Home | History | Annotate | Download | only in Linker
      1 //===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the LLVM module linker.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Linker.h"
     15 #include "llvm/Constants.h"
     16 #include "llvm/DerivedTypes.h"
     17 #include "llvm/Instructions.h"
     18 #include "llvm/Module.h"
     19 #include "llvm/ADT/SmallPtrSet.h"
     20 #include "llvm/Support/raw_ostream.h"
     21 #include "llvm/Support/Path.h"
     22 #include "llvm/Transforms/Utils/Cloning.h"
     23 #include "llvm/Transforms/Utils/ValueMapper.h"
     24 using namespace llvm;
     25 
     26 //===----------------------------------------------------------------------===//
     27 // TypeMap implementation.
     28 //===----------------------------------------------------------------------===//
     29 
     30 namespace {
     31 class TypeMapTy : public ValueMapTypeRemapper {
     32   /// MappedTypes - This is a mapping from a source type to a destination type
     33   /// to use.
     34   DenseMap<Type*, Type*> MappedTypes;
     35 
     36   /// SpeculativeTypes - When checking to see if two subgraphs are isomorphic,
     37   /// we speculatively add types to MappedTypes, but keep track of them here in
     38   /// case we need to roll back.
     39   SmallVector<Type*, 16> SpeculativeTypes;
     40 
     41   /// DefinitionsToResolve - This is a list of non-opaque structs in the source
     42   /// module that are mapped to an opaque struct in the destination module.
     43   SmallVector<StructType*, 16> DefinitionsToResolve;
     44 public:
     45 
     46   /// addTypeMapping - Indicate that the specified type in the destination
     47   /// module is conceptually equivalent to the specified type in the source
     48   /// module.
     49   void addTypeMapping(Type *DstTy, Type *SrcTy);
     50 
     51   /// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
     52   /// module from a type definition in the source module.
     53   void linkDefinedTypeBodies();
     54 
     55   /// get - Return the mapped type to use for the specified input type from the
     56   /// source module.
     57   Type *get(Type *SrcTy);
     58 
     59   FunctionType *get(FunctionType *T) {return cast<FunctionType>(get((Type*)T));}
     60 
     61 private:
     62   Type *getImpl(Type *T);
     63   /// remapType - Implement the ValueMapTypeRemapper interface.
     64   Type *remapType(Type *SrcTy) {
     65     return get(SrcTy);
     66   }
     67 
     68   bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
     69 };
     70 }
     71 
     72 void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
     73   Type *&Entry = MappedTypes[SrcTy];
     74   if (Entry) return;
     75 
     76   if (DstTy == SrcTy) {
     77     Entry = DstTy;
     78     return;
     79   }
     80 
     81   // Check to see if these types are recursively isomorphic and establish a
     82   // mapping between them if so.
     83   if (!areTypesIsomorphic(DstTy, SrcTy)) {
     84     // Oops, they aren't isomorphic.  Just discard this request by rolling out
     85     // any speculative mappings we've established.
     86     for (unsigned i = 0, e = SpeculativeTypes.size(); i != e; ++i)
     87       MappedTypes.erase(SpeculativeTypes[i]);
     88   }
     89   SpeculativeTypes.clear();
     90 }
     91 
     92 /// areTypesIsomorphic - Recursively walk this pair of types, returning true
     93 /// if they are isomorphic, false if they are not.
     94 bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
     95   // Two types with differing kinds are clearly not isomorphic.
     96   if (DstTy->getTypeID() != SrcTy->getTypeID()) return false;
     97 
     98   // If we have an entry in the MappedTypes table, then we have our answer.
     99   Type *&Entry = MappedTypes[SrcTy];
    100   if (Entry)
    101     return Entry == DstTy;
    102 
    103   // Two identical types are clearly isomorphic.  Remember this
    104   // non-speculatively.
    105   if (DstTy == SrcTy) {
    106     Entry = DstTy;
    107     return true;
    108   }
    109 
    110   // Okay, we have two types with identical kinds that we haven't seen before.
    111 
    112   // If this is an opaque struct type, special case it.
    113   if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
    114     // Mapping an opaque type to any struct, just keep the dest struct.
    115     if (SSTy->isOpaque()) {
    116       Entry = DstTy;
    117       SpeculativeTypes.push_back(SrcTy);
    118       return true;
    119     }
    120 
    121     // Mapping a non-opaque source type to an opaque dest.  Keep the dest, but
    122     // fill it in later.  This doesn't need to be speculative.
    123     if (cast<StructType>(DstTy)->isOpaque()) {
    124       Entry = DstTy;
    125       DefinitionsToResolve.push_back(SSTy);
    126       return true;
    127     }
    128   }
    129 
    130   // If the number of subtypes disagree between the two types, then we fail.
    131   if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
    132     return false;
    133 
    134   // Fail if any of the extra properties (e.g. array size) of the type disagree.
    135   if (isa<IntegerType>(DstTy))
    136     return false;  // bitwidth disagrees.
    137   if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
    138     if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
    139       return false;
    140   } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
    141     if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
    142       return false;
    143   } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
    144     StructType *SSTy = cast<StructType>(SrcTy);
    145     if (DSTy->isLiteral() != SSTy->isLiteral() ||
    146         DSTy->isPacked() != SSTy->isPacked())
    147       return false;
    148   } else if (ArrayType *DATy = dyn_cast<ArrayType>(DstTy)) {
    149     if (DATy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
    150       return false;
    151   } else if (VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
    152     if (DVTy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
    153       return false;
    154   }
    155 
    156   // Otherwise, we speculate that these two types will line up and recursively
    157   // check the subelements.
