Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineInternal.h - InstCombine pass internals -------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 /// \file
     10 ///
     11 /// This file provides internal interfaces used to implement the InstCombine.
     12 ///
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
     16 #define LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
     17 
     18 #include "llvm/Analysis/AliasAnalysis.h"
     19 #include "llvm/Analysis/AssumptionCache.h"
     20 #include "llvm/Analysis/LoopInfo.h"
     21 #include "llvm/Analysis/TargetFolder.h"
     22 #include "llvm/Analysis/ValueTracking.h"
     23 #include "llvm/IR/Dominators.h"
     24 #include "llvm/IR/IRBuilder.h"
     25 #include "llvm/IR/InstVisitor.h"
     26 #include "llvm/IR/IntrinsicInst.h"
     27 #include "llvm/IR/Operator.h"
     28 #include "llvm/IR/PatternMatch.h"
     29 #include "llvm/Pass.h"
     30 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
     31 
     32 #define DEBUG_TYPE "instcombine"
     33 
     34 namespace llvm {
     35 class CallSite;
     36 class DataLayout;
     37 class DominatorTree;
     38 class TargetLibraryInfo;
     39 class DbgDeclareInst;
     40 class MemIntrinsic;
     41 class MemSetInst;
     42 
     43 /// \brief Assign a complexity or rank value to LLVM Values.
     44 ///
     45 /// This routine maps IR values to various complexity ranks:
     46 ///   0 -> undef
     47 ///   1 -> Constants
     48 ///   2 -> Other non-instructions
     49 ///   3 -> Arguments
     50 ///   3 -> Unary operations
     51 ///   4 -> Other instructions
     52 static inline unsigned getComplexity(Value *V) {
     53   if (isa<Instruction>(V)) {
     54     if (BinaryOperator::isNeg(V) || BinaryOperator::isFNeg(V) ||
     55         BinaryOperator::isNot(V))
     56       return 3;
     57     return 4;
     58   }
     59   if (isa<Argument>(V))
     60     return 3;
     61   return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
     62 }
     63 
     64 /// \brief Add one to a Constant
     65 static inline Constant *AddOne(Constant *C) {
     66   return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
     67 }
     68 /// \brief Subtract one from a Constant
     69 static inline Constant *SubOne(Constant *C) {
     70   return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
     71 }
     72 
     73 /// \brief Return true if the specified value is free to invert (apply ~ to).
     74 /// This happens in cases where the ~ can be eliminated.  If WillInvertAllUses
     75 /// is true, work under the assumption that the caller intends to remove all
     76 /// uses of V and only keep uses of ~V.
     77 ///
     78 static inline bool IsFreeToInvert(Value *V, bool WillInvertAllUses) {
     79   // ~(~(X)) -> X.
     80   if (BinaryOperator::isNot(V))
     81     return true;
     82 
     83   // Constants can be considered to be not'ed values.
     84   if (isa<ConstantInt>(V))
     85     return true;
     86 
     87   // Compares can be inverted if all of their uses are being modified to use the
     88   // ~V.
     89   if (isa<CmpInst>(V))
     90     return WillInvertAllUses;
     91 
     92   // If `V` is of the form `A + Constant` then `-1 - V` can be folded into `(-1
     93   // - Constant) - A` if we are willing to invert all of the uses.
     94   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V))
     95     if (BO->getOpcode() == Instruction::Add ||
     96         BO->getOpcode() == Instruction::Sub)
     97       if (isa<Constant>(BO->getOperand(0)) || isa<Constant>(BO->getOperand(1)))
     98         return WillInvertAllUses;
     99 
    100   return false;
    101 }
    102 
    103 
    104 /// \brief Specific patterns of overflow check idioms that we match.
    105 enum OverflowCheckFlavor {
    106   OCF_UNSIGNED_ADD,
    107   OCF_SIGNED_ADD,
    108   OCF_UNSIGNED_SUB,
    109   OCF_SIGNED_SUB,
    110   OCF_UNSIGNED_MUL,
    111   OCF_SIGNED_MUL,
    112 
    113   OCF_INVALID
    114 };
    115 
    116 /// \brief Returns the OverflowCheckFlavor corresponding to a overflow_with_op
    117 /// intrinsic.
