Home | History | Annotate | Download | only in Target
      1 //===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 ///
     10 /// \file
     11 /// This file describes how to lower LLVM code to machine code.  This has two
     12 /// main components:
     13 ///
     14 ///  1. Which ValueTypes are natively supported by the target.
     15 ///  2. Which operations are supported for supported ValueTypes.
     16 ///  3. Cost thresholds for alternative implementations of certain operations.
     17 ///
     18 /// In addition it has a few other components, like information about FP
     19 /// immediates.
     20 ///
     21 //===----------------------------------------------------------------------===//
     22 
     23 #ifndef LLVM_TARGET_TARGETLOWERING_H
     24 #define LLVM_TARGET_TARGETLOWERING_H
     25 
     26 #include "llvm/ADT/DenseMap.h"
     27 #include "llvm/CodeGen/DAGCombine.h"
     28 #include "llvm/CodeGen/RuntimeLibcalls.h"
     29 #include "llvm/CodeGen/SelectionDAGNodes.h"
     30 #include "llvm/IR/Attributes.h"
     31 #include "llvm/IR/CallSite.h"
     32 #include "llvm/IR/CallingConv.h"
     33 #include "llvm/IR/IRBuilder.h"
     34 #include "llvm/IR/InlineAsm.h"
     35 #include "llvm/IR/Instructions.h"
     36 #include "llvm/MC/MCRegisterInfo.h"
     37 #include "llvm/Target/TargetCallingConv.h"
     38 #include "llvm/Target/TargetMachine.h"
     39 #include <climits>
     40 #include <map>
     41 #include <vector>
     42 
     43 namespace llvm {
     44   class BranchProbability;
     45   class CallInst;
     46   class CCState;
     47   class CCValAssign;
     48   class FastISel;
     49   class FunctionLoweringInfo;
     50   class ImmutableCallSite;
     51   class IntrinsicInst;
     52   class MachineBasicBlock;
     53   class MachineFunction;
     54   class MachineInstr;
     55   class MachineJumpTableInfo;
     56   class MachineLoop;
     57   class MachineRegisterInfo;
     58   class Mangler;
     59   class MCContext;
     60   class MCExpr;
     61   class MCSymbol;
     62   template<typename T> class SmallVectorImpl;
     63   class DataLayout;
     64   class TargetRegisterClass;
     65   class TargetLibraryInfo;
     66   class TargetLoweringObjectFile;
     67   class Value;
     68 
     69   namespace Sched {
     70     enum Preference {
     71       None,             // No preference
     72       Source,           // Follow source order.
     73       RegPressure,      // Scheduling for lowest register pressure.
     74       Hybrid,           // Scheduling for both latency and register pressure.
     75       ILP,              // Scheduling for ILP in low register pressure mode