    158   Entry = DstTy;
    159   SpeculativeTypes.push_back(SrcTy);
    160 
    161   for (unsigned i = 0, e = SrcTy->getNumContainedTypes(); i != e; ++i)
    162     if (!areTypesIsomorphic(DstTy->getContainedType(i),
    163                             SrcTy->getContainedType(i)))
    164       return false;
    165 
    166   // If everything seems to have lined up, then everything is great.
    167   return true;
    168 }
    169 
    170 /// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
    171 /// module from a type definition in the source module.
    172 void TypeMapTy::linkDefinedTypeBodies() {
    173   SmallVector<Type*, 16> Elements;
    174   SmallString<16> TmpName;
    175 
    176   // Note that processing entries in this loop (calling 'get') can add new
    177   // entries to the DefinitionsToResolve vector.
    178   while (!DefinitionsToResolve.empty()) {
    179     StructType *SrcSTy = DefinitionsToResolve.pop_back_val();
    180     StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
    181 
    182     // TypeMap is a many-to-one mapping, if there were multiple types that
    183     // provide a body for DstSTy then previous iterations of this loop may have
    184     // already handled it.  Just ignore this case.
    185     if (!DstSTy->isOpaque()) continue;
    186     assert(!SrcSTy->isOpaque() && "Not resolving a definition?");
    187 
    188     // Map the body of the source type over to a new body for the dest type.
    189     Elements.resize(SrcSTy->getNumElements());
    190     for (unsigned i = 0, e = Elements.size(); i != e; ++i)
    191       Elements[i] = getImpl(SrcSTy->getElementType(i));
    192 
    193     DstSTy->setBody(Elements, SrcSTy->isPacked());
    194 
    195     // If DstSTy has no name or has a longer name than STy, then viciously steal
    196     // STy's name.
    197     if (!SrcSTy->hasName()) continue;
    198     StringRef SrcName = SrcSTy->getName();
    199 
    200     if (!DstSTy->hasName() || DstSTy->getName().size() > SrcName.size()) {
    201       TmpName.insert(TmpName.end(), SrcName.begin(), SrcName.end());
    202       SrcSTy->setName("");
    203       DstSTy->setName(TmpName.str());
    204       TmpName.clear();
    205     }
    206   }
    207 }
    208 
    209 
    210 /// get - Return the mapped type to use for the specified input type from the
    211 /// source module.
    212 Type *TypeMapTy::get(Type *Ty) {
    213   Type *Result = getImpl(Ty);
    214 
    215   // If this caused a reference to any struct type, resolve it before returning.
    216   if (!DefinitionsToResolve.empty())
    217     linkDefinedTypeBodies();
    218   return Result;
    219 }
    220 
    221 /// getImpl - This is the recursive version of get().
    222 Type *TypeMapTy::getImpl(Type *Ty) {
    223   // If we already have an entry for this type, return it.
    224   Type **Entry = &MappedTypes[Ty];
    225   if (*Entry) return *Entry;
    226 
    227   // If this is not a named struct type, then just map all of the elements and
    228   // then rebuild the type from inside out.
    229   if (!isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral()) {
    230     // If there are no element types to map, then the type is itself.  This is
    231     // true for the anonymous {} struct, things like 'float', integers, etc.
    232     if (Ty->getNumContainedTypes() == 0)
    233       return *Entry = Ty;
    234 
    235     // Remap all of the elements, keeping track of whether any of them change.
    236     bool AnyChange = false;
    237     SmallVector<Type*, 4> ElementTypes;
    238     ElementTypes.resize(Ty->getNumContainedTypes());
    239     for (unsigned i = 0, e = Ty->getNumContainedTypes(); i != e; ++i) {
    240       ElementTypes[i] = getImpl(Ty->getContainedType(i));
    241       AnyChange |= ElementTypes[i] != Ty->getContainedType(i);
    242     }
    243 
    244     // If we found our type while recursively processing stuff, just use it.
    245     Entry = &MappedTypes[Ty];
    246     if (*Entry) return *Entry;
    247 
    248     // If all of the element types mapped directly over, then the type is usable
    249     // as-is.
    250     if (!AnyChange)
    251       return *Entry = Ty;
    252 
    253     // Otherwise, rebuild a modified type.
    254     switch (Ty->getTypeID()) {
    255     default: assert(0 && "unknown derived type to remap");
    256     case Type::ArrayTyID:
    257       return *Entry = ArrayType::get(ElementTypes[0],
    258                                      cast<ArrayType>(Ty)->getNumElements());
    259     case Type::VectorTyID:
    260       return *Entry = VectorType::get(ElementTypes[0],
    261                                       cast<VectorType>(Ty)->getNumElements());
    262     case Type::PointerTyID:
    263       return *Entry = PointerType::get(ElementTypes[0],
    264                                       cast<PointerType>(Ty)->getAddressSpace());
    265     case Type::FunctionTyID:
    266       return *Entry = FunctionType::get(ElementTypes[0],
    267                                         makeArrayRef(ElementTypes).slice(1),
    268                                         cast<FunctionType>(Ty)->isVarArg());
    269     case Type::StructTyID:
    270       // Note that this is only reached for anonymous structs.