    118 static inline OverflowCheckFlavor
    119 IntrinsicIDToOverflowCheckFlavor(unsigned ID) {
    120   switch (ID) {
    121   default:
    122     return OCF_INVALID;
    123   case Intrinsic::uadd_with_overflow:
    124     return OCF_UNSIGNED_ADD;
    125   case Intrinsic::sadd_with_overflow:
    126     return OCF_SIGNED_ADD;
    127   case Intrinsic::usub_with_overflow:
    128     return OCF_UNSIGNED_SUB;
    129   case Intrinsic::ssub_with_overflow:
    130     return OCF_SIGNED_SUB;
    131   case Intrinsic::umul_with_overflow:
    132     return OCF_UNSIGNED_MUL;
    133   case Intrinsic::smul_with_overflow:
    134     return OCF_SIGNED_MUL;
    135   }
    136 }
    137 
    138 /// \brief An IRBuilder inserter that adds new instructions to the instcombine
    139 /// worklist.
    140 class LLVM_LIBRARY_VISIBILITY InstCombineIRInserter
    141     : public IRBuilderDefaultInserter {
    142   InstCombineWorklist &Worklist;
    143   AssumptionCache *AC;
    144 
    145 public:
    146   InstCombineIRInserter(InstCombineWorklist &WL, AssumptionCache *AC)
    147       : Worklist(WL), AC(AC) {}
    148 
    149   void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB,
    150                     BasicBlock::iterator InsertPt) const {
    151     IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
    152     Worklist.Add(I);
    153 
    154     using namespace llvm::PatternMatch;
    155     if (match(I, m_Intrinsic<Intrinsic::assume>()))
    156       AC->registerAssumption(cast<CallInst>(I));
    157   }
    158 };
    159 
    160 /// \brief The core instruction combiner logic.
    161 ///
    162 /// This class provides both the logic to recursively visit instructions and
    163 /// combine them, as well as the pass infrastructure for running this as part
    164 /// of the LLVM pass pipeline.
    165 class LLVM_LIBRARY_VISIBILITY InstCombiner
    166     : public InstVisitor<InstCombiner, Instruction *> {
    167   // FIXME: These members shouldn't be public.
    168 public:
    169   /// \brief A worklist of the instructions that need to be simplified.
    170   InstCombineWorklist &Worklist;
    171 
    172   /// \brief An IRBuilder that automatically inserts new instructions into the
    173   /// worklist.
    174   typedef IRBuilder<TargetFolder, InstCombineIRInserter> BuilderTy;
    175   BuilderTy *Builder;
    176 
    177 private:
    178   // Mode in which we are running the combiner.
    179   const bool MinimizeSize;
    180   /// Enable combines that trigger rarely but are costly in compiletime.
    181   const bool ExpensiveCombines;
    182 
    183   AliasAnalysis *AA;
    184 
    185   // Required analyses.
    186   // FIXME: These can never be null and should be references.
    187   AssumptionCache *AC;
    188   TargetLibraryInfo *TLI;
    189   DominatorTree *DT;
    190   const DataLayout &DL;
    191 
    192   // Optional analyses. When non-null, these can both be used to do better
    193   // combining and will be updated to reflect any changes.
    194   LoopInfo *LI;
    195 
    196   bool MadeIRChange;
    197 
    198 public:
    199   InstCombiner(InstCombineWorklist &Worklist, BuilderTy *Builder,
    200                bool MinimizeSize, bool ExpensiveCombines, AliasAnalysis *AA,
    201                AssumptionCache *AC, TargetLibraryInfo *TLI,
    202                DominatorTree *DT, const DataLayout &DL, LoopInfo *LI)
    203       : Worklist(Worklist), Builder(Builder), MinimizeSize(MinimizeSize),
    204         ExpensiveCombines(ExpensiveCombines), AA(AA), AC(AC), TLI(TLI), DT(DT),
    205         DL(DL), LI(LI), MadeIRChange(false) {}
    206 
    207   /// \brief Run the combiner over the entire worklist until it is empty.
