Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineAndOrXor.cpp --------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the visitAnd, visitOr, and visitXor functions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "InstCombine.h"
     15 #include "llvm/Intrinsics.h"
     16 #include "llvm/Analysis/InstructionSimplify.h"
     17 #include "llvm/Support/ConstantRange.h"
     18 #include "llvm/Support/PatternMatch.h"
     19 using namespace llvm;
     20 using namespace PatternMatch;
     21 
     22 
     23 /// AddOne - Add one to a ConstantInt.
     24 static Constant *AddOne(Constant *C) {
     25   return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
     26 }
     27 /// SubOne - Subtract one from a ConstantInt.
     28 static Constant *SubOne(ConstantInt *C) {
     29   return ConstantInt::get(C->getContext(), C->getValue()-1);
     30 }
     31 
     32 /// isFreeToInvert - Return true if the specified value is free to invert (apply
     33 /// ~ to).  This happens in cases where the ~ can be eliminated.
     34 static inline bool isFreeToInvert(Value *V) {
     35   // ~(~(X)) -> X.
     36   if (BinaryOperator::isNot(V))
     37     return true;
     38 
     39   // Constants can be considered to be not'ed values.
     40   if (isa<ConstantInt>(V))
     41     return true;
     42 
     43   // Compares can be inverted if they have a single use.
     44   if (CmpInst *CI = dyn_cast<CmpInst>(V))
     45     return CI->hasOneUse();
     46 
     47   return false;
     48 }
     49 
     50 static inline Value *dyn_castNotVal(Value *V) {
     51   // If this is not(not(x)) don't return that this is a not: we want the two
     52   // not's to be folded first.
     53   if (BinaryOperator::isNot(V)) {
     54     Value *Operand = BinaryOperator::getNotArgument(V);
     55     if (!isFreeToInvert(Operand))
     56       return Operand;
     57   }
     58 
     59   // Constants can be considered to be not'ed values...
     60   if (ConstantInt *C = dyn_cast<ConstantInt>(V))
     61     return ConstantInt::get(C->getType(), ~C->getValue());
     62   return 0;
     63 }
     64 
     65 
     66 /// getICmpCode - Encode a icmp predicate into a three bit mask.  These bits
     67 /// are carefully arranged to allow folding of expressions such as:
     68 ///
     69 ///      (A < B) | (A > B) --> (A != B)
     70 ///
     71 /// Note that this is only valid if the first and second predicates have the
     72 /// same sign. Is illegal to do: (A u< B) | (A s> B)
     73 ///
     74 /// Three bits are used to represent the condition, as follows:
     75 ///   0  A > B
     76 ///   1  A == B
     77 ///   2  A < B
     78 ///
     79 /// <=>  Value  Definition
     80 /// 000     0   Always false
     81 /// 001     1   A >  B
     82 /// 010     2   A == B
     83 /// 011     3   A >= B
     84 /// 100     4   A <  B
     85 /// 101     5   A != B
     86 /// 110     6   A <= B
     87 /// 111     7   Always true
     88 ///
     89 static unsigned getICmpCode(const ICmpInst *ICI) {
     90   switch (ICI->getPredicate()) {
     91     // False -> 0
     92   case ICmpInst::ICMP_UGT: return 1;  // 001
     93   case ICmpInst::ICMP_SGT: return 1;  // 001
     94   case ICmpInst::ICMP_EQ:  return 2;  // 010
     95   case ICmpInst::ICMP_UGE: return 3;  // 011
     96   case ICmpInst::ICMP_SGE: return 3;  // 011
     97   case ICmpInst::ICMP_ULT: return 4;  // 100
     98   case ICmpInst::ICMP_SLT: return 4;  // 100
     99   case ICmpInst::ICMP_NE:  return 5;  // 101
    100   case ICmpInst::ICMP_ULE: return 6;  // 110
    101   case ICmpInst::ICMP_SLE: return 6;  // 110
    102     // True -> 7
    103   default:
    104     llvm_unreachable("Invalid ICmp predicate!");
    105     return 0;
    106   }
    107 }
    108 
    109 /// getFCmpCode - Similar to getICmpCode but for FCmpInst. This encodes a fcmp
    110 /// predicate into a three bit mask. It also returns whether it is an ordered
    111 /// predicate by reference.
    112 static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) {
    113   isOrdered = false;
    114   switch (CC) {
    115   case FCmpInst::FCMP_ORD: isOrdered = true; return 0;  // 000
    116   case FCmpInst::FCMP_UNO:                   return 0;  // 000
    117   case FCmpInst::FCMP_OGT: isOrdered = true; return 1;  // 001
    118   case FCmpInst::FCMP_UGT:                   return 1;  // 001
    119   case FCmpInst::FCMP_OEQ: isOrdered = true; return 2;  // 010
    120   case FCmpInst::FCMP_UEQ:                   return 2;  // 010
    121   case FCmpInst::FCMP_OGE: isOrdered = true; return 3;  // 011
    122   case FCmpInst::FCMP_UGE:                   return 3;  // 011
    123   case FCmpInst::FCMP_OLT: isOrdered = true; return 4;  // 100
    124   case FCmpInst::FCMP_ULT:                   return 4;  // 100
    125   case FCmpInst::FCMP_ONE: isOrdered = true; return 5;  // 101
    126   case FCmpInst::FCMP_UNE:                   return 5;  // 101
    127   case FCmpInst::FCMP_OLE: isOrdered = true; return 6;  // 110
    128   case FCmpInst::FCMP_ULE:                   return 6;  // 110
    129     // True -> 7
    130   default:
    131     // Not expecting FCMP_FALSE and FCMP_TRUE;
    132     llvm_unreachable("Unexpected FCmp predicate!");
    133     return 0;
    134   }
    135 }
    136 
    137 /// getICmpValue - This is the complement of getICmpCode, which turns an
    138 /// opcode and two operands into either a constant true or false, or a brand
    139 /// new ICmp instruction. The sign is passed in to determine which kind
    140 /// of predicate to use in the new icmp instruction.
    141 static Value *getICmpValue(bool Sign, unsigned Code, Value *LHS, Value *RHS,
    142                            InstCombiner::BuilderTy *Builder) {
    143   CmpInst::Predicate Pred;
    144   switch (Code) {
    145   default: assert(0 && "Illegal ICmp code!");
    146   case 0: // False.
    147     return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
    148   case 1: Pred = Sign ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; break;
    149   case 2: Pred = ICmpInst::ICMP_EQ; break;
    150   case 3: Pred = Sign ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; break;
    151   case 4: Pred = Sign ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; break;
    152   case 5: Pred = ICmpInst::ICMP_NE; break;
    153   case 6: Pred = Sign ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; break;
    154   case 7: // True.
    155     return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1);
    156   }
    157   return Builder->CreateICmp(Pred, LHS, RHS);
    158 }
    159 
    160 /// getFCmpValue - This is the complement of getFCmpCode, which turns an
    161 /// opcode and two operands into either a FCmp instruction. isordered is passed
    162 /// in to determine which kind of predicate to use in the new fcmp instruction.
    163 static Value *getFCmpValue(bool isordered, unsigned code,
    164                            Value *LHS, Value *RHS,
    165                            InstCombiner::BuilderTy *Builder) {
    166   CmpInst::Predicate Pred;
    167   switch (code) {
    168   default: assert(0 && "Illegal FCmp code!");
    169   case 0: Pred = isordered ? FCmpInst::FCMP_ORD : FCmpInst::FCMP_UNO; break;
    170   case 1: Pred = isordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; break;
    171   case 2: Pred = isordered ? FCmpInst::FCMP_OEQ : FCmpInst::FCMP_UEQ; break;
    172   case 3: Pred = isordered ? FCmpInst::FCMP_OGE : FCmpInst::FCMP_UGE; break;
    173   case 4: Pred = isordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; break;
    174   case 5: Pred = isordered ? FCmpInst::FCMP_ONE : FCmpInst::FCMP_UNE; break;
    175   case 6: Pred = isordered ? FCmpInst::FCMP_OLE : FCmpInst::FCMP_ULE; break;
    176   case 7:
    177     if (!isordered) return ConstantInt::getTrue(LHS->getContext());
    178     Pred = FCmpInst::FCMP_ORD; break;
    179   }
    180   return Builder->CreateFCmp(Pred, LHS, RHS);
    181 }
    182 
    183 /// PredicatesFoldable - Return true if both predicates match sign or if at
    184 /// least one of them is an equality comparison (which is signless).
    185 static bool PredicatesFoldable(ICmpInst::Predicate p1, ICmpInst::Predicate p2) {
    186   return (CmpInst::isSigned(p1) == CmpInst::isSigned(p2)) ||
    187          (CmpInst::isSigned(p1) && ICmpInst::isEquality(p2)) ||
    188          (CmpInst::isSigned(p2) && ICmpInst::isEquality(p1));
    189 }
    190 
    191 // OptAndOp - This handles expressions of the form ((val OP C1) & C2).  Where
    192 // the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'.  Op is
    193 // guaranteed to be a binary operator.
    194 Instruction *InstCombiner::OptAndOp(Instruction *Op,
    195                                     ConstantInt *OpRHS,
    196                                     ConstantInt *AndRHS,
    197                                     BinaryOperator &TheAnd) {
    198   Value *X = Op->getOperand(0);
    199   Constant *Together = 0;
    200   if (!Op->isShift())
    201     Together = ConstantExpr::getAnd(AndRHS, OpRHS);
    202 
    203   switch (Op->getOpcode()) {
    204   case Instruction::Xor:
    205     if (Op->hasOneUse()) {
    206       // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
    207       Value *And = Builder->CreateAnd(X, AndRHS);
    208       And->takeName(Op);
    209       return BinaryOperator::CreateXor(And, Together);
    210     }
    211     break;
    212   case Instruction::Or:
    213     if (Op->hasOneUse()){
    214       if (Together != OpRHS) {
    215         // (X | C1) & C2 --> (X | (C1&C2)) & C2
    216         Value *Or = Builder->CreateOr(X, Together);
    217         Or->takeName(Op);
    218         return BinaryOperator::CreateAnd(Or, AndRHS);
    219       }
    220 
    221       ConstantInt *TogetherCI = dyn_cast<ConstantInt>(Together);
    222       if (TogetherCI && !TogetherCI->isZero()){
    223         // (X | C1) & C2 --> (X & (C2^(C1&C2))) | C1
    224         // NOTE: This reduces the number of bits set in the & mask, which
    225         // can expose opportunities for store narrowing.
    226         Together = ConstantExpr::getXor(AndRHS, Together);
    227         Value *And = Builder->CreateAnd(X, Together);
    228         And->takeName(Op);
    229         return BinaryOperator::CreateOr(And, OpRHS);
    230       }
    231     }
    232 
    233     break;
    234   case Instruction::Add:
    235     if (Op->hasOneUse()) {
    236       // Adding a one to a single bit bit-field should be turned into an XOR
    237       // of the bit.  First thing to check is to see if this AND is with a
    238       // single bit constant.
    239       const APInt &AndRHSV = cast<ConstantInt>(AndRHS)->getValue();
    240 
    241       // If there is only one bit set.
    242       if (AndRHSV.isPowerOf2()) {
    243         // Ok, at this point, we know that we are masking the result of the
    244         // ADD down to exactly one bit.  If the constant we are adding has
    245         // no bits set below this bit, then we can eliminate the ADD.
    246         const APInt& AddRHS = cast<ConstantInt>(OpRHS)->getValue();
    247 
    248         // Check to see if any bits below the one bit set in AndRHSV are set.
    249         if ((AddRHS & (AndRHSV-1)) == 0) {
    250           // If not, the only thing that can effect the output of the AND is
    251           // the bit specified by AndRHSV.  If that bit is set, the effect of
    252           // the XOR is to toggle the bit.  If it is clear, then the ADD has
    253           // no effect.
    254           if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
    255             TheAnd.setOperand(0, X);
    256             return &TheAnd;
    257           } else {
    258             // Pull the XOR out of the AND.
    259             Value *NewAnd = Builder->CreateAnd(X, AndRHS);
    260             NewAnd->takeName(Op);
    261             return BinaryOperator::CreateXor(NewAnd, AndRHS);
    262           }
    263         }
    264       }
    265     }
    266     break;
    267 
    268   case Instruction::Shl: {
    269     // We know that the AND will not produce any of the bits shifted in, so if
    270     // the anded constant includes them, clear them now!
    271     //
    272     uint32_t BitWidth = AndRHS->getType()->getBitWidth();
    273     uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
    274     APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
    275     ConstantInt *CI = ConstantInt::get(AndRHS->getContext(),
    276                                        AndRHS->getValue() & ShlMask);
    277 
    278     if (CI->getValue() == ShlMask)
    279       // Masking out bits that the shift already masks.
    280       return ReplaceInstUsesWith(TheAnd, Op);   // No need for the and.
    281 
    282     if (CI != AndRHS) {                  // Reducing bits set in and.
    283       TheAnd.setOperand(1, CI);
    284       return &TheAnd;
    285     }
    286     break;
    287   }
    288   case Instruction::LShr: {
    289     // We know that the AND will not produce any of the bits shifted in, so if
    290     // the anded constant includes them, clear them now!  This only applies to
    291     // unsigned shifts, because a signed shr may bring in set bits!
    292     //
    293     uint32_t BitWidth = AndRHS->getType()->getBitWidth();
    294     uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
    295     APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
    296     ConstantInt *CI = ConstantInt::get(Op->getContext(),
    297                                        AndRHS->getValue() & ShrMask);
    298 
    299     if (CI->getValue() == ShrMask)
    300       // Masking out bits that the shift already masks.