    271       return *Entry = StructType::get(Ty->getContext(), ElementTypes,
    272                                       cast<StructType>(Ty)->isPacked());
    273     }
    274   }
    275 
    276   // Otherwise, this is an unmapped named struct.  If the struct can be directly
    277   // mapped over, just use it as-is.  This happens in a case when the linked-in
    278   // module has something like:
    279   //   %T = type {%T*, i32}
    280   //   @GV = global %T* null
    281   // where T does not exist at all in the destination module.
    282   //
    283   // The other case we watch for is when the type is not in the destination
    284   // module, but that it has to be rebuilt because it refers to something that
    285   // is already mapped.  For example, if the destination module has:
    286   //  %A = type { i32 }
    287   // and the source module has something like
    288   //  %A' = type { i32 }
    289   //  %B = type { %A'* }
    290   //  @GV = global %B* null
    291   // then we want to create a new type: "%B = type { %A*}" and have it take the
    292   // pristine "%B" name from the source module.
    293   //
    294   // To determine which case this is, we have to recursively walk the type graph
    295   // speculating that we'll be able to reuse it unmodified.  Only if this is
    296   // safe would we map the entire thing over.  Because this is an optimization,
    297   // and is not required for the prettiness of the linked module, we just skip
    298   // it and always rebuild a type here.
    299   StructType *STy = cast<StructType>(Ty);
    300 
    301   // If the type is opaque, we can just use it directly.
    302   if (STy->isOpaque())
    303     return *Entry = STy;
    304 
    305   // Otherwise we create a new type and resolve its body later.  This will be
    306   // resolved by the top level of get().
    307   DefinitionsToResolve.push_back(STy);
    308   return *Entry = StructType::create(STy->getContext());
    309 }
    310 
    311 
    312 
    313 //===----------------------------------------------------------------------===//
    314 // ModuleLinker implementation.
    315 //===----------------------------------------------------------------------===//
    316 
    317 namespace {
    318   /// ModuleLinker - This is an implementation class for the LinkModules
    319   /// function, which is the entrypoint for this file.
    320   class ModuleLinker {
    321     Module *DstM, *SrcM;
    322 
    323     TypeMapTy TypeMap;
    324 
    325     /// ValueMap - Mapping of values from what they used to be in Src, to what
    326     /// they are now in DstM.  ValueToValueMapTy is a ValueMap, which involves
    327     /// some overhead due to the use of Value handles which the Linker doesn't
    328     /// actually need, but this allows us to reuse the ValueMapper code.
    329     ValueToValueMapTy ValueMap;
    330 
    331     struct AppendingVarInfo {
    332       GlobalVariable *NewGV;  // New aggregate global in dest module.
    333       Constant *DstInit;      // Old initializer from dest module.
    334       Constant *SrcInit;      // Old initializer from src module.
    335     };
    336 
    337     std::vector<AppendingVarInfo> AppendingVars;
    338 
    339     unsigned Mode; // Mode to treat source module.
    340 
    341     // Set of items not to link in from source.
    342     SmallPtrSet<const Value*, 16> DoNotLinkFromSource;
    343 
    344   public:
    345     std::string ErrorMsg;
    346 
    347     ModuleLinker(Module *dstM, Module *srcM, unsigned mode)
    348       : DstM(dstM), SrcM(srcM), Mode(mode) { }
    349 
    350     bool run();
    351 
    352   private:
    353     /// emitError - Helper method for setting a message and returning an error
    354     /// code.
    355     bool emitError(const Twine &Message) {
    356       ErrorMsg = Message.str();
    357       return true;
    358     }
    359 
    360     /// getLinkageResult - This analyzes the two global values and determines
    361     /// what the result will look like in the destination module.
    362     bool getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
    363                           GlobalValue::LinkageTypes &LT, bool &LinkFromSrc);
    364 
    365     /// getLinkedToGlobal - Given a global in the source module, return the
    366     /// global in the destination module that is being linked to, if any.
    367     GlobalValue *getLinkedToGlobal(GlobalValue *SrcGV) {
    368       // If the source has no name it can't link.  If it has local linkage,
    369       // there is no name match-up going on.
    370       if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
    371         return 0;
    372 
    373       // Otherwise see if we have a match in the destination module's symtab.
    374       GlobalValue *DGV = DstM->getNamedValue(SrcGV->getName());
    375       if (DGV == 0) return 0;
    376 
    377       // If we found a global with the same name in the dest module, but it has
    378       // internal linkage, we are really not doing any linkage here.
    379       if (DGV->hasLocalLinkage())
    380         return 0;
    381 
    382       // Otherwise, we do in fact link to the destination global.
    383       return DGV;
    384     }
    385 
    386     void computeTypeMapping();
    387 
    388     bool linkAppendingVarProto(GlobalVariable *DstGV, GlobalVariable *SrcGV);
    389     bool linkGlobalProto(GlobalVariable *SrcGV);
    390     bool linkFunctionProto(Function *SrcF);
    391     bool linkAliasProto(GlobalAlias *SrcA);
    392 
    393     void linkAppendingVarInit(const AppendingVarInfo &AVI);
    394     void linkGlobalInits();
    395     void linkFunctionBody(Function *Dst, Function *Src);
    396     void linkAliasBodies();
    397     void linkNamedMDNodes();
    398   };
    399 }
    400 
    401 
    402 
    403 /// forceRenaming - The LLVM SymbolTable class autorenames globals that conflict
    404 /// in the symbol table.  This is good for all clients except for us.  Go
    405 /// through the trouble to force this back.
