1 //===- InstCombineAndOrXor.cpp --------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visitAnd, visitOr, and visitXor functions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/Analysis/InstructionSimplify.h" 16 #include "llvm/IR/ConstantRange.h" 17 #include "llvm/IR/Intrinsics.h" 18 #include "llvm/IR/PatternMatch.h" 19 #include "llvm/Transforms/Utils/CmpInstAnalysis.h" 20 #include "llvm/Transforms/Utils/Local.h" 21 using namespace llvm; 22 using namespace PatternMatch; 23 24 #define DEBUG_TYPE "instcombine" 25 26 static inline Value *dyn_castNotVal(Value *V) { 27 // If this is not(not(x)) don't return that this is a not: we want the two 28 // not's to be folded first. 29 if (BinaryOperator::isNot(V)) { 30 Value *Operand = BinaryOperator::getNotArgument(V); 31 if (!IsFreeToInvert(Operand, Operand->hasOneUse())) 32 return Operand; 33 } 34 35 // Constants can be considered to be not'ed values... 36 if (ConstantInt *C = dyn_cast<ConstantInt>(V)) 37 return ConstantInt::get(C->getType(), ~C->getValue()); 38 return nullptr; 39 } 40 41 /// Similar to getICmpCode but for FCmpInst. This encodes a fcmp predicate into 42 /// a four bit mask. 43 static unsigned getFCmpCode(FCmpInst::Predicate CC) { 44 assert(FCmpInst::FCMP_FALSE <= CC && CC <= FCmpInst::FCMP_TRUE && 45 "Unexpected FCmp predicate!"); 46 // Take advantage of the bit pattern of FCmpInst::Predicate here. 47 // U L G E 48 static_assert(FCmpInst::FCMP_FALSE == 0, ""); // 0 0 0 0 49 static_assert(FCmpInst::FCMP_OEQ == 1, ""); // 0 0 0 1 50 static_assert(FCmpInst::FCMP_OGT == 2, ""); // 0 0 1 0 51 static_assert(FCmpInst::FCMP_OGE == 3, ""); // 0 0 1 1 52 static_assert(FCmpInst::FCMP_OLT == 4, ""); // 0 1 0 0 53 static_assert(FCmpInst::FCMP_OLE == 5, ""); // 0 1 0 1 54 static_assert(FCmpInst::FCMP_ONE == 6, ""); // 0 1 1 0 55 static_assert(FCmpInst::FCMP_ORD == 7, ""); // 0 1 1 1 56 static_assert(FCmpInst::FCMP_UNO == 8, ""); // 1 0 0 0 57 static_assert(FCmpInst::FCMP_UEQ == 9, ""); // 1 0 0 1 58 static_assert(FCmpInst::FCMP_UGT == 10, ""); // 1 0 1 0 59 static_assert(FCmpInst::FCMP_UGE == 11, ""); // 1 0 1 1 60 static_assert(FCmpInst::FCMP_ULT == 12, ""); // 1 1 0 0 61 static_assert(FCmpInst::FCMP_ULE == 13, ""); // 1 1 0 1 62 static_assert(FCmpInst::FCMP_UNE == 14, ""); // 1 1 1 0 63 static_assert(FCmpInst::FCMP_TRUE == 15, ""); // 1 1 1 1 64 return CC; 65 } 66 67 /// This is the complement of getICmpCode, which turns an opcode and two 68 /// operands into either a constant true or false, or a brand new ICmp 69 /// instruction. The sign is passed in to determine which kind of predicate to 70 /// use in the new icmp instruction. 71 static Value *getNewICmpValue(bool Sign, unsigned Code, Value *LHS, Value *RHS, 72 InstCombiner::BuilderTy *Builder) { 73 ICmpInst::Predicate NewPred; 74 if (Value *NewConstant = getICmpValue(Sign, Code, LHS, RHS, NewPred)) 75 return NewConstant; 76 return Builder->CreateICmp(NewPred, LHS, RHS); 77 } 78 79 /// This is the complement of getFCmpCode, which turns an opcode and two 80 /// operands into either a FCmp instruction, or a true/false constant. 81 static Value *getFCmpValue(unsigned Code, Value *LHS, Value *RHS, 82 InstCombiner::BuilderTy *Builder) { 83 const auto Pred = static_cast<FCmpInst::Predicate>(Code); 84 assert(FCmpInst::FCMP_FALSE <= Pred && Pred <= FCmpInst::FCMP_TRUE && 85 "Unexpected FCmp predicate!"); 86 if (Pred == FCmpInst::FCMP_FALSE) 87 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0); 88 if (Pred == FCmpInst::FCMP_TRUE) 89 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1); 90 return Builder->CreateFCmp(Pred, LHS, RHS); 91 } 92 93 /// \brief Transform BITWISE_OP(BSWAP(A),BSWAP(B)) to BSWAP(BITWISE_OP(A, B)) 94 /// \param I Binary operator to transform. 95 /// \return Pointer to node that must replace the original binary operator, or 96 /// null pointer if no transformation was made. 97 Value *InstCombiner::SimplifyBSwap(BinaryOperator &I) { 98 IntegerType *ITy = dyn_cast<IntegerType>(I.getType()); 99 100 // Can't do vectors. 101 if (I.getType()->isVectorTy()) return nullptr; 102 103 // Can only do bitwise ops. 104 unsigned Op = I.getOpcode(); 105 if (Op != Instruction::And && Op != Instruction::Or && 106 Op != Instruction::Xor) 107 return nullptr; 108 109 Value *OldLHS = I.getOperand(0); 110 Value *OldRHS = I.getOperand(1); 111 ConstantInt *ConstLHS = dyn_cast<ConstantInt>(OldLHS); 112 ConstantInt *ConstRHS = dyn_cast<ConstantInt>(OldRHS); 113 IntrinsicInst *IntrLHS = dyn_cast<IntrinsicInst>(OldLHS); 114 IntrinsicInst *IntrRHS = dyn_cast<IntrinsicInst>(OldRHS); 115 bool IsBswapLHS = (IntrLHS && IntrLHS->getIntrinsicID() == Intrinsic::bswap); 116 bool IsBswapRHS = (IntrRHS && IntrRHS->getIntrinsicID() == Intrinsic::bswap); 117 118 if (!IsBswapLHS && !IsBswapRHS) 119 return nullptr; 120 121 if (!IsBswapLHS && !ConstLHS) 122 return nullptr; 123 124 if (!IsBswapRHS && !ConstRHS) 125 return nullptr; 126 127 /// OP( BSWAP(x), BSWAP(y) ) -> BSWAP( OP(x, y) ) 128 /// OP( BSWAP(x), CONSTANT ) -> BSWAP( OP(x, BSWAP(CONSTANT) ) ) 129 Value *NewLHS = IsBswapLHS ? IntrLHS->getOperand(0) : 130 Builder->getInt(ConstLHS->getValue().byteSwap()); 131 132 Value *NewRHS = IsBswapRHS ? IntrRHS->getOperand(0) : 133 Builder->getInt(ConstRHS->getValue().byteSwap()); 134 135 Value *BinOp = nullptr; 136 if (Op == Instruction::And) 137 BinOp = Builder->CreateAnd(NewLHS, NewRHS); 138 else if (Op == Instruction::Or) 139 BinOp = Builder->CreateOr(NewLHS, NewRHS); 140 else //if (Op == Instruction::Xor) 141 BinOp = Builder->CreateXor(NewLHS, NewRHS); 142 143 Function *F = Intrinsic::getDeclaration(I.getModule(), Intrinsic::bswap, ITy); 144 return Builder->CreateCall(F, BinOp); 145 } 146 147 /// This handles expressions of the form ((val OP C1) & C2). Where 148 /// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. Op is 149 /// guaranteed to be a binary operator. 150 Instruction *InstCombiner::OptAndOp(Instruction *Op, 151 ConstantInt *OpRHS, 152 ConstantInt *AndRHS, 153 BinaryOperator &TheAnd) { 154 Value *X = Op->getOperand(0); 155 Constant *Together = nullptr; 156 if (!Op->isShift()) 157 Together = ConstantExpr::getAnd(AndRHS, OpRHS); 158 159 switch (Op->getOpcode()) { 160 case Instruction::Xor: 161 if (Op->hasOneUse()) { 162 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2) 163 Value *And = Builder->CreateAnd(X, AndRHS); 164 And->takeName(Op); 165 return BinaryOperator::CreateXor(And, Together); 166 } 167 break; 168 case Instruction::Or: 169 if (Op->hasOneUse()){ 170 if (Together != OpRHS) { 171 // (X | C1) & C2 --> (X | (C1&C2)) & C2 172 Value *Or = Builder->CreateOr(X, Together); 173 Or->takeName(Op); 174 return BinaryOperator::CreateAnd(Or, AndRHS); 175 } 176 177 ConstantInt *TogetherCI = dyn_cast<ConstantInt>(Together); 178 if (TogetherCI && !TogetherCI->isZero()){ 179 // (X | C1) & C2 --> (X & (C2^(C1&C2))) | C1 180 // NOTE: This reduces the number of bits set in the & mask, which 181 // can expose opportunities for store narrowing. 182 Together = ConstantExpr::getXor(AndRHS, Together); 183 Value *And = Builder->CreateAnd(X, Together); 184 And->takeName(Op); 185 return BinaryOperator::CreateOr(And, OpRHS); 186 } 187 } 188 189 break; 190 case Instruction::Add: 191 if (Op->hasOneUse()) { 192 // Adding a one to a single bit bit-field should be turned into an XOR 193 // of the bit. First thing to check is to see if this AND is with a 194 // single bit constant. 195 const APInt &AndRHSV = AndRHS->getValue(); 196 197 // If there is only one bit set. 198 if (AndRHSV.isPowerOf2()) { 199 // Ok, at this point, we know that we are masking the result of the 200 // ADD down to exactly one bit. If the constant we are adding has 201 // no bits set below this bit, then we can eliminate the ADD. 202 const APInt& AddRHS = OpRHS->getValue(); 203 204 // Check to see if any bits below the one bit set in AndRHSV are set. 205 if ((AddRHS & (AndRHSV-1)) == 0) { 206 // If not, the only thing that can effect the output of the AND is 207 // the bit specified by AndRHSV. If that bit is set, the effect of 208 // the XOR is to toggle the bit. If it is clear, then the ADD has 209 // no effect. 210 if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop 211 TheAnd.setOperand(0, X); 212 return &TheAnd; 213 } else { 214 // Pull the XOR out of the AND. 215 Value *NewAnd = Builder->CreateAnd(X, AndRHS); 216 NewAnd->takeName(Op); 217 return BinaryOperator::CreateXor(NewAnd, AndRHS); 218 } 219 } 220 } 221 } 222 break; 223 224 case Instruction::Shl: { 225 // We know that the AND will not produce any of the bits shifted in, so if 226 // the anded constant includes them, clear them now! 227 // 228 uint32_t BitWidth = AndRHS->getType()->getBitWidth(); 229 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth); 230 APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal)); 231 ConstantInt *CI = Builder->getInt(AndRHS->getValue() & ShlMask); 232 233 if (CI->getValue() == ShlMask) 234 // Masking out bits that the shift already masks. 235 return replaceInstUsesWith(TheAnd, Op); // No need for the and. 236 237 if (CI != AndRHS) { // Reducing bits set in and. 238 TheAnd.setOperand(1, CI); 239 return &TheAnd; 240 } 241 break; 242 } 243 case Instruction::LShr: { 244 // We know that the AND will not produce any of the bits shifted in, so if 245 // the anded constant includes them, clear them now! This only applies to 246 // unsigned shifts, because a signed shr may bring in set bits! 247 // 248 uint32_t BitWidth = AndRHS->getType()->getBitWidth(); 249 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth); 250 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal)); 251 ConstantInt *CI = Builder->getInt(AndRHS->getValue() & ShrMask); 252 253 if (CI->getValue() == ShrMask) 254 // Masking out bits that the shift already masks. 255 return replaceInstUsesWith(TheAnd, Op); 256 257 if (CI != AndRHS) { 258 TheAnd.setOperand(1, CI); // Reduce bits set in and cst. 259 return &TheAnd; 260 } 261 break; 262 } 263 case Instruction::AShr: 264 // Signed shr. 265 // See if this is shifting in some sign extension, then masking it out 266 // with an and. 267 if (Op->hasOneUse()) { 268 uint32_t BitWidth = AndRHS->getType()->getBitWidth(); 269 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth); 270 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal)); 271 Constant *C = Builder->getInt(AndRHS->getValue() & ShrMask); 272 if (C == AndRHS) { // Masking out bits shifted in. 273 // (Val ashr C1) & C2 -> (Val lshr C1) & C2 274 // Make the argument unsigned. 275 Value *ShVal = Op->getOperand(0); 276 ShVal = Builder->CreateLShr(ShVal, OpRHS, Op->getName()); 277 return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName()); 278 } 279 } 280 break; 281 } 282 return nullptr; 283 } 284 285 /// Emit a computation of: (V >= Lo && V < Hi) if Inside is true, otherwise 286 /// (V < Lo || V >= Hi). In practice, we emit the more efficient 287 /// (V-Lo) \<u Hi-Lo. This method expects that Lo <= Hi. isSigned indicates 288 /// whether to treat the V, Lo and HI as signed or not. IB is the location to 289 /// insert new instructions. 290 Value *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi, 291 bool isSigned, bool Inside) { 292 assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ? 293 ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() && 294 "Lo is not <= Hi in range emission code!"); 295 296 if (Inside) { 297 if (Lo == Hi) // Trivially false. 298 return Builder->getFalse(); 299 300 // V >= Min && V < Hi --> V < Hi 301 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) { 302 ICmpInst::Predicate pred = (isSigned ? 303 ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT); 304 return Builder->CreateICmp(pred, V, Hi); 305 } 306 307 // Emit V-Lo <u Hi-Lo 308 Constant *NegLo = ConstantExpr::getNeg(Lo); 309 Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off"); 310 Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi); 311 return Builder->CreateICmpULT(Add, UpperBound); 312 } 313 314 if (Lo == Hi) // Trivially true. 315 return Builder->getTrue(); 316 317 // V < Min || V >= Hi -> V > Hi-1 318 Hi = SubOne(cast<ConstantInt>(Hi)); 319 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) { 320 ICmpInst::Predicate pred = (isSigned ? 321 ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT); 322 return Builder->CreateICmp(pred, V, Hi); 323 } 324 325 // Emit V-Lo >u Hi-1-Lo 326 // Note that Hi has already had one subtracted from it, above. 327 ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo)); 328 Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off"); 329 Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi); 330 return Builder->CreateICmpUGT(Add, LowerBound); 331 } 332 333 /// Returns true iff Val consists of one contiguous run of 1s with any number 334 /// of 0s on either side. The 1s are allowed to wrap from LSB to MSB, 335 /// so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is 336 /// not, since all 1s are not contiguous. 337 static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) { 338 const APInt& V = Val->getValue(); 339 uint32_t BitWidth = Val->getType()->getBitWidth(); 340 if (!APIntOps::isShiftedMask(BitWidth, V)) return false; 341 342 // look for the first zero bit after the run of ones 343 MB = BitWidth - ((V - 1) ^ V).countLeadingZeros(); 344 // look for the first non-zero bit 345 ME = V.getActiveBits(); 346 return true; 347 } 348 349 /// This is part of an expression (LHS +/- RHS) & Mask, where isSub determines 350 /// whether the operator is a sub. If we can fold one of the following xforms: 351 /// 352 /// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask 353 /// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0 354 /// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0 355 /// 356 /// return (A +/- B). 