    301       return ReplaceInstUsesWith(TheAnd, Op);
    302 
    303     if (CI != AndRHS) {
    304       TheAnd.setOperand(1, CI);  // Reduce bits set in and cst.
    305       return &TheAnd;
    306     }
    307     break;
    308   }
    309   case Instruction::AShr:
    310     // Signed shr.
    311     // See if this is shifting in some sign extension, then masking it out
    312     // with an and.
    313     if (Op->hasOneUse()) {
    314       uint32_t BitWidth = AndRHS->getType()->getBitWidth();
    315       uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
    316       APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
    317       Constant *C = ConstantInt::get(Op->getContext(),
    318                                      AndRHS->getValue() & ShrMask);
    319       if (C == AndRHS) {          // Masking out bits shifted in.
    320         // (Val ashr C1) & C2 -> (Val lshr C1) & C2
    321         // Make the argument unsigned.
    322         Value *ShVal = Op->getOperand(0);
    323         ShVal = Builder->CreateLShr(ShVal, OpRHS, Op->getName());
    324         return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName());
    325       }
    326     }
    327     break;
    328   }
    329   return 0;
    330 }
    331 
    332 
    333 /// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is
    334 /// true, otherwise (V < Lo || V >= Hi).  In practice, we emit the more efficient
    335 /// (V-Lo) <u Hi-Lo.  This method expects that Lo <= Hi. isSigned indicates
    336 /// whether to treat the V, Lo and HI as signed or not. IB is the location to
    337 /// insert new instructions.
    338 Value *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
    339                                      bool isSigned, bool Inside) {
    340   assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
    341             ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
    342          "Lo is not <= Hi in range emission code!");
    343 
    344   if (Inside) {
    345     if (Lo == Hi)  // Trivially false.
    346       return ConstantInt::getFalse(V->getContext());
    347 
    348     // V >= Min && V < Hi --> V < Hi
    349     if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
    350       ICmpInst::Predicate pred = (isSigned ?
    351         ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
    352       return Builder->CreateICmp(pred, V, Hi);
    353     }
    354 
    355     // Emit V-Lo <u Hi-Lo
    356     Constant *NegLo = ConstantExpr::getNeg(Lo);
    357     Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
    358     Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
    359     return Builder->CreateICmpULT(Add, UpperBound);
    360   }
    361 
    362   if (Lo == Hi)  // Trivially true.
    363     return ConstantInt::getTrue(V->getContext());
    364 
    365   // V < Min || V >= Hi -> V > Hi-1
    366   Hi = SubOne(cast<ConstantInt>(Hi));
    367   if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
    368     ICmpInst::Predicate pred = (isSigned ?
    369         ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
    370     return Builder->CreateICmp(pred, V, Hi);
    371   }
    372 
    373   // Emit V-Lo >u Hi-1-Lo
    374   // Note that Hi has already had one subtracted from it, above.
    375   ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo));
    376   Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
    377   Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
    378   return Builder->CreateICmpUGT(Add, LowerBound);
    379 }
    380 
    381 // isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
    382 // any number of 0s on either side.  The 1s are allowed to wrap from LSB to
    383 // MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.  0x0F0F0000 is
    384 // not, since all 1s are not contiguous.
    385 static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
    386   const APInt& V = Val->getValue();
    387   uint32_t BitWidth = Val->getType()->getBitWidth();
    388   if (!APIntOps::isShiftedMask(BitWidth, V)) return false;
    389 
    390   // look for the first zero bit after the run of ones
    391   MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
    392   // look for the first non-zero bit
    393   ME = V.getActiveBits();
    394   return true;
    395 }
    396 
    397 /// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
    398 /// where isSub determines whether the operator is a sub.  If we can fold one of
    399 /// the following xforms:
    400 ///
    401 /// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
    402 /// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
    403 /// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
    404 ///
    405 /// return (A +/- B).
    406 ///
    407 Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
    408                                         ConstantInt *Mask, bool isSub,
    409                                         Instruction &I) {
    410   Instruction *LHSI = dyn_cast<Instruction>(LHS);
    411   if (!LHSI || LHSI->getNumOperands() != 2 ||
    412       !isa<ConstantInt>(LHSI->getOperand(1))) return 0;
    413 
    414   ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
    415 
    416   switch (LHSI->getOpcode()) {
    417   default: return 0;
    418   case Instruction::And:
    419     if (ConstantExpr::getAnd(N, Mask) == Mask) {
    420       // If the AndRHS is a power of two minus one (0+1+), this is simple.
    421       if ((Mask->getValue().countLeadingZeros() +
    422            Mask->getValue().countPopulation()) ==
    423           Mask->getValue().getBitWidth())
    424         break;
    425 
    426       // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
    427       // part, we don't need any explicit masks to take them out of A.  If that
    428       // is all N is, ignore it.
    429       uint32_t MB = 0, ME = 0;
    430       if (isRunOfOnes(Mask, MB, ME)) {  // begin/end bit of run, inclusive
    431         uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth();
    432         APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1));
    433         if (MaskedValueIsZero(RHS, Mask))
    434           break;
    435       }
    436     }
    437     return 0;
    438   case Instruction::Or:
    439   case Instruction::Xor:
    440     // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
    441     if ((Mask->getValue().countLeadingZeros() +
    442          Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
    443         && ConstantExpr::getAnd(N, Mask)->isNullValue())
    444       break;
    445     return 0;
    446   }
    447 
    448   if (isSub)
    449     return Builder->CreateSub(LHSI->getOperand(0), RHS, "fold");
    450   return Builder->CreateAdd(LHSI->getOperand(0), RHS, "fold");
    451 }
    452 
    453 /// enum for classifying (icmp eq (A & B), C) and (icmp ne (A & B), C)
    454 /// One of A and B is considered the mask, the other the value. This is
    455 /// described as the "AMask" or "BMask" part of the enum. If the enum
    456 /// contains only "Mask", then both A and B can be considered masks.
    457 /// If A is the mask, then it was proven, that (A & C) == C. This
    458 /// is trivial if C == A, or C == 0. If both A and C are constants, this
    459 /// proof is also easy.
    460 /// For the following explanations we assume that A is the mask.
    461 /// The part "AllOnes" declares, that the comparison is true only
    462 /// if (A & B) == A, or all bits of A are set in B.
    463 ///   Example: (icmp eq (A & 3), 3) -> FoldMskICmp_AMask_AllOnes
    464 /// The part "AllZeroes" declares, that the comparison is true only
    465 /// if (A & B) == 0, or all bits of A are cleared in B.
    466 ///   Example: (icmp eq (A & 3), 0) -> FoldMskICmp_Mask_AllZeroes
    467 /// The part "Mixed" declares, that (A & B) == C and C might or might not
    468 /// contain any number of one bits and zero bits.
    469 ///   Example: (icmp eq (A & 3), 1) -> FoldMskICmp_AMask_Mixed
    470 /// The Part "Not" means, that in above descriptions "==" should be replaced
    471 /// by "!=".
    472 ///   Example: (icmp ne (A & 3), 3) -> FoldMskICmp_AMask_NotAllOnes
    473 /// If the mask A contains a single bit, then the following is equivalent:
    474 ///    (icmp eq (A & B), A) equals (icmp ne (A & B), 0)
    475 ///    (icmp ne (A & B), A) equals (icmp eq (A & B), 0)
    476 enum MaskedICmpType {
    477   FoldMskICmp_AMask_AllOnes           =     1,
    478   FoldMskICmp_AMask_NotAllOnes        =     2,
    479   FoldMskICmp_BMask_AllOnes           =     4,
    480   FoldMskICmp_BMask_NotAllOnes        =     8,
    481   FoldMskICmp_Mask_AllZeroes          =    16,
    482   FoldMskICmp_Mask_NotAllZeroes       =    32,
    483   FoldMskICmp_AMask_Mixed             =    64,
    484   FoldMskICmp_AMask_NotMixed          =   128,
    485   FoldMskICmp_BMask_Mixed             =   256,
    486   FoldMskICmp_BMask_NotMixed          =   512
    487 };
    488 
    489 /// return the set of pattern classes (from MaskedICmpType)
    490 /// that (icmp SCC (A & B), C) satisfies
    491 static unsigned getTypeOfMaskedICmp(Value* A, Value* B, Value* C,
    492                                     ICmpInst::Predicate SCC)
    493 {
    494   ConstantInt *ACst = dyn_cast<ConstantInt>(A);
    495   ConstantInt *BCst = dyn_cast<ConstantInt>(B);
    496   ConstantInt *CCst = dyn_cast<ConstantInt>(C);
    497   bool icmp_eq = (SCC == ICmpInst::ICMP_EQ);
    498   bool icmp_abit = (ACst != 0 && !ACst->isZero() &&
    499                     ACst->getValue().isPowerOf2());
    500   bool icmp_bbit = (BCst != 0 && !BCst->isZero() &&
    501                     BCst->getValue().isPowerOf2());
    502   unsigned result = 0;
    503   if (CCst != 0 && CCst->isZero()) {
    504     // if C is zero, then both A and B qualify as mask
    505     result |= (icmp_eq ? (FoldMskICmp_Mask_AllZeroes |
    506                           FoldMskICmp_Mask_AllZeroes |
    507                           FoldMskICmp_AMask_Mixed |
    508                           FoldMskICmp_BMask_Mixed)
    509                        : (FoldMskICmp_Mask_NotAllZeroes |
    510                           FoldMskICmp_Mask_NotAllZeroes |
    511                           FoldMskICmp_AMask_NotMixed |
    512                           FoldMskICmp_BMask_NotMixed));
    513     if (icmp_abit)
    514       result |= (icmp_eq ? (FoldMskICmp_AMask_NotAllOnes |
    515                             FoldMskICmp_AMask_NotMixed)
    516                          : (FoldMskICmp_AMask_AllOnes |
    517                             FoldMskICmp_AMask_Mixed));
    518     if (icmp_bbit)
    519       result |= (icmp_eq ? (FoldMskICmp_BMask_NotAllOnes |
    520                             FoldMskICmp_BMask_NotMixed)
    521                          : (FoldMskICmp_BMask_AllOnes |
    522                             FoldMskICmp_BMask_Mixed));
    523     return result;
    524   }
    525   if (A == C) {
    526     result |= (icmp_eq ? (FoldMskICmp_AMask_AllOnes |
    527                           FoldMskICmp_AMask_Mixed)
    528                        : (FoldMskICmp_AMask_NotAllOnes |
    529                           FoldMskICmp_AMask_NotMixed));
    530     if (icmp_abit)
    531       result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes |
    532                             FoldMskICmp_AMask_NotMixed)
    533                          : (FoldMskICmp_Mask_AllZeroes |
    534                             FoldMskICmp_AMask_Mixed));
    535   }
    536   else if (ACst != 0 && CCst != 0 &&
    537         ConstantExpr::getAnd(ACst, CCst) == CCst) {
    538     result |= (icmp_eq ? FoldMskICmp_AMask_Mixed
    539                        : FoldMskICmp_AMask_NotMixed);
    540   }
    541   if (B == C)
    542   {
    543     result |= (icmp_eq ? (FoldMskICmp_BMask_AllOnes |
    544                           FoldMskICmp_BMask_Mixed)
    545                        : (FoldMskICmp_BMask_NotAllOnes |
    546                           FoldMskICmp_BMask_NotMixed));
    547     if (icmp_bbit)
    548       result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes |
    549                             FoldMskICmp_BMask_NotMixed)
    550                          : (FoldMskICmp_Mask_AllZeroes |
    551                             FoldMskICmp_BMask_Mixed));
    552   }
    553   else if (BCst != 0 && CCst != 0 &&
    554         ConstantExpr::getAnd(BCst, CCst) == CCst) {
    555     result |= (icmp_eq ? FoldMskICmp_BMask_Mixed
    556                        : FoldMskICmp_BMask_NotMixed);
    557   }
    558   return result;
    559 }
    560 
    561 /// foldLogOpOfMaskedICmpsHelper:
    562 /// handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
    563 /// return the set of pattern classes (from MaskedICmpType)
    564 /// that both LHS and RHS satisfy
    565 static unsigned foldLogOpOfMaskedICmpsHelper(Value*& A,
    566                                              Value*& B, Value*& C,
    567                                              Value*& D, Value*& E,
    568                                              ICmpInst *LHS, ICmpInst *RHS) {
    569   ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
    570   if (LHSCC != ICmpInst::ICMP_EQ && LHSCC != ICmpInst::ICMP_NE) return 0;
    571   if (RHSCC != ICmpInst::ICMP_EQ && RHSCC != ICmpInst::ICMP_NE) return 0;
    572   if (LHS->getOperand(0)->getType() != RHS->getOperand(0)->getType()) return 0;
    573   // vectors are not (yet?) supported
    574   if (LHS->getOperand(0)->getType()->isVectorTy()) return 0;
    575 
    576   // Here comes the tricky part:
    577   // LHS might be of the form L11 & L12 == X, X == L21 & L22,
    578   // and L11 & L12 == L21 & L22. The same goes for RHS.
    579   // Now we must find those components L** and R**, that are equal, so
    580   // that we can extract the parameters A, B, C, D, and E for the canonical
    581   // above.