    406 static void forceRenaming(GlobalValue *GV, StringRef Name) {
    407   // If the global doesn't force its name or if it already has the right name,
    408   // there is nothing for us to do.
    409   if (GV->hasLocalLinkage() || GV->getName() == Name)
    410     return;
    411 
    412   Module *M = GV->getParent();
    413 
    414   // If there is a conflict, rename the conflict.
    415   if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
    416     GV->takeName(ConflictGV);
    417     ConflictGV->setName(Name);    // This will cause ConflictGV to get renamed
    418     assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
    419   } else {
    420     GV->setName(Name);              // Force the name back
    421   }
    422 }
    423 
    424 /// CopyGVAttributes - copy additional attributes (those not needed to construct
    425 /// a GlobalValue) from the SrcGV to the DestGV.
    426 static void CopyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
    427   // Use the maximum alignment, rather than just copying the alignment of SrcGV.
    428   unsigned Alignment = std::max(DestGV->getAlignment(), SrcGV->getAlignment());
    429   DestGV->copyAttributesFrom(SrcGV);
    430   DestGV->setAlignment(Alignment);
    431 
    432   forceRenaming(DestGV, SrcGV->getName());
    433 }
    434 
    435 /// getLinkageResult - This analyzes the two global values and determines what
    436 /// the result will look like in the destination module.  In particular, it
    437 /// computes the resultant linkage type, computes whether the global in the
    438 /// source should be copied over to the destination (replacing the existing
    439 /// one), and computes whether this linkage is an error or not. It also performs
    440 /// visibility checks: we cannot link together two symbols with different
    441 /// visibilities.
    442 bool ModuleLinker::getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
    443                                     GlobalValue::LinkageTypes &LT,
    444                                     bool &LinkFromSrc) {
    445   assert(Dest && "Must have two globals being queried");
    446   assert(!Src->hasLocalLinkage() &&
    447          "If Src has internal linkage, Dest shouldn't be set!");
    448 
    449   bool SrcIsDeclaration = Src->isDeclaration();
    450   bool DestIsDeclaration = Dest->isDeclaration();
    451 
    452   if (SrcIsDeclaration) {
    453     // If Src is external or if both Src & Dest are external..  Just link the
    454     // external globals, we aren't adding anything.
    455     if (Src->hasDLLImportLinkage()) {
    456       // If one of GVs has DLLImport linkage, result should be dllimport'ed.
    457       if (DestIsDeclaration) {
    458         LinkFromSrc = true;
    459         LT = Src->getLinkage();
    460       }
    461     } else if (Dest->hasExternalWeakLinkage()) {
    462       // If the Dest is weak, use the source linkage.
    463       LinkFromSrc = true;
    464       LT = Src->getLinkage();
    465     } else {
    466       LinkFromSrc = false;
    467       LT = Dest->getLinkage();
    468     }
    469   } else if (DestIsDeclaration && !Dest->hasDLLImportLinkage()) {
    470     // If Dest is external but Src is not:
    471     LinkFromSrc = true;
    472     LT = Src->getLinkage();
    473   } else if (Src->isWeakForLinker()) {
    474     // At this point we know that Dest has LinkOnce, External*, Weak, Common,
    475     // or DLL* linkage.
    476     if (Dest->hasExternalWeakLinkage() ||
    477         Dest->hasAvailableExternallyLinkage() ||
    478         (Dest->hasLinkOnceLinkage() &&
    479          (Src->hasWeakLinkage() || Src->hasCommonLinkage()))) {
    480       LinkFromSrc = true;
    481       LT = Src->getLinkage();
    482     } else {
    483       LinkFromSrc = false;
    484       LT = Dest->getLinkage();
    485     }
    486   } else if (Dest->isWeakForLinker()) {
    487     // At this point we know that Src has External* or DLL* linkage.
    488     if (Src->hasExternalWeakLinkage()) {
    489       LinkFromSrc = false;
    490       LT = Dest->getLinkage();
    491     } else {
    492       LinkFromSrc = true;
    493       LT = GlobalValue::ExternalLinkage;
    494     }
    495   } else {
    496     assert((Dest->hasExternalLinkage()  || Dest->hasDLLImportLinkage() ||
    497             Dest->hasDLLExportLinkage() || Dest->hasExternalWeakLinkage()) &&
    498            (Src->hasExternalLinkage()   || Src->hasDLLImportLinkage() ||
    499             Src->hasDLLExportLinkage()  || Src->hasExternalWeakLinkage()) &&
    500            "Unexpected linkage type!");
    501     return emitError("Linking globals named '" + Src->getName() +
    502                  "': symbol multiply defined!");
    503   }
    504 
    505   // Check visibility
    506   if (Src->getVisibility() != Dest->getVisibility() &&
    507       !SrcIsDeclaration && !DestIsDeclaration &&
    508       !Src->hasAvailableExternallyLinkage() &&
    509       !Dest->hasAvailableExternallyLinkage())
    510     return emitError("Linking globals named '" + Src->getName() +
    511                    "': symbols have different visibilities!");
    512   return false;
    513 }
    514 
    515 /// computeTypeMapping - Loop over all of the linked values to compute type
    516 /// mappings.  For example, if we link "extern Foo *x" and "Foo *x = NULL", then
    517 /// we have two struct types 'Foo' but one got renamed when the module was
    518 /// loaded into the same LLVMContext.