357 /// 358 Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS, 359 ConstantInt *Mask, bool isSub, 360 Instruction &I) { 361 Instruction *LHSI = dyn_cast<Instruction>(LHS); 362 if (!LHSI || LHSI->getNumOperands() != 2 || 363 !isa<ConstantInt>(LHSI->getOperand(1))) return nullptr; 364 365 ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1)); 366 367 switch (LHSI->getOpcode()) { 368 default: return nullptr; 369 case Instruction::And: 370 if (ConstantExpr::getAnd(N, Mask) == Mask) { 371 // If the AndRHS is a power of two minus one (0+1+), this is simple. 372 if ((Mask->getValue().countLeadingZeros() + 373 Mask->getValue().countPopulation()) == 374 Mask->getValue().getBitWidth()) 375 break; 376 377 // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+ 378 // part, we don't need any explicit masks to take them out of A. If that 379 // is all N is, ignore it. 380 uint32_t MB = 0, ME = 0; 381 if (isRunOfOnes(Mask, MB, ME)) { // begin/end bit of run, inclusive 382 uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth(); 383 APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1)); 384 if (MaskedValueIsZero(RHS, Mask, 0, &I)) 385 break; 386 } 387 } 388 return nullptr; 389 case Instruction::Or: 390 case Instruction::Xor: 391 // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0 392 if ((Mask->getValue().countLeadingZeros() + 393 Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth() 394 && ConstantExpr::getAnd(N, Mask)->isNullValue()) 395 break; 396 return nullptr; 397 } 398 399 if (isSub) 400 return Builder->CreateSub(LHSI->getOperand(0), RHS, "fold"); 401 return Builder->CreateAdd(LHSI->getOperand(0), RHS, "fold"); 402 } 403 404 /// enum for classifying (icmp eq (A & B), C) and (icmp ne (A & B), C) 405 /// One of A and B is considered the mask, the other the value. This is 406 /// described as the "AMask" or "BMask" part of the enum. If the enum 407 /// contains only "Mask", then both A and B can be considered masks. 408 /// If A is the mask, then it was proven, that (A & C) == C. This 409 /// is trivial if C == A, or C == 0. If both A and C are constants, this 410 /// proof is also easy. 411 /// For the following explanations we assume that A is the mask. 412 /// The part "AllOnes" declares, that the comparison is true only 413 /// if (A & B) == A, or all bits of A are set in B. 414 /// Example: (icmp eq (A & 3), 3) -> FoldMskICmp_AMask_AllOnes 415 /// The part "AllZeroes" declares, that the comparison is true only 416 /// if (A & B) == 0, or all bits of A are cleared in B. 417 /// Example: (icmp eq (A & 3), 0) -> FoldMskICmp_Mask_AllZeroes 418 /// The part "Mixed" declares, that (A & B) == C and C might or might not 419 /// contain any number of one bits and zero bits. 420 /// Example: (icmp eq (A & 3), 1) -> FoldMskICmp_AMask_Mixed 421 /// The Part "Not" means, that in above descriptions "==" should be replaced 422 /// by "!=". 423 /// Example: (icmp ne (A & 3), 3) -> FoldMskICmp_AMask_NotAllOnes 424 /// If the mask A contains a single bit, then the following is equivalent: 425 /// (icmp eq (A & B), A) equals (icmp ne (A & B), 0) 426 /// (icmp ne (A & B), A) equals (icmp eq (A & B), 0) 427 enum MaskedICmpType { 428 FoldMskICmp_AMask_AllOnes = 1, 429 FoldMskICmp_AMask_NotAllOnes = 2, 430 FoldMskICmp_BMask_AllOnes = 4, 431 FoldMskICmp_BMask_NotAllOnes = 8, 432 FoldMskICmp_Mask_AllZeroes = 16, 433 FoldMskICmp_Mask_NotAllZeroes = 32, 434 FoldMskICmp_AMask_Mixed = 64, 435 FoldMskICmp_AMask_NotMixed = 128, 436 FoldMskICmp_BMask_Mixed = 256, 437 FoldMskICmp_BMask_NotMixed = 512 438 }; 439 440 /// Return the set of pattern classes (from MaskedICmpType) 441 /// that (icmp SCC (A & B), C) satisfies. 442 static unsigned getTypeOfMaskedICmp(Value* A, Value* B, Value* C, 443 ICmpInst::Predicate SCC) 444 { 445 ConstantInt *ACst = dyn_cast<ConstantInt>(A); 446 ConstantInt *BCst = dyn_cast<ConstantInt>(B); 447 ConstantInt *CCst = dyn_cast<ConstantInt>(C); 448 bool icmp_eq = (SCC == ICmpInst::ICMP_EQ); 449 bool icmp_abit = (ACst && !ACst->isZero() && 450 ACst->getValue().isPowerOf2()); 451 bool icmp_bbit = (BCst && !BCst->isZero() && 452 BCst->getValue().isPowerOf2()); 453 unsigned result = 0; 454 if (CCst && CCst->isZero()) { 455 // if C is zero, then both A and B qualify as mask 456 result |= (icmp_eq ? (FoldMskICmp_Mask_AllZeroes | 457 FoldMskICmp_AMask_Mixed | 458 FoldMskICmp_BMask_Mixed) 459 : (FoldMskICmp_Mask_NotAllZeroes | 460 FoldMskICmp_AMask_NotMixed | 461 FoldMskICmp_BMask_NotMixed)); 462 if (icmp_abit) 463 result |= (icmp_eq ? (FoldMskICmp_AMask_NotAllOnes | 464 FoldMskICmp_AMask_NotMixed) 465 : (FoldMskICmp_AMask_AllOnes | 466 FoldMskICmp_AMask_Mixed)); 467 if (icmp_bbit) 468 result |= (icmp_eq ? (FoldMskICmp_BMask_NotAllOnes | 469 FoldMskICmp_BMask_NotMixed) 470 : (FoldMskICmp_BMask_AllOnes | 471 FoldMskICmp_BMask_Mixed)); 472 return result; 473 } 474 if (A == C) { 475 result |= (icmp_eq ? (FoldMskICmp_AMask_AllOnes | 476 FoldMskICmp_AMask_Mixed) 477 : (FoldMskICmp_AMask_NotAllOnes | 478 FoldMskICmp_AMask_NotMixed)); 479 if (icmp_abit) 480 result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes | 481 FoldMskICmp_AMask_NotMixed) 482 : (FoldMskICmp_Mask_AllZeroes | 483 FoldMskICmp_AMask_Mixed)); 484 } else if (ACst && CCst && 485 ConstantExpr::getAnd(ACst, CCst) == CCst) { 486 result |= (icmp_eq ? FoldMskICmp_AMask_Mixed 487 : FoldMskICmp_AMask_NotMixed); 488 } 489 if (B == C) { 490 result |= (icmp_eq ? (FoldMskICmp_BMask_AllOnes | 491 FoldMskICmp_BMask_Mixed) 492 : (FoldMskICmp_BMask_NotAllOnes | 493 FoldMskICmp_BMask_NotMixed)); 494 if (icmp_bbit) 495 result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes | 496 FoldMskICmp_BMask_NotMixed) 497 : (FoldMskICmp_Mask_AllZeroes | 498 FoldMskICmp_BMask_Mixed)); 499 } else if (BCst && CCst && 500 ConstantExpr::getAnd(BCst, CCst) == CCst) { 501 result |= (icmp_eq ? FoldMskICmp_BMask_Mixed 502 : FoldMskICmp_BMask_NotMixed); 503 } 504 return result; 505 } 506 507 /// Convert an analysis of a masked ICmp into its equivalent if all boolean 508 /// operations had the opposite sense. Since each "NotXXX" flag (recording !=) 509 /// is adjacent to the corresponding normal flag (recording ==), this just 510 /// involves swapping those bits over. 511 static unsigned conjugateICmpMask(unsigned Mask) { 512 unsigned NewMask; 513 NewMask = (Mask & (FoldMskICmp_AMask_AllOnes | FoldMskICmp_BMask_AllOnes | 514 FoldMskICmp_Mask_AllZeroes | FoldMskICmp_AMask_Mixed | 515 FoldMskICmp_BMask_Mixed)) 516 << 1; 517 518 NewMask |= 519 (Mask & (FoldMskICmp_AMask_NotAllOnes | FoldMskICmp_BMask_NotAllOnes | 520 FoldMskICmp_Mask_NotAllZeroes | FoldMskICmp_AMask_NotMixed | 521 FoldMskICmp_BMask_NotMixed)) 522 >> 1; 523 524 return NewMask; 525 } 526 527 /// Decompose an icmp into the form ((X & Y) pred Z) if possible. 528 /// The returned predicate is either == or !=. Returns false if 529 /// decomposition fails. 530 static bool decomposeBitTestICmp(const ICmpInst *I, ICmpInst::Predicate &Pred, 531 Value *&X, Value *&Y, Value *&Z) { 532 ConstantInt *C = dyn_cast<ConstantInt>(I->getOperand(1)); 533 if (!C) 534 return false; 535 536 switch (I->getPredicate()) { 537 default: 538 return false; 539 case ICmpInst::ICMP_SLT: 540 // X < 0 is equivalent to (X & SignBit) != 0. 541 if (!C->isZero()) 542 return false; 543 Y = ConstantInt::get(I->getContext(), APInt::getSignBit(C->getBitWidth())); 544 Pred = ICmpInst::ICMP_NE; 545 break; 546 case ICmpInst::ICMP_SGT: 547 // X > -1 is equivalent to (X & SignBit) == 0. 548 if (!C->isAllOnesValue()) 549 return false; 550 Y = ConstantInt::get(I->getContext(), APInt::getSignBit(C->getBitWidth())); 551 Pred = ICmpInst::ICMP_EQ; 552 break; 553 case ICmpInst::ICMP_ULT: 554 // X <u 2^n is equivalent to (X & ~(2^n-1)) == 0. 555 if (!C->getValue().isPowerOf2()) 556 return false; 557 Y = ConstantInt::get(I->getContext(), -C->getValue()); 558 Pred = ICmpInst::ICMP_EQ; 559 break; 560 case ICmpInst::ICMP_UGT: 561 // X >u 2^n-1 is equivalent to (X & ~(2^n-1)) != 0. 562 if (!(C->getValue() + 1).isPowerOf2()) 563 return false; 564 Y = ConstantInt::get(I->getContext(), ~C->getValue()); 565 Pred = ICmpInst::ICMP_NE; 566 break; 567 } 568 569 X = I->getOperand(0); 570 Z = ConstantInt::getNullValue(C->getType()); 571 return true; 572 } 573 574 /// Handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E) 575 /// Return the set of pattern classes (from MaskedICmpType) 576 /// that both LHS and RHS satisfy. 577 static unsigned foldLogOpOfMaskedICmpsHelper(Value*& A, 578 Value*& B, Value*& C, 579 Value*& D, Value*& E, 580 ICmpInst *LHS, ICmpInst *RHS, 581 ICmpInst::Predicate &LHSCC, 582 ICmpInst::Predicate &RHSCC) { 583 if (LHS->getOperand(0)->getType() != RHS->getOperand(0)->getType()) return 0; 584 // vectors are not (yet?) supported 585 if (LHS->getOperand(0)->getType()->isVectorTy()) return 0; 586 587 // Here comes the tricky part: 588 // LHS might be of the form L11 & L12 == X, X == L21 & L22, 589 // and L11 & L12 == L21 & L22. The same goes for RHS. 590 // Now we must find those components L** and R**, that are equal, so 591 // that we can extract the parameters A, B, C, D, and E for the canonical 592 // above. 593 Value *L1 = LHS->getOperand(0); 594 Value *L2 = LHS->getOperand(1); 595 Value *L11,*L12,*L21,*L22; 596 // Check whether the icmp can be decomposed into a bit test. 597 if (decomposeBitTestICmp(LHS, LHSCC, L11, L12, L2)) { 598 L21 = L22 = L1 = nullptr; 599 } else { 600 // Look for ANDs in the LHS icmp. 601 if (!L1->getType()->isIntegerTy()) { 602 // You can icmp pointers, for example. They really aren't masks. 603 L11 = L12 = nullptr; 604 } else if (!match(L1, m_And(m_Value(L11), m_Value(L12)))) { 605 // Any icmp can be viewed as being trivially masked; if it allows us to 606 // remove one, it's worth it. 607 L11 = L1; 608 L12 = Constant::getAllOnesValue(L1->getType()); 609 } 610 611 if (!L2->getType()->isIntegerTy()) { 612 // You can icmp pointers, for example. They really aren't masks. 613 L21 = L22 = nullptr; 614 } else if (!match(L2, m_And(m_Value(L21), m_Value(L22)))) { 615 L21 = L2; 616 L22 = Constant::getAllOnesValue(L2->getType()); 617 } 618 } 619 620 // Bail if LHS was a icmp that can't be decomposed into an equality. 621 if (!ICmpInst::isEquality(LHSCC)) 622 return 0; 623 624 Value *R1 = RHS->getOperand(0); 625 Value *R2 = RHS->getOperand(1); 626 Value *R11,*R12; 627 bool ok = false; 628 if (decomposeBitTestICmp(RHS, RHSCC, R11, R12, R2)) { 629 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) { 630 A = R11; D = R12; 631 } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) { 632 A = R12; D = R11; 633 } else { 634 return 0; 635 } 636 E = R2; R1 = nullptr; ok = true; 637 } else if (R1->getType()->isIntegerTy()) { 638 if (!match(R1, m_And(m_Value(R11), m_Value(R12)))) { 639 // As before, model no mask as a trivial mask if it'll let us do an 640 // optimization. 641 R11 = R1; 642 R12 = Constant::getAllOnesValue(R1->getType()); 643 } 644 645 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) { 646 A = R11; D = R12; E = R2; ok = true; 647 } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) { 648 A = R12; D = R11; E = R2; ok = true; 649 } 650 } 651 652 // Bail if RHS was a icmp that can't be decomposed into an equality. 653 if (!ICmpInst::isEquality(RHSCC)) 654 return 0; 655 656 // Look for ANDs on the right side of the RHS icmp. 657 if (!ok && R2->getType()->isIntegerTy()) { 658 if (!match(R2, m_And(m_Value(R11), m_Value(R12)))) { 659 R11 = R2; 660 R12 = Constant::getAllOnesValue(R2->getType()); 661 } 662 663 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) { 664 A = R11; D = R12; E = R1; ok = true; 665 } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) { 666 A = R12; D = R11; E = R1; ok = true; 667 } else { 668 return 0; 669 } 670 } 671 if (!ok) 672 return 0; 673 674 if (L11 == A) { 675 B = L12; C = L2; 676 } else if (L12 == A) { 677 B = L11; C = L2; 678 } else if (L21 == A) { 679 B = L22; C = L1; 680 } else if (L22 == A) { 681 B = L21; C = L1; 682 } 683 684 unsigned LeftType = getTypeOfMaskedICmp(A, B, C, LHSCC); 685 unsigned RightType = getTypeOfMaskedICmp(A, D, E, RHSCC); 686 return LeftType & RightType; 687 } 688 689 /// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E) 690 /// into a single (icmp(A & X) ==/!= Y). 691 static Value *foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, 692 llvm::InstCombiner::BuilderTy *Builder) { 693 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr; 694 ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate(); 695 unsigned Mask = foldLogOpOfMaskedICmpsHelper(A, B, C, D, E, LHS, RHS, 696 LHSCC, RHSCC); 697 if (Mask == 0) return nullptr; 698 assert(ICmpInst::isEquality(LHSCC) && ICmpInst::isEquality(RHSCC) && 699 "foldLogOpOfMaskedICmpsHelper must return an equality predicate."); 700 701 // In full generality: 702 // (icmp (A & B) Op C) | (icmp (A & D) Op E) 703 // == ![ (icmp (A & B) !Op C) & (icmp (A & D) !Op E) ] 704 // 705 // If the latter can be converted into (icmp (A & X) Op Y) then the former is 706 // equivalent to (icmp (A & X) !Op Y). 707 // 708 // Therefore, we can pretend for the rest of this function that we're dealing 709 // with the conjunction, provided we flip the sense of any comparisons (both 710 // input and output). 711 712 // In most cases we're going to produce an EQ for the "&&" case. 713 ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 714 if (!IsAnd) { 715 // Convert the masking analysis into its equivalent with negated 716 // comparisons. 