    208   ///
    209   /// \returns true if the IR is changed.
    210   bool run();
    211 
    212   AssumptionCache *getAssumptionCache() const { return AC; }
    213 
    214   const DataLayout &getDataLayout() const { return DL; }
    215 
    216   DominatorTree *getDominatorTree() const { return DT; }
    217 
    218   LoopInfo *getLoopInfo() const { return LI; }
    219 
    220   TargetLibraryInfo *getTargetLibraryInfo() const { return TLI; }
    221 
    222   // Visitation implementation - Implement instruction combining for different
    223   // instruction types.  The semantics are as follows:
    224   // Return Value:
    225   //    null        - No change was made
    226   //     I          - Change was made, I is still valid, I may be dead though
    227   //   otherwise    - Change was made, replace I with returned instruction
    228   //
    229   Instruction *visitAdd(BinaryOperator &I);
    230   Instruction *visitFAdd(BinaryOperator &I);
    231   Value *OptimizePointerDifference(Value *LHS, Value *RHS, Type *Ty);
    232   Instruction *visitSub(BinaryOperator &I);
    233   Instruction *visitFSub(BinaryOperator &I);
    234   Instruction *visitMul(BinaryOperator &I);
    235   Value *foldFMulConst(Instruction *FMulOrDiv, Constant *C,
    236                        Instruction *InsertBefore);
    237   Instruction *visitFMul(BinaryOperator &I);
    238   Instruction *visitURem(BinaryOperator &I);
    239   Instruction *visitSRem(BinaryOperator &I);
    240   Instruction *visitFRem(BinaryOperator &I);
    241   bool SimplifyDivRemOfSelect(BinaryOperator &I);
    242   Instruction *commonRemTransforms(BinaryOperator &I);
    243   Instruction *commonIRemTransforms(BinaryOperator &I);
    244   Instruction *commonDivTransforms(BinaryOperator &I);
    245   Instruction *commonIDivTransforms(BinaryOperator &I);
    246   Instruction *visitUDiv(BinaryOperator &I);
    247   Instruction *visitSDiv(BinaryOperator &I);
    248   Instruction *visitFDiv(BinaryOperator &I);
    249   Value *simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, bool Inverted);
    250   Value *FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS);
    251   Value *FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS);
    252   Instruction *visitAnd(BinaryOperator &I);
    253   Value *FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS, Instruction *CxtI);
    254   Value *FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS);
    255   Instruction *FoldOrWithConstants(BinaryOperator &I, Value *Op, Value *A,
    256                                    Value *B, Value *C);
    257   Instruction *FoldXorWithConstants(BinaryOperator &I, Value *Op, Value *A,
    258                                     Value *B, Value *C);
    259   Instruction *visitOr(BinaryOperator &I);
    260   Instruction *visitXor(BinaryOperator &I);
    261   Instruction *visitShl(BinaryOperator &I);
    262   Instruction *visitAShr(BinaryOperator &I);
    263   Instruction *visitLShr(BinaryOperator &I);
    264   Instruction *commonShiftTransforms(BinaryOperator &I);
    265   Instruction *FoldFCmp_IntToFP_Cst(FCmpInst &I, Instruction *LHSI,
    266                                     Constant *RHSC);
    267   Instruction *FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
    268                                             GlobalVariable *GV, CmpInst &ICI,
    269                                             ConstantInt *AndCst = nullptr);
    270   Instruction *visitFCmpInst(FCmpInst &I);
    271   Instruction *visitICmpInst(ICmpInst &I);
    272   Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI);
    273   Instruction *visitICmpInstWithInstAndIntCst(ICmpInst &ICI, Instruction *LHS,
    274                                               ConstantInt *RHS);
    275   Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
    276                               ConstantInt *DivRHS);