    519 void ModuleLinker::computeTypeMapping() {
    520   // Incorporate globals.
    521   for (Module::global_iterator I = SrcM->global_begin(),
    522        E = SrcM->global_end(); I != E; ++I) {
    523     GlobalValue *DGV = getLinkedToGlobal(I);
    524     if (DGV == 0) continue;
    525 
    526     if (!DGV->hasAppendingLinkage() || !I->hasAppendingLinkage()) {
    527       TypeMap.addTypeMapping(DGV->getType(), I->getType());
    528       continue;
    529     }
    530 
    531     // Unify the element type of appending arrays.
    532     ArrayType *DAT = cast<ArrayType>(DGV->getType()->getElementType());
    533     ArrayType *SAT = cast<ArrayType>(I->getType()->getElementType());
    534     TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
    535   }
    536 
    537   // Incorporate functions.
    538   for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I) {
    539     if (GlobalValue *DGV = getLinkedToGlobal(I))
    540       TypeMap.addTypeMapping(DGV->getType(), I->getType());
    541   }
    542 
    543   // Don't bother incorporating aliases, they aren't generally typed well.
    544 
    545   // Now that we have discovered all of the type equivalences, get a body for
    546   // any 'opaque' types in the dest module that are now resolved.
    547   TypeMap.linkDefinedTypeBodies();
    548 }
    549 
    550 /// linkAppendingVarProto - If there were any appending global variables, link
    551 /// them together now.  Return true on error.
    552 bool ModuleLinker::linkAppendingVarProto(GlobalVariable *DstGV,
    553                                          GlobalVariable *SrcGV) {
    554 
    555   if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
    556     return emitError("Linking globals named '" + SrcGV->getName() +
    557            "': can only link appending global with another appending global!");
    558 
    559   ArrayType *DstTy = cast<ArrayType>(DstGV->getType()->getElementType());
    560   ArrayType *SrcTy =
    561     cast<ArrayType>(TypeMap.get(SrcGV->getType()->getElementType()));
    562   Type *EltTy = DstTy->getElementType();
    563 
    564   // Check to see that they two arrays agree on type.
    565   if (EltTy != SrcTy->getElementType())
    566     return emitError("Appending variables with different element types!");
    567   if (DstGV->isConstant() != SrcGV->isConstant())
    568     return emitError("Appending variables linked with different const'ness!");
    569 
    570   if (DstGV->getAlignment() != SrcGV->getAlignment())
    571     return emitError(
    572              "Appending variables with different alignment need to be linked!");
    573 
    574   if (DstGV->getVisibility() != SrcGV->getVisibility())
    575     return emitError(
    576             "Appending variables with different visibility need to be linked!");
    577 
    578   if (DstGV->getSection() != SrcGV->getSection())
    579     return emitError(
    580           "Appending variables with different section name need to be linked!");
    581 
    582   uint64_t NewSize = DstTy->getNumElements() + SrcTy->getNumElements();
    583   ArrayType *NewType = ArrayType::get(EltTy, NewSize);
    584 
    585   // Create the new global variable.
    586   GlobalVariable *NG =
    587     new GlobalVariable(*DstGV->getParent(), NewType, SrcGV->isConstant(),
    588                        DstGV->getLinkage(), /*init*/0, /*name*/"", DstGV,
    589                        DstGV->isThreadLocal(),
    590                        DstGV->getType()->getAddressSpace());
    591 
    592   // Propagate alignment, visibility and section info.
    593   CopyGVAttributes(NG, DstGV);
    594 
    595   AppendingVarInfo AVI;
    596   AVI.NewGV = NG;
    597   AVI.DstInit = DstGV->getInitializer();
    598   AVI.SrcInit = SrcGV->getInitializer();
    599   AppendingVars.push_back(AVI);
    600 
    601   // Replace any uses of the two global variables with uses of the new
    602   // global.
    603   ValueMap[SrcGV] = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
    604 
    605   DstGV->replaceAllUsesWith(ConstantExpr::getBitCast(NG, DstGV->getType()));
    606   DstGV->eraseFromParent();
    607 
    608   // Track the source variable so we don't try to link it.
    609   DoNotLinkFromSource.insert(SrcGV);
    610 
    611   return false;
    612 }
    613 
    614 /// linkGlobalProto - Loop through the global variables in the src module and
    615 /// merge them into the dest module.
    616 bool ModuleLinker::linkGlobalProto(GlobalVariable *SGV) {
    617   GlobalValue *DGV = getLinkedToGlobal(SGV);
    618 
    619   if (DGV) {
    620     // Concatenation of appending linkage variables is magic and handled later.
    621     if (DGV->hasAppendingLinkage() || SGV->hasAppendingLinkage())
    622       return linkAppendingVarProto(cast<GlobalVariable>(DGV), SGV);
    623 
    624     // Determine whether linkage of these two globals follows the source
    625     // module's definition or the destination module's definition.
    626     GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
    627     bool LinkFromSrc = false;
    628     if (getLinkageResult(DGV, SGV, NewLinkage, LinkFromSrc))
    629       return true;
    630 
    631     // If we're not linking from the source, then keep the definition that we
    632     // have.
    633     if (!LinkFromSrc) {
    634       // Special case for const propagation.