717 Mask = conjugateICmpMask(Mask); 718 } 719 720 if (Mask & FoldMskICmp_Mask_AllZeroes) { 721 // (icmp eq (A & B), 0) & (icmp eq (A & D), 0) 722 // -> (icmp eq (A & (B|D)), 0) 723 Value *NewOr = Builder->CreateOr(B, D); 724 Value *NewAnd = Builder->CreateAnd(A, NewOr); 725 // We can't use C as zero because we might actually handle 726 // (icmp ne (A & B), B) & (icmp ne (A & D), D) 727 // with B and D, having a single bit set. 728 Value *Zero = Constant::getNullValue(A->getType()); 729 return Builder->CreateICmp(NewCC, NewAnd, Zero); 730 } 731 if (Mask & FoldMskICmp_BMask_AllOnes) { 732 // (icmp eq (A & B), B) & (icmp eq (A & D), D) 733 // -> (icmp eq (A & (B|D)), (B|D)) 734 Value *NewOr = Builder->CreateOr(B, D); 735 Value *NewAnd = Builder->CreateAnd(A, NewOr); 736 return Builder->CreateICmp(NewCC, NewAnd, NewOr); 737 } 738 if (Mask & FoldMskICmp_AMask_AllOnes) { 739 // (icmp eq (A & B), A) & (icmp eq (A & D), A) 740 // -> (icmp eq (A & (B&D)), A) 741 Value *NewAnd1 = Builder->CreateAnd(B, D); 742 Value *NewAnd2 = Builder->CreateAnd(A, NewAnd1); 743 return Builder->CreateICmp(NewCC, NewAnd2, A); 744 } 745 746 // Remaining cases assume at least that B and D are constant, and depend on 747 // their actual values. This isn't strictly necessary, just a "handle the 748 // easy cases for now" decision. 749 ConstantInt *BCst = dyn_cast<ConstantInt>(B); 750 if (!BCst) return nullptr; 751 ConstantInt *DCst = dyn_cast<ConstantInt>(D); 752 if (!DCst) return nullptr; 753 754 if (Mask & (FoldMskICmp_Mask_NotAllZeroes | FoldMskICmp_BMask_NotAllOnes)) { 755 // (icmp ne (A & B), 0) & (icmp ne (A & D), 0) and 756 // (icmp ne (A & B), B) & (icmp ne (A & D), D) 757 // -> (icmp ne (A & B), 0) or (icmp ne (A & D), 0) 758 // Only valid if one of the masks is a superset of the other (check "B&D" is 759 // the same as either B or D). 760 APInt NewMask = BCst->getValue() & DCst->getValue(); 761 762 if (NewMask == BCst->getValue()) 763 return LHS; 764 else if (NewMask == DCst->getValue()) 765 return RHS; 766 } 767 if (Mask & FoldMskICmp_AMask_NotAllOnes) { 768 // (icmp ne (A & B), B) & (icmp ne (A & D), D) 769 // -> (icmp ne (A & B), A) or (icmp ne (A & D), A) 770 // Only valid if one of the masks is a superset of the other (check "B|D" is 771 // the same as either B or D). 772 APInt NewMask = BCst->getValue() | DCst->getValue(); 773 774 if (NewMask == BCst->getValue()) 775 return LHS; 776 else if (NewMask == DCst->getValue()) 777 return RHS; 778 } 779 if (Mask & FoldMskICmp_BMask_Mixed) { 780 // (icmp eq (A & B), C) & (icmp eq (A & D), E) 781 // We already know that B & C == C && D & E == E. 782 // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of 783 // C and E, which are shared by both the mask B and the mask D, don't 784 // contradict, then we can transform to 785 // -> (icmp eq (A & (B|D)), (C|E)) 786 // Currently, we only handle the case of B, C, D, and E being constant. 787 // We can't simply use C and E because we might actually handle 788 // (icmp ne (A & B), B) & (icmp eq (A & D), D) 789 // with B and D, having a single bit set. 790 ConstantInt *CCst = dyn_cast<ConstantInt>(C); 791 if (!CCst) return nullptr; 792 ConstantInt *ECst = dyn_cast<ConstantInt>(E); 793 if (!ECst) return nullptr; 794 if (LHSCC != NewCC) 795 CCst = cast<ConstantInt>(ConstantExpr::getXor(BCst, CCst)); 796 if (RHSCC != NewCC) 797 ECst = cast<ConstantInt>(ConstantExpr::getXor(DCst, ECst)); 798 // If there is a conflict, we should actually return a false for the 799 // whole construct. 800 if (((BCst->getValue() & DCst->getValue()) & 801 (CCst->getValue() ^ ECst->getValue())) != 0) 802 return ConstantInt::get(LHS->getType(), !IsAnd); 803 Value *NewOr1 = Builder->CreateOr(B, D); 804 Value *NewOr2 = ConstantExpr::getOr(CCst, ECst); 805 Value *NewAnd = Builder->CreateAnd(A, NewOr1); 806 return Builder->CreateICmp(NewCC, NewAnd, NewOr2); 807 } 808 return nullptr; 809 } 810 811 /// Try to fold a signed range checked with lower bound 0 to an unsigned icmp. 812 /// Example: (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n 813 /// If \p Inverted is true then the check is for the inverted range, e.g. 814 /// (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n 815 Value *InstCombiner::simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, 816 bool Inverted) { 817 // Check the lower range comparison, e.g. x >= 0 818 // InstCombine already ensured that if there is a constant it's on the RHS. 819 ConstantInt *RangeStart = dyn_cast<ConstantInt>(Cmp0->getOperand(1)); 820 if (!RangeStart) 821 return nullptr; 822 823 ICmpInst::Predicate Pred0 = (Inverted ? Cmp0->getInversePredicate() : 824 Cmp0->getPredicate()); 825 826 // Accept x > -1 or x >= 0 (after potentially inverting the predicate). 827 if (!((Pred0 == ICmpInst::ICMP_SGT && RangeStart->isMinusOne()) || 828 (Pred0 == ICmpInst::ICMP_SGE && RangeStart->isZero()))) 829 return nullptr; 830 831 ICmpInst::Predicate Pred1 = (Inverted ? Cmp1->getInversePredicate() : 832 Cmp1->getPredicate()); 833 834 Value *Input = Cmp0->getOperand(0); 835 Value *RangeEnd; 836 if (Cmp1->getOperand(0) == Input) { 837 // For the upper range compare we have: icmp x, n 838 RangeEnd = Cmp1->getOperand(1); 839 } else if (Cmp1->getOperand(1) == Input) { 840 // For the upper range compare we have: icmp n, x 841 RangeEnd = Cmp1->getOperand(0); 842 Pred1 = ICmpInst::getSwappedPredicate(Pred1); 843 } else { 844 return nullptr; 845 } 846 847 // Check the upper range comparison, e.g. x < n 848 ICmpInst::Predicate NewPred; 849 switch (Pred1) { 850 case ICmpInst::ICMP_SLT: NewPred = ICmpInst::ICMP_ULT; break; 851 case ICmpInst::ICMP_SLE: NewPred = ICmpInst::ICMP_ULE; break; 852 default: return nullptr; 853 } 854 855 // This simplification is only valid if the upper range is not negative. 856 bool IsNegative, IsNotNegative; 857 ComputeSignBit(RangeEnd, IsNotNegative, IsNegative, /*Depth=*/0, Cmp1); 858 if (!IsNotNegative) 859 return nullptr; 860 861 if (Inverted) 862 NewPred = ICmpInst::getInversePredicate(NewPred); 863 864 return Builder->CreateICmp(NewPred, Input, RangeEnd); 865 } 866 867 /// Fold (icmp)&(icmp) if possible. 868 Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) { 869 ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate(); 870 871 // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B) 872 if (PredicatesFoldable(LHSCC, RHSCC)) { 873 if (LHS->getOperand(0) == RHS->getOperand(1) && 874 LHS->getOperand(1) == RHS->getOperand(0)) 875 LHS->swapOperands(); 876 if (LHS->getOperand(0) == RHS->getOperand(0) && 877 LHS->getOperand(1) == RHS->getOperand(1)) { 878 Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1); 879 unsigned Code = getICmpCode(LHS) & getICmpCode(RHS); 880 bool isSigned = LHS->isSigned() || RHS->isSigned(); 881 return getNewICmpValue(isSigned, Code, Op0, Op1, Builder); 882 } 883 } 884 885 // handle (roughly): (icmp eq (A & B), C) & (icmp eq (A & D), E) 886 if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, true, Builder)) 887 return V; 888 889 // E.g. (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n 890 if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/false)) 891 return V; 892 893 // E.g. (icmp slt x, n) & (icmp sge x, 0) --> icmp ult x, n 894 if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/false)) 895 return V; 896 897 // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2). 898 Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0); 899 ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1)); 900 ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1)); 901 if (!LHSCst || !RHSCst) return nullptr; 902 903 if (LHSCst == RHSCst && LHSCC == RHSCC) { 904 // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C) 905 // where C is a power of 2 or 906 // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0) 907 if ((LHSCC == ICmpInst::ICMP_ULT && LHSCst->getValue().isPowerOf2()) || 908 (LHSCC == ICmpInst::ICMP_EQ && LHSCst->isZero())) { 909 Value *NewOr = Builder->CreateOr(Val, Val2); 910 return Builder->CreateICmp(LHSCC, NewOr, LHSCst); 911 } 912 } 913 914 // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2 915 // where CMAX is the all ones value for the truncated type, 916 // iff the lower bits of C2 and CA are zero. 917 if (LHSCC == ICmpInst::ICMP_EQ && LHSCC == RHSCC && 918 LHS->hasOneUse() && RHS->hasOneUse()) { 919 Value *V; 920 ConstantInt *AndCst, *SmallCst = nullptr, *BigCst = nullptr; 921 922 // (trunc x) == C1 & (and x, CA) == C2 923 // (and x, CA) == C2 & (trunc x) == C1 924 if (match(Val2, m_Trunc(m_Value(V))) && 925 match(Val, m_And(m_Specific(V), m_ConstantInt(AndCst)))) { 926 SmallCst = RHSCst; 927 BigCst = LHSCst; 928 } else if (match(Val, m_Trunc(m_Value(V))) && 929 match(Val2, m_And(m_Specific(V), m_ConstantInt(AndCst)))) { 930 SmallCst = LHSCst; 931 BigCst = RHSCst; 932 } 933 934 if (SmallCst && BigCst) { 935 unsigned BigBitSize = BigCst->getType()->getBitWidth(); 936 unsigned SmallBitSize = SmallCst->getType()->getBitWidth(); 937 938 // Check that the low bits are zero. 939 APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize); 940 if ((Low & AndCst->getValue()) == 0 && (Low & BigCst->getValue()) == 0) { 941 Value *NewAnd = Builder->CreateAnd(V, Low | AndCst->getValue()); 942 APInt N = SmallCst->getValue().zext(BigBitSize) | BigCst->getValue(); 943 Value *NewVal = ConstantInt::get(AndCst->getType()->getContext(), N); 944 return Builder->CreateICmp(LHSCC, NewAnd, NewVal); 945 } 946 } 947 } 948 949 // From here on, we only handle: 950 // (icmp1 A, C1) & (icmp2 A, C2) --> something simpler. 951 if (Val != Val2) return nullptr; 952 953 // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere. 954 if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE || 955 RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE || 956 LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE || 957 RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE) 958 return nullptr; 959 960 // We can't fold (ugt x, C) & (sgt x, C2). 961 if (!PredicatesFoldable(LHSCC, RHSCC)) 962 return nullptr; 963 964 // Ensure that the larger constant is on the RHS. 965 bool ShouldSwap; 966 if (CmpInst::isSigned(LHSCC) || 967 (ICmpInst::isEquality(LHSCC) && 968 CmpInst::isSigned(RHSCC))) 969 ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue()); 970 else 971 ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue()); 972 973 if (ShouldSwap) { 974 std::swap(LHS, RHS); 975 std::swap(LHSCst, RHSCst); 976 std::swap(LHSCC, RHSCC); 977 } 978 979 // At this point, we know we have two icmp instructions 980 // comparing a value against two constants and and'ing the result 981 // together. Because of the above check, we know that we only have 982 // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know 983 // (from the icmp folding check above), that the two constants 984 // are not equal and that the larger constant is on the RHS 985 assert(LHSCst != RHSCst && "Compares not folded above?"); 986 987 switch (LHSCC) { 988 default: llvm_unreachable("Unknown integer condition code!"); 989 case ICmpInst::ICMP_EQ: 990 switch (RHSCC) { 991 default: llvm_unreachable("Unknown integer condition code!"); 992 case ICmpInst::ICMP_NE: // (X == 13 & X != 15) -> X == 13 993 case ICmpInst::ICMP_ULT: // (X == 13 & X < 15) -> X == 13 994 case ICmpInst::ICMP_SLT: // (X == 13 & X < 15) -> X == 13 995 return LHS; 996 } 997 case ICmpInst::ICMP_NE: 998 switch (RHSCC) { 999 default: llvm_unreachable("Unknown integer condition code!"); 1000 case ICmpInst::ICMP_ULT: 1001 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13 1002 return Builder->CreateICmpULT(Val, LHSCst); 1003 if (LHSCst->isNullValue()) // (X != 0 & X u< 14) -> X-1 u< 13 1004 return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, false, true); 1005 break; // (X != 13 & X u< 15) -> no change 1006 case ICmpInst::ICMP_SLT: 1007 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13 1008 return Builder->CreateICmpSLT(Val, LHSCst); 1009 break; // (X != 13 & X s< 15) -> no change 1010 case ICmpInst::ICMP_EQ: // (X != 13 & X == 15) -> X == 15 1011 case ICmpInst::ICMP_UGT: // (X != 13 & X u> 15) -> X u> 15 1012 case ICmpInst::ICMP_SGT: // (X != 13 & X s> 15) -> X s> 15 1013 return RHS; 1014 case ICmpInst::ICMP_NE: 1015 // Special case to get the ordering right when the values wrap around 1016 // zero. 1017 if (LHSCst->getValue() == 0 && RHSCst->getValue().isAllOnesValue()) 1018 std::swap(LHSCst, RHSCst); 1019 if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1 1020 Constant *AddCST = ConstantExpr::getNeg(LHSCst); 1021 Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off"); 1022 return Builder->CreateICmpUGT(Add, ConstantInt::get(Add->getType(), 1), 1023 Val->getName()+".cmp"); 1024 } 1025 break; // (X != 13 & X != 15) -> no change 1026 } 1027 break; 1028 case ICmpInst::ICMP_ULT: 1029 switch (RHSCC) { 1030 default: llvm_unreachable("Unknown integer condition code!"); 1031 case ICmpInst::ICMP_EQ: // (X u< 13 & X == 15) -> false 1032 case ICmpInst::ICMP_UGT: // (X u< 13 & X u> 15) -> false 1033 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0); 1034 case ICmpInst::ICMP_SGT: // (X u< 13 & X s> 15) -> no change 1035 break; 1036 case ICmpInst::ICMP_NE: // (X u< 13 & X != 15) -> X u< 13 1037 case ICmpInst::ICMP_ULT: // (X u< 13 & X u< 15) -> X u< 13 1038 return LHS; 1039 case ICmpInst::ICMP_SLT: // (X u< 13 & X s< 15) -> no change 1040 break; 1041 } 1042 break; 1043 case ICmpInst::ICMP_SLT: 1044 switch (RHSCC) { 1045 default: llvm_unreachable("Unknown integer condition code!"); 1046 case ICmpInst::ICMP_UGT: // (X s< 13 & X u> 15) -> no change 1047 break; 1048 case ICmpInst::ICMP_NE: // (X s< 13 & X != 15) -> X < 13 1049 case ICmpInst::ICMP_SLT: // (X s< 13 & X s< 15) -> X < 13 1050 return LHS; 1051 case ICmpInst::ICMP_ULT: // (X s< 13 & X u< 15) -> no change 1052 break; 1053 } 1054 break; 1055 case ICmpInst::ICMP_UGT: 1056 switch (RHSCC) { 1057 default: llvm_unreachable("Unknown integer condition code!"); 1058 case ICmpInst::ICMP_EQ: // (X u> 13 & X == 15) -> X == 15 1059 case ICmpInst::ICMP_UGT: // (X u> 13 & X u> 15) -> X u> 15 1060 return RHS; 1061 case ICmpInst::ICMP_SGT: // (X u> 13 & X s> 15) -> no change 1062 break; 1063 case ICmpInst::ICMP_NE: 1064 if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14 1065 return Builder->CreateICmp(LHSCC, Val, RHSCst); 1066 break; // (X u> 13 & X != 15) -> no change 1067 case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) -> (X-14) <u 1 1068 return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, false, true); 1069 case ICmpInst::ICMP_SLT: // (X u> 13 & X s< 15) -> no change 1070 break; 1071 } 1072 break; 1073 case ICmpInst::ICMP_SGT: 1074 switch (RHSCC) { 1075 default: llvm_unreachable("Unknown integer condition code!"); 1076 case ICmpInst::ICMP_EQ: // (X s> 13 & X == 15) -> X == 15 1077 case ICmpInst::ICMP_SGT: // (X s> 13 & X s> 15) -> X s> 15 1078 return RHS; 1079 case ICmpInst::ICMP_UGT: // (X s> 13 & X u> 15) -> no change 1080 break; 1081 case ICmpInst::ICMP_NE: 1082 if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14 1083 return Builder->CreateICmp(LHSCC, Val, RHSCst); 1084 break; // (X s> 13 & X != 15) -> no change 1085 case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) -> (X-14) s< 1 1086 return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, true, true); 1087 case ICmpInst::ICMP_ULT: // (X s> 13 & X u< 15) -> no change 1088 break; 1089 } 1090 break; 1091 } 1092 1093 return nullptr; 1094 } 1095 1096 /// Optimize (fcmp)&(fcmp). NOTE: Unlike the rest of instcombine, this returns 1097 /// a Value which should already be inserted into the function. 