    582   Value *L1 = LHS->getOperand(0);
    583   Value *L2 = LHS->getOperand(1);
    584   Value *L11,*L12,*L21,*L22;
    585   if (match(L1, m_And(m_Value(L11), m_Value(L12)))) {
    586     if (!match(L2, m_And(m_Value(L21), m_Value(L22))))
    587       L21 = L22 = 0;
    588   }
    589   else {
    590     if (!match(L2, m_And(m_Value(L11), m_Value(L12))))
    591       return 0;
    592     std::swap(L1, L2);
    593     L21 = L22 = 0;
    594   }
    595 
    596   Value *R1 = RHS->getOperand(0);
    597   Value *R2 = RHS->getOperand(1);
    598   Value *R11,*R12;
    599   bool ok = false;
    600   if (match(R1, m_And(m_Value(R11), m_Value(R12)))) {
    601     if (R11 != 0 && (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22)) {
    602       A = R11; D = R12; E = R2; ok = true;
    603     }
    604     else
    605     if (R12 != 0 && (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22)) {
    606       A = R12; D = R11; E = R2; ok = true;
    607     }
    608   }
    609   if (!ok && match(R2, m_And(m_Value(R11), m_Value(R12)))) {
    610     if (R11 != 0 && (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22)) {
    611        A = R11; D = R12; E = R1; ok = true;
    612     }
    613     else
    614     if (R12 != 0 && (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22)) {
    615       A = R12; D = R11; E = R1; ok = true;
    616     }
    617     else
    618       return 0;
    619   }
    620   if (!ok)
    621     return 0;
    622 
    623   if (L11 == A) {
    624     B = L12; C = L2;
    625   }
    626   else if (L12 == A) {
    627     B = L11; C = L2;
    628   }
    629   else if (L21 == A) {
    630     B = L22; C = L1;
    631   }
    632   else if (L22 == A) {
    633     B = L21; C = L1;
    634   }
    635 
    636   unsigned left_type = getTypeOfMaskedICmp(A, B, C, LHSCC);
    637   unsigned right_type = getTypeOfMaskedICmp(A, D, E, RHSCC);
    638   return left_type & right_type;
    639 }
    640 /// foldLogOpOfMaskedICmps:
    641 /// try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
    642 /// into a single (icmp(A & X) ==/!= Y)
    643 static Value* foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS,
    644                                      ICmpInst::Predicate NEWCC,
    645                                      llvm::InstCombiner::BuilderTy* Builder) {
    646   Value *A = 0, *B = 0, *C = 0, *D = 0, *E = 0;
    647   unsigned mask = foldLogOpOfMaskedICmpsHelper(A, B, C, D, E, LHS, RHS);
    648   if (mask == 0) return 0;
    649 
    650   if (NEWCC == ICmpInst::ICMP_NE)
    651     mask >>= 1; // treat "Not"-states as normal states
    652 
    653   if (mask & FoldMskICmp_Mask_AllZeroes) {
    654     // (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
    655     // -> (icmp eq (A & (B|D)), 0)
    656     Value* newOr = Builder->CreateOr(B, D);
    657     Value* newAnd = Builder->CreateAnd(A, newOr);
    658     // we can't use C as zero, because we might actually handle
    659     //   (icmp ne (A & B), B) & (icmp ne (A & D), D)
    660     // with B and D, having a single bit set
    661     Value* zero = Constant::getNullValue(A->getType());
    662     return Builder->CreateICmp(NEWCC, newAnd, zero);
    663   }
    664   else if (mask & FoldMskICmp_BMask_AllOnes) {
    665     // (icmp eq (A & B), B) & (icmp eq (A & D), D)
    666     // -> (icmp eq (A & (B|D)), (B|D))
    667     Value* newOr = Builder->CreateOr(B, D);
    668     Value* newAnd = Builder->CreateAnd(A, newOr);
    669     return Builder->CreateICmp(NEWCC, newAnd, newOr);
    670   }
    671   else if (mask & FoldMskICmp_AMask_AllOnes) {
    672     // (icmp eq (A & B), A) & (icmp eq (A & D), A)
    673     // -> (icmp eq (A & (B&D)), A)
    674     Value* newAnd1 = Builder->CreateAnd(B, D);
    675     Value* newAnd = Builder->CreateAnd(A, newAnd1);
    676     return Builder->CreateICmp(NEWCC, newAnd, A);
    677   }
    678   else if (mask & FoldMskICmp_BMask_Mixed) {
    679     // (icmp eq (A & B), C) & (icmp eq (A & D), E)
    680     // We already know that B & C == C && D & E == E.
    681     // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of
    682     // C and E, which are shared by both the mask B and the mask D, don't
    683     // contradict, then we can transform to
    684     // -> (icmp eq (A & (B|D)), (C|E))
    685     // Currently, we only handle the case of B, C, D, and E being constant.
    686     ConstantInt *BCst = dyn_cast<ConstantInt>(B);
    687     if (BCst == 0) return 0;
    688     ConstantInt *DCst = dyn_cast<ConstantInt>(D);
    689     if (DCst == 0) return 0;
    690     // we can't simply use C and E, because we might actually handle
    691     //   (icmp ne (A & B), B) & (icmp eq (A & D), D)
    692     // with B and D, having a single bit set
    693 
    694     ConstantInt *CCst = dyn_cast<ConstantInt>(C);
    695     if (CCst == 0) return 0;
    696     if (LHS->getPredicate() != NEWCC)
    697       CCst = dyn_cast<ConstantInt>( ConstantExpr::getXor(BCst, CCst) );
    698     ConstantInt *ECst = dyn_cast<ConstantInt>(E);
    699     if (ECst == 0) return 0;
    700     if (RHS->getPredicate() != NEWCC)
    701       ECst = dyn_cast<ConstantInt>( ConstantExpr::getXor(DCst, ECst) );
    702     ConstantInt* MCst = dyn_cast<ConstantInt>(
    703       ConstantExpr::getAnd(ConstantExpr::getAnd(BCst, DCst),
    704                            ConstantExpr::getXor(CCst, ECst)) );
    705     // if there is a conflict we should actually return a false for the
    706     // whole construct
    707     if (!MCst->isZero())
    708       return 0;
    709     Value *newOr1 = Builder->CreateOr(B, D);
    710     Value *newOr2 = ConstantExpr::getOr(CCst, ECst);
    711     Value *newAnd = Builder->CreateAnd(A, newOr1);
    712     return Builder->CreateICmp(NEWCC, newAnd, newOr2);
    713   }
    714   return 0;
    715 }
    716 
    717 /// FoldAndOfICmps - Fold (icmp)&(icmp) if possible.
    718 Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
    719   ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
    720 
    721   // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
    722   if (PredicatesFoldable(LHSCC, RHSCC)) {
    723     if (LHS->getOperand(0) == RHS->getOperand(1) &&
    724         LHS->getOperand(1) == RHS->getOperand(0))
    725       LHS->swapOperands();
    726     if (LHS->getOperand(0) == RHS->getOperand(0) &&
    727         LHS->getOperand(1) == RHS->getOperand(1)) {
    728       Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
    729       unsigned Code = getICmpCode(LHS) & getICmpCode(RHS);
    730       bool isSigned = LHS->isSigned() || RHS->isSigned();
    731       return getICmpValue(isSigned, Code, Op0, Op1, Builder);
    732     }
    733   }
    734 
    735   // handle (roughly):  (icmp eq (A & B), C) & (icmp eq (A & D), E)
    736   if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, ICmpInst::ICMP_EQ, Builder))
    737     return V;
    738 
    739   // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
    740   Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
    741   ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
    742   ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
    743   if (LHSCst == 0 || RHSCst == 0) return 0;
    744 
    745   if (LHSCst == RHSCst && LHSCC == RHSCC) {
    746     // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
    747     // where C is a power of 2
    748     if (LHSCC == ICmpInst::ICMP_ULT &&
    749         LHSCst->getValue().isPowerOf2()) {
    750       Value *NewOr = Builder->CreateOr(Val, Val2);
    751       return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
    752     }
    753 
    754     // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
    755     if (LHSCC == ICmpInst::ICMP_EQ && LHSCst->isZero()) {
    756       Value *NewOr = Builder->CreateOr(Val, Val2);
    757       return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
    758     }
    759 
    760     // (icmp slt A, 0) & (icmp slt B, 0) --> (icmp slt (A&B), 0)
    761     if (LHSCC == ICmpInst::ICMP_SLT && LHSCst->isZero()) {
    762       Value *NewAnd = Builder->CreateAnd(Val, Val2);
    763       return Builder->CreateICmp(LHSCC, NewAnd, LHSCst);
    764     }
    765 
    766     // (icmp sgt A, -1) & (icmp sgt B, -1) --> (icmp sgt (A|B), -1)
    767     if (LHSCC == ICmpInst::ICMP_SGT && LHSCst->isAllOnesValue()) {
    768       Value *NewOr = Builder->CreateOr(Val, Val2);
    769       return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
    770     }
    771   }
    772 
    773   // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2
    774   // where CMAX is the all ones value for the truncated type,
    775   // iff the lower bits of C2 and CA are zero.
    776   if (LHSCC == RHSCC && ICmpInst::isEquality(LHSCC) &&
    777       LHS->hasOneUse() && RHS->hasOneUse()) {
    778     Value *V;
    779     ConstantInt *AndCst, *SmallCst = 0, *BigCst = 0;
    780 
    781     // (trunc x) == C1 & (and x, CA) == C2
    782     if (match(Val2, m_Trunc(m_Value(V))) &&
    783         match(Val, m_And(m_Specific(V), m_ConstantInt(AndCst)))) {
    784       SmallCst = RHSCst;
    785       BigCst = LHSCst;
    786     }
    787     // (and x, CA) == C2 & (trunc x) == C1
    788     else if (match(Val, m_Trunc(m_Value(V))) &&
    789              match(Val2, m_And(m_Specific(V), m_ConstantInt(AndCst)))) {
    790       SmallCst = LHSCst;
    791       BigCst = RHSCst;
    792     }
    793 
    794     if (SmallCst && BigCst) {
    795       unsigned BigBitSize = BigCst->getType()->getBitWidth();
    796       unsigned SmallBitSize = SmallCst->getType()->getBitWidth();
    797 
    798       // Check that the low bits are zero.
    799       APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize);
    800       if ((Low & AndCst->getValue()) == 0 && (Low & BigCst->getValue()) == 0) {
    801         Value *NewAnd = Builder->CreateAnd(V, Low | AndCst->getValue());
    802         APInt N = SmallCst->getValue().zext(BigBitSize) | BigCst->getValue();
    803         Value *NewVal = ConstantInt::get(AndCst->getType()->getContext(), N);
    804         return Builder->CreateICmp(LHSCC, NewAnd, NewVal);
    805       }
    806     }
    807   }
    808 
    809   // From here on, we only handle:
    810   //    (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
    811   if (Val != Val2) return 0;
    812 
    813   // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
    814   if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
    815       RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
    816       LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
    817       RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
    818     return 0;
    819 
    820   // Make a constant range that's the intersection of the two icmp ranges.
    821   // If the intersection is empty, we know that the result is false.
    822   ConstantRange LHSRange =
    823     ConstantRange::makeICmpRegion(LHSCC, LHSCst->getValue());
    824   ConstantRange RHSRange =
    825     ConstantRange::makeICmpRegion(RHSCC, RHSCst->getValue());
    826 
    827   if (LHSRange.intersectWith(RHSRange).isEmptySet())
    828     return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
    829 
    830   // We can't fold (ugt x, C) & (sgt x, C2).
    831   if (!PredicatesFoldable(LHSCC, RHSCC))
    832     return 0;
    833 
    834   // Ensure that the larger constant is on the RHS.