    277   Instruction *FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *DivI,
    278                               ConstantInt *DivRHS);
    279   Instruction *FoldICmpCstShrCst(ICmpInst &I, Value *Op, Value *A,
    280                                  ConstantInt *CI1, ConstantInt *CI2);
    281   Instruction *FoldICmpCstShlCst(ICmpInst &I, Value *Op, Value *A,
    282                                  ConstantInt *CI1, ConstantInt *CI2);
    283   Instruction *FoldICmpAddOpCst(Instruction &ICI, Value *X, ConstantInt *CI,
    284                                 ICmpInst::Predicate Pred);
    285   Instruction *FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
    286                            ICmpInst::Predicate Cond, Instruction &I);
    287   Instruction *FoldAllocaCmp(ICmpInst &ICI, AllocaInst *Alloca, Value *Other);
    288   Instruction *FoldShiftByConstant(Value *Op0, Constant *Op1,
    289                                    BinaryOperator &I);
    290   Instruction *commonCastTransforms(CastInst &CI);
    291   Instruction *commonPointerCastTransforms(CastInst &CI);
    292   Instruction *visitTrunc(TruncInst &CI);
    293   Instruction *visitZExt(ZExtInst &CI);
    294   Instruction *visitSExt(SExtInst &CI);
    295   Instruction *visitFPTrunc(FPTruncInst &CI);
    296   Instruction *visitFPExt(CastInst &CI);
    297   Instruction *visitFPToUI(FPToUIInst &FI);
    298   Instruction *visitFPToSI(FPToSIInst &FI);
    299   Instruction *visitUIToFP(CastInst &CI);
    300   Instruction *visitSIToFP(CastInst &CI);
    301   Instruction *visitPtrToInt(PtrToIntInst &CI);
    302   Instruction *visitIntToPtr(IntToPtrInst &CI);
    303   Instruction *visitBitCast(BitCastInst &CI);
    304   Instruction *visitAddrSpaceCast(AddrSpaceCastInst &CI);
    305   Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI);
    306   Instruction *FoldSelectIntoOp(SelectInst &SI, Value *, Value *);
    307   Instruction *FoldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1,
    308                             Value *A, Value *B, Instruction &Outer,
    309                             SelectPatternFlavor SPF2, Value *C);
    310   Instruction *FoldItoFPtoI(Instruction &FI);
    311   Instruction *visitSelectInst(SelectInst &SI);
    312   Instruction *visitSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
    313   Instruction *visitCallInst(CallInst &CI);
    314   Instruction *visitInvokeInst(InvokeInst &II);
    315 
    316   Instruction *SliceUpIllegalIntegerPHI(PHINode &PN);
    317   Instruction *visitPHINode(PHINode &PN);
    318   Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
    319   Instruction *visitAllocaInst(AllocaInst &AI);
    320   Instruction *visitAllocSite(Instruction &FI);
    321   Instruction *visitFree(CallInst &FI);
    322   Instruction *visitLoadInst(LoadInst &LI);
    323   Instruction *visitStoreInst(StoreInst &SI);
    324   Instruction *visitBranchInst(BranchInst &BI);
    325   Instruction *visitSwitchInst(SwitchInst &SI);
    326   Instruction *visitReturnInst(ReturnInst &RI);
    327   Instruction *visitInsertValueInst(InsertValueInst &IV);
    328   Instruction *visitInsertElementInst(InsertElementInst &IE);
    329   Instruction *visitExtractElementInst(ExtractElementInst &EI);
    330   Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
    331   Instruction *visitExtractValueInst(ExtractValueInst &EV);
    332   Instruction *visitLandingPadInst(LandingPadInst &LI);
    333   Instruction *visitVAStartInst(VAStartInst &I);
    334   Instruction *visitVACopyInst(VACopyInst &I);
    335 
    336   // visitInstruction - Specify what to return for unhandled instructions...
    337   Instruction *visitInstruction(Instruction &I) { return nullptr; }
    338 
    339   // True when DB dominates all uses of DI execpt UI.
    340   // UI must be in the same block as DI.
    341   // The routine checks that the DI parent and DB are different.