1098 Value *InstCombiner::FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS) { 1099 Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1); 1100 Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1); 1101 FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate(); 1102 1103 if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) { 1104 // Swap RHS operands to match LHS. 1105 Op1CC = FCmpInst::getSwappedPredicate(Op1CC); 1106 std::swap(Op1LHS, Op1RHS); 1107 } 1108 1109 // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y). 1110 // Suppose the relation between x and y is R, where R is one of 1111 // U(1000), L(0100), G(0010) or E(0001), and CC0 and CC1 are the bitmasks for 1112 // testing the desired relations. 1113 // 1114 // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this: 1115 // bool(R & CC0) && bool(R & CC1) 1116 // = bool((R & CC0) & (R & CC1)) 1117 // = bool(R & (CC0 & CC1)) <= by re-association, commutation, and idempotency 1118 if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) 1119 return getFCmpValue(getFCmpCode(Op0CC) & getFCmpCode(Op1CC), Op0LHS, Op0RHS, 1120 Builder); 1121 1122 if (LHS->getPredicate() == FCmpInst::FCMP_ORD && 1123 RHS->getPredicate() == FCmpInst::FCMP_ORD) { 1124 if (LHS->getOperand(0)->getType() != RHS->getOperand(0)->getType()) 1125 return nullptr; 1126 1127 // (fcmp ord x, c) & (fcmp ord y, c) -> (fcmp ord x, y) 1128 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1))) 1129 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) { 1130 // If either of the constants are nans, then the whole thing returns 1131 // false. 1132 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN()) 1133 return Builder->getFalse(); 1134 return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0)); 1135 } 1136 1137 // Handle vector zeros. This occurs because the canonical form of 1138 // "fcmp ord x,x" is "fcmp ord x, 0". 1139 if (isa<ConstantAggregateZero>(LHS->getOperand(1)) && 1140 isa<ConstantAggregateZero>(RHS->getOperand(1))) 1141 return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0)); 1142 return nullptr; 1143 } 1144 1145 return nullptr; 1146 } 1147 1148 /// Match De Morgan's Laws: 1149 /// (~A & ~B) == (~(A | B)) 1150 /// (~A | ~B) == (~(A & B)) 1151 static Instruction *matchDeMorgansLaws(BinaryOperator &I, 1152 InstCombiner::BuilderTy *Builder) { 1153 auto Opcode = I.getOpcode(); 1154 assert((Opcode == Instruction::And || Opcode == Instruction::Or) && 1155 "Trying to match De Morgan's Laws with something other than and/or"); 1156 // Flip the logic operation. 1157 if (Opcode == Instruction::And) 1158 Opcode = Instruction::Or; 1159 else 1160 Opcode = Instruction::And; 1161 1162 Value *Op0 = I.getOperand(0); 1163 Value *Op1 = I.getOperand(1); 1164 // TODO: Use pattern matchers instead of dyn_cast. 1165 if (Value *Op0NotVal = dyn_castNotVal(Op0)) 1166 if (Value *Op1NotVal = dyn_castNotVal(Op1)) 1167 if (Op0->hasOneUse() && Op1->hasOneUse()) { 1168 Value *LogicOp = Builder->CreateBinOp(Opcode, Op0NotVal, Op1NotVal, 1169 I.getName() + ".demorgan"); 1170 return BinaryOperator::CreateNot(LogicOp); 1171 } 1172 1173 // De Morgan's Law in disguise: 1174 // (zext(bool A) ^ 1) & (zext(bool B) ^ 1) -> zext(~(A | B)) 1175 // (zext(bool A) ^ 1) | (zext(bool B) ^ 1) -> zext(~(A & B)) 1176 Value *A = nullptr; 1177 Value *B = nullptr; 1178 ConstantInt *C1 = nullptr; 1179 if (match(Op0, m_OneUse(m_Xor(m_ZExt(m_Value(A)), m_ConstantInt(C1)))) && 1180 match(Op1, m_OneUse(m_Xor(m_ZExt(m_Value(B)), m_Specific(C1))))) { 1181 // TODO: This check could be loosened to handle different type sizes. 1182 // Alternatively, we could fix the definition of m_Not to recognize a not 1183 // operation hidden by a zext? 1184 if (A->getType()->isIntegerTy(1) && B->getType()->isIntegerTy(1) && 1185 C1->isOne()) { 1186 Value *LogicOp = Builder->CreateBinOp(Opcode, A, B, 1187 I.getName() + ".demorgan"); 1188 Value *Not = Builder->CreateNot(LogicOp); 1189 return CastInst::CreateZExtOrBitCast(Not, I.getType()); 1190 } 1191 } 1192 1193 return nullptr; 1194 } 1195 1196 Instruction *InstCombiner::foldCastedBitwiseLogic(BinaryOperator &I) { 1197 auto LogicOpc = I.getOpcode(); 1198 assert((LogicOpc == Instruction::And || LogicOpc == Instruction::Or || 1199 LogicOpc == Instruction::Xor) && 1200 "Unexpected opcode for bitwise logic folding"); 1201 1202 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1203 CastInst *Cast0 = dyn_cast<CastInst>(Op0); 1204 if (!Cast0) 1205 return nullptr; 1206 1207 // This must be a cast from an integer or integer vector source type to allow 1208 // transformation of the logic operation to the source type. 1209 Type *DestTy = I.getType(); 1210 Type *SrcTy = Cast0->getSrcTy(); 1211 if (!SrcTy->isIntOrIntVectorTy()) 1212 return nullptr; 1213 1214 // If one operand is a bitcast and the other is a constant, move the logic 1215 // operation ahead of the bitcast. That is, do the logic operation in the 1216 // original type. This can eliminate useless bitcasts and allow normal 1217 // combines that would otherwise be impeded by the bitcast. Canonicalization 1218 // ensures that if there is a constant operand, it will be the second operand. 1219 Value *BC = nullptr; 1220 Constant *C = nullptr; 1221 if ((match(Op0, m_BitCast(m_Value(BC))) && match(Op1, m_Constant(C)))) { 1222 Value *NewConstant = ConstantExpr::getBitCast(C, SrcTy); 1223 Value *NewOp = Builder->CreateBinOp(LogicOpc, BC, NewConstant, I.getName()); 1224 return CastInst::CreateBitOrPointerCast(NewOp, DestTy); 1225 } 1226 1227 CastInst *Cast1 = dyn_cast<CastInst>(Op1); 1228 if (!Cast1) 1229 return nullptr; 1230 1231 // Both operands of the logic operation are casts. The casts must be of the 1232 // same type for reduction. 1233 auto CastOpcode = Cast0->getOpcode(); 1234 if (CastOpcode != Cast1->getOpcode() || SrcTy != Cast1->getSrcTy()) 1235 return nullptr; 1236 1237 Value *Cast0Src = Cast0->getOperand(0); 1238 Value *Cast1Src = Cast1->getOperand(0); 1239 1240 // fold (logic (cast A), (cast B)) -> (cast (logic A, B)) 1241 1242 // Only do this if the casts both really cause code to be generated. 1243 if ((!isa<ICmpInst>(Cast0Src) || !isa<ICmpInst>(Cast1Src)) && 1244 ShouldOptimizeCast(CastOpcode, Cast0Src, DestTy) && 1245 ShouldOptimizeCast(CastOpcode, Cast1Src, DestTy)) { 1246 Value *NewOp = Builder->CreateBinOp(LogicOpc, Cast0Src, Cast1Src, 1247 I.getName()); 1248 return CastInst::Create(CastOpcode, NewOp, DestTy); 1249 } 1250 1251 // For now, only 'and'/'or' have optimizations after this. 1252 if (LogicOpc == Instruction::Xor) 1253 return nullptr; 1254 1255 // If this is logic(cast(icmp), cast(icmp)), try to fold this even if the 1256 // cast is otherwise not optimizable. This happens for vector sexts. 1257 ICmpInst *ICmp0 = dyn_cast<ICmpInst>(Cast0Src); 1258 ICmpInst *ICmp1 = dyn_cast<ICmpInst>(Cast1Src); 1259 if (ICmp0 && ICmp1) { 1260 Value *Res = LogicOpc == Instruction::And ? FoldAndOfICmps(ICmp0, ICmp1) 1261 : FoldOrOfICmps(ICmp0, ICmp1, &I); 1262 if (Res) 1263 return CastInst::Create(CastOpcode, Res, DestTy); 1264 return nullptr; 1265 } 1266 1267 // If this is logic(cast(fcmp), cast(fcmp)), try to fold this even if the 1268 // cast is otherwise not optimizable. This happens for vector sexts. 1269 FCmpInst *FCmp0 = dyn_cast<FCmpInst>(Cast0Src); 1270 FCmpInst *FCmp1 = dyn_cast<FCmpInst>(Cast1Src); 1271 if (FCmp0 && FCmp1) { 1272 Value *Res = LogicOpc == Instruction::And ? FoldAndOfFCmps(FCmp0, FCmp1) 1273 : FoldOrOfFCmps(FCmp0, FCmp1); 1274 if (Res) 1275 return CastInst::Create(CastOpcode, Res, DestTy); 1276 return nullptr; 1277 } 1278 1279 return nullptr; 1280 } 1281 1282 static Instruction *foldBoolSextMaskToSelect(BinaryOperator &I) { 1283 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1284 1285 // Canonicalize SExt or Not to the LHS 1286 if (match(Op1, m_SExt(m_Value())) || match(Op1, m_Not(m_Value()))) { 1287 std::swap(Op0, Op1); 1288 } 1289 1290 // Fold (and (sext bool to A), B) --> (select bool, B, 0) 1291 Value *X = nullptr; 1292 if (match(Op0, m_SExt(m_Value(X))) && 1293 X->getType()->getScalarType()->isIntegerTy(1)) { 1294 Value *Zero = Constant::getNullValue(Op1->getType()); 1295 return SelectInst::Create(X, Op1, Zero); 1296 } 1297 1298 // Fold (and ~(sext bool to A), B) --> (select bool, 0, B) 1299 if (match(Op0, m_Not(m_SExt(m_Value(X)))) && 1300 X->getType()->getScalarType()->isIntegerTy(1)) { 1301 Value *Zero = Constant::getNullValue(Op0->getType()); 1302 return SelectInst::Create(X, Zero, Op1); 1303 } 1304 1305 return nullptr; 1306 } 1307 1308 Instruction *InstCombiner::visitAnd(BinaryOperator &I) { 1309 bool Changed = SimplifyAssociativeOrCommutative(I); 1310 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1311 1312 if (Value *V = SimplifyVectorOp(I)) 1313 return replaceInstUsesWith(I, V); 1314 1315 if (Value *V = SimplifyAndInst(Op0, Op1, DL, TLI, DT, AC)) 1316 return replaceInstUsesWith(I, V); 1317 1318 // (A|B)&(A|C) -> A|(B&C) etc 1319 if (Value *V = SimplifyUsingDistributiveLaws(I)) 1320 return replaceInstUsesWith(I, V); 1321 1322 // See if we can simplify any instructions used by the instruction whose sole 1323 // purpose is to compute bits we don't care about. 1324 if (SimplifyDemandedInstructionBits(I)) 1325 return &I; 1326 1327 if (Value *V = SimplifyBSwap(I)) 1328 return replaceInstUsesWith(I, V); 1329 1330 if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) { 1331 const APInt &AndRHSMask = AndRHS->getValue(); 1332 1333 // Optimize a variety of ((val OP C1) & C2) combinations... 1334 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) { 1335 Value *Op0LHS = Op0I->getOperand(0); 1336 Value *Op0RHS = Op0I->getOperand(1); 1337 switch (Op0I->getOpcode()) { 1338 default: break; 1339 case Instruction::Xor: 1340 case Instruction::Or: { 1341 // If the mask is only needed on one incoming arm, push it up. 1342 if (!Op0I->hasOneUse()) break; 1343 1344 APInt NotAndRHS(~AndRHSMask); 1345 if (MaskedValueIsZero(Op0LHS, NotAndRHS, 0, &I)) { 1346 // Not masking anything out for the LHS, move to RHS. 1347 Value *NewRHS = Builder->CreateAnd(Op0RHS, AndRHS, 1348 Op0RHS->getName()+".masked"); 1349 return BinaryOperator::Create(Op0I->getOpcode(), Op0LHS, NewRHS); 1350 } 1351 if (!isa<Constant>(Op0RHS) && 1352 MaskedValueIsZero(Op0RHS, NotAndRHS, 0, &I)) { 1353 // Not masking anything out for the RHS, move to LHS. 1354 Value *NewLHS = Builder->CreateAnd(Op0LHS, AndRHS, 1355 Op0LHS->getName()+".masked"); 1356 return BinaryOperator::Create(Op0I->getOpcode(), NewLHS, Op0RHS); 1357 } 1358 1359 break; 1360 } 1361 case Instruction::Add: 1362 // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS. 1363 // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0 1364 // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0 1365 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I)) 1366 return BinaryOperator::CreateAnd(V, AndRHS); 1367 if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I)) 1368 return BinaryOperator::CreateAnd(V, AndRHS); // Add commutes 1369 break; 1370 1371 case Instruction::Sub: 1372 // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS. 1373 // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0 1374 // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0 1375 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I)) 1376 return BinaryOperator::CreateAnd(V, AndRHS); 1377 1378 // -x & 1 -> x & 1 1379 if (AndRHSMask == 1 && match(Op0LHS, m_Zero())) 1380 return BinaryOperator::CreateAnd(Op0RHS, AndRHS); 1381 1382 // (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS 1383 // has 1's for all bits that the subtraction with A might affect. 