    835   bool ShouldSwap;
    836   if (CmpInst::isSigned(LHSCC) ||
    837       (ICmpInst::isEquality(LHSCC) &&
    838        CmpInst::isSigned(RHSCC)))
    839     ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
    840   else
    841     ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
    842 
    843   if (ShouldSwap) {
    844     std::swap(LHS, RHS);
    845     std::swap(LHSCst, RHSCst);
    846     std::swap(LHSCC, RHSCC);
    847   }
    848 
    849   // At this point, we know we have two icmp instructions
    850   // comparing a value against two constants and and'ing the result
    851   // together.  Because of the above check, we know that we only have
    852   // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
    853   // (from the icmp folding check above), that the two constants
    854   // are not equal and that the larger constant is on the RHS
    855   assert(LHSCst != RHSCst && "Compares not folded above?");
    856 
    857   switch (LHSCC) {
    858   default: llvm_unreachable("Unknown integer condition code!");
    859   case ICmpInst::ICMP_EQ:
    860     switch (RHSCC) {
    861     default: llvm_unreachable("Unknown integer condition code!");
    862     case ICmpInst::ICMP_NE:         // (X == 13 & X != 15) -> X == 13
    863     case ICmpInst::ICMP_ULT:        // (X == 13 & X <  15) -> X == 13
    864     case ICmpInst::ICMP_SLT:        // (X == 13 & X <  15) -> X == 13
    865       return LHS;
    866     }
    867   case ICmpInst::ICMP_NE:
    868     switch (RHSCC) {
    869     default: llvm_unreachable("Unknown integer condition code!");
    870     case ICmpInst::ICMP_ULT:
    871       if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
    872         return Builder->CreateICmpULT(Val, LHSCst);
    873       break;                        // (X != 13 & X u< 15) -> no change
    874     case ICmpInst::ICMP_SLT:
    875       if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
    876         return Builder->CreateICmpSLT(Val, LHSCst);
    877       break;                        // (X != 13 & X s< 15) -> no change
    878     case ICmpInst::ICMP_EQ:         // (X != 13 & X == 15) -> X == 15
    879     case ICmpInst::ICMP_UGT:        // (X != 13 & X u> 15) -> X u> 15
    880     case ICmpInst::ICMP_SGT:        // (X != 13 & X s> 15) -> X s> 15
    881       return RHS;
    882     case ICmpInst::ICMP_NE:
    883       if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
    884         Constant *AddCST = ConstantExpr::getNeg(LHSCst);
    885         Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
    886         return Builder->CreateICmpUGT(Add, ConstantInt::get(Add->getType(), 1));
    887       }
    888       break;                        // (X != 13 & X != 15) -> no change
    889     }
    890     break;
    891   case ICmpInst::ICMP_ULT:
    892     switch (RHSCC) {
    893     default: llvm_unreachable("Unknown integer condition code!");
    894     case ICmpInst::ICMP_EQ:         // (X u< 13 & X == 15) -> false
    895     case ICmpInst::ICMP_UGT:        // (X u< 13 & X u> 15) -> false
    896       return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
    897     case ICmpInst::ICMP_SGT:        // (X u< 13 & X s> 15) -> no change
    898       break;
    899     case ICmpInst::ICMP_NE:         // (X u< 13 & X != 15) -> X u< 13
    900     case ICmpInst::ICMP_ULT:        // (X u< 13 & X u< 15) -> X u< 13
    901       return LHS;
    902     case ICmpInst::ICMP_SLT:        // (X u< 13 & X s< 15) -> no change
    903       break;
    904     }
    905     break;
    906   case ICmpInst::ICMP_SLT:
    907     switch (RHSCC) {
    908     default: llvm_unreachable("Unknown integer condition code!");
    909     case ICmpInst::ICMP_UGT:        // (X s< 13 & X u> 15) -> no change
    910       break;
    911     case ICmpInst::ICMP_NE:         // (X s< 13 & X != 15) -> X < 13
    912     case ICmpInst::ICMP_SLT:        // (X s< 13 & X s< 15) -> X < 13
    913       return LHS;
    914     case ICmpInst::ICMP_ULT:        // (X s< 13 & X u< 15) -> no change
    915       break;
    916     }
    917     break;
    918   case ICmpInst::ICMP_UGT:
    919     switch (RHSCC) {
    920     default: llvm_unreachable("Unknown integer condition code!");
    921     case ICmpInst::ICMP_EQ:         // (X u> 13 & X == 15) -> X == 15
    922     case ICmpInst::ICMP_UGT:        // (X u> 13 & X u> 15) -> X u> 15
    923       return RHS;
    924     case ICmpInst::ICMP_SGT:        // (X u> 13 & X s> 15) -> no change
    925       break;
    926     case ICmpInst::ICMP_NE:
    927       if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
    928         return Builder->CreateICmp(LHSCC, Val, RHSCst);
    929       break;                        // (X u> 13 & X != 15) -> no change
    930     case ICmpInst::ICMP_ULT:        // (X u> 13 & X u< 15) -> (X-14) <u 1
    931       return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, false, true);
    932     case ICmpInst::ICMP_SLT:        // (X u> 13 & X s< 15) -> no change
    933       break;
    934     }
    935     break;
    936   case ICmpInst::ICMP_SGT:
    937     switch (RHSCC) {
    938     default: llvm_unreachable("Unknown integer condition code!");
    939     case ICmpInst::ICMP_EQ:         // (X s> 13 & X == 15) -> X == 15
    940     case ICmpInst::ICMP_SGT:        // (X s> 13 & X s> 15) -> X s> 15
    941       return RHS;
    942     case ICmpInst::ICMP_UGT:        // (X s> 13 & X u> 15) -> no change
    943       break;
    944     case ICmpInst::ICMP_NE:
    945       if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
    946         return Builder->CreateICmp(LHSCC, Val, RHSCst);
    947       break;                        // (X s> 13 & X != 15) -> no change
    948     case ICmpInst::ICMP_SLT:        // (X s> 13 & X s< 15) -> (X-14) s< 1
    949       return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, true, true);
    950     case ICmpInst::ICMP_ULT:        // (X s> 13 & X u< 15) -> no change
    951       break;
    952     }
    953     break;
    954   }
    955 
    956   return 0;
    957 }
    958 
    959 /// FoldAndOfFCmps - Optimize (fcmp)&(fcmp).  NOTE: Unlike the rest of
    960 /// instcombine, this returns a Value which should already be inserted into the
    961 /// function.
    962 Value *InstCombiner::FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
    963   if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
    964       RHS->getPredicate() == FCmpInst::FCMP_ORD) {
    965     // (fcmp ord x, c) & (fcmp ord y, c)  -> (fcmp ord x, y)
    966     if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
    967       if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
    968         // If either of the constants are nans, then the whole thing returns
    969         // false.
    970         if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
    971           return ConstantInt::getFalse(LHS->getContext());
    972         return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
    973       }
    974 
    975     // Handle vector zeros.  This occurs because the canonical form of
    976     // "fcmp ord x,x" is "fcmp ord x, 0".
    977     if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
    978         isa<ConstantAggregateZero>(RHS->getOperand(1)))
    979       return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
    980     return 0;
    981   }
    982 
    983   Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
    984   Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
    985   FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
    986 
    987 
    988   if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
    989     // Swap RHS operands to match LHS.
    990     Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
    991     std::swap(Op1LHS, Op1RHS);
    992   }
    993 
    994   if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
    995     // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
    996     if (Op0CC == Op1CC)
    997       return Builder->CreateFCmp((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
    998     if (Op0CC == FCmpInst::FCMP_FALSE || Op1CC == FCmpInst::FCMP_FALSE)
    999       return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
   1000     if (Op0CC == FCmpInst::FCMP_TRUE)
   1001       return RHS;
   1002     if (Op1CC == FCmpInst::FCMP_TRUE)
   1003       return LHS;
   1004 
   1005     bool Op0Ordered;
   1006     bool Op1Ordered;
   1007     unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
   1008     unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
   1009     if (Op1Pred == 0) {
   1010       std::swap(LHS, RHS);
   1011       std::swap(Op0Pred, Op1Pred);
   1012       std::swap(Op0Ordered, Op1Ordered);
   1013     }
   1014     if (Op0Pred == 0) {
   1015       // uno && ueq -> uno && (uno || eq) -> ueq
   1016       // ord && olt -> ord && (ord && lt) -> olt
   1017       if (Op0Ordered == Op1Ordered)
   1018         return RHS;
   1019 
   1020       // uno && oeq -> uno && (ord && eq) -> false
   1021       // uno && ord -> false
   1022       if (!Op0Ordered)
   1023         return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
   1024       // ord && ueq -> ord && (uno || eq) -> oeq
   1025       return getFCmpValue(true, Op1Pred, Op0LHS, Op0RHS, Builder);
   1026     }
   1027   }
   1028 
   1029   return 0;
   1030 }
   1031 
   1032 
   1033 Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
   1034   bool Changed = SimplifyAssociativeOrCommutative(I);
   1035   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   1036 
   1037   if (Value *V = SimplifyAndInst(Op0, Op1, TD))
   1038     return ReplaceInstUsesWith(I, V);
   1039 
   1040   // (A|B)&(A|C) -> A|(B&C) etc
   1041   if (Value *V = SimplifyUsingDistributiveLaws(I))
   1042     return ReplaceInstUsesWith(I, V);
   1043 
   1044   // See if we can simplify any instructions used by the instruction whose sole
   1045   // purpose is to compute bits we don't care about.
   1046   if (SimplifyDemandedInstructionBits(I))
   1047     return &I;
   1048 
   1049   if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
   1050     const APInt &AndRHSMask = AndRHS->getValue();
   1051 
   1052     // Optimize a variety of ((val OP C1) & C2) combinations...
   1053     if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
   1054       Value *Op0LHS = Op0I->getOperand(0);
   1055       Value *Op0RHS = Op0I->getOperand(1);
   1056       switch (Op0I->getOpcode()) {
   1057       default: break;
   1058       case Instruction::Xor:
   1059       case Instruction::Or: {
   1060         // If the mask is only needed on one incoming arm, push it up.
   1061         if (!Op0I->hasOneUse()) break;
   1062 
   1063         APInt NotAndRHS(~AndRHSMask);
   1064         if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
   1065           // Not masking anything out for the LHS, move to RHS.
   1066           Value *NewRHS = Builder->CreateAnd(Op0RHS, AndRHS,
   1067                                              Op0RHS->getName()+".masked");
   1068           return BinaryOperator::Create(Op0I->getOpcode(), Op0LHS, NewRHS);
   1069         }
   1070         if (!isa<Constant>(Op0RHS) &&
   1071             MaskedValueIsZero(Op0RHS, NotAndRHS)) {
   1072           // Not masking anything out for the RHS, move to LHS.
   1073           Value *NewLHS = Builder->CreateAnd(Op0LHS, AndRHS,
   1074                                              Op0LHS->getName()+".masked");
   1075           return BinaryOperator::Create(Op0I->getOpcode(), NewLHS, Op0RHS);
   1076         }
   1077 
   1078         break;
   1079       }
   1080       case Instruction::Add:
   1081         // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
   1082         // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
   1083         // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
   1084         if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
   1085           return BinaryOperator::CreateAnd(V, AndRHS);
   1086         if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
   1087           return BinaryOperator::CreateAnd(V, AndRHS);  // Add commutes
   1088         break;
   1089 
   1090       case Instruction::Sub:
   1091         // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
   1092         // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
   1093         // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
   1094         if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
   1095           return BinaryOperator::CreateAnd(V, AndRHS);
   1096 
   1097         // (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS
   1098         // has 1's for all bits that the subtraction with A might affect.
   1099         if (Op0I->hasOneUse() && !match(Op0LHS, m_Zero())) {
   1100           uint32_t BitWidth = AndRHSMask.getBitWidth();
   1101           uint32_t Zeros = AndRHSMask.countLeadingZeros();
   1102           APInt Mask = APInt::getLowBitsSet(BitWidth, BitWidth - Zeros);
   1103 
   1104           if (MaskedValueIsZero(Op0LHS, Mask)) {
   1105             Value *NewNeg = Builder->CreateNeg(Op0RHS);
   1106             return BinaryOperator::CreateAnd(NewNeg, AndRHS);
   1107           }
   1108         }
   1109         break;
   1110 
   1111       case Instruction::Shl:
   1112       case Instruction::LShr:
   1113         // (1 << x) & 1 --> zext(x == 0)
   1114         // (1 >> x) & 1 --> zext(x == 0)
   1115         if (AndRHSMask == 1 && Op0LHS == AndRHS) {
   1116           Value *NewICmp =
   1117             Builder->CreateICmpEQ(Op0RHS, Constant::getNullValue(I.getType()));
   1118           return new ZExtInst(NewICmp, I.getType());
   1119         }
   1120         break;
   1121       }
   1122 
   1123       if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
   1124         if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
   1125           return Res;
   1126     }
   1127 
   1128     // If this is an integer truncation, and if the source is an 'and' with
   1129     // immediate, transform it.  This frequently occurs for bitfield accesses.
   1130     {
   1131       Value *X = 0; ConstantInt *YC = 0;
   1132       if (match(Op0, m_Trunc(m_And(m_Value(X), m_ConstantInt(YC))))) {
   1133         // Change: and (trunc (and X, YC) to T), C2
   1134         // into  : and (trunc X to T), trunc(YC) & C2
   1135         // This will fold the two constants together, which may allow
   1136         // other simplifications.
   1137         Value *NewCast = Builder->CreateTrunc(X, I.getType(), "and.shrunk");
   1138         Constant *C3 = ConstantExpr::getTrunc(YC, I.getType());
   1139         C3 = ConstantExpr::getAnd(C3, AndRHS);
   1140         return BinaryOperator::CreateAnd(NewCast, C3);
   1141       }
   1142     }
   1143 
   1144     // Try to fold constant and into select arguments.
   1145     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
   1146       if (Instruction *R = FoldOpIntoSelect(I, SI))
   1147         return R;
   1148     if (isa<PHINode>(Op0))
   1149       if (Instruction *NV = FoldOpIntoPhi(I))
   1150         return NV;
   1151   }
   1152 
   1153 
   1154   // (~A & ~B) == (~(A | B)) - De Morgan's Law
   1155   if (Value *Op0NotVal = dyn_castNotVal(Op0))
   1156     if (Value *Op1NotVal = dyn_castNotVal(Op1))
   1157       if (Op0->hasOneUse() && Op1->hasOneUse()) {
   1158         Value *Or = Builder->CreateOr(Op0NotVal, Op1NotVal,
   1159                                       I.getName()+".demorgan");
   1160         return BinaryOperator::CreateNot(Or);
   1161       }
   1162 
   1163   {
   1164     Value *A = 0, *B = 0, *C = 0, *D = 0;
   1165     // (A|B) & ~(A&B) -> A^B
   1166     if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
   1167         match(Op1, m_Not(m_And(m_Value(C), m_Value(D)))) &&
   1168         ((A == C && B == D) || (A == D && B == C)))
   1169       return BinaryOperator::CreateXor(A, B);
   1170 
   1171     // ~(A&B) & (A|B) -> A^B
   1172     if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
   1173         match(Op0, m_Not(m_And(m_Value(C), m_Value(D)))) &&
   1174         ((A == C && B == D) || (A == D && B == C)))
   1175       return BinaryOperator::CreateXor(A, B);
   1176 
   1177     // A&(A^B) => A & ~B
   1178     {
   1179       Value *tmpOp0 = Op0;
   1180       Value *tmpOp1 = Op1;
   1181       if (Op0->hasOneUse() &&
   1182           match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
   1183         if (A == Op1 || B == Op1 ) {
   1184           tmpOp1 = Op0;
   1185           tmpOp0 = Op1;
   1186           // Simplify below
   1187         }
   1188       }
   1189 
   1190       if (tmpOp1->hasOneUse() &&
   1191           match(tmpOp1, m_Xor(m_Value(A), m_Value(B)))) {
   1192         if (B == tmpOp0) {
   1193           std::swap(A, B);
   1194         }
   1195         // Notice that the patten (A&(~B)) is actually (A&(-1^B)), so if
   1196         // A is originally -1 (or a vector of -1 and undefs), then we enter
   1197         // an endless loop. By checking that A is non-constant we ensure that
   1198         // we will never get to the loop.