    342   bool dominatesAllUses(const Instruction *DI, const Instruction *UI,
    343                         const BasicBlock *DB) const;
    344 
    345   // Replace select with select operand SIOpd in SI-ICmp sequence when possible
    346   bool replacedSelectWithOperand(SelectInst *SI, const ICmpInst *Icmp,
    347                                  const unsigned SIOpd);
    348 
    349 private:
    350   bool ShouldChangeType(unsigned FromBitWidth, unsigned ToBitWidth) const;
    351   bool ShouldChangeType(Type *From, Type *To) const;
    352   Value *dyn_castNegVal(Value *V) const;
    353   Value *dyn_castFNegVal(Value *V, bool NoSignedZero = false) const;
    354   Type *FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
    355                             SmallVectorImpl<Value *> &NewIndices);
    356   Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI);
    357 
    358   /// \brief Classify whether a cast is worth optimizing.
    359   ///
    360   /// Returns true if the cast from "V to Ty" actually results in any code
    361   /// being generated and is interesting to optimize out. If the cast can be
    362   /// eliminated by some other simple transformation, we prefer to do the
    363   /// simplification first.
    364   bool ShouldOptimizeCast(Instruction::CastOps opcode, const Value *V,
    365                           Type *Ty);
    366 
    367   /// \brief Try to optimize a sequence of instructions checking if an operation
    368   /// on LHS and RHS overflows.
    369   ///
    370   /// If this overflow check is done via one of the overflow check intrinsics,
    371   /// then CtxI has to be the call instruction calling that intrinsic.  If this
    372   /// overflow check is done by arithmetic followed by a compare, then CtxI has
    373   /// to be the arithmetic instruction.
    374   ///
    375   /// If a simplification is possible, stores the simplified result of the
    376   /// operation in OperationResult and result of the overflow check in
    377   /// OverflowResult, and return true.  If no simplification is possible,
    378   /// returns false.
    379   bool OptimizeOverflowCheck(OverflowCheckFlavor OCF, Value *LHS, Value *RHS,
    380                              Instruction &CtxI, Value *&OperationResult,
    381                              Constant *&OverflowResult);
    382 
    383   Instruction *visitCallSite(CallSite CS);
    384   Instruction *tryOptimizeCall(CallInst *CI);
    385   bool transformConstExprCastCall(CallSite CS);
    386   Instruction *transformCallThroughTrampoline(CallSite CS,
    387                                               IntrinsicInst *Tramp);
    388   Instruction *transformZExtICmp(ICmpInst *ICI, Instruction &CI,
    389                                  bool DoXform = true);
    390   Instruction *transformSExtICmp(ICmpInst *ICI, Instruction &CI);
    391   bool WillNotOverflowSignedAdd(Value *LHS, Value *RHS, Instruction &CxtI);
    392   bool WillNotOverflowSignedSub(Value *LHS, Value *RHS, Instruction &CxtI);
    393   bool WillNotOverflowUnsignedSub(Value *LHS, Value *RHS, Instruction &CxtI);
    394   bool WillNotOverflowSignedMul(Value *LHS, Value *RHS, Instruction &CxtI);
    395   Value *EmitGEPOffset(User *GEP);
    396   Instruction *scalarizePHI(ExtractElementInst &EI, PHINode *PN);
    397   Value *EvaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask);
    398   Instruction *foldCastedBitwiseLogic(BinaryOperator &I);
    399 
    400 public:
    401   /// \brief Inserts an instruction \p New before instruction \p Old
    402   ///
    403   /// Also adds the new instruction to the worklist and returns \p New so that
    404   /// it is suitable for use as the return from the visitation patterns.
    405   Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
    406     assert(New && !New->getParent() &&
    407            "New instruction already inserted into a basic block!");
    408     BasicBlock *BB = Old.getParent();
    409     BB->getInstList().insert(Old.getIterator(), New); // Insert inst
    410     Worklist.Add(New);
    411     return New;
    412   }
    413 
    414   /// \brief Same as InsertNewInstBefore, but also sets the debug loc.