1384 if (Op0I->hasOneUse() && !match(Op0LHS, m_Zero())) { 1385 uint32_t BitWidth = AndRHSMask.getBitWidth(); 1386 uint32_t Zeros = AndRHSMask.countLeadingZeros(); 1387 APInt Mask = APInt::getLowBitsSet(BitWidth, BitWidth - Zeros); 1388 1389 if (MaskedValueIsZero(Op0LHS, Mask, 0, &I)) { 1390 Value *NewNeg = Builder->CreateNeg(Op0RHS); 1391 return BinaryOperator::CreateAnd(NewNeg, AndRHS); 1392 } 1393 } 1394 break; 1395 1396 case Instruction::Shl: 1397 case Instruction::LShr: 1398 // (1 << x) & 1 --> zext(x == 0) 1399 // (1 >> x) & 1 --> zext(x == 0) 1400 if (AndRHSMask == 1 && Op0LHS == AndRHS) { 1401 Value *NewICmp = 1402 Builder->CreateICmpEQ(Op0RHS, Constant::getNullValue(I.getType())); 1403 return new ZExtInst(NewICmp, I.getType()); 1404 } 1405 break; 1406 } 1407 1408 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) 1409 if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I)) 1410 return Res; 1411 } 1412 1413 // If this is an integer truncation, and if the source is an 'and' with 1414 // immediate, transform it. This frequently occurs for bitfield accesses. 1415 { 1416 Value *X = nullptr; ConstantInt *YC = nullptr; 1417 if (match(Op0, m_Trunc(m_And(m_Value(X), m_ConstantInt(YC))))) { 1418 // Change: and (trunc (and X, YC) to T), C2 1419 // into : and (trunc X to T), trunc(YC) & C2 1420 // This will fold the two constants together, which may allow 1421 // other simplifications. 1422 Value *NewCast = Builder->CreateTrunc(X, I.getType(), "and.shrunk"); 1423 Constant *C3 = ConstantExpr::getTrunc(YC, I.getType()); 1424 C3 = ConstantExpr::getAnd(C3, AndRHS); 1425 return BinaryOperator::CreateAnd(NewCast, C3); 1426 } 1427 } 1428 1429 // Try to fold constant and into select arguments. 1430 if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) 1431 if (Instruction *R = FoldOpIntoSelect(I, SI)) 1432 return R; 1433 if (isa<PHINode>(Op0)) 1434 if (Instruction *NV = FoldOpIntoPhi(I)) 1435 return NV; 1436 } 1437 1438 if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder)) 1439 return DeMorgan; 1440 1441 { 1442 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 1443 // (A|B) & ~(A&B) -> A^B 1444 if (match(Op0, m_Or(m_Value(A), m_Value(B))) && 1445 match(Op1, m_Not(m_And(m_Value(C), m_Value(D)))) && 1446 ((A == C && B == D) || (A == D && B == C))) 1447 return BinaryOperator::CreateXor(A, B); 1448 1449 // ~(A&B) & (A|B) -> A^B 1450 if (match(Op1, m_Or(m_Value(A), m_Value(B))) && 1451 match(Op0, m_Not(m_And(m_Value(C), m_Value(D)))) && 1452 ((A == C && B == D) || (A == D && B == C))) 1453 return BinaryOperator::CreateXor(A, B); 1454 1455 // A&(A^B) => A & ~B 1456 { 1457 Value *tmpOp0 = Op0; 1458 Value *tmpOp1 = Op1; 1459 if (match(Op0, m_OneUse(m_Xor(m_Value(A), m_Value(B))))) { 1460 if (A == Op1 || B == Op1 ) { 1461 tmpOp1 = Op0; 1462 tmpOp0 = Op1; 1463 // Simplify below 1464 } 1465 } 1466 1467 if (match(tmpOp1, m_OneUse(m_Xor(m_Value(A), m_Value(B))))) { 1468 if (B == tmpOp0) { 1469 std::swap(A, B); 1470 } 1471 // Notice that the pattern (A&(~B)) is actually (A&(-1^B)), so if 1472 // A is originally -1 (or a vector of -1 and undefs), then we enter 1473 // an endless loop. By checking that A is non-constant we ensure that 1474 // we will never get to the loop. 1475 if (A == tmpOp0 && !isa<Constant>(A)) // A&(A^B) -> A & ~B 1476 return BinaryOperator::CreateAnd(A, Builder->CreateNot(B)); 1477 } 1478 } 1479 1480 // (A&((~A)|B)) -> A&B 1481 if (match(Op0, m_Or(m_Not(m_Specific(Op1)), m_Value(A))) || 1482 match(Op0, m_Or(m_Value(A), m_Not(m_Specific(Op1))))) 1483 return BinaryOperator::CreateAnd(A, Op1); 1484 if (match(Op1, m_Or(m_Not(m_Specific(Op0)), m_Value(A))) || 1485 match(Op1, m_Or(m_Value(A), m_Not(m_Specific(Op0))))) 1486 return BinaryOperator::CreateAnd(A, Op0); 1487 1488 // (A ^ B) & ((B ^ C) ^ A) -> (A ^ B) & ~C 1489 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) 1490 if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A)))) 1491 if (Op1->hasOneUse() || cast<BinaryOperator>(Op1)->hasOneUse()) 1492 return BinaryOperator::CreateAnd(Op0, Builder->CreateNot(C)); 1493 1494 // ((A ^ C) ^ B) & (B ^ A) -> (B ^ A) & ~C 1495 if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B)))) 1496 if (match(Op1, m_Xor(m_Specific(B), m_Specific(A)))) 1497 if (Op0->hasOneUse() || cast<BinaryOperator>(Op0)->hasOneUse()) 1498 return BinaryOperator::CreateAnd(Op1, Builder->CreateNot(C)); 1499 1500 // (A | B) & ((~A) ^ B) -> (A & B) 1501 if (match(Op0, m_Or(m_Value(A), m_Value(B))) && 1502 match(Op1, m_Xor(m_Not(m_Specific(A)), m_Specific(B)))) 1503 return BinaryOperator::CreateAnd(A, B); 1504 1505 // ((~A) ^ B) & (A | B) -> (A & B) 1506 if (match(Op0, m_Xor(m_Not(m_Value(A)), m_Value(B))) && 1507 match(Op1, m_Or(m_Specific(A), m_Specific(B)))) 1508 return BinaryOperator::CreateAnd(A, B); 1509 } 1510 1511 { 1512 ICmpInst *LHS = dyn_cast<ICmpInst>(Op0); 1513 ICmpInst *RHS = dyn_cast<ICmpInst>(Op1); 1514 if (LHS && RHS) 1515 if (Value *Res = FoldAndOfICmps(LHS, RHS)) 1516 return replaceInstUsesWith(I, Res); 1517 1518 // TODO: Make this recursive; it's a little tricky because an arbitrary 1519 // number of 'and' instructions might have to be created. 1520 Value *X, *Y; 1521 if (LHS && match(Op1, m_OneUse(m_And(m_Value(X), m_Value(Y))))) { 1522 if (auto *Cmp = dyn_cast<ICmpInst>(X)) 1523 if (Value *Res = FoldAndOfICmps(LHS, Cmp)) 1524 return replaceInstUsesWith(I, Builder->CreateAnd(Res, Y)); 1525 if (auto *Cmp = dyn_cast<ICmpInst>(Y)) 1526 if (Value *Res = FoldAndOfICmps(LHS, Cmp)) 1527 return replaceInstUsesWith(I, Builder->CreateAnd(Res, X)); 1528 } 1529 if (RHS && match(Op0, m_OneUse(m_And(m_Value(X), m_Value(Y))))) { 1530 if (auto *Cmp = dyn_cast<ICmpInst>(X)) 1531 if (Value *Res = FoldAndOfICmps(Cmp, RHS)) 1532 return replaceInstUsesWith(I, Builder->CreateAnd(Res, Y)); 1533 if (auto *Cmp = dyn_cast<ICmpInst>(Y)) 1534 if (Value *Res = FoldAndOfICmps(Cmp, RHS)) 1535 return replaceInstUsesWith(I, Builder->CreateAnd(Res, X)); 1536 } 1537 } 1538 1539 // If and'ing two fcmp, try combine them into one. 1540 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) 1541 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) 1542 if (Value *Res = FoldAndOfFCmps(LHS, RHS)) 1543 return replaceInstUsesWith(I, Res); 1544 1545 if (Instruction *CastedAnd = foldCastedBitwiseLogic(I)) 1546 return CastedAnd; 1547 1548 if (Instruction *Select = foldBoolSextMaskToSelect(I)) 1549 return Select; 1550 1551 return Changed ? &I : nullptr; 1552 } 1553 1554 /// Given an OR instruction, check to see if this is a bswap idiom. If so, 1555 /// insert the new intrinsic and return it. 1556 Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) { 1557 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1558 1559 // Look through zero extends. 1560 if (Instruction *Ext = dyn_cast<ZExtInst>(Op0)) 1561 Op0 = Ext->getOperand(0); 1562 1563 if (Instruction *Ext = dyn_cast<ZExtInst>(Op1)) 1564 Op1 = Ext->getOperand(0); 1565 1566 // (A | B) | C and A | (B | C) -> bswap if possible. 1567 bool OrOfOrs = match(Op0, m_Or(m_Value(), m_Value())) || 1568 match(Op1, m_Or(m_Value(), m_Value())); 1569 1570 // (A >> B) | (C << D) and (A << B) | (B >> C) -> bswap if possible. 1571 bool OrOfShifts = match(Op0, m_LogicalShift(m_Value(), m_Value())) && 1572 match(Op1, m_LogicalShift(m_Value(), m_Value())); 1573 1574 // (A & B) | (C & D) -> bswap if possible. 1575 bool OrOfAnds = match(Op0, m_And(m_Value(), m_Value())) && 1576 match(Op1, m_And(m_Value(), m_Value())); 1577 1578 if (!OrOfOrs && !OrOfShifts && !OrOfAnds) 1579 return nullptr; 1580 1581 SmallVector<Instruction*, 4> Insts; 1582 if (!recognizeBSwapOrBitReverseIdiom(&I, true, false, Insts)) 1583 return nullptr; 1584 Instruction *LastInst = Insts.pop_back_val(); 1585 LastInst->removeFromParent(); 1586 1587 for (auto *Inst : Insts) 1588 Worklist.Add(Inst); 1589 return LastInst; 1590 } 1591 1592 /// If all elements of two constant vectors are 0/-1 and inverses, return true. 1593 static bool areInverseVectorBitmasks(Constant *C1, Constant *C2) { 1594 unsigned NumElts = C1->getType()->getVectorNumElements(); 1595 for (unsigned i = 0; i != NumElts; ++i) { 1596 Constant *EltC1 = C1->getAggregateElement(i); 1597 Constant *EltC2 = C2->getAggregateElement(i); 1598 if (!EltC1 || !EltC2) 1599 return false; 1600 1601 // One element must be all ones, and the other must be all zeros. 1602 // FIXME: Allow undef elements. 1603 if (!((match(EltC1, m_Zero()) && match(EltC2, m_AllOnes())) || 1604 (match(EltC2, m_Zero()) && match(EltC1, m_AllOnes())))) 1605 return false; 1606 } 1607 return true; 1608 } 1609 1610 /// We have an expression of the form (A & C) | (B & D). If A is a scalar or 1611 /// vector composed of all-zeros or all-ones values and is the bitwise 'not' of 1612 /// B, it can be used as the condition operand of a select instruction. 1613 static Value *getSelectCondition(Value *A, Value *B, 1614 InstCombiner::BuilderTy &Builder) { 1615 // If these are scalars or vectors of i1, A can be used directly. 1616 Type *Ty = A->getType(); 1617 if (match(A, m_Not(m_Specific(B))) && Ty->getScalarType()->isIntegerTy(1)) 1618 return A; 1619 1620 // If A and B are sign-extended, look through the sexts to find the booleans. 1621 Value *Cond; 1622 if (match(A, m_SExt(m_Value(Cond))) && 1623 Cond->getType()->getScalarType()->isIntegerTy(1) && 1624 match(B, m_CombineOr(m_Not(m_SExt(m_Specific(Cond))), 1625 m_SExt(m_Not(m_Specific(Cond)))))) 1626 return Cond; 1627 1628 // All scalar (and most vector) possibilities should be handled now. 1629 // Try more matches that only apply to non-splat constant vectors. 1630 if (!Ty->isVectorTy()) 1631 return nullptr; 1632 1633 // If both operands are constants, see if the constants are inverse bitmasks. 1634 Constant *AC, *BC; 1635 if (match(A, m_Constant(AC)) && match(B, m_Constant(BC)) && 1636 areInverseVectorBitmasks(AC, BC)) 1637 return ConstantExpr::getTrunc(AC, CmpInst::makeCmpResultType(Ty)); 1638 1639 // If both operands are xor'd with constants using the same sexted boolean 1640 // operand, see if the constants are inverse bitmasks. 1641 if (match(A, (m_Xor(m_SExt(m_Value(Cond)), m_Constant(AC)))) && 1642 match(B, (m_Xor(m_SExt(m_Specific(Cond)), m_Constant(BC)))) && 1643 Cond->getType()->getScalarType()->isIntegerTy(1) && 1644 areInverseVectorBitmasks(AC, BC)) { 1645 AC = ConstantExpr::getTrunc(AC, CmpInst::makeCmpResultType(Ty)); 1646 return Builder.CreateXor(Cond, AC); 1647 } 1648 return nullptr; 1649 } 1650 1651 /// We have an expression of the form (A & C) | (B & D). Try to simplify this 1652 /// to "A' ? C : D", where A' is a boolean or vector of booleans. 1653 static Value *matchSelectFromAndOr(Value *A, Value *C, Value *B, Value *D, 1654 InstCombiner::BuilderTy &Builder) { 1655 // The potential condition of the select may be bitcasted. In that case, look 1656 // through its bitcast and the corresponding bitcast of the 'not' condition. 1657 Type *OrigType = A->getType(); 1658 Value *SrcA, *SrcB; 1659 if (match(A, m_OneUse(m_BitCast(m_Value(SrcA)))) && 1660 match(B, m_OneUse(m_BitCast(m_Value(SrcB))))) { 1661 A = SrcA; 1662 B = SrcB; 1663 } 1664 1665 if (Value *Cond = getSelectCondition(A, B, Builder)) { 1666 // ((bc Cond) & C) | ((bc ~Cond) & D) --> bc (select Cond, (bc C), (bc D)) 1667 // The bitcasts will either all exist or all not exist. The builder will 1668 // not create unnecessary casts if the types already match. 1669 Value *BitcastC = Builder.CreateBitCast(C, A->getType()); 1670 Value *BitcastD = Builder.CreateBitCast(D, A->getType()); 1671 Value *Select = Builder.CreateSelect(Cond, BitcastC, BitcastD); 1672 return Builder.CreateBitCast(Select, OrigType); 1673 } 1674 1675 return nullptr; 1676 } 1677 1678 /// Fold (icmp)|(icmp) if possible. 1679 Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS, 1680 Instruction *CxtI) { 1681 ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate(); 1682 1683 // Fold (iszero(A & K1) | iszero(A & K2)) -> (A & (K1 | K2)) != (K1 | K2) 1684 // if K1 and K2 are a one-bit mask. 1685 ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1)); 1686 ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1)); 1687 1688 if (LHS->getPredicate() == ICmpInst::ICMP_EQ && LHSCst && LHSCst->isZero() && 1689 RHS->getPredicate() == ICmpInst::ICMP_EQ && RHSCst && RHSCst->isZero()) { 1690 1691 BinaryOperator *LAnd = dyn_cast<BinaryOperator>(LHS->getOperand(0)); 1692 BinaryOperator *RAnd = dyn_cast<BinaryOperator>(RHS->getOperand(0)); 1693 if (LAnd && RAnd && LAnd->hasOneUse() && RHS->hasOneUse() && 1694 LAnd->getOpcode() == Instruction::And && 1695 RAnd->getOpcode() == Instruction::And) { 1696 1697 Value *Mask = nullptr; 1698 Value *Masked = nullptr; 1699 if (LAnd->getOperand(0) == RAnd->getOperand(0) && 1700 isKnownToBeAPowerOfTwo(LAnd->getOperand(1), DL, false, 0, AC, CxtI, 1701 DT) && 1702 isKnownToBeAPowerOfTwo(RAnd->getOperand(1), DL, false, 0, AC, CxtI, 1703 DT)) { 1704 Mask = Builder->CreateOr(LAnd->getOperand(1), RAnd->getOperand(1)); 1705 Masked = Builder->CreateAnd(LAnd->getOperand(0), Mask); 1706 } else if (LAnd->getOperand(1) == RAnd->getOperand(1) && 1707 isKnownToBeAPowerOfTwo(LAnd->getOperand(0), DL, false, 0, AC, 1708 CxtI, DT) && 1709 isKnownToBeAPowerOfTwo(RAnd->getOperand(0), DL, false, 0, AC, 1710 CxtI, DT)) { 1711 Mask = Builder->CreateOr(LAnd->getOperand(0), RAnd->getOperand(0)); 1712 Masked = Builder->CreateAnd(LAnd->getOperand(1), Mask); 1713 } 1714 1715 if (Masked) 1716 return Builder->CreateICmp(ICmpInst::ICMP_NE, Masked, Mask); 1717 } 1718 } 1719 1720 // Fold (icmp ult/ule (A + C1), C3) | (icmp ult/ule (A + C2), C3) 1721 // --> (icmp ult/ule ((A & ~(C1 ^ C2)) + max(C1, C2)), C3) 1722 // The original condition actually refers to the following two ranges: 1723 // [MAX_UINT-C1+1, MAX_UINT-C1+1+C3] and [MAX_UINT-C2+1, MAX_UINT-C2+1+C3] 1724 // We can fold these two ranges if: 1725 // 1) C1 and C2 is unsigned greater than C3. 