   1199         if (A == tmpOp0 && !isa<Constant>(A)) // A&(A^B) -> A & ~B
   1200           return BinaryOperator::CreateAnd(A, Builder->CreateNot(B));
   1201       }
   1202     }
   1203 
   1204     // (A&((~A)|B)) -> A&B
   1205     if (match(Op0, m_Or(m_Not(m_Specific(Op1)), m_Value(A))) ||
   1206         match(Op0, m_Or(m_Value(A), m_Not(m_Specific(Op1)))))
   1207       return BinaryOperator::CreateAnd(A, Op1);
   1208     if (match(Op1, m_Or(m_Not(m_Specific(Op0)), m_Value(A))) ||
   1209         match(Op1, m_Or(m_Value(A), m_Not(m_Specific(Op0)))))
   1210       return BinaryOperator::CreateAnd(A, Op0);
   1211   }
   1212 
   1213   if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1))
   1214     if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0))
   1215       if (Value *Res = FoldAndOfICmps(LHS, RHS))
   1216         return ReplaceInstUsesWith(I, Res);
   1217 
   1218   // If and'ing two fcmp, try combine them into one.
   1219   if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
   1220     if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
   1221       if (Value *Res = FoldAndOfFCmps(LHS, RHS))
   1222         return ReplaceInstUsesWith(I, Res);
   1223 
   1224 
   1225   // fold (and (cast A), (cast B)) -> (cast (and A, B))
   1226   if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
   1227     if (CastInst *Op1C = dyn_cast<CastInst>(Op1)) {
   1228       Type *SrcTy = Op0C->getOperand(0)->getType();
   1229       if (Op0C->getOpcode() == Op1C->getOpcode() && // same cast kind ?
   1230           SrcTy == Op1C->getOperand(0)->getType() &&
   1231           SrcTy->isIntOrIntVectorTy()) {
   1232         Value *Op0COp = Op0C->getOperand(0), *Op1COp = Op1C->getOperand(0);
   1233 
   1234         // Only do this if the casts both really cause code to be generated.
   1235         if (ShouldOptimizeCast(Op0C->getOpcode(), Op0COp, I.getType()) &&
   1236             ShouldOptimizeCast(Op1C->getOpcode(), Op1COp, I.getType())) {
   1237           Value *NewOp = Builder->CreateAnd(Op0COp, Op1COp, I.getName());
   1238           return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
   1239         }
   1240 
   1241         // If this is and(cast(icmp), cast(icmp)), try to fold this even if the
   1242         // cast is otherwise not optimizable.  This happens for vector sexts.
   1243         if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp))
   1244           if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp))
   1245             if (Value *Res = FoldAndOfICmps(LHS, RHS))
   1246               return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
   1247 
   1248         // If this is and(cast(fcmp), cast(fcmp)), try to fold this even if the
   1249         // cast is otherwise not optimizable.  This happens for vector sexts.
   1250         if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp))
   1251           if (FCmpInst *LHS = dyn_cast<FCmpInst>(Op0COp))
   1252             if (Value *Res = FoldAndOfFCmps(LHS, RHS))
   1253               return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
   1254       }
   1255     }
   1256 
   1257   // (X >> Z) & (Y >> Z)  -> (X&Y) >> Z  for all shifts.
   1258   if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
   1259     if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
   1260       if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
   1261           SI0->getOperand(1) == SI1->getOperand(1) &&
   1262           (SI0->hasOneUse() || SI1->hasOneUse())) {
   1263         Value *NewOp =
   1264           Builder->CreateAnd(SI0->getOperand(0), SI1->getOperand(0),
   1265                              SI0->getName());
   1266         return BinaryOperator::Create(SI1->getOpcode(), NewOp,
   1267                                       SI1->getOperand(1));
   1268       }
   1269   }
   1270 
   1271   return Changed ? &I : 0;
   1272 }
   1273 
   1274 /// CollectBSwapParts - Analyze the specified subexpression and see if it is
   1275 /// capable of providing pieces of a bswap.  The subexpression provides pieces
   1276 /// of a bswap if it is proven that each of the non-zero bytes in the output of
   1277 /// the expression came from the corresponding "byte swapped" byte in some other
   1278 /// value.  For example, if the current subexpression is "(shl i32 %X, 24)" then
   1279 /// we know that the expression deposits the low byte of %X into the high byte
   1280 /// of the bswap result and that all other bytes are zero.  This expression is
   1281 /// accepted, the high byte of ByteValues is set to X to indicate a correct
   1282 /// match.
   1283 ///
   1284 /// This function returns true if the match was unsuccessful and false if so.
   1285 /// On entry to the function the "OverallLeftShift" is a signed integer value
   1286 /// indicating the number of bytes that the subexpression is later shifted.  For
   1287 /// example, if the expression is later right shifted by 16 bits, the
   1288 /// OverallLeftShift value would be -2 on entry.  This is used to specify which
   1289 /// byte of ByteValues is actually being set.
   1290 ///
   1291 /// Similarly, ByteMask is a bitmask where a bit is clear if its corresponding
   1292 /// byte is masked to zero by a user.  For example, in (X & 255), X will be
   1293 /// processed with a bytemask of 1.  Because bytemask is 32-bits, this limits
   1294 /// this function to working on up to 32-byte (256 bit) values.  ByteMask is
   1295 /// always in the local (OverallLeftShift) coordinate space.
   1296 ///
   1297 static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
   1298                               SmallVector<Value*, 8> &ByteValues) {
   1299   if (Instruction *I = dyn_cast<Instruction>(V)) {
   1300     // If this is an or instruction, it may be an inner node of the bswap.
   1301     if (I->getOpcode() == Instruction::Or) {
   1302       return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
   1303                                ByteValues) ||
   1304              CollectBSwapParts(I->getOperand(1), OverallLeftShift, ByteMask,
   1305                                ByteValues);
   1306     }
   1307 
   1308     // If this is a logical shift by a constant multiple of 8, recurse with
   1309     // OverallLeftShift and ByteMask adjusted.
   1310     if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
   1311       unsigned ShAmt =
   1312         cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
   1313       // Ensure the shift amount is defined and of a byte value.
   1314       if ((ShAmt & 7) || (ShAmt > 8*ByteValues.size()))
   1315         return true;
   1316 
   1317       unsigned ByteShift = ShAmt >> 3;
   1318       if (I->getOpcode() == Instruction::Shl) {
   1319         // X << 2 -> collect(X, +2)
   1320         OverallLeftShift += ByteShift;
   1321         ByteMask >>= ByteShift;
   1322       } else {
   1323         // X >>u 2 -> collect(X, -2)
   1324         OverallLeftShift -= ByteShift;
   1325         ByteMask <<= ByteShift;
   1326         ByteMask &= (~0U >> (32-ByteValues.size()));
   1327       }
   1328 
   1329       if (OverallLeftShift >= (int)ByteValues.size()) return true;
   1330       if (OverallLeftShift <= -(int)ByteValues.size()) return true;
   1331 
   1332       return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
   1333                                ByteValues);
   1334     }
   1335 
   1336     // If this is a logical 'and' with a mask that clears bytes, clear the
   1337     // corresponding bytes in ByteMask.
   1338     if (I->getOpcode() == Instruction::And &&
   1339         isa<ConstantInt>(I->getOperand(1))) {
   1340       // Scan every byte of the and mask, seeing if the byte is either 0 or 255.
   1341       unsigned NumBytes = ByteValues.size();
   1342       APInt Byte(I->getType()->getPrimitiveSizeInBits(), 255);
   1343       const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
   1344 
   1345       for (unsigned i = 0; i != NumBytes; ++i, Byte <<= 8) {
   1346         // If this byte is masked out by a later operation, we don't care what
   1347         // the and mask is.
   1348         if ((ByteMask & (1 << i)) == 0)
   1349           continue;
   1350 
   1351         // If the AndMask is all zeros for this byte, clear the bit.
   1352         APInt MaskB = AndMask & Byte;
   1353         if (MaskB == 0) {
   1354           ByteMask &= ~(1U << i);
   1355           continue;
   1356         }
   1357 
   1358         // If the AndMask is not all ones for this byte, it's not a bytezap.
   1359         if (MaskB != Byte)
   1360           return true;
   1361 
   1362         // Otherwise, this byte is kept.
   1363       }
   1364 
   1365       return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
   1366                                ByteValues);
   1367     }
   1368   }
   1369 
   1370   // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
   1371   // the input value to the bswap.  Some observations: 1) if more than one byte
   1372   // is demanded from this input, then it could not be successfully assembled
   1373   // into a byteswap.  At least one of the two bytes would not be aligned with
   1374   // their ultimate destination.
   1375   if (!isPowerOf2_32(ByteMask)) return true;
   1376   unsigned InputByteNo = CountTrailingZeros_32(ByteMask);
   1377 
   1378   // 2) The input and ultimate destinations must line up: if byte 3 of an i32
   1379   // is demanded, it needs to go into byte 0 of the result.  This means that the
   1380   // byte needs to be shifted until it lands in the right byte bucket.  The
   1381   // shift amount depends on the position: if the byte is coming from the high
   1382   // part of the value (e.g. byte 3) then it must be shifted right.  If from the
   1383   // low part, it must be shifted left.
   1384   unsigned DestByteNo = InputByteNo + OverallLeftShift;
   1385   if (InputByteNo < ByteValues.size()/2) {
   1386     if (ByteValues.size()-1-DestByteNo != InputByteNo)
   1387       return true;
   1388   } else {
   1389     if (ByteValues.size()-1-DestByteNo != InputByteNo)
   1390       return true;
   1391   }
   1392 
   1393   // If the destination byte value is already defined, the values are or'd
   1394   // together, which isn't a bswap (unless it's an or of the same bits).
   1395   if (ByteValues[DestByteNo] && ByteValues[DestByteNo] != V)
   1396     return true;
   1397   ByteValues[DestByteNo] = V;
   1398   return false;
   1399 }
   1400 
   1401 /// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom.
   1402 /// If so, insert the new bswap intrinsic and return it.
   1403 Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
   1404   IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
   1405   if (!ITy || ITy->getBitWidth() % 16 ||
   1406       // ByteMask only allows up to 32-byte values.
   1407       ITy->getBitWidth() > 32*8)
   1408     return 0;   // Can only bswap pairs of bytes.  Can't do vectors.
   1409 
   1410   /// ByteValues - For each byte of the result, we keep track of which value
   1411   /// defines each byte.
   1412   SmallVector<Value*, 8> ByteValues;
   1413   ByteValues.resize(ITy->getBitWidth()/8);
   1414 
   1415   // Try to find all the pieces corresponding to the bswap.
   1416   uint32_t ByteMask = ~0U >> (32-ByteValues.size());
   1417   if (CollectBSwapParts(&I, 0, ByteMask, ByteValues))
   1418     return 0;
   1419 
   1420   // Check to see if all of the bytes come from the same value.
   1421   Value *V = ByteValues[0];
   1422   if (V == 0) return 0;  // Didn't find a byte?  Must be zero.
   1423 
   1424   // Check to make sure that all of the bytes come from the same value.
   1425   for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
   1426     if (ByteValues[i] != V)
   1427       return 0;
   1428   Module *M = I.getParent()->getParent()->getParent();
   1429   Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, ITy);
   1430   return CallInst::Create(F, V);
   1431 }
   1432 
   1433 /// MatchSelectFromAndOr - We have an expression of the form (A&C)|(B&D).  Check
   1434 /// If A is (cond?-1:0) and either B or D is ~(cond?-1,0) or (cond?0,-1), then
   1435 /// we can simplify this expression to "cond ? C : D or B".
   1436 static Instruction *MatchSelectFromAndOr(Value *A, Value *B,
   1437                                          Value *C, Value *D) {
   1438   // If A is not a select of -1/0, this cannot match.
   1439   Value *Cond = 0;
   1440   if (!match(A, m_SExt(m_Value(Cond))) ||
   1441       !Cond->getType()->isIntegerTy(1))
   1442     return 0;
   1443 
   1444   // ((cond?-1:0)&C) | (B&(cond?0:-1)) -> cond ? C : B.
   1445   if (match(D, m_Not(m_SExt(m_Specific(Cond)))))
   1446     return SelectInst::Create(Cond, C, B);
   1447   if (match(D, m_SExt(m_Not(m_Specific(Cond)))))
   1448     return SelectInst::Create(Cond, C, B);
   1449 
   1450   // ((cond?-1:0)&C) | ((cond?0:-1)&D) -> cond ? C : D.
   1451   if (match(B, m_Not(m_SExt(m_Specific(Cond)))))
   1452     return SelectInst::Create(Cond, C, D);
   1453   if (match(B, m_SExt(m_Not(m_Specific(Cond)))))
   1454     return SelectInst::Create(Cond, C, D);
   1455   return 0;
   1456 }
   1457 
   1458 /// FoldOrOfICmps - Fold (icmp)|(icmp) if possible.