    415   Instruction *InsertNewInstWith(Instruction *New, Instruction &Old) {
    416     New->setDebugLoc(Old.getDebugLoc());
    417     return InsertNewInstBefore(New, Old);
    418   }
    419 
    420   /// \brief A combiner-aware RAUW-like routine.
    421   ///
    422   /// This method is to be used when an instruction is found to be dead,
    423   /// replaceable with another preexisting expression. Here we add all uses of
    424   /// I to the worklist, replace all uses of I with the new value, then return
    425   /// I, so that the inst combiner will know that I was modified.
    426   Instruction *replaceInstUsesWith(Instruction &I, Value *V) {
    427     // If there are no uses to replace, then we return nullptr to indicate that
    428     // no changes were made to the program.
    429     if (I.use_empty()) return nullptr;
    430 
    431     Worklist.AddUsersToWorkList(I); // Add all modified instrs to worklist.
    432 
    433     // If we are replacing the instruction with itself, this must be in a
    434     // segment of unreachable code, so just clobber the instruction.
    435     if (&I == V)
    436       V = UndefValue::get(I.getType());
    437 
    438     DEBUG(dbgs() << "IC: Replacing " << I << "\n"
    439                  << "    with " << *V << '\n');
    440 
    441     I.replaceAllUsesWith(V);
    442     return &I;
    443   }
    444 
    445   /// Creates a result tuple for an overflow intrinsic \p II with a given
    446   /// \p Result and a constant \p Overflow value.
    447   Instruction *CreateOverflowTuple(IntrinsicInst *II, Value *Result,
    448                                    Constant *Overflow) {
    449     Constant *V[] = {UndefValue::get(Result->getType()), Overflow};
    450     StructType *ST = cast<StructType>(II->getType());
    451     Constant *Struct = ConstantStruct::get(ST, V);
    452     return InsertValueInst::Create(Struct, Result, 0);
    453   }
    454 
    455   /// \brief Combiner aware instruction erasure.
    456   ///
    457   /// When dealing with an instruction that has side effects or produces a void
    458   /// value, we can't rely on DCE to delete the instruction. Instead, visit
    459   /// methods should return the value returned by this function.
    460   Instruction *eraseInstFromFunction(Instruction &I) {
    461     DEBUG(dbgs() << "IC: ERASE " << I << '\n');
    462 
    463     assert(I.use_empty() && "Cannot erase instruction that is used!");
    464     // Make sure that we reprocess all operands now that we reduced their
    465     // use counts.
    466     if (I.getNumOperands() < 8) {
    467       for (Use &Operand : I.operands())
    468         if (auto *Inst = dyn_cast<Instruction>(Operand))
    469           Worklist.Add(Inst);
    470     }
    471     Worklist.Remove(&I);
    472     I.eraseFromParent();
    473     MadeIRChange = true;
    474     return nullptr; // Don't do anything with FI
    475   }
    476 
    477   void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
    478                         unsigned Depth, Instruction *CxtI) const {
    479     return llvm::computeKnownBits(V, KnownZero, KnownOne, DL, Depth, AC, CxtI,
    480                                   DT);
    481   }
    482 
    483   bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth = 0,
    484                          Instruction *CxtI = nullptr) const {
    485     return llvm::MaskedValueIsZero(V, Mask, DL, Depth, AC, CxtI, DT);
    486   }
    487   unsigned ComputeNumSignBits(Value *Op, unsigned Depth = 0,
    488                               Instruction *CxtI = nullptr) const {
    489     return llvm::ComputeNumSignBits(Op, DL, Depth, AC, CxtI, DT);
    490   }
    491   void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
    492                       unsigned Depth = 0, Instruction *CxtI = nullptr) const {
    493     return llvm::ComputeSignBit(V, KnownZero, KnownOne, DL, Depth, AC, CxtI,
    494                                 DT);
    495   }
    496   OverflowResult computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
    497                                                const Instruction *CxtI) {
    498     return llvm::computeOverflowForUnsignedMul(LHS, RHS, DL, AC, CxtI, DT);
    499   }
    500   OverflowResult computeOverflowForUnsignedAdd(Value *LHS, Value *RHS,
    501                                                const Instruction *CxtI) {
    502     return llvm::computeOverflowForUnsignedAdd(LHS, RHS, DL, AC, CxtI, DT);
    503   }
    504 
    505 private:
    506   /// \brief Performs a few simplifications for operators which are associative
    507   /// or commutative.