1726 // 2) The two ranges are separated. 1727 // 3) C1 ^ C2 is one-bit mask. 1728 // 4) LowRange1 ^ LowRange2 and HighRange1 ^ HighRange2 are one-bit mask. 1729 // This implies all values in the two ranges differ by exactly one bit. 1730 1731 if ((LHSCC == ICmpInst::ICMP_ULT || LHSCC == ICmpInst::ICMP_ULE) && 1732 LHSCC == RHSCC && LHSCst && RHSCst && LHS->hasOneUse() && 1733 RHS->hasOneUse() && LHSCst->getType() == RHSCst->getType() && 1734 LHSCst->getValue() == (RHSCst->getValue())) { 1735 1736 Value *LAdd = LHS->getOperand(0); 1737 Value *RAdd = RHS->getOperand(0); 1738 1739 Value *LAddOpnd, *RAddOpnd; 1740 ConstantInt *LAddCst, *RAddCst; 1741 if (match(LAdd, m_Add(m_Value(LAddOpnd), m_ConstantInt(LAddCst))) && 1742 match(RAdd, m_Add(m_Value(RAddOpnd), m_ConstantInt(RAddCst))) && 1743 LAddCst->getValue().ugt(LHSCst->getValue()) && 1744 RAddCst->getValue().ugt(LHSCst->getValue())) { 1745 1746 APInt DiffCst = LAddCst->getValue() ^ RAddCst->getValue(); 1747 if (LAddOpnd == RAddOpnd && DiffCst.isPowerOf2()) { 1748 ConstantInt *MaxAddCst = nullptr; 1749 if (LAddCst->getValue().ult(RAddCst->getValue())) 1750 MaxAddCst = RAddCst; 1751 else 1752 MaxAddCst = LAddCst; 1753 1754 APInt RRangeLow = -RAddCst->getValue(); 1755 APInt RRangeHigh = RRangeLow + LHSCst->getValue(); 1756 APInt LRangeLow = -LAddCst->getValue(); 1757 APInt LRangeHigh = LRangeLow + LHSCst->getValue(); 1758 APInt LowRangeDiff = RRangeLow ^ LRangeLow; 1759 APInt HighRangeDiff = RRangeHigh ^ LRangeHigh; 1760 APInt RangeDiff = LRangeLow.sgt(RRangeLow) ? LRangeLow - RRangeLow 1761 : RRangeLow - LRangeLow; 1762 1763 if (LowRangeDiff.isPowerOf2() && LowRangeDiff == HighRangeDiff && 1764 RangeDiff.ugt(LHSCst->getValue())) { 1765 Value *MaskCst = ConstantInt::get(LAddCst->getType(), ~DiffCst); 1766 1767 Value *NewAnd = Builder->CreateAnd(LAddOpnd, MaskCst); 1768 Value *NewAdd = Builder->CreateAdd(NewAnd, MaxAddCst); 1769 return (Builder->CreateICmp(LHS->getPredicate(), NewAdd, LHSCst)); 1770 } 1771 } 1772 } 1773 } 1774 1775 // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B) 1776 if (PredicatesFoldable(LHSCC, RHSCC)) { 1777 if (LHS->getOperand(0) == RHS->getOperand(1) && 1778 LHS->getOperand(1) == RHS->getOperand(0)) 1779 LHS->swapOperands(); 1780 if (LHS->getOperand(0) == RHS->getOperand(0) && 1781 LHS->getOperand(1) == RHS->getOperand(1)) { 1782 Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1); 1783 unsigned Code = getICmpCode(LHS) | getICmpCode(RHS); 1784 bool isSigned = LHS->isSigned() || RHS->isSigned(); 1785 return getNewICmpValue(isSigned, Code, Op0, Op1, Builder); 1786 } 1787 } 1788 1789 // handle (roughly): 1790 // (icmp ne (A & B), C) | (icmp ne (A & D), E) 1791 if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, false, Builder)) 1792 return V; 1793 1794 Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0); 1795 if (LHS->hasOneUse() || RHS->hasOneUse()) { 1796 // (icmp eq B, 0) | (icmp ult A, B) -> (icmp ule A, B-1) 1797 // (icmp eq B, 0) | (icmp ugt B, A) -> (icmp ule A, B-1) 1798 Value *A = nullptr, *B = nullptr; 1799 if (LHSCC == ICmpInst::ICMP_EQ && LHSCst && LHSCst->isZero()) { 1800 B = Val; 1801 if (RHSCC == ICmpInst::ICMP_ULT && Val == RHS->getOperand(1)) 1802 A = Val2; 1803 else if (RHSCC == ICmpInst::ICMP_UGT && Val == Val2) 1804 A = RHS->getOperand(1); 1805 } 1806 // (icmp ult A, B) | (icmp eq B, 0) -> (icmp ule A, B-1) 1807 // (icmp ugt B, A) | (icmp eq B, 0) -> (icmp ule A, B-1) 1808 else if (RHSCC == ICmpInst::ICMP_EQ && RHSCst && RHSCst->isZero()) { 1809 B = Val2; 1810 if (LHSCC == ICmpInst::ICMP_ULT && Val2 == LHS->getOperand(1)) 1811 A = Val; 1812 else if (LHSCC == ICmpInst::ICMP_UGT && Val2 == Val) 1813 A = LHS->getOperand(1); 1814 } 1815 if (A && B) 1816 return Builder->CreateICmp( 1817 ICmpInst::ICMP_UGE, 1818 Builder->CreateAdd(B, ConstantInt::getSigned(B->getType(), -1)), A); 1819 } 1820 1821 // E.g. (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n 1822 if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/true)) 1823 return V; 1824 1825 // E.g. (icmp sgt x, n) | (icmp slt x, 0) --> icmp ugt x, n 1826 if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/true)) 1827 return V; 1828 1829 // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2). 1830 if (!LHSCst || !RHSCst) return nullptr; 1831 1832 if (LHSCst == RHSCst && LHSCC == RHSCC) { 1833 // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0) 1834 if (LHSCC == ICmpInst::ICMP_NE && LHSCst->isZero()) { 1835 Value *NewOr = Builder->CreateOr(Val, Val2); 1836 return Builder->CreateICmp(LHSCC, NewOr, LHSCst); 1837 } 1838 } 1839 1840 // (icmp ult (X + CA), C1) | (icmp eq X, C2) -> (icmp ule (X + CA), C1) 1841 // iff C2 + CA == C1. 1842 if (LHSCC == ICmpInst::ICMP_ULT && RHSCC == ICmpInst::ICMP_EQ) { 1843 ConstantInt *AddCst; 1844 if (match(Val, m_Add(m_Specific(Val2), m_ConstantInt(AddCst)))) 1845 if (RHSCst->getValue() + AddCst->getValue() == LHSCst->getValue()) 1846 return Builder->CreateICmpULE(Val, LHSCst); 1847 } 1848 1849 // From here on, we only handle: 1850 // (icmp1 A, C1) | (icmp2 A, C2) --> something simpler. 1851 if (Val != Val2) return nullptr; 1852 1853 // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere. 1854 if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE || 1855 RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE || 1856 LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE || 1857 RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE) 1858 return nullptr; 1859 1860 // We can't fold (ugt x, C) | (sgt x, C2). 1861 if (!PredicatesFoldable(LHSCC, RHSCC)) 1862 return nullptr; 1863 1864 // Ensure that the larger constant is on the RHS. 1865 bool ShouldSwap; 1866 if (CmpInst::isSigned(LHSCC) || 1867 (ICmpInst::isEquality(LHSCC) && 1868 CmpInst::isSigned(RHSCC))) 1869 ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue()); 1870 else 1871 ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue()); 1872 1873 if (ShouldSwap) { 1874 std::swap(LHS, RHS); 1875 std::swap(LHSCst, RHSCst); 1876 std::swap(LHSCC, RHSCC); 1877 } 1878 1879 // At this point, we know we have two icmp instructions 1880 // comparing a value against two constants and or'ing the result 1881 // together. Because of the above check, we know that we only have 1882 // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the 1883 // icmp folding check above), that the two constants are not 1884 // equal. 1885 assert(LHSCst != RHSCst && "Compares not folded above?"); 1886 1887 switch (LHSCC) { 1888 default: llvm_unreachable("Unknown integer condition code!"); 1889 case ICmpInst::ICMP_EQ: 1890 switch (RHSCC) { 1891 default: llvm_unreachable("Unknown integer condition code!"); 1892 case ICmpInst::ICMP_EQ: 1893 if (LHS->getOperand(0) == RHS->getOperand(0)) { 1894 // if LHSCst and RHSCst differ only by one bit: 1895 // (A == C1 || A == C2) -> (A | (C1 ^ C2)) == C2 1896 assert(LHSCst->getValue().ule(LHSCst->getValue())); 1897 1898 APInt Xor = LHSCst->getValue() ^ RHSCst->getValue(); 1899 if (Xor.isPowerOf2()) { 1900 Value *Cst = Builder->getInt(Xor); 1901 Value *Or = Builder->CreateOr(LHS->getOperand(0), Cst); 1902 return Builder->CreateICmp(ICmpInst::ICMP_EQ, Or, RHSCst); 1903 } 1904 } 1905 1906 if (LHSCst == SubOne(RHSCst)) { 1907 // (X == 13 | X == 14) -> X-13 <u 2 1908 Constant *AddCST = ConstantExpr::getNeg(LHSCst); 1909 Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off"); 1910 AddCST = ConstantExpr::getSub(AddOne(RHSCst), LHSCst); 1911 return Builder->CreateICmpULT(Add, AddCST); 1912 } 1913 1914 break; // (X == 13 | X == 15) -> no change 1915 case ICmpInst::ICMP_UGT: // (X == 13 | X u> 14) -> no change 1916 case ICmpInst::ICMP_SGT: // (X == 13 | X s> 14) -> no change 1917 break; 1918 case ICmpInst::ICMP_NE: // (X == 13 | X != 15) -> X != 15 1919 case ICmpInst::ICMP_ULT: // (X == 13 | X u< 15) -> X u< 15 1920 case ICmpInst::ICMP_SLT: // (X == 13 | X s< 15) -> X s< 15 1921 return RHS; 1922 } 1923 break; 1924 case ICmpInst::ICMP_NE: 1925 switch (RHSCC) { 1926 default: llvm_unreachable("Unknown integer condition code!"); 1927 case ICmpInst::ICMP_EQ: // (X != 13 | X == 15) -> X != 13 1928 case ICmpInst::ICMP_UGT: // (X != 13 | X u> 15) -> X != 13 1929 case ICmpInst::ICMP_SGT: // (X != 13 | X s> 15) -> X != 13 1930 return LHS; 1931 case ICmpInst::ICMP_NE: // (X != 13 | X != 15) -> true 1932 case ICmpInst::ICMP_ULT: // (X != 13 | X u< 15) -> true 1933 case ICmpInst::ICMP_SLT: // (X != 13 | X s< 15) -> true 1934 return Builder->getTrue(); 1935 } 1936 case ICmpInst::ICMP_ULT: 1937 switch (RHSCC) { 1938 default: llvm_unreachable("Unknown integer condition code!"); 1939 case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change 1940 break; 1941 case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) -> (X-13) u> 2 1942 // If RHSCst is [us]MAXINT, it is always false. Not handling 1943 // this can cause overflow. 1944 if (RHSCst->isMaxValue(false)) 1945 return LHS; 1946 return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), false, false); 1947 case ICmpInst::ICMP_SGT: // (X u< 13 | X s> 15) -> no change 1948 break; 1949 case ICmpInst::ICMP_NE: // (X u< 13 | X != 15) -> X != 15 1950 case ICmpInst::ICMP_ULT: // (X u< 13 | X u< 15) -> X u< 15 1951 return RHS; 1952 case ICmpInst::ICMP_SLT: // (X u< 13 | X s< 15) -> no change 1953 break; 1954 } 1955 break; 1956 case ICmpInst::ICMP_SLT: 1957 switch (RHSCC) { 1958 default: llvm_unreachable("Unknown integer condition code!"); 1959 case ICmpInst::ICMP_EQ: // (X s< 13 | X == 14) -> no change 1960 break; 1961 case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) -> (X-13) s> 2 1962 // If RHSCst is [us]MAXINT, it is always false. Not handling 1963 // this can cause overflow. 1964 if (RHSCst->isMaxValue(true)) 1965 return LHS; 1966 return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), true, false); 1967 case ICmpInst::ICMP_UGT: // (X s< 13 | X u> 15) -> no change 1968 break; 1969 case ICmpInst::ICMP_NE: // (X s< 13 | X != 15) -> X != 15 1970 case ICmpInst::ICMP_SLT: // (X s< 13 | X s< 15) -> X s< 15 1971 return RHS; 1972 case ICmpInst::ICMP_ULT: // (X s< 13 | X u< 15) -> no change 1973 break; 1974 } 1975 break; 1976 case ICmpInst::ICMP_UGT: 1977 switch (RHSCC) { 1978 default: llvm_unreachable("Unknown integer condition code!"); 1979 case ICmpInst::ICMP_EQ: // (X u> 13 | X == 15) -> X u> 13 1980 case ICmpInst::ICMP_UGT: // (X u> 13 | X u> 15) -> X u> 13 1981 return LHS; 1982 case ICmpInst::ICMP_SGT: // (X u> 13 | X s> 15) -> no change 1983 break; 1984 case ICmpInst::ICMP_NE: // (X u> 13 | X != 15) -> true 1985 case ICmpInst::ICMP_ULT: // (X u> 13 | X u< 15) -> true 1986 return Builder->getTrue(); 1987 case ICmpInst::ICMP_SLT: // (X u> 13 | X s< 15) -> no change 1988 break; 1989 } 1990 break; 1991 case ICmpInst::ICMP_SGT: 1992 switch (RHSCC) { 1993 default: llvm_unreachable("Unknown integer condition code!"); 1994 case ICmpInst::ICMP_EQ: // (X s> 13 | X == 15) -> X > 13 1995 case ICmpInst::ICMP_SGT: // (X s> 13 | X s> 15) -> X > 13 1996 return LHS; 1997 case ICmpInst::ICMP_UGT: // (X s> 13 | X u> 15) -> no change 1998 break; 1999 case ICmpInst::ICMP_NE: // (X s> 13 | X != 15) -> true 2000 case ICmpInst::ICMP_SLT: // (X s> 13 | X s< 15) -> true 2001 return Builder->getTrue(); 2002 case ICmpInst::ICMP_ULT: // (X s> 13 | X u< 15) -> no change 2003 break; 2004 } 2005 break; 2006 } 2007 return nullptr; 2008 } 2009 2010 /// Optimize (fcmp)|(fcmp). NOTE: Unlike the rest of instcombine, this returns 2011 /// a Value which should already be inserted into the function. 2012 Value *InstCombiner::FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS) { 2013 Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1); 2014 Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1); 2015 FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate(); 2016 2017 if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) { 2018 // Swap RHS operands to match LHS. 2019 Op1CC = FCmpInst::getSwappedPredicate(Op1CC); 2020 std::swap(Op1LHS, Op1RHS); 2021 } 2022 2023 // Simplify (fcmp cc0 x, y) | (fcmp cc1 x, y). 2024 // This is a similar transformation to the one in FoldAndOfFCmps. 2025 // 2026 // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this: 2027 // bool(R & CC0) || bool(R & CC1) 2028 // = bool((R & CC0) | (R & CC1)) 2029 // = bool(R & (CC0 | CC1)) <= by reversed distribution (contribution? ;) 2030 if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) 2031 return getFCmpValue(getFCmpCode(Op0CC) | getFCmpCode(Op1CC), Op0LHS, Op0RHS, 2032 Builder); 2033 2034 if (LHS->getPredicate() == FCmpInst::FCMP_UNO && 2035 RHS->getPredicate() == FCmpInst::FCMP_UNO && 2036 LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) { 2037 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1))) 2038 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) { 2039 // If either of the constants are nans, then the whole thing returns 2040 // true. 2041 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN()) 2042 return Builder->getTrue(); 2043 2044 // Otherwise, no need to compare the two constants, compare the 2045 // rest. 2046 return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0)); 2047 } 2048 2049 // Handle vector zeros. This occurs because the canonical form of 2050 // "fcmp uno x,x" is "fcmp uno x, 0". 2051 if (isa<ConstantAggregateZero>(LHS->getOperand(1)) && 2052 isa<ConstantAggregateZero>(RHS->getOperand(1))) 2053 return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0)); 2054 2055 return nullptr; 2056 } 2057 2058 return nullptr; 2059 } 2060 2061 /// This helper function folds: 2062 /// 2063 /// ((A | B) & C1) | (B & C2) 2064 /// 2065 /// into: 2066 /// 2067 /// (A & C1) | B 2068 /// 2069 /// when the XOR of the two constants is "all ones" (-1). 