   1459 Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
   1460   ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
   1461 
   1462   // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
   1463   if (PredicatesFoldable(LHSCC, RHSCC)) {
   1464     if (LHS->getOperand(0) == RHS->getOperand(1) &&
   1465         LHS->getOperand(1) == RHS->getOperand(0))
   1466       LHS->swapOperands();
   1467     if (LHS->getOperand(0) == RHS->getOperand(0) &&
   1468         LHS->getOperand(1) == RHS->getOperand(1)) {
   1469       Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
   1470       unsigned Code = getICmpCode(LHS) | getICmpCode(RHS);
   1471       bool isSigned = LHS->isSigned() || RHS->isSigned();
   1472       return getICmpValue(isSigned, Code, Op0, Op1, Builder);
   1473     }
   1474   }
   1475 
   1476   // handle (roughly):
   1477   // (icmp ne (A & B), C) | (icmp ne (A & D), E)
   1478   if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, ICmpInst::ICMP_NE, Builder))
   1479     return V;
   1480 
   1481   // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
   1482   Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
   1483   ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
   1484   ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
   1485   if (LHSCst == 0 || RHSCst == 0) return 0;
   1486 
   1487   if (LHSCst == RHSCst && LHSCC == RHSCC) {
   1488     // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0)
   1489     if (LHSCC == ICmpInst::ICMP_NE && LHSCst->isZero()) {
   1490       Value *NewOr = Builder->CreateOr(Val, Val2);
   1491       return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
   1492     }
   1493 
   1494     // (icmp slt A, 0) | (icmp slt B, 0) --> (icmp slt (A|B), 0)
   1495     if (LHSCC == ICmpInst::ICMP_SLT && LHSCst->isZero()) {
   1496       Value *NewOr = Builder->CreateOr(Val, Val2);
   1497       return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
   1498     }
   1499 
   1500     // (icmp sgt A, -1) | (icmp sgt B, -1) --> (icmp sgt (A&B), -1)
   1501     if (LHSCC == ICmpInst::ICMP_SGT && LHSCst->isAllOnesValue()) {
   1502       Value *NewAnd = Builder->CreateAnd(Val, Val2);
   1503       return Builder->CreateICmp(LHSCC, NewAnd, LHSCst);
   1504     }
   1505   }
   1506 
   1507   // (icmp ult (X + CA), C1) | (icmp eq X, C2) -> (icmp ule (X + CA), C1)
   1508   //   iff C2 + CA == C1.
   1509   if (LHSCC == ICmpInst::ICMP_ULT && RHSCC == ICmpInst::ICMP_EQ) {
   1510     ConstantInt *AddCst;
   1511     if (match(Val, m_Add(m_Specific(Val2), m_ConstantInt(AddCst))))
   1512       if (RHSCst->getValue() + AddCst->getValue() == LHSCst->getValue())
   1513         return Builder->CreateICmpULE(Val, LHSCst);
   1514   }
   1515 
   1516   // From here on, we only handle:
   1517   //    (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
   1518   if (Val != Val2) return 0;
   1519 
   1520   // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
   1521   if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
   1522       RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
   1523       LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
   1524       RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
   1525     return 0;
   1526 
   1527   // We can't fold (ugt x, C) | (sgt x, C2).
   1528   if (!PredicatesFoldable(LHSCC, RHSCC))
   1529     return 0;
   1530 
   1531   // Ensure that the larger constant is on the RHS.
   1532   bool ShouldSwap;
   1533   if (CmpInst::isSigned(LHSCC) ||
   1534       (ICmpInst::isEquality(LHSCC) &&
   1535        CmpInst::isSigned(RHSCC)))
   1536     ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
   1537   else
   1538     ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
   1539 
   1540   if (ShouldSwap) {
   1541     std::swap(LHS, RHS);
   1542     std::swap(LHSCst, RHSCst);
   1543     std::swap(LHSCC, RHSCC);
   1544   }
   1545 
   1546   // At this point, we know we have two icmp instructions
   1547   // comparing a value against two constants and or'ing the result
   1548   // together.  Because of the above check, we know that we only have
   1549   // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
   1550   // icmp folding check above), that the two constants are not
   1551   // equal.
   1552   assert(LHSCst != RHSCst && "Compares not folded above?");
   1553 
   1554   switch (LHSCC) {
   1555   default: llvm_unreachable("Unknown integer condition code!");
   1556   case ICmpInst::ICMP_EQ:
   1557     switch (RHSCC) {
   1558     default: llvm_unreachable("Unknown integer condition code!");
   1559     case ICmpInst::ICMP_EQ:
   1560       if (LHSCst == SubOne(RHSCst)) {
   1561         // (X == 13 | X == 14) -> X-13 <u 2
   1562         Constant *AddCST = ConstantExpr::getNeg(LHSCst);
   1563         Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
   1564         AddCST = ConstantExpr::getSub(AddOne(RHSCst), LHSCst);
   1565         return Builder->CreateICmpULT(Add, AddCST);
   1566       }
   1567       break;                         // (X == 13 | X == 15) -> no change
   1568     case ICmpInst::ICMP_UGT:         // (X == 13 | X u> 14) -> no change
   1569     case ICmpInst::ICMP_SGT:         // (X == 13 | X s> 14) -> no change
   1570       break;
   1571     case ICmpInst::ICMP_NE:          // (X == 13 | X != 15) -> X != 15
   1572     case ICmpInst::ICMP_ULT:         // (X == 13 | X u< 15) -> X u< 15
   1573     case ICmpInst::ICMP_SLT:         // (X == 13 | X s< 15) -> X s< 15
   1574       return RHS;
   1575     }
   1576     break;
   1577   case ICmpInst::ICMP_NE:
   1578     switch (RHSCC) {
   1579     default: llvm_unreachable("Unknown integer condition code!");
   1580     case ICmpInst::ICMP_EQ:          // (X != 13 | X == 15) -> X != 13
   1581     case ICmpInst::ICMP_UGT:         // (X != 13 | X u> 15) -> X != 13
   1582     case ICmpInst::ICMP_SGT:         // (X != 13 | X s> 15) -> X != 13
   1583       return LHS;
   1584     case ICmpInst::ICMP_NE:          // (X != 13 | X != 15) -> true
   1585     case ICmpInst::ICMP_ULT:         // (X != 13 | X u< 15) -> true
   1586     case ICmpInst::ICMP_SLT:         // (X != 13 | X s< 15) -> true
   1587       return ConstantInt::getTrue(LHS->getContext());
   1588     }
   1589     break;
   1590   case ICmpInst::ICMP_ULT:
   1591     switch (RHSCC) {
   1592     default: llvm_unreachable("Unknown integer condition code!");
   1593     case ICmpInst::ICMP_EQ:         // (X u< 13 | X == 14) -> no change
   1594       break;
   1595     case ICmpInst::ICMP_UGT:        // (X u< 13 | X u> 15) -> (X-13) u> 2
   1596       // If RHSCst is [us]MAXINT, it is always false.  Not handling
   1597       // this can cause overflow.
   1598       if (RHSCst->isMaxValue(false))
   1599         return LHS;
   1600       return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), false, false);
   1601     case ICmpInst::ICMP_SGT:        // (X u< 13 | X s> 15) -> no change
   1602       break;
   1603     case ICmpInst::ICMP_NE:         // (X u< 13 | X != 15) -> X != 15
   1604     case ICmpInst::ICMP_ULT:        // (X u< 13 | X u< 15) -> X u< 15
   1605       return RHS;
   1606     case ICmpInst::ICMP_SLT:        // (X u< 13 | X s< 15) -> no change
   1607       break;
   1608     }
   1609     break;
   1610   case ICmpInst::ICMP_SLT:
   1611     switch (RHSCC) {
   1612     default: llvm_unreachable("Unknown integer condition code!");
   1613     case ICmpInst::ICMP_EQ:         // (X s< 13 | X == 14) -> no change
   1614       break;
   1615     case ICmpInst::ICMP_SGT:        // (X s< 13 | X s> 15) -> (X-13) s> 2
   1616       // If RHSCst is [us]MAXINT, it is always false.  Not handling
   1617       // this can cause overflow.
   1618       if (RHSCst->isMaxValue(true))
   1619         return LHS;
   1620       return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), true, false);
   1621     case ICmpInst::ICMP_UGT:        // (X s< 13 | X u> 15) -> no change
   1622       break;
   1623     case ICmpInst::ICMP_NE:         // (X s< 13 | X != 15) -> X != 15
   1624     case ICmpInst::ICMP_SLT:        // (X s< 13 | X s< 15) -> X s< 15
   1625       return RHS;
   1626     case ICmpInst::ICMP_ULT:        // (X s< 13 | X u< 15) -> no change
   1627       break;
   1628     }
   1629     break;
   1630   case ICmpInst::ICMP_UGT:
   1631     switch (RHSCC) {
   1632     default: llvm_unreachable("Unknown integer condition code!");
   1633     case ICmpInst::ICMP_EQ:         // (X u> 13 | X == 15) -> X u> 13
   1634     case ICmpInst::ICMP_UGT:        // (X u> 13 | X u> 15) -> X u> 13
   1635       return LHS;
   1636     case ICmpInst::ICMP_SGT:        // (X u> 13 | X s> 15) -> no change
   1637       break;
   1638     case ICmpInst::ICMP_NE:         // (X u> 13 | X != 15) -> true
   1639     case ICmpInst::ICMP_ULT:        // (X u> 13 | X u< 15) -> true
   1640       return ConstantInt::getTrue(LHS->getContext());
   1641     case ICmpInst::ICMP_SLT:        // (X u> 13 | X s< 15) -> no change
   1642       break;
   1643     }
   1644     break;
   1645   case ICmpInst::ICMP_SGT:
   1646     switch (RHSCC) {
   1647     default: llvm_unreachable("Unknown integer condition code!");
   1648     case ICmpInst::ICMP_EQ:         // (X s> 13 | X == 15) -> X > 13
   1649     case ICmpInst::ICMP_SGT:        // (X s> 13 | X s> 15) -> X > 13
   1650       return LHS;
   1651     case ICmpInst::ICMP_UGT:        // (X s> 13 | X u> 15) -> no change
   1652       break;
   1653     case ICmpInst::ICMP_NE:         // (X s> 13 | X != 15) -> true
   1654     case ICmpInst::ICMP_SLT:        // (X s> 13 | X s< 15) -> true
   1655       return ConstantInt::getTrue(LHS->getContext());
   1656     case ICmpInst::ICMP_ULT:        // (X s> 13 | X u< 15) -> no change
   1657       break;
   1658     }
   1659     break;
   1660   }
   1661   return 0;
   1662 }
   1663 
   1664 /// FoldOrOfFCmps - Optimize (fcmp)|(fcmp).  NOTE: Unlike the rest of
   1665 /// instcombine, this returns a Value which should already be inserted into the
   1666 /// function.
   1667 Value *InstCombiner::FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
   1668   if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
   1669       RHS->getPredicate() == FCmpInst::FCMP_UNO &&
   1670       LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) {
   1671     if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
   1672       if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
   1673         // If either of the constants are nans, then the whole thing returns
   1674         // true.
   1675         if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
   1676           return ConstantInt::getTrue(LHS->getContext());
   1677 
   1678         // Otherwise, no need to compare the two constants, compare the
   1679         // rest.
   1680         return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
   1681       }
   1682 
   1683     // Handle vector zeros.  This occurs because the canonical form of
   1684     // "fcmp uno x,x" is "fcmp uno x, 0".
   1685     if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
   1686         isa<ConstantAggregateZero>(RHS->getOperand(1)))
   1687       return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
   1688 
   1689     return 0;
   1690   }
   1691 
   1692   Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
   1693   Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
   1694   FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
   1695 
   1696   if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
   1697     // Swap RHS operands to match LHS.
   1698     Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
   1699     std::swap(Op1LHS, Op1RHS);
   1700   }
   1701   if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
   1702     // Simplify (fcmp cc0 x, y) | (fcmp cc1 x, y).
   1703     if (Op0CC == Op1CC)
   1704       return Builder->CreateFCmp((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
   1705     if (Op0CC == FCmpInst::FCMP_TRUE || Op1CC == FCmpInst::FCMP_TRUE)
   1706       return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1);
   1707     if (Op0CC == FCmpInst::FCMP_FALSE)
   1708       return RHS;
   1709     if (Op1CC == FCmpInst::FCMP_FALSE)
   1710       return LHS;
   1711     bool Op0Ordered;
   1712     bool Op1Ordered;
   1713     unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
   1714     unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
   1715     if (Op0Ordered == Op1Ordered) {
   1716       // If both are ordered or unordered, return a new fcmp with
   1717       // or'ed predicates.
   1718       return getFCmpValue(Op0Ordered, Op0Pred|Op1Pred, Op0LHS, Op0RHS, Builder);
   1719     }
   1720   }
   1721   return 0;
   1722 }
   1723 
   1724 /// FoldOrWithConstants - This helper function folds:
   1725 ///
   1726 ///     ((A | B) & C1) | (B & C2)
   1727 ///
   1728 /// into:
   1729 ///
   1730 ///     (A & C1) | B
   1731 ///
   1732 /// when the XOR of the two constants is "all ones" (-1).
   1733 Instruction *InstCombiner::FoldOrWithConstants(BinaryOperator &I, Value *Op,
   1734                                                Value *A, Value *B, Value *C) {
   1735   ConstantInt *CI1 = dyn_cast<ConstantInt>(C);
   1736   if (!CI1) return 0;
   1737 
   1738   Value *V1 = 0;
   1739   ConstantInt *CI2 = 0;
   1740   if (!match(Op, m_And(m_Value(V1), m_ConstantInt(CI2)))) return 0;
   1741 
   1742   APInt Xor = CI1->getValue() ^ CI2->getValue();
   1743   if (!Xor.isAllOnesValue()) return 0;
   1744 
   1745   if (V1 == A || V1 == B) {
   1746     Value *NewOp = Builder->CreateAnd((V1 == A) ? B : A, CI1);
   1747     return BinaryOperator::CreateOr(NewOp, V1);
   1748   }
   1749 
   1750   return 0;
   1751 }
   1752 
   1753 Instruction *InstCombiner::visitOr(BinaryOperator &I) {
   1754   bool Changed = SimplifyAssociativeOrCommutative(I);
   1755   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   1756 
   1757   if (Value *V = SimplifyOrInst(Op0, Op1, TD))
   1758     return ReplaceInstUsesWith(I, V);
   1759 
   1760   // (A&B)|(A&C) -> A&(B|C) etc
   1761   if (Value *V = SimplifyUsingDistributiveLaws(I))
   1762     return ReplaceInstUsesWith(I, V);
   1763 
   1764   // See if we can simplify any instructions used by the instruction whose sole
   1765   // purpose is to compute bits we don't care about.
