi arg block when not iterating over a PHI");
    792     return MP->getIncomingBlock(ArgNo);
    793   }
    794   typename BaseT::iterator::pointer operator*() const {
    795     assert(Access && "Tried to access past the end of our iterator");
    796     // Go to the first argument for phis, and the defining access for everything
    797     // else.
    798     if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Access))
    799       return MP->getIncomingValue(ArgNo);
    800     return cast<MemoryUseOrDef>(Access)->getDefiningAccess();
    801   }
    802   using BaseT::operator++;
    803   memoryaccess_def_iterator &operator++() {
    804     assert(Access && "Hit end of iterator");
    805     if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Access)) {
    806       if (++ArgNo >= MP->getNumIncomingValues()) {
    807         ArgNo = 0;
    808         Access = nullptr;
    809       }
    810     } else {
    811       Access = nullptr;
    812     }
    813     return *this;
    814   }
    815 
    816 private:
    817   T *Access;
    818   unsigned ArgNo;
    819 };
    820 
    821 inline memoryaccess_def_iterator MemoryAccess::defs_begin() {
    822   return memoryaccess_def_iterator(this);
    823 }
    824 
    825 inline const_memoryaccess_def_iterator MemoryAccess::defs_begin() const {
    826   return const_memoryaccess_def_iterator(this);
    827 }
    828 
    829 inline memoryaccess_def_iterator MemoryAccess::defs_end() {
    830   return memoryaccess_def_iterator();
    831 }
    832 
    833 inline const_memoryaccess_def_iterator MemoryAccess::defs_end() const {
    834   return const_memoryaccess_def_iterator();
    835 }
    836 
    837 /// \brief GraphTraits for a MemoryAccess, which walks defs in the normal case,
    838 /// and uses in the inverse case.
    839 template <> struct GraphTraits<MemoryAccess *> {
    840   using NodeType = MemoryAccess;
    841   using ChildIteratorType = memoryaccess_def_iterator;
    842 
    843   static NodeType *getEntryNode(NodeType *N) { return N; }
    844   static inline ChildIteratorType child_begin(NodeType *N) {
    845     return N->defs_begin();
    846   }
    847   static inline ChildIteratorType child_end(NodeType *N) {
    848     return N->defs_end();
    849   }
    850 };
    851 
    852 template <> struct GraphTraits<Inverse<MemoryAccess *>> {
    853   using NodeType = MemoryAccess;
    854   using ChildIteratorType = MemoryAccess::iterator;
    855 
    856   static NodeType *getEntryNode(NodeType *N) { return N; }
    857   static inline ChildIteratorType child_begin(NodeType *N) {
    858     return N->user_begin();
    859   }
    860   static inline ChildIteratorType child_end(NodeType *N) {
    861     return N->user_end();
    862   }
    863 };
    864 
    865 /// \brief Provide an iterator that walks defs, giving both the memory access,
    866 /// and the current pointer location, updating the pointer location as it
    867 /// changes due to phi node translation.
    868 ///
    869 /// This iterator, while somewhat specialized, is what most clients actually
    870 /// want when walking upwards through MemorySSA def chains. It takes a pair of
    871 /// <MemoryAccess,MemoryLocation>, and walks defs, properly translating the
    872 /// memory location through phi nodes for the user.
    873 class upward_defs_iterator
    874     : public iterator_facade_base<upward_defs_iterator,
    875                                   std::forward_iterator_tag,
    876                                   const MemoryAccessPair> {
    877   using BaseT = upward_defs_iterator::iterator_facade_base;
    878 
    879 public:
    880   upward_defs_iterator(const MemoryAccessPair &Info)
    881       : DefIterator(Info.first), Location(Info.second),
    882         OriginalAccess(Info.first) {
    883     CurrentPair.first = nullptr;
    884 
    885     WalkingPhi = Info.first && isa<MemoryPhi>(Info.first);
    886     fillInCurrentPair();
    887   }
    888 
    889   upward_defs_iterator()
    890       : DefIterator(), Location(), OriginalAccess(), WalkingPhi(false) {
    891     CurrentPair.first = nullptr;
    892   }
    893 
    894   bool operator==(const upward_defs_iterator &Other) const {
    895     return DefIterator == Other.DefIterator;
    896   }
    897 
    898   BaseT::iterator::reference operator*() const {
    899     assert(DefIterator != OriginalAccess->defs_end() &&
    900            "Tried to access past the end of our iterator");
    901     return CurrentPair;
    902   }
    903 
    904   using BaseT::operator++;
    905   upward_defs_iterator &operator++() {
    906     assert(DefIterator != OriginalAccess->defs_end() &&
    907            "Tried to access past the end of the iterator");
    908     ++DefIterator;
    909     if (DefIterator != OriginalAccess->defs_end())
    910       fillInCurrentPair();
    911     return *this;
    912   }
    913 
    914   BasicBlock *getPhiArgBlock() const { return DefIterator.getPhiArgBlock(); }
    915 
    916 private:
    917   void fillInCurrentPair() {
    918     CurrentPair.first = *DefIterator;
    919     if (WalkingPhi && Location.Ptr) {
    920       PHITransAddr Translator(
    921           const_cast<Value *>(Location.Ptr),
    922           OriginalAccess->getBlock()->getModule()->getDataLayout(), nullptr);
    923       if (!Translator.PHITranslateValue(OriginalAccess->getBlock(),
    924                                         DefIterator.getPhiArgBlock(), nullptr,
    925                                         false))
    926         if (Translator.getAddr() != Location.Ptr) {
    927           CurrentPair.second = Location.getWithNewPtr(Translator.getAddr());
    928           return;
    929         }
    930     }
    931     CurrentPair.second = Location;
    932   }
    933 
    934   MemoryAccessPair CurrentPair;
    935   memoryaccess_def_iterator DefIterator;
    936   MemoryLocation Location;
    937   MemoryAccess *OriginalAccess;
    938   bool WalkingPhi;
    939 };
    940 
    941 inline upward_defs_iterator upward_defs_begin(const MemoryAccessPair &Pair) {
    942   return upward_defs_iterator(Pair);
    943 }
    944 
    945 inline upward_defs_iterator upward_defs_end() { return upward_defs_iterator(); }
    946 
    947 } // end namespace llvm
    948 
    949 #endif // LLVM_TRANSFORMS_UTILS_MEMORYSSA_H
    950