2070 Instruction *InstCombiner::FoldOrWithConstants(BinaryOperator &I, Value *Op, 2071 Value *A, Value *B, Value *C) { 2072 ConstantInt *CI1 = dyn_cast<ConstantInt>(C); 2073 if (!CI1) return nullptr; 2074 2075 Value *V1 = nullptr; 2076 ConstantInt *CI2 = nullptr; 2077 if (!match(Op, m_And(m_Value(V1), m_ConstantInt(CI2)))) return nullptr; 2078 2079 APInt Xor = CI1->getValue() ^ CI2->getValue(); 2080 if (!Xor.isAllOnesValue()) return nullptr; 2081 2082 if (V1 == A || V1 == B) { 2083 Value *NewOp = Builder->CreateAnd((V1 == A) ? B : A, CI1); 2084 return BinaryOperator::CreateOr(NewOp, V1); 2085 } 2086 2087 return nullptr; 2088 } 2089 2090 /// \brief This helper function folds: 2091 /// 2092 /// ((A | B) & C1) ^ (B & C2) 2093 /// 2094 /// into: 2095 /// 2096 /// (A & C1) ^ B 2097 /// 2098 /// when the XOR of the two constants is "all ones" (-1). 2099 Instruction *InstCombiner::FoldXorWithConstants(BinaryOperator &I, Value *Op, 2100 Value *A, Value *B, Value *C) { 2101 ConstantInt *CI1 = dyn_cast<ConstantInt>(C); 2102 if (!CI1) 2103 return nullptr; 2104 2105 Value *V1 = nullptr; 2106 ConstantInt *CI2 = nullptr; 2107 if (!match(Op, m_And(m_Value(V1), m_ConstantInt(CI2)))) 2108 return nullptr; 2109 2110 APInt Xor = CI1->getValue() ^ CI2->getValue(); 2111 if (!Xor.isAllOnesValue()) 2112 return nullptr; 2113 2114 if (V1 == A || V1 == B) { 2115 Value *NewOp = Builder->CreateAnd(V1 == A ? B : A, CI1); 2116 return BinaryOperator::CreateXor(NewOp, V1); 2117 } 2118 2119 return nullptr; 2120 } 2121 2122 Instruction *InstCombiner::visitOr(BinaryOperator &I) { 2123 bool Changed = SimplifyAssociativeOrCommutative(I); 2124 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 2125 2126 if (Value *V = SimplifyVectorOp(I)) 2127 return replaceInstUsesWith(I, V); 2128 2129 if (Value *V = SimplifyOrInst(Op0, Op1, DL, TLI, DT, AC)) 2130 return replaceInstUsesWith(I, V); 2131 2132 // (A&B)|(A&C) -> A&(B|C) etc 2133 if (Value *V = SimplifyUsingDistributiveLaws(I)) 2134 return replaceInstUsesWith(I, V); 2135 2136 // See if we can simplify any instructions used by the instruction whose sole 2137 // purpose is to compute bits we don't care about. 2138 if (SimplifyDemandedInstructionBits(I)) 2139 return &I; 2140 2141 if (Value *V = SimplifyBSwap(I)) 2142 return replaceInstUsesWith(I, V); 2143 2144 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) { 2145 ConstantInt *C1 = nullptr; Value *X = nullptr; 2146 // (X & C1) | C2 --> (X | C2) & (C1|C2) 2147 // iff (C1 & C2) == 0. 2148 if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) && 2149 (RHS->getValue() & C1->getValue()) != 0 && 2150 Op0->hasOneUse()) { 2151 Value *Or = Builder->CreateOr(X, RHS); 2152 Or->takeName(Op0); 2153 return BinaryOperator::CreateAnd(Or, 2154 Builder->getInt(RHS->getValue() | C1->getValue())); 2155 } 2156 2157 // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2) 2158 if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) && 2159 Op0->hasOneUse()) { 2160 Value *Or = Builder->CreateOr(X, RHS); 2161 Or->takeName(Op0); 2162 return BinaryOperator::CreateXor(Or, 2163 Builder->getInt(C1->getValue() & ~RHS->getValue())); 2164 } 2165 2166 // Try to fold constant and into select arguments. 2167 if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) 2168 if (Instruction *R = FoldOpIntoSelect(I, SI)) 2169 return R; 2170 2171 if (isa<PHINode>(Op0)) 2172 if (Instruction *NV = FoldOpIntoPhi(I)) 2173 return NV; 2174 } 2175 2176 // Given an OR instruction, check to see if this is a bswap. 2177 if (Instruction *BSwap = MatchBSwap(I)) 2178 return BSwap; 2179 2180 Value *A = nullptr, *B = nullptr; 2181 ConstantInt *C1 = nullptr, *C2 = nullptr; 2182 2183 // (X^C)|Y -> (X|Y)^C iff Y&C == 0 2184 if (Op0->hasOneUse() && 2185 match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) && 2186 MaskedValueIsZero(Op1, C1->getValue(), 0, &I)) { 2187 Value *NOr = Builder->CreateOr(A, Op1); 2188 NOr->takeName(Op0); 2189 return BinaryOperator::CreateXor(NOr, C1); 2190 } 2191 2192 // Y|(X^C) -> (X|Y)^C iff Y&C == 0 2193 if (Op1->hasOneUse() && 2194 match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) && 2195 MaskedValueIsZero(Op0, C1->getValue(), 0, &I)) { 2196 Value *NOr = Builder->CreateOr(A, Op0); 2197 NOr->takeName(Op0); 2198 return BinaryOperator::CreateXor(NOr, C1); 2199 } 2200 2201 // ((~A & B) | A) -> (A | B) 2202 if (match(Op0, m_And(m_Not(m_Value(A)), m_Value(B))) && 2203 match(Op1, m_Specific(A))) 2204 return BinaryOperator::CreateOr(A, B); 2205 2206 // ((A & B) | ~A) -> (~A | B) 2207 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 2208 match(Op1, m_Not(m_Specific(A)))) 2209 return BinaryOperator::CreateOr(Builder->CreateNot(A), B); 2210 2211 // (A & (~B)) | (A ^ B) -> (A ^ B) 2212 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) && 2213 match(Op1, m_Xor(m_Specific(A), m_Specific(B)))) 2214 return BinaryOperator::CreateXor(A, B); 2215 2216 // (A ^ B) | ( A & (~B)) -> (A ^ B) 2217 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 2218 match(Op1, m_And(m_Specific(A), m_Not(m_Specific(B))))) 2219 return BinaryOperator::CreateXor(A, B); 2220 2221 // (A & C)|(B & D) 2222 Value *C = nullptr, *D = nullptr; 2223 if (match(Op0, m_And(m_Value(A), m_Value(C))) && 2224 match(Op1, m_And(m_Value(B), m_Value(D)))) { 2225 Value *V1 = nullptr, *V2 = nullptr; 2226 C1 = dyn_cast<ConstantInt>(C); 2227 C2 = dyn_cast<ConstantInt>(D); 2228 if (C1 && C2) { // (A & C1)|(B & C2) 2229 if ((C1->getValue() & C2->getValue()) == 0) { 2230 // ((V | N) & C1) | (V & C2) --> (V|N) & (C1|C2) 2231 // iff (C1&C2) == 0 and (N&~C1) == 0 2232 if (match(A, m_Or(m_Value(V1), m_Value(V2))) && 2233 ((V1 == B && 2234 MaskedValueIsZero(V2, ~C1->getValue(), 0, &I)) || // (V|N) 2235 (V2 == B && 2236 MaskedValueIsZero(V1, ~C1->getValue(), 0, &I)))) // (N|V) 2237 return BinaryOperator::CreateAnd(A, 2238 Builder->getInt(C1->getValue()|C2->getValue())); 2239 // Or commutes, try both ways. 2240 if (match(B, m_Or(m_Value(V1), m_Value(V2))) && 2241 ((V1 == A && 2242 MaskedValueIsZero(V2, ~C2->getValue(), 0, &I)) || // (V|N) 2243 (V2 == A && 2244 MaskedValueIsZero(V1, ~C2->getValue(), 0, &I)))) // (N|V) 2245 return BinaryOperator::CreateAnd(B, 2246 Builder->getInt(C1->getValue()|C2->getValue())); 2247 2248 // ((V|C3)&C1) | ((V|C4)&C2) --> (V|C3|C4)&(C1|C2) 2249 // iff (C1&C2) == 0 and (C3&~C1) == 0 and (C4&~C2) == 0. 2250 ConstantInt *C3 = nullptr, *C4 = nullptr; 2251 if (match(A, m_Or(m_Value(V1), m_ConstantInt(C3))) && 2252 (C3->getValue() & ~C1->getValue()) == 0 && 2253 match(B, m_Or(m_Specific(V1), m_ConstantInt(C4))) && 2254 (C4->getValue() & ~C2->getValue()) == 0) { 2255 V2 = Builder->CreateOr(V1, ConstantExpr::getOr(C3, C4), "bitfield"); 2256 return BinaryOperator::CreateAnd(V2, 2257 Builder->getInt(C1->getValue()|C2->getValue())); 2258 } 2259 } 2260 } 2261 2262 // Don't try to form a select if it's unlikely that we'll get rid of at 2263 // least one of the operands. A select is generally more expensive than the 2264 // 'or' that it is replacing. 2265 if (Op0->hasOneUse() || Op1->hasOneUse()) { 2266 // (Cond & C) | (~Cond & D) -> Cond ? C : D, and commuted variants. 2267 if (Value *V = matchSelectFromAndOr(A, C, B, D, *Builder)) 2268 return replaceInstUsesWith(I, V); 2269 if (Value *V = matchSelectFromAndOr(A, C, D, B, *Builder)) 2270 return replaceInstUsesWith(I, V); 2271 if (Value *V = matchSelectFromAndOr(C, A, B, D, *Builder)) 2272 return replaceInstUsesWith(I, V); 2273 if (Value *V = matchSelectFromAndOr(C, A, D, B, *Builder)) 2274 return replaceInstUsesWith(I, V); 2275 if (Value *V = matchSelectFromAndOr(B, D, A, C, *Builder)) 2276 return replaceInstUsesWith(I, V); 2277 if (Value *V = matchSelectFromAndOr(B, D, C, A, *Builder)) 2278 return replaceInstUsesWith(I, V); 2279 if (Value *V = matchSelectFromAndOr(D, B, A, C, *Builder)) 2280 return replaceInstUsesWith(I, V); 2281 if (Value *V = matchSelectFromAndOr(D, B, C, A, *Builder)) 2282 return replaceInstUsesWith(I, V); 2283 } 2284 2285 // ((A&~B)|(~A&B)) -> A^B 2286 if ((match(C, m_Not(m_Specific(D))) && 2287 match(B, m_Not(m_Specific(A))))) 2288 return BinaryOperator::CreateXor(A, D); 2289 // ((~B&A)|(~A&B)) -> A^B 2290 if ((match(A, m_Not(m_Specific(D))) && 2291 match(B, m_Not(m_Specific(C))))) 2292 return BinaryOperator::CreateXor(C, D); 2293 // ((A&~B)|(B&~A)) -> A^B 2294 if ((match(C, m_Not(m_Specific(B))) && 2295 match(D, m_Not(m_Specific(A))))) 2296 return BinaryOperator::CreateXor(A, B); 2297 // ((~B&A)|(B&~A)) -> A^B 2298 if ((match(A, m_Not(m_Specific(B))) && 2299 match(D, m_Not(m_Specific(C))))) 2300 return BinaryOperator::CreateXor(C, B); 2301 2302 // ((A|B)&1)|(B&-2) -> (A&1) | B 2303 if (match(A, m_Or(m_Value(V1), m_Specific(B))) || 2304 match(A, m_Or(m_Specific(B), m_Value(V1)))) { 2305 Instruction *Ret = FoldOrWithConstants(I, Op1, V1, B, C); 2306 if (Ret) return Ret; 2307 } 2308 // (B&-2)|((A|B)&1) -> (A&1) | B 2309 if (match(B, m_Or(m_Specific(A), m_Value(V1))) || 2310 match(B, m_Or(m_Value(V1), m_Specific(A)))) { 2311 Instruction *Ret = FoldOrWithConstants(I, Op0, A, V1, D); 2312 if (Ret) return Ret; 2313 } 2314 // ((A^B)&1)|(B&-2) -> (A&1) ^ B 2315 if (match(A, m_Xor(m_Value(V1), m_Specific(B))) || 2316 match(A, m_Xor(m_Specific(B), m_Value(V1)))) { 2317 Instruction *Ret = FoldXorWithConstants(I, Op1, V1, B, C); 2318 if (Ret) return Ret; 2319 } 2320 // (B&-2)|((A^B)&1) -> (A&1) ^ B 2321 if (match(B, m_Xor(m_Specific(A), m_Value(V1))) || 2322 match(B, m_Xor(m_Value(V1), m_Specific(A)))) { 2323 Instruction *Ret = FoldXorWithConstants(I, Op0, A, V1, D); 2324 if (Ret) return Ret; 2325 } 2326 } 2327 2328 // (A ^ B) | ((B ^ C) ^ A) -> (A ^ B) | C 2329 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) 2330 if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A)))) 2331 if (Op1->hasOneUse() || cast<BinaryOperator>(Op1)->hasOneUse()) 2332 return BinaryOperator::CreateOr(Op0, C); 2333 2334 // ((A ^ C) ^ B) | (B ^ A) -> (B ^ A) | C 2335 if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B)))) 2336 if (match(Op1, m_Xor(m_Specific(B), m_Specific(A)))) 2337 if (Op0->hasOneUse() || cast<BinaryOperator>(Op0)->hasOneUse()) 2338 return BinaryOperator::CreateOr(Op1, C); 2339 2340 // ((B | C) & A) | B -> B | (A & C) 2341 if (match(Op0, m_And(m_Or(m_Specific(Op1), m_Value(C)), m_Value(A)))) 2342 return BinaryOperator::CreateOr(Op1, Builder->CreateAnd(A, C)); 2343 2344 if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder)) 2345 return DeMorgan; 2346 2347 // Canonicalize xor to the RHS. 2348 bool SwappedForXor = false; 2349 if (match(Op0, m_Xor(m_Value(), m_Value()))) { 2350 std::swap(Op0, Op1); 2351 SwappedForXor = true; 2352 } 2353 2354 // A | ( A ^ B) -> A | B 2355 // A | (~A ^ B) -> A | ~B 2356 // (A & B) | (A ^ B) 2357 if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) { 2358 if (Op0 == A || Op0 == B) 2359 return BinaryOperator::CreateOr(A, B); 2360 2361 if (match(Op0, m_And(m_Specific(A), m_Specific(B))) || 2362 match(Op0, m_And(m_Specific(B), m_Specific(A)))) 2363 return BinaryOperator::CreateOr(A, B); 2364 2365 if (Op1->hasOneUse() && match(A, m_Not(m_Specific(Op0)))) { 2366 Value *Not = Builder->CreateNot(B, B->getName()+".not"); 2367 return BinaryOperator::CreateOr(Not, Op0); 2368 } 2369 if (Op1->hasOneUse() && match(B, m_Not(m_Specific(Op0)))) { 2370 Value *Not = Builder->CreateNot(A, A->getName()+".not"); 2371 return BinaryOperator::CreateOr(Not, Op0); 2372 } 2373 } 2374 2375 // A | ~(A | B) -> A | ~B 2376 // A | ~(A ^ B) -> A | ~B 2377 if (match(Op1, m_Not(m_Value(A)))) 2378 if (BinaryOperator *B = dyn_cast<BinaryOperator>(A)) 2379 if ((Op0 == B->getOperand(0) || Op0 == B->getOperand(1)) && 2380 Op1->hasOneUse() && (B->getOpcode() == Instruction::Or || 2381 B->getOpcode() == Instruction::Xor)) { 2382 Value *NotOp = Op0 == B->getOperand(0) ? B->getOperand(1) : 2383 B->getOperand(0); 2384 Value *Not = Builder->CreateNot(NotOp, NotOp->getName()+".not"); 2385 return BinaryOperator::CreateOr(Not, Op0); 2386 } 2387 2388 // (A & B) | ((~A) ^ B) -> (~A ^ B) 2389 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 2390 match(Op1, m_Xor(m_Not(m_Specific(A)), m_Specific(B)))) 2391 return BinaryOperator::CreateXor(Builder->CreateNot(A), B); 2392 2393 // ((~A) ^ B) | (A & B) -> (~A ^ B) 2394 if (match(Op0, m_Xor(m_Not(m_Value(A)), m_Value(B))) && 2395 match(Op1, m_And(m_Specific(A), m_Specific(B)))) 2396 return BinaryOperator::CreateXor(Builder->CreateNot(A), B); 2397 2398 if (SwappedForXor) 2399 std::swap(Op0, Op1); 2400 2401 { 2402 ICmpInst *LHS = dyn_cast<ICmpInst>(Op0); 2403 ICmpInst *RHS = dyn_cast<ICmpInst>(Op1); 2404 if (LHS && RHS) 2405 if (Value *Res = FoldOrOfICmps(LHS, RHS, &I)) 2406 return replaceInstUsesWith(I, Res); 2407 2408 // TODO: Make this recursive; it's a little tricky because an arbitrary 2409 // number of 'or' instructions might have to be created. 2410 Value *X, *Y; 2411 if (LHS && match(Op1, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) { 2412 if (auto *Cmp = dyn_cast<ICmpInst>(X)) 2413 if (Value *Res = FoldOrOfICmps(LHS, Cmp, &I)) 2414 return replaceInstUsesWith(I, Builder->CreateOr(Res, Y)); 2415 if (auto *Cmp = dyn_cast<ICmpInst>(Y)) 2416 if (Value *Res = FoldOrOfICmps(LHS, Cmp, &I)) 2417 return replaceInstUsesWith(I, Builder->CreateOr(Res, X)); 2418 } 2419 if (RHS && match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) { 2420 if (auto *Cmp = dyn_cast<ICmpInst>(X)) 2421 if (Value *Res = FoldOrOfICmps(Cmp, RHS, &I)) 2422 return replaceInstUsesWith(I, Builder->CreateOr(Res, Y)); 2423 if (auto *Cmp = dyn_cast<ICmpInst>(Y)) 2424 if (Value *Res = FoldOrOfICmps(Cmp, RHS, &I)) 2425 return replaceInstUsesWith(I, Builder->CreateOr(Res, X)); 2426 } 2427 } 2428 2429 // (fcmp uno x, c) | (fcmp uno y, c) -> (fcmp uno x, y) 2430 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) 2431 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) 2432 if (Value *Res = FoldOrOfFCmps(LHS, RHS)) 2433 return replaceInstUsesWith(I, Res); 2434 2435 if (Instruction *CastedOr = foldCastedBitwiseLogic(I)) 2436 return CastedOr; 2437 2438 // or(sext(A), B) / or(B, sext(A)) --> A ? -1 : B, where A is i1 or <N x i1>. 