   1766   if (SimplifyDemandedInstructionBits(I))
   1767     return &I;
   1768 
   1769   if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
   1770     ConstantInt *C1 = 0; Value *X = 0;
   1771     // (X & C1) | C2 --> (X | C2) & (C1|C2)
   1772     // iff (C1 & C2) == 0.
   1773     if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) &&
   1774         (RHS->getValue() & C1->getValue()) != 0 &&
   1775         Op0->hasOneUse()) {
   1776       Value *Or = Builder->CreateOr(X, RHS);
   1777       Or->takeName(Op0);
   1778       return BinaryOperator::CreateAnd(Or,
   1779                          ConstantInt::get(I.getContext(),
   1780                                           RHS->getValue() | C1->getValue()));
   1781     }
   1782 
   1783     // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
   1784     if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) &&
   1785         Op0->hasOneUse()) {
   1786       Value *Or = Builder->CreateOr(X, RHS);
   1787       Or->takeName(Op0);
   1788       return BinaryOperator::CreateXor(Or,
   1789                  ConstantInt::get(I.getContext(),
   1790                                   C1->getValue() & ~RHS->getValue()));
   1791     }
   1792 
   1793     // Try to fold constant and into select arguments.
   1794     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
   1795       if (Instruction *R = FoldOpIntoSelect(I, SI))
   1796         return R;
   1797 
   1798     if (isa<PHINode>(Op0))
   1799       if (Instruction *NV = FoldOpIntoPhi(I))
   1800         return NV;
   1801   }
   1802 
   1803   Value *A = 0, *B = 0;
   1804   ConstantInt *C1 = 0, *C2 = 0;
   1805 
   1806   // (A | B) | C  and  A | (B | C)                  -> bswap if possible.
   1807   // (A >> B) | (C << D)  and  (A << B) | (B >> C)  -> bswap if possible.
   1808   if (match(Op0, m_Or(m_Value(), m_Value())) ||
   1809       match(Op1, m_Or(m_Value(), m_Value())) ||
   1810       (match(Op0, m_LogicalShift(m_Value(), m_Value())) &&
   1811        match(Op1, m_LogicalShift(m_Value(), m_Value())))) {
   1812     if (Instruction *BSwap = MatchBSwap(I))
   1813       return BSwap;
   1814   }
   1815 
   1816   // (X^C)|Y -> (X|Y)^C iff Y&C == 0
   1817   if (Op0->hasOneUse() &&
   1818       match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
   1819       MaskedValueIsZero(Op1, C1->getValue())) {
   1820     Value *NOr = Builder->CreateOr(A, Op1);
   1821     NOr->takeName(Op0);
   1822     return BinaryOperator::CreateXor(NOr, C1);
   1823   }
   1824 
   1825   // Y|(X^C) -> (X|Y)^C iff Y&C == 0
   1826   if (Op1->hasOneUse() &&
   1827       match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
   1828       MaskedValueIsZero(Op0, C1->getValue())) {
   1829     Value *NOr = Builder->CreateOr(A, Op0);
   1830     NOr->takeName(Op0);
   1831     return BinaryOperator::CreateXor(NOr, C1);
   1832   }
   1833 
   1834   // (A & C)|(B & D)
   1835   Value *C = 0, *D = 0;
   1836   if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
   1837       match(Op1, m_And(m_Value(B), m_Value(D)))) {
   1838     Value *V1 = 0, *V2 = 0;
   1839     C1 = dyn_cast<ConstantInt>(C);
   1840     C2 = dyn_cast<ConstantInt>(D);
   1841     if (C1 && C2) {  // (A & C1)|(B & C2)
   1842       // If we have: ((V + N) & C1) | (V & C2)
   1843       // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
   1844       // replace with V+N.
   1845       if (C1->getValue() == ~C2->getValue()) {
   1846         if ((C2->getValue() & (C2->getValue()+1)) == 0 && // C2 == 0+1+
   1847             match(A, m_Add(m_Value(V1), m_Value(V2)))) {
   1848           // Add commutes, try both ways.
   1849           if (V1 == B && MaskedValueIsZero(V2, C2->getValue()))
   1850             return ReplaceInstUsesWith(I, A);
   1851           if (V2 == B && MaskedValueIsZero(V1, C2->getValue()))
   1852             return ReplaceInstUsesWith(I, A);
   1853         }
   1854         // Or commutes, try both ways.
   1855         if ((C1->getValue() & (C1->getValue()+1)) == 0 &&
   1856             match(B, m_Add(m_Value(V1), m_Value(V2)))) {
   1857           // Add commutes, try both ways.
   1858           if (V1 == A && MaskedValueIsZero(V2, C1->getValue()))
   1859             return ReplaceInstUsesWith(I, B);
   1860           if (V2 == A && MaskedValueIsZero(V1, C1->getValue()))
   1861             return ReplaceInstUsesWith(I, B);
   1862         }
   1863       }
   1864 
   1865       if ((C1->getValue() & C2->getValue()) == 0) {
   1866         // ((V | N) & C1) | (V & C2) --> (V|N) & (C1|C2)
   1867         // iff (C1&C2) == 0 and (N&~C1) == 0
   1868         if (match(A, m_Or(m_Value(V1), m_Value(V2))) &&
   1869             ((V1 == B && MaskedValueIsZero(V2, ~C1->getValue())) ||  // (V|N)
   1870              (V2 == B && MaskedValueIsZero(V1, ~C1->getValue()))))   // (N|V)
   1871           return BinaryOperator::CreateAnd(A,
   1872                                ConstantInt::get(A->getContext(),
   1873                                                 C1->getValue()|C2->getValue()));
   1874         // Or commutes, try both ways.
   1875         if (match(B, m_Or(m_Value(V1), m_Value(V2))) &&
   1876             ((V1 == A && MaskedValueIsZero(V2, ~C2->getValue())) ||  // (V|N)
   1877              (V2 == A && MaskedValueIsZero(V1, ~C2->getValue()))))   // (N|V)
   1878           return BinaryOperator::CreateAnd(B,
   1879                                ConstantInt::get(B->getContext(),
   1880                                                 C1->getValue()|C2->getValue()));
   1881 
   1882         // ((V|C3)&C1) | ((V|C4)&C2) --> (V|C3|C4)&(C1|C2)
   1883         // iff (C1&C2) == 0 and (C3&~C1) == 0 and (C4&~C2) == 0.
   1884         ConstantInt *C3 = 0, *C4 = 0;
   1885         if (match(A, m_Or(m_Value(V1), m_ConstantInt(C3))) &&
   1886             (C3->getValue() & ~C1->getValue()) == 0 &&
   1887             match(B, m_Or(m_Specific(V1), m_ConstantInt(C4))) &&
   1888             (C4->getValue() & ~C2->getValue()) == 0) {
   1889           V2 = Builder->CreateOr(V1, ConstantExpr::getOr(C3, C4), "bitfield");
   1890           return BinaryOperator::CreateAnd(V2,
   1891                                ConstantInt::get(B->getContext(),
   1892                                                 C1->getValue()|C2->getValue()));
   1893         }
   1894       }
   1895     }
   1896 
   1897     // (A & (C0?-1:0)) | (B & ~(C0?-1:0)) ->  C0 ? A : B, and commuted variants.
   1898     // Don't do this for vector select idioms, the code generator doesn't handle
   1899     // them well yet.
   1900     if (!I.getType()->isVectorTy()) {
   1901       if (Instruction *Match = MatchSelectFromAndOr(A, B, C, D))
   1902         return Match;
   1903       if (Instruction *Match = MatchSelectFromAndOr(B, A, D, C))
   1904         return Match;
   1905       if (Instruction *Match = MatchSelectFromAndOr(C, B, A, D))
   1906         return Match;
   1907       if (Instruction *Match = MatchSelectFromAndOr(D, A, B, C))
   1908         return Match;
   1909     }
   1910 
   1911     // ((A&~B)|(~A&B)) -> A^B
   1912     if ((match(C, m_Not(m_Specific(D))) &&
   1913          match(B, m_Not(m_Specific(A)))))
   1914       return BinaryOperator::CreateXor(A, D);
   1915     // ((~B&A)|(~A&B)) -> A^B
   1916     if ((match(A, m_Not(m_Specific(D))) &&
   1917          match(B, m_Not(m_Specific(C)))))
   1918       return BinaryOperator::CreateXor(C, D);
   1919     // ((A&~B)|(B&~A)) -> A^B
   1920     if ((match(C, m_Not(m_Specific(B))) &&
   1921          match(D, m_Not(m_Specific(A)))))
   1922       return BinaryOperator::CreateXor(A, B);
   1923     // ((~B&A)|(B&~A)) -> A^B
   1924     if ((match(A, m_Not(m_Specific(B))) &&
   1925          match(D, m_Not(m_Specific(C)))))
   1926       return BinaryOperator::CreateXor(C, B);
   1927 
   1928     // ((A|B)&1)|(B&-2) -> (A&1) | B
   1929     if (match(A, m_Or(m_Value(V1), m_Specific(B))) ||
   1930         match(A, m_Or(m_Specific(B), m_Value(V1)))) {
   1931       Instruction *Ret = FoldOrWithConstants(I, Op1, V1, B, C);
   1932       if (Ret) return Ret;
   1933     }
   1934     // (B&-2)|((A|B)&1) -> (A&1) | B
   1935     if (match(B, m_Or(m_Specific(A), m_Value(V1))) ||
   1936         match(B, m_Or(m_Value(V1), m_Specific(A)))) {
   1937       Instruction *Ret = FoldOrWithConstants(I, Op0, A, V1, D);
   1938       if (Ret) return Ret;
   1939     }
   1940   }
   1941 
   1942   // (X >> Z) | (Y >> Z)  -> (X|Y) >> Z  for all shifts.
   1943   if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
   1944     if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
   1945       if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
   1946           SI0->getOperand(1) == SI1->getOperand(1) &&
   1947           (SI0->hasOneUse() || SI1->hasOneUse())) {
   1948         Value *NewOp = Builder->CreateOr(SI0->getOperand(0), SI1->getOperand(0),
   1949                                          SI0->getName());
   1950         return BinaryOperator::Create(SI1->getOpcode(), NewOp,
   1951                                       SI1->getOperand(1));
   1952       }
   1953   }
   1954 
   1955   // (~A | ~B) == (~(A & B)) - De Morgan's Law
   1956   if (Value *Op0NotVal = dyn_castNotVal(Op0))
   1957     if (Value *Op1NotVal = dyn_castNotVal(Op1))
   1958       if (Op0->hasOneUse() && Op1->hasOneUse()) {
   1959         Value *And = Builder->CreateAnd(Op0NotVal, Op1NotVal,
   1960                                         I.getName()+".demorgan");
   1961         return BinaryOperator::CreateNot(And);
   1962       }
   1963 
   1964   // Canonicalize xor to the RHS.
   1965   if (match(Op0, m_Xor(m_Value(), m_Value())))
   1966     std::swap(Op0, Op1);
   1967 
   1968   // A | ( A ^ B) -> A |  B
   1969   // A | (~A ^ B) -> A | ~B
   1970   if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
   1971     if (Op0 == A || Op0 == B)
   1972       return BinaryOperator::CreateOr(A, B);
   1973 
   1974     if (Op1->hasOneUse() && match(A, m_Not(m_Specific(Op0)))) {
   1975       Value *Not = Builder->CreateNot(B, B->getName()+".not");
   1976       return BinaryOperator::CreateOr(Not, Op0);
   1977     }
   1978     if (Op1->hasOneUse() && match(B, m_Not(m_Specific(Op0)))) {
   1979       Value *Not = Builder->CreateNot(A, A->getName()+".not");
   1980       return BinaryOperator::CreateOr(Not, Op0);
   1981     }
   1982   }
   1983 
   1984   // A | ~(A | B) -> A | ~B
   1985   // A | ~(A ^ B) -> A | ~B
   1986   if (match(Op1, m_Not(m_Value(A))))
   1987     if (BinaryOperator *B = dyn_cast<BinaryOperator>(A))
   1988       if ((Op0 == B->getOperand(0) || Op0 == B->getOperand(1)) &&
   1989           Op1->hasOneUse() && (B->getOpcode() == Instruction::Or ||
   1990                                B->getOpcode() == Instruction::Xor)) {
   1991         Value *NotOp = Op0 == B->getOperand(0) ? B->getOperand(1) :
   1992                                                  B->getOperand(0);
   1993         Value *Not = Builder->CreateNot(NotOp, NotOp->getName()+".not");
   1994         return BinaryOperator::CreateOr(Not, Op0);
   1995       }
   1996 
   1997   if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
   1998     if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
   1999       if (Value *Res = FoldOrOfICmps(LHS, RHS))
   2000         return ReplaceInstUsesWith(I, Res);
   2001 
   2002   // (fcmp uno x, c) | (fcmp uno y, c)  -> (fcmp uno x, y)
   2003   if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
   2004     if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
   2005       if (Value *Res = FoldOrOfFCmps(LHS, RHS))
   2006         return ReplaceInstUsesWith(I, Res);
   2007 
   2008   // fold (or (cast A), (cast B)) -> (cast (or A, B))
   2009   if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
   2010     CastInst *Op1C = dyn_cast<CastInst>(Op1);
   2011     if (Op1C && Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
   2012       Type *SrcTy = Op0C->getOperand(0)->getType();
   2013       if (SrcTy == Op1C->getOperand(0)->getType() &&
   2014           SrcTy->isIntOrIntVectorTy()) {
   2015         Value *Op0COp = Op0C->getOperand(0), *Op1COp = Op1C->getOperand(0);
   2016 
   2017         if ((!isa<ICmpInst>(Op0COp) || !isa<ICmpInst>(Op1COp)) &&
   2018             // Only do this if the casts both really cause code to be
   2019             // generated.