    635       if (GlobalVariable *DGVar = dyn_cast<GlobalVariable>(DGV))
    636         if (DGVar->isDeclaration() && SGV->isConstant() && !DGVar->isConstant())
    637           DGVar->setConstant(true);
    638 
    639       // Set calculated linkage.
    640       DGV->setLinkage(NewLinkage);
    641 
    642       // Make sure to remember this mapping.
    643       ValueMap[SGV] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGV->getType()));
    644 
    645       // Track the source global so that we don't attempt to copy it over when
    646       // processing global initializers.
    647       DoNotLinkFromSource.insert(SGV);
    648 
    649       return false;
    650     }
    651   }
    652 
    653   // No linking to be performed or linking from the source: simply create an
    654   // identical version of the symbol over in the dest module... the
    655   // initializer will be filled in later by LinkGlobalInits.
    656   GlobalVariable *NewDGV =
    657     new GlobalVariable(*DstM, TypeMap.get(SGV->getType()->getElementType()),
    658                        SGV->isConstant(), SGV->getLinkage(), /*init*/0,
    659                        SGV->getName(), /*insertbefore*/0,
    660                        SGV->isThreadLocal(),
    661                        SGV->getType()->getAddressSpace());
    662   // Propagate alignment, visibility and section info.
    663   CopyGVAttributes(NewDGV, SGV);
    664 
    665   if (DGV) {
    666     DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDGV, DGV->getType()));
    667     DGV->eraseFromParent();
    668   }
    669 
    670   // Make sure to remember this mapping.
    671   ValueMap[SGV] = NewDGV;
    672   return false;
    673 }
    674 
    675 /// linkFunctionProto - Link the function in the source module into the
    676 /// destination module if needed, setting up mapping information.
    677 bool ModuleLinker::linkFunctionProto(Function *SF) {
    678   GlobalValue *DGV = getLinkedToGlobal(SF);
    679 
    680   if (DGV) {
    681     GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
    682     bool LinkFromSrc = false;
    683     if (getLinkageResult(DGV, SF, NewLinkage, LinkFromSrc))
    684       return true;
    685 
    686     if (!LinkFromSrc) {
    687       // Set calculated linkage
    688       DGV->setLinkage(NewLinkage);
    689 
    690       // Make sure to remember this mapping.
    691       ValueMap[SF] = ConstantExpr::getBitCast(DGV, TypeMap.get(SF->getType()));
    692 
    693       // Track the function from the source module so we don't attempt to remap
    694       // it.
    695       DoNotLinkFromSource.insert(SF);
    696 
    697       return false;
    698     }
    699   }
    700 
    701   // If there is no linkage to be performed or we are linking from the source,
    702   // bring SF over.
    703   Function *NewDF = Function::Create(TypeMap.get(SF->getFunctionType()),
    704                                      SF->getLinkage(), SF->getName(), DstM);
    705   CopyGVAttributes(NewDF, SF);
    706 
    707   if (DGV) {
    708     // Any uses of DF need to change to NewDF, with cast.
    709     DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF, DGV->getType()));
    710     DGV->eraseFromParent();
    711   }
    712 
    713   ValueMap[SF] = NewDF;
    714   return false;
    715 }
    716 
    717 /// LinkAliasProto - Set up prototypes for any aliases that come over from the
    718 /// source module.
    719 bool ModuleLinker::linkAliasProto(GlobalAlias *SGA) {
    720   GlobalValue *DGV = getLinkedToGlobal(SGA);
    721 
    722   if (DGV) {
    723     GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
    724     bool LinkFromSrc = false;
    725     if (getLinkageResult(DGV, SGA, NewLinkage, LinkFromSrc))
    726       return true;
    727 
    728     if (!LinkFromSrc) {
    729       // Set calculated linkage.
    730       DGV->setLinkage(NewLinkage);
    731 
    732       // Make sure to remember this mapping.
    733       ValueMap[SGA] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGA->getType()));
    734 
    735       // Track the alias from the source module so we don't attempt to remap it.
    736       DoNotLinkFromSource.insert(SGA);
    737 
    738       return false;
    739     }
    740   }
    741 
    742   // If there is no linkage to be performed or we're linking from the source,
    743   // bring over SGA.
    744   GlobalAlias *NewDA = new GlobalAlias(TypeMap.get(SGA->getType()),
    745                                        SGA->getLinkage(), SGA->getName(),
    746                                        /*aliasee*/0, DstM);
    747   CopyGVAttributes(NewDA, SGA);
    748 
    749   if (DGV) {
    750     // Any uses of DGV need to change to NewDA, with cast.
    751     DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDA, DGV->getType()));
    752     DGV->eraseFromParent();
    753   }
    754 
    755   ValueMap[SGA] = NewDA;
    756   return false;
    757 }
    758 
    759 void ModuleLinker::linkAppendingVarInit(const AppendingVarInfo &AVI) {
    760   // Merge the initializer.