2439 if (match(Op0, m_OneUse(m_SExt(m_Value(A)))) && 2440 A->getType()->getScalarType()->isIntegerTy(1)) 2441 return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op1); 2442 if (match(Op1, m_OneUse(m_SExt(m_Value(A)))) && 2443 A->getType()->getScalarType()->isIntegerTy(1)) 2444 return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op0); 2445 2446 // Note: If we've gotten to the point of visiting the outer OR, then the 2447 // inner one couldn't be simplified. If it was a constant, then it won't 2448 // be simplified by a later pass either, so we try swapping the inner/outer 2449 // ORs in the hopes that we'll be able to simplify it this way. 2450 // (X|C) | V --> (X|V) | C 2451 if (Op0->hasOneUse() && !isa<ConstantInt>(Op1) && 2452 match(Op0, m_Or(m_Value(A), m_ConstantInt(C1)))) { 2453 Value *Inner = Builder->CreateOr(A, Op1); 2454 Inner->takeName(Op0); 2455 return BinaryOperator::CreateOr(Inner, C1); 2456 } 2457 2458 // Change (or (bool?A:B),(bool?C:D)) --> (bool?(or A,C):(or B,D)) 2459 // Since this OR statement hasn't been optimized further yet, we hope 2460 // that this transformation will allow the new ORs to be optimized. 2461 { 2462 Value *X = nullptr, *Y = nullptr; 2463 if (Op0->hasOneUse() && Op1->hasOneUse() && 2464 match(Op0, m_Select(m_Value(X), m_Value(A), m_Value(B))) && 2465 match(Op1, m_Select(m_Value(Y), m_Value(C), m_Value(D))) && X == Y) { 2466 Value *orTrue = Builder->CreateOr(A, C); 2467 Value *orFalse = Builder->CreateOr(B, D); 2468 return SelectInst::Create(X, orTrue, orFalse); 2469 } 2470 } 2471 2472 return Changed ? &I : nullptr; 2473 } 2474 2475 Instruction *InstCombiner::visitXor(BinaryOperator &I) { 2476 bool Changed = SimplifyAssociativeOrCommutative(I); 2477 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 2478 2479 if (Value *V = SimplifyVectorOp(I)) 2480 return replaceInstUsesWith(I, V); 2481 2482 if (Value *V = SimplifyXorInst(Op0, Op1, DL, TLI, DT, AC)) 2483 return replaceInstUsesWith(I, V); 2484 2485 // (A&B)^(A&C) -> A&(B^C) etc 2486 if (Value *V = SimplifyUsingDistributiveLaws(I)) 2487 return replaceInstUsesWith(I, V); 2488 2489 // See if we can simplify any instructions used by the instruction whose sole 2490 // purpose is to compute bits we don't care about. 2491 if (SimplifyDemandedInstructionBits(I)) 2492 return &I; 2493 2494 if (Value *V = SimplifyBSwap(I)) 2495 return replaceInstUsesWith(I, V); 2496 2497 // Is this a ~ operation? 2498 if (Value *NotOp = dyn_castNotVal(&I)) { 2499 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) { 2500 if (Op0I->getOpcode() == Instruction::And || 2501 Op0I->getOpcode() == Instruction::Or) { 2502 // ~(~X & Y) --> (X | ~Y) - De Morgan's Law 2503 // ~(~X | Y) === (X & ~Y) - De Morgan's Law 2504 if (dyn_castNotVal(Op0I->getOperand(1))) 2505 Op0I->swapOperands(); 2506 if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) { 2507 Value *NotY = 2508 Builder->CreateNot(Op0I->getOperand(1), 2509 Op0I->getOperand(1)->getName()+".not"); 2510 if (Op0I->getOpcode() == Instruction::And) 2511 return BinaryOperator::CreateOr(Op0NotVal, NotY); 2512 return BinaryOperator::CreateAnd(Op0NotVal, NotY); 2513 } 2514 2515 // ~(X & Y) --> (~X | ~Y) - De Morgan's Law 2516 // ~(X | Y) === (~X & ~Y) - De Morgan's Law 2517 if (IsFreeToInvert(Op0I->getOperand(0), 2518 Op0I->getOperand(0)->hasOneUse()) && 2519 IsFreeToInvert(Op0I->getOperand(1), 2520 Op0I->getOperand(1)->hasOneUse())) { 2521 Value *NotX = 2522 Builder->CreateNot(Op0I->getOperand(0), "notlhs"); 2523 Value *NotY = 2524 Builder->CreateNot(Op0I->getOperand(1), "notrhs"); 2525 if (Op0I->getOpcode() == Instruction::And) 2526 return BinaryOperator::CreateOr(NotX, NotY); 2527 return BinaryOperator::CreateAnd(NotX, NotY); 2528 } 2529 2530 } else if (Op0I->getOpcode() == Instruction::AShr) { 2531 // ~(~X >>s Y) --> (X >>s Y) 2532 if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) 2533 return BinaryOperator::CreateAShr(Op0NotVal, Op0I->getOperand(1)); 2534 } 2535 } 2536 } 2537 2538 if (Constant *RHS = dyn_cast<Constant>(Op1)) { 2539 if (RHS->isAllOnesValue() && Op0->hasOneUse()) 2540 // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B 2541 if (CmpInst *CI = dyn_cast<CmpInst>(Op0)) 2542 return CmpInst::Create(CI->getOpcode(), 2543 CI->getInversePredicate(), 2544 CI->getOperand(0), CI->getOperand(1)); 2545 } 2546 2547 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) { 2548 // fold (xor(zext(cmp)), 1) and (xor(sext(cmp)), -1) to ext(!cmp). 2549 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) { 2550 if (CmpInst *CI = dyn_cast<CmpInst>(Op0C->getOperand(0))) { 2551 if (CI->hasOneUse() && Op0C->hasOneUse()) { 2552 Instruction::CastOps Opcode = Op0C->getOpcode(); 2553 if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) && 2554 (RHS == ConstantExpr::getCast(Opcode, Builder->getTrue(), 2555 Op0C->getDestTy()))) { 2556 CI->setPredicate(CI->getInversePredicate()); 2557 return CastInst::Create(Opcode, CI, Op0C->getType()); 2558 } 2559 } 2560 } 2561 } 2562 2563 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) { 2564 // ~(c-X) == X-c-1 == X+(-c-1) 2565 if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue()) 2566 if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) { 2567 Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C); 2568 Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C, 2569 ConstantInt::get(I.getType(), 1)); 2570 return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS); 2571 } 2572 2573 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) { 2574 if (Op0I->getOpcode() == Instruction::Add) { 2575 // ~(X-c) --> (-c-1)-X 2576 if (RHS->isAllOnesValue()) { 2577 Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI); 2578 return BinaryOperator::CreateSub( 2579 ConstantExpr::getSub(NegOp0CI, 2580 ConstantInt::get(I.getType(), 1)), 2581 Op0I->getOperand(0)); 2582 } else if (RHS->getValue().isSignBit()) { 2583 // (X + C) ^ signbit -> (X + C + signbit) 2584 Constant *C = Builder->getInt(RHS->getValue() + Op0CI->getValue()); 2585 return BinaryOperator::CreateAdd(Op0I->getOperand(0), C); 2586 2587 } 2588 } else if (Op0I->getOpcode() == Instruction::Or) { 2589 // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0 2590 if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue(), 2591 0, &I)) { 2592 Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS); 2593 // Anything in both C1 and C2 is known to be zero, remove it from 2594 // NewRHS. 2595 Constant *CommonBits = ConstantExpr::getAnd(Op0CI, RHS); 2596 NewRHS = ConstantExpr::getAnd(NewRHS, 2597 ConstantExpr::getNot(CommonBits)); 2598 Worklist.Add(Op0I); 2599 I.setOperand(0, Op0I->getOperand(0)); 2600 I.setOperand(1, NewRHS); 2601 return &I; 2602 } 2603 } else if (Op0I->getOpcode() == Instruction::LShr) { 2604 // ((X^C1) >> C2) ^ C3 -> (X>>C2) ^ ((C1>>C2)^C3) 2605 // E1 = "X ^ C1" 2606 BinaryOperator *E1; 2607 ConstantInt *C1; 2608 if (Op0I->hasOneUse() && 2609 (E1 = dyn_cast<BinaryOperator>(Op0I->getOperand(0))) && 2610 E1->getOpcode() == Instruction::Xor && 2611 (C1 = dyn_cast<ConstantInt>(E1->getOperand(1)))) { 2612 // fold (C1 >> C2) ^ C3 2613 ConstantInt *C2 = Op0CI, *C3 = RHS; 2614 APInt FoldConst = C1->getValue().lshr(C2->getValue()); 2615 FoldConst ^= C3->getValue(); 2616 // Prepare the two operands. 2617 Value *Opnd0 = Builder->CreateLShr(E1->getOperand(0), C2); 2618 Opnd0->takeName(Op0I); 2619 cast<Instruction>(Opnd0)->setDebugLoc(I.getDebugLoc()); 2620 Value *FoldVal = ConstantInt::get(Opnd0->getType(), FoldConst); 2621 2622 return BinaryOperator::CreateXor(Opnd0, FoldVal); 2623 } 2624 } 2625 } 2626 } 2627 2628 // Try to fold constant and into select arguments. 2629 if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) 2630 if (Instruction *R = FoldOpIntoSelect(I, SI)) 2631 return R; 2632 if (isa<PHINode>(Op0)) 2633 if (Instruction *NV = FoldOpIntoPhi(I)) 2634 return NV; 2635 } 2636 2637 BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1); 2638 if (Op1I) { 2639 Value *A, *B; 2640 if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) { 2641 if (A == Op0) { // B^(B|A) == (A|B)^B 2642 Op1I->swapOperands(); 2643 I.swapOperands(); 2644 std::swap(Op0, Op1); 2645 } else if (B == Op0) { // B^(A|B) == (A|B)^B 2646 I.swapOperands(); // Simplified below. 2647 std::swap(Op0, Op1); 2648 } 2649 } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) && 2650 Op1I->hasOneUse()){ 2651 if (A == Op0) { // A^(A&B) -> A^(B&A) 2652 Op1I->swapOperands(); 2653 std::swap(A, B); 2654 } 2655 if (B == Op0) { // A^(B&A) -> (B&A)^A 2656 I.swapOperands(); // Simplified below. 2657 std::swap(Op0, Op1); 2658 } 2659 } 2660 } 2661 2662 BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0); 2663 if (Op0I) { 2664 Value *A, *B; 2665 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) && 2666 Op0I->hasOneUse()) { 2667 if (A == Op1) // (B|A)^B == (A|B)^B 2668 std::swap(A, B); 2669 if (B == Op1) // (A|B)^B == A & ~B 2670 return BinaryOperator::CreateAnd(A, Builder->CreateNot(Op1)); 2671 } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) && 2672 Op0I->hasOneUse()){ 2673 if (A == Op1) // (A&B)^A -> (B&A)^A 2674 std::swap(A, B); 2675 if (B == Op1 && // (B&A)^A == ~B & A 2676 !isa<ConstantInt>(Op1)) { // Canonical form is (B&C)^C 2677 return BinaryOperator::CreateAnd(Builder->CreateNot(A), Op1); 2678 } 2679 } 2680 } 2681 2682 if (Op0I && Op1I) { 2683 Value *A, *B, *C, *D; 2684 // (A & B)^(A | B) -> A ^ B 2685 if (match(Op0I, m_And(m_Value(A), m_Value(B))) && 2686 match(Op1I, m_Or(m_Value(C), m_Value(D)))) { 2687 if ((A == C && B == D) || (A == D && B == C)) 2688 return BinaryOperator::CreateXor(A, B); 2689 } 2690 // (A | B)^(A & B) -> A ^ B 2691 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) && 2692 match(Op1I, m_And(m_Value(C), m_Value(D)))) { 2693 if ((A == C && B == D) || (A == D && B == C)) 2694 return BinaryOperator::CreateXor(A, B); 2695 } 2696 // (A | ~B) ^ (~A | B) -> A ^ B 2697 if (match(Op0I, m_Or(m_Value(A), m_Not(m_Value(B)))) && 2698 match(Op1I, m_Or(m_Not(m_Specific(A)), m_Specific(B)))) { 2699 return BinaryOperator::CreateXor(A, B); 2700 } 2701 // (~A | B) ^ (A | ~B) -> A ^ B 2702 if (match(Op0I, m_Or(m_Not(m_Value(A)), m_Value(B))) && 2703 match(Op1I, m_Or(m_Specific(A), m_Not(m_Specific(B))))) { 2704 return BinaryOperator::CreateXor(A, B); 2705 } 2706 // (A & ~B) ^ (~A & B) -> A ^ B 2707 if (match(Op0I, m_And(m_Value(A), m_Not(m_Value(B)))) && 2708 match(Op1I, m_And(m_Not(m_Specific(A)), m_Specific(B)))) { 2709 return BinaryOperator::CreateXor(A, B); 2710 } 2711 // (~A & B) ^ (A & ~B) -> A ^ B 2712 if (match(Op0I, m_And(m_Not(m_Value(A)), m_Value(B))) && 2713 match(Op1I, m_And(m_Specific(A), m_Not(m_Specific(B))))) { 2714 return BinaryOperator::CreateXor(A, B); 2715 } 2716 // (A ^ C)^(A | B) -> ((~A) & B) ^ C 2717 if (match(Op0I, m_Xor(m_Value(D), m_Value(C))) && 2718 match(Op1I, m_Or(m_Value(A), m_Value(B)))) { 2719 if (D == A) 2720 return BinaryOperator::CreateXor( 2721 Builder->CreateAnd(Builder->CreateNot(A), B), C); 2722 if (D == B) 2723 return BinaryOperator::CreateXor( 2724 Builder->CreateAnd(Builder->CreateNot(B), A), C); 2725 } 2726 // (A | B)^(A ^ C) -> ((~A) & B) ^ C 2727 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) && 2728 match(Op1I, m_Xor(m_Value(D), m_Value(C)))) { 2729 if (D == A) 2730 return BinaryOperator::CreateXor( 2731 Builder->CreateAnd(Builder->CreateNot(A), B), C); 2732 if (D == B) 2733 return BinaryOperator::CreateXor( 2734 Builder->CreateAnd(Builder->CreateNot(B), A), C); 2735 } 2736 // (A & B) ^ (A ^ B) -> (A | B) 2737 if (match(Op0I, m_And(m_Value(A), m_Value(B))) && 2738 match(Op1I, m_Xor(m_Specific(A), m_Specific(B)))) 2739 return BinaryOperator::CreateOr(A, B); 2740 // (A ^ B) ^ (A & B) -> (A | B) 2741 if (match(Op0I, m_Xor(m_Value(A), m_Value(B))) && 2742 match(Op1I, m_And(m_Specific(A), m_Specific(B)))) 2743 return BinaryOperator::CreateOr(A, B); 2744 } 2745 2746 Value *A = nullptr, *B = nullptr; 2747 // (A & ~B) ^ (~A) -> ~(A & B) 2748 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) && 2749 match(Op1, m_Not(m_Specific(A)))) 2750 return BinaryOperator::CreateNot(Builder->CreateAnd(A, B)); 2751 2752 // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B) 2753 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1))) 2754 if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0))) 2755 if (PredicatesFoldable(LHS->getPredicate(), RHS->getPredicate())) { 2756 if (LHS->getOperand(0) == RHS->getOperand(1) && 2757 LHS->getOperand(1) == RHS->getOperand(0)) 2758 LHS->swapOperands(); 2759 if (LHS->getOperand(0) == RHS->getOperand(0) && 2760 LHS->getOperand(1) == RHS->getOperand(1)) { 2761 Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1); 2762 unsigned Code = getICmpCode(LHS) ^ getICmpCode(RHS); 2763 bool isSigned = LHS->isSigned() || RHS->isSigned(); 2764 return replaceInstUsesWith(I, 2765 getNewICmpValue(isSigned, Code, Op0, Op1, 2766 Builder)); 2767 } 2768 } 2769 2770 if (Instruction *CastedXor = foldCastedBitwiseLogic(I)) 2771 return CastedXor; 2772 2773 return Changed ? &I : nullptr; 2774 } 2775