   2020             ShouldOptimizeCast(Op0C->getOpcode(), Op0COp, I.getType()) &&
   2021             ShouldOptimizeCast(Op1C->getOpcode(), Op1COp, I.getType())) {
   2022           Value *NewOp = Builder->CreateOr(Op0COp, Op1COp, I.getName());
   2023           return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
   2024         }
   2025 
   2026         // If this is or(cast(icmp), cast(icmp)), try to fold this even if the
   2027         // cast is otherwise not optimizable.  This happens for vector sexts.
   2028         if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp))
   2029           if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp))
   2030             if (Value *Res = FoldOrOfICmps(LHS, RHS))
   2031               return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
   2032 
   2033         // If this is or(cast(fcmp), cast(fcmp)), try to fold this even if the
   2034         // cast is otherwise not optimizable.  This happens for vector sexts.
   2035         if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp))
   2036           if (FCmpInst *LHS = dyn_cast<FCmpInst>(Op0COp))
   2037             if (Value *Res = FoldOrOfFCmps(LHS, RHS))
   2038               return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
   2039       }
   2040     }
   2041   }
   2042 
   2043   // or(sext(A), B) -> A ? -1 : B where A is an i1
   2044   // or(A, sext(B)) -> B ? -1 : A where B is an i1
   2045   if (match(Op0, m_SExt(m_Value(A))) && A->getType()->isIntegerTy(1))
   2046     return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op1);
   2047   if (match(Op1, m_SExt(m_Value(A))) && A->getType()->isIntegerTy(1))
   2048     return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op0);
   2049 
   2050   // Note: If we've gotten to the point of visiting the outer OR, then the
   2051   // inner one couldn't be simplified.  If it was a constant, then it won't
   2052   // be simplified by a later pass either, so we try swapping the inner/outer
   2053   // ORs in the hopes that we'll be able to simplify it this way.
   2054   // (X|C) | V --> (X|V) | C
   2055   if (Op0->hasOneUse() && !isa<ConstantInt>(Op1) &&
   2056       match(Op0, m_Or(m_Value(A), m_ConstantInt(C1)))) {
   2057     Value *Inner = Builder->CreateOr(A, Op1);
   2058     Inner->takeName(Op0);
   2059     return BinaryOperator::CreateOr(Inner, C1);
   2060   }
   2061 
   2062   return Changed ? &I : 0;
   2063 }
   2064 
   2065 Instruction *InstCombiner::visitXor(BinaryOperator &I) {
   2066   bool Changed = SimplifyAssociativeOrCommutative(I);
   2067   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   2068 
   2069   if (Value *V = SimplifyXorInst(Op0, Op1, TD))
   2070     return ReplaceInstUsesWith(I, V);
   2071 
   2072   // (A&B)^(A&C) -> A&(B^C) etc
   2073   if (Value *V = SimplifyUsingDistributiveLaws(I))
   2074     return ReplaceInstUsesWith(I, V);
   2075 
   2076   // See if we can simplify any instructions used by the instruction whose sole
   2077   // purpose is to compute bits we don't care about.
   2078   if (SimplifyDemandedInstructionBits(I))
   2079     return &I;
   2080 
   2081   // Is this a ~ operation?
   2082   if (Value *NotOp = dyn_castNotVal(&I)) {
   2083     if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
   2084       if (Op0I->getOpcode() == Instruction::And ||
   2085           Op0I->getOpcode() == Instruction::Or) {
   2086         // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
   2087         // ~(~X | Y) === (X & ~Y) - De Morgan's Law
   2088         if (dyn_castNotVal(Op0I->getOperand(1)))
   2089           Op0I->swapOperands();
   2090         if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
   2091           Value *NotY =
   2092             Builder->CreateNot(Op0I->getOperand(1),
   2093                                Op0I->getOperand(1)->getName()+".not");
   2094           if (Op0I->getOpcode() == Instruction::And)
   2095             return BinaryOperator::CreateOr(Op0NotVal, NotY);
   2096           return BinaryOperator::CreateAnd(Op0NotVal, NotY);
   2097         }
   2098 
   2099         // ~(X & Y) --> (~X | ~Y) - De Morgan's Law
   2100         // ~(X | Y) === (~X & ~Y) - De Morgan's Law
   2101         if (isFreeToInvert(Op0I->getOperand(0)) &&
   2102             isFreeToInvert(Op0I->getOperand(1))) {
   2103           Value *NotX =
   2104             Builder->CreateNot(Op0I->getOperand(0), "notlhs");
   2105           Value *NotY =
   2106             Builder->CreateNot(Op0I->getOperand(1), "notrhs");
   2107           if (Op0I->getOpcode() == Instruction::And)
   2108             return BinaryOperator::CreateOr(NotX, NotY);
   2109           return BinaryOperator::CreateAnd(NotX, NotY);
   2110         }
   2111 
   2112       } else if (Op0I->getOpcode() == Instruction::AShr) {
   2113         // ~(~X >>s Y) --> (X >>s Y)
   2114         if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0)))
   2115           return BinaryOperator::CreateAShr(Op0NotVal, Op0I->getOperand(1));
   2116       }
   2117     }
   2118   }
   2119 
   2120 
   2121   if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
   2122     if (RHS->isOne() && Op0->hasOneUse())
   2123       // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
   2124       if (CmpInst *CI = dyn_cast<CmpInst>(Op0))
   2125         return CmpInst::Create(CI->getOpcode(),
   2126                                CI->getInversePredicate(),
   2127                                CI->getOperand(0), CI->getOperand(1));
   2128 
   2129     // fold (xor(zext(cmp)), 1) and (xor(sext(cmp)), -1) to ext(!cmp).
   2130     if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
   2131       if (CmpInst *CI = dyn_cast<CmpInst>(Op0C->getOperand(0))) {
   2132         if (CI->hasOneUse() && Op0C->hasOneUse()) {
   2133           Instruction::CastOps Opcode = Op0C->getOpcode();
   2134           if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
   2135               (RHS == ConstantExpr::getCast(Opcode,
   2136                                            ConstantInt::getTrue(I.getContext()),
   2137                                             Op0C->getDestTy()))) {
   2138             CI->setPredicate(CI->getInversePredicate());
   2139             return CastInst::Create(Opcode, CI, Op0C->getType());
   2140           }
   2141         }
   2142       }
   2143     }
   2144 
   2145     if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
   2146       // ~(c-X) == X-c-1 == X+(-c-1)
   2147       if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
   2148         if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
   2149           Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
   2150           Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
   2151                                       ConstantInt::get(I.getType(), 1));
   2152           return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS);
   2153         }
   2154 
   2155       if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
   2156         if (Op0I->getOpcode() == Instruction::Add) {
   2157           // ~(X-c) --> (-c-1)-X
   2158           if (RHS->isAllOnesValue()) {
   2159             Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
   2160             return BinaryOperator::CreateSub(
   2161                            ConstantExpr::getSub(NegOp0CI,
   2162                                       ConstantInt::get(I.getType(), 1)),
   2163                                       Op0I->getOperand(0));
   2164           } else if (RHS->getValue().isSignBit()) {
   2165             // (X + C) ^ signbit -> (X + C + signbit)
   2166             Constant *C = ConstantInt::get(I.getContext(),
   2167                                            RHS->getValue() + Op0CI->getValue());
   2168             return BinaryOperator::CreateAdd(Op0I->getOperand(0), C);
   2169 
   2170           }
   2171         } else if (Op0I->getOpcode() == Instruction::Or) {
   2172           // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
   2173           if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue())) {
   2174             Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
   2175             // Anything in both C1 and C2 is known to be zero, remove it from
   2176             // NewRHS.
   2177             Constant *CommonBits = ConstantExpr::getAnd(Op0CI, RHS);
   2178             NewRHS = ConstantExpr::getAnd(NewRHS,
   2179                                        ConstantExpr::getNot(CommonBits));
   2180             Worklist.Add(Op0I);
   2181             I.setOperand(0, Op0I->getOperand(0));
   2182             I.setOperand(1, NewRHS);
   2183             return &I;
   2184           }
   2185         }
   2186       }
   2187     }
   2188 
   2189     // Try to fold constant and into select arguments.
   2190     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
   2191       if (Instruction *R = FoldOpIntoSelect(I, SI))
   2192         return R;
   2193     if (isa<PHINode>(Op0))
   2194       if (Instruction *NV = FoldOpIntoPhi(I))
   2195         return NV;
   2196   }
   2197 
   2198   BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
   2199   if (Op1I) {
   2200     Value *A, *B;
   2201     if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
   2202       if (A == Op0) {              // B^(B|A) == (A|B)^B
   2203         Op1I->swapOperands();
   2204         I.swapOperands();
   2205         std::swap(Op0, Op1);
   2206       } else if (B == Op0) {       // B^(A|B) == (A|B)^B
   2207         I.swapOperands();     // Simplified below.
   2208         std::swap(Op0, Op1);
   2209       }
   2210     } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) &&
   2211                Op1I->hasOneUse()){
   2212       if (A == Op0) {                                      // A^(A&B) -> A^(B&A)
   2213         Op1I->swapOperands();
   2214         std::swap(A, B);
   2215       }
   2216       if (B == Op0) {                                      // A^(B&A) -> (B&A)^A
   2217         I.swapOperands();     // Simplified below.
   2218         std::swap(Op0, Op1);
   2219       }
   2220     }
   2221   }
   2222 
   2223   BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
   2224   if (Op0I) {
   2225     Value *A, *B;
   2226     if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
   2227         Op0I->hasOneUse()) {
   2228       if (A == Op1)                                  // (B|A)^B == (A|B)^B
   2229         std::swap(A, B);
   2230       if (B == Op1)                                  // (A|B)^B == A & ~B
   2231         return BinaryOperator::CreateAnd(A, Builder->CreateNot(Op1));
   2232     } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
   2233                Op0I->hasOneUse()){
   2234       if (A == Op1)                                        // (A&B)^A -> (B&A)^A
   2235         std::swap(A, B);
   2236       if (B == Op1 &&                                      // (B&A)^A == ~B & A
   2237           !isa<ConstantInt>(Op1)) {  // Canonical form is (B&C)^C
   2238         return BinaryOperator::CreateAnd(Builder->CreateNot(A), Op1);
   2239       }
   2240     }
   2241   }
   2242 
   2243   // (X >> Z) ^ (Y >> Z)  -> (X^Y) >> Z  for all shifts.
   2244   if (Op0I && Op1I && Op0I->isShift() &&
   2245       Op0I->getOpcode() == Op1I->getOpcode() &&
   2246       Op0I->getOperand(1) == Op1I->getOperand(1) &&
   2247       (Op1I->hasOneUse() || Op1I->hasOneUse())) {
   2248     Value *NewOp =
   2249       Builder->CreateXor(Op0I->getOperand(0), Op1I->getOperand(0),
   2250                          Op0I->getName());
   2251     return BinaryOperator::Create(Op1I->getOpcode(), NewOp,
   2252                                   Op1I->getOperand(1));
   2253   }
   2254 
   2255   if (Op0I && Op1I) {
   2256     Value *A, *B, *C, *D;
   2257     // (A & B)^(A | B) -> A ^ B
   2258     if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
   2259         match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
   2260       if ((A == C && B == D) || (A == D && B == C))
   2261         return BinaryOperator::CreateXor(A, B);
   2262     }
   2263     // (A | B)^(A & B) -> A ^ B
   2264     if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
   2265         match(Op1I, m_And(m_Value(C), m_Value(D)))) {
   2266       if ((A == C && B == D) || (A == D && B == C))
   2267         return BinaryOperator::CreateXor(A, B);
   2268     }
   2269   }
   2270 
   2271   // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
   2272   if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
   2273     if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
   2274       if (PredicatesFoldable(LHS->getPredicate(), RHS->getPredicate())) {
   2275         if (LHS->getOperand(0) == RHS->getOperand(1) &&
   2276             LHS->getOperand(1) == RHS->getOperand(0))
   2277           LHS->swapOperands();
   2278         if (LHS->getOperand(0) == RHS->getOperand(0) &&
   2279             LHS->getOperand(1) == RHS->getOperand(1)) {
   2280           Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
   2281           unsigned Code = getICmpCode(LHS) ^ getICmpCode(RHS);
   2282           bool isSigned = LHS->isSigned() || RHS->isSigned();
   2283           return ReplaceInstUsesWith(I,
   2284                                getICmpValue(isSigned, Code, Op0, Op1, Builder));
   2285         }
   2286       }
   2287 
   2288   // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
   2289   if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
   2290     if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
   2291       if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind?
   2292         Type *SrcTy = Op0C->getOperand(0)->getType();
   2293         if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isIntegerTy() &&
   2294             // Only do this if the casts both really cause code to be generated.
   2295             ShouldOptimizeCast(Op0C->getOpcode(), Op0C->getOperand(0),
   2296                                I.getType()) &&
   2297             ShouldOptimizeCast(Op1C->getOpcode(), Op1C->getOperand(0),
   2298                                I.getType())) {
   2299           Value *NewOp = Builder->CreateXor(Op0C->getOperand(0),
   2300                                             Op1C->getOperand(0), I.getName());
   2301           return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
   2302         }
   2303       }
   2304   }
   2305 
   2306   return Changed ? &I : 0;
   2307 }
   2308