    508   bool SimplifyAssociativeOrCommutative(BinaryOperator &I);
    509 
    510   /// \brief Tries to simplify binary operations which some other binary
    511   /// operation distributes over.
    512   ///
    513   /// It does this by either by factorizing out common terms (eg "(A*B)+(A*C)"
    514   /// -> "A*(B+C)") or expanding out if this results in simplifications (eg: "A
    515   /// & (B | C) -> (A&B) | (A&C)" if this is a win).  Returns the simplified
    516   /// value, or null if it didn't simplify.
    517   Value *SimplifyUsingDistributiveLaws(BinaryOperator &I);
    518 
    519   /// \brief Attempts to replace V with a simpler value based on the demanded
    520   /// bits.
    521   Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask, APInt &KnownZero,
    522                                  APInt &KnownOne, unsigned Depth,
    523                                  Instruction *CxtI);
    524   bool SimplifyDemandedBits(Use &U, const APInt &DemandedMask, APInt &KnownZero,
    525                             APInt &KnownOne, unsigned Depth = 0);
    526   /// Helper routine of SimplifyDemandedUseBits. It tries to simplify demanded
    527   /// bit for "r1 = shr x, c1; r2 = shl r1, c2" instruction sequence.
    528   Value *SimplifyShrShlDemandedBits(Instruction *Lsr, Instruction *Sftl,
    529                                     const APInt &DemandedMask, APInt &KnownZero,
    530                                     APInt &KnownOne);
    531 
    532   /// \brief Tries to simplify operands to an integer instruction based on its
    533   /// demanded bits.
    534   bool SimplifyDemandedInstructionBits(Instruction &Inst);
    535 
    536   Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
    537                                     APInt &UndefElts, unsigned Depth = 0);
    538 
    539   Value *SimplifyVectorOp(BinaryOperator &Inst);
    540   Value *SimplifyBSwap(BinaryOperator &Inst);
    541 
    542   // FoldOpIntoPhi - Given a binary operator, cast instruction, or select
    543   // which has a PHI node as operand #0, see if we can fold the instruction
    544   // into the PHI (which is only possible if all operands to the PHI are
    545   // constants).
    546   //
    547   Instruction *FoldOpIntoPhi(Instruction &I);
    548 
    549   /// \brief Try to rotate an operation below a PHI node, using PHI nodes for
    550   /// its operands.
    551   Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
    552   Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
    553   Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN);
    554   Instruction *FoldPHIArgLoadIntoPHI(PHINode &PN);
    555   Instruction *FoldPHIArgZextsIntoPHI(PHINode &PN);
    556 
    557   Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS,
    558                         ConstantInt *AndRHS, BinaryOperator &TheAnd);
    559 
    560   Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask,
    561                             bool isSub, Instruction &I);
    562   Value *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi, bool isSigned,
    563                          bool Inside);
    564   Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocaInst &AI);
    565   Instruction *MatchBSwap(BinaryOperator &I);
    566   bool SimplifyStoreAtEndOfBlock(StoreInst &SI);
    567   Instruction *SimplifyMemTransfer(MemIntrinsic *MI);
    568   Instruction *SimplifyMemSet(MemSetInst *MI);
    569 
    570   Value *EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned);
    571 
    572   /// \brief Returns a value X such that Val = X * Scale, or null if none.
    573   ///
    574   /// If the multiplication is known not to overflow then NoSignedWrap is set.
    575   Value *Descale(Value *Val, APInt Scale, bool &NoSignedWrap);
    576 };
    577 
    578 } // end namespace llvm.
    579 
    580 #undef DEBUG_TYPE
    581 
    582 #endif
    583