    761   SmallVector<Constant*, 16> Elements;
    762   if (ConstantArray *I = dyn_cast<ConstantArray>(AVI.DstInit)) {
    763     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
    764       Elements.push_back(I->getOperand(i));
    765   } else {
    766     assert(isa<ConstantAggregateZero>(AVI.DstInit));
    767     ArrayType *DstAT = cast<ArrayType>(AVI.DstInit->getType());
    768     Type *EltTy = DstAT->getElementType();
    769     Elements.append(DstAT->getNumElements(), Constant::getNullValue(EltTy));
    770   }
    771 
    772   Constant *SrcInit = MapValue(AVI.SrcInit, ValueMap, RF_None, &TypeMap);
    773   if (const ConstantArray *I = dyn_cast<ConstantArray>(SrcInit)) {
    774     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
    775       Elements.push_back(I->getOperand(i));
    776   } else {
    777     assert(isa<ConstantAggregateZero>(SrcInit));
    778     ArrayType *SrcAT = cast<ArrayType>(SrcInit->getType());
    779     Type *EltTy = SrcAT->getElementType();
    780     Elements.append(SrcAT->getNumElements(), Constant::getNullValue(EltTy));
    781   }
    782   ArrayType *NewType = cast<ArrayType>(AVI.NewGV->getType()->getElementType());
    783   AVI.NewGV->setInitializer(ConstantArray::get(NewType, Elements));
    784 }
    785 
    786 
    787 // linkGlobalInits - Update the initializers in the Dest module now that all
    788 // globals that may be referenced are in Dest.
    789 void ModuleLinker::linkGlobalInits() {
    790   // Loop over all of the globals in the src module, mapping them over as we go
    791   for (Module::const_global_iterator I = SrcM->global_begin(),
    792        E = SrcM->global_end(); I != E; ++I) {
    793 
    794     // Only process initialized GV's or ones not already in dest.
    795     if (!I->hasInitializer() || DoNotLinkFromSource.count(I)) continue;
    796 
    797     // Grab destination global variable.
    798     GlobalVariable *DGV = cast<GlobalVariable>(ValueMap[I]);
    799     // Figure out what the initializer looks like in the dest module.
    800     DGV->setInitializer(MapValue(I->getInitializer(), ValueMap,
    801                                  RF_None, &TypeMap));
    802   }
    803 }
    804 
    805 // linkFunctionBody - Copy the source function over into the dest function and
    806 // fix up references to values.  At this point we know that Dest is an external
    807 // function, and that Src is not.
    808 void ModuleLinker::linkFunctionBody(Function *Dst, Function *Src) {
    809   assert(Src && Dst && Dst->isDeclaration() && !Src->isDeclaration());
    810 
    811   // Go through and convert function arguments over, remembering the mapping.
    812   Function::arg_iterator DI = Dst->arg_begin();
    813   for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
    814        I != E; ++I, ++DI) {
    815     DI->setName(I->getName());  // Copy the name over.
    816 
    817     // Add a mapping to our mapping.
    818     ValueMap[I] = DI;
    819   }
    820 
    821   if (Mode == Linker::DestroySource) {
    822     // Splice the body of the source function into the dest function.
    823     Dst->getBasicBlockList().splice(Dst->end(), Src->getBasicBlockList());
    824 
    825     // At this point, all of the instructions and values of the function are now
    826     // copied over.  The only problem is that they are still referencing values in
    827     // the Source function as operands.  Loop through all of the operands of the
    828     // functions and patch them up to point to the local versions.
    829     for (Function::iterator BB = Dst->begin(), BE = Dst->end(); BB != BE; ++BB)
    830       for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
    831         RemapInstruction(I, ValueMap, RF_IgnoreMissingEntries, &TypeMap);
    832 
    833   } else {
    834     // Clone the body of the function into the dest function.
    835     SmallVector<ReturnInst*, 8> Returns; // Ignore returns.
    836     CloneFunctionInto(Dst, Src, ValueMap, false, Returns);
    837   }
    838 
    839   // There is no need to map the arguments anymore.
    840   for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
    841        I != E; ++I)
    842     ValueMap.erase(I);
    843 
    844 }
    845 
    846 
    847 void ModuleLinker::linkAliasBodies() {
    848   for (Module::alias_iterator I = SrcM->alias_begin(), E = SrcM->alias_end();
    849        I != E; ++I) {
    850     if (DoNotLinkFromSource.count(I))
    851       continue;
    852     if (Constant *Aliasee = I->getAliasee()) {
    853       GlobalAlias *DA = cast<GlobalAlias>(ValueMap[I]);
    854       DA->setAliasee(MapValue(Aliasee, ValueMap, RF_None, &TypeMap));
    855     }
    856   }
    857 }
    858 
    859 /// linkNamedMDNodes - Insert all of the named mdnodes in Src into the Dest
    860 /// module.
    861 void ModuleLinker::linkNamedMDNodes() {
    862   for (Module::const_named_metadata_iterator I = SrcM->named_metadata_begin(),
    863        E = SrcM->named_metadata_end(); I != E; ++I) {
    864     NamedMDNode *DestNMD = DstM->getOrInsertNamedMetadata(I->getName());
    865     // Add Src elements into Dest node.
    866     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
    867       DestNMD->addOperand(MapValue(I->getOperand(i), ValueMap,
    868                                    RF_None, &TypeMap));
    869   }
    870 }
    871 
    872 bool ModuleLinker::run() {
    873   assert(DstM && "Null Destination module");
    874   assert(SrcM && "Null Source Module");
    875 
    876   // Inherit the target data from the source module if the destination module
    877   // doesn't have one already.
    878   if (DstM->getDataLayout().empty() && !SrcM->getDataLayout().empty())
    879     DstM->setDataLayout(SrcM->getDataLayout());
    880 
    881   // Copy the target triple from the source to dest if the dest's is empty.
    882   if (DstM->getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
    883     DstM->setTargetTriple(SrcM->getTargetTriple());
    884 
    885   if (!SrcM->getDataLayout().empty() && !DstM->getDataLayout().empty() &&
    886       SrcM->getDataLayout() != DstM->getDataLayout())
    887     errs() << "WARNING: Linking two modules of different data layouts!\n";
    888   if (!SrcM->getTargetTriple().empty() &&
    889       DstM->getTargetTriple() != SrcM->getTargetTriple()) {
    890     errs() << "WARNING: Linking two modules of different target triples: ";
    891     if (!SrcM->getModuleIdentifier().empty())
    892       errs() << SrcM->getModuleIdentifier() << ": ";
    893     errs() << "'" << SrcM->getTargetTriple() << "' and '"
    894            << DstM->getTargetTriple() << "'\n";
    895   }
    896 
    897   // Append the module inline asm string.
    898   if (!SrcM->getModuleInlineAsm().empty()) {
    899     if (DstM->getModuleInlineAsm().empty())
    900       DstM->setModuleInlineAsm(SrcM->getModuleInlineAsm());
    901     else
    902       DstM->setModuleInlineAsm(DstM->getModuleInlineAsm()+"\n"+
    903                                SrcM->getModuleInlineAsm());
    904   }
    905 
    906   // Update the destination module's dependent libraries list with the libraries
    907   // from the source module. There's no opportunity for duplicates here as the
    908   // Module ensures that duplicate insertions are discarded.
    909   for (Module::lib_iterator SI = SrcM->lib_begin(), SE = SrcM->lib_end();
    910        SI != SE; ++SI)
    911     DstM->addLibrary(*SI);
    912 
    913   // If the source library's module id is in the dependent library list of the
    914   // destination library, remove it since that module is now linked in.
    915   StringRef ModuleId = SrcM->getModuleIdentifier();
    916   if (!ModuleId.empty())
    917     DstM->removeLibrary(sys::path::stem(ModuleId));
    918 
    919   // Loop over all of the linked values to compute type mappings.
    920   computeTypeMapping();
    921 
    922   // Insert all of the globals in src into the DstM module... without linking
    923   // initializers (which could refer to functions not yet mapped over).
    924   for (Module::global_iterator I = SrcM->global_begin(),
    925        E = SrcM->global_end(); I != E; ++I)
    926     if (linkGlobalProto(I))
    927       return true;
    928 
    929   // Link the functions together between the two modules, without doing function
    930   // bodies... this just adds external function prototypes to the DstM
    931   // function...  We do this so that when we begin processing function bodies,
    932   // all of the global values that may be referenced are available in our
    933   // ValueMap.
    934   for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I)
    935     if (linkFunctionProto(I))
    936       return true;
    937 
    938   // If there were any aliases, link them now.
    939   for (Module::alias_iterator I = SrcM->alias_begin(),
    940        E = SrcM->alias_end(); I != E; ++I)
    941     if (linkAliasProto(I))
    942       return true;
    943 
    944   for (unsigned i = 0, e = AppendingVars.size(); i != e; ++i)
    945     linkAppendingVarInit(AppendingVars[i]);
    946 
    947   // Update the initializers in the DstM module now that all globals that may
    948   // be referenced are in DstM.
    949   linkGlobalInits();
    950 
    951   // Link in the function bodies that are defined in the source module into
    952   // DstM.
    953   for (Module::iterator SF = SrcM->begin(), E = SrcM->end(); SF != E; ++SF) {
    954 
    955     // Skip if not linking from source.
    956     if (DoNotLinkFromSource.count(SF)) continue;
    957 
    958     // Skip if no body (function is external) or materialize.
    959     if (SF->isDeclaration()) {
    960       if (!SF->isMaterializable())
    961         continue;
    962       if (SF->Materialize(&ErrorMsg))
    963         return true;
    964     }
    965 
    966     linkFunctionBody(cast<Function>(ValueMap[SF]), SF);
    967   }
    968 
    969   // Resolve all uses of aliases with aliasees.
    970   linkAliasBodies();
    971 
    972   // Remap all of the named mdnoes in Src into the DstM module. We do this
    973   // after linking GlobalValues so that MDNodes that reference GlobalValues
    974   // are properly remapped.
    975   linkNamedMDNodes();
    976 
    977   // Now that all of the types from the source are used, resolve any structs
    978   // copied over to the dest that didn't exist there.
    979   TypeMap.linkDefinedTypeBodies();
    980 
    981   return false;
    982 }
    983 
    984 //===----------------------------------------------------------------------===//
    985 // LinkModules entrypoint.
    986 //===----------------------------------------------------------------------===//
    987 
    988 // LinkModules - This function links two modules together, with the resulting
    989 // left module modified to be the composite of the two input modules.  If an
    990 // error occurs, true is returned and ErrorMsg (if not null) is set to indicate
    991 // the problem.  Upon failure, the Dest module could be in a modified state, and
    992 // shouldn't be relied on to be consistent.
    993 bool Linker::LinkModules(Module *Dest, Module *Src, unsigned Mode,
    994                          std::string *ErrorMsg) {
    995   ModuleLinker TheLinker(Dest, Src, Mode);
    996   if (TheLinker.run()) {
    997     if (ErrorMsg) *ErrorMsg = TheLinker.ErrorMsg;
    998     return true;
    999   }
   1000 
   1001   return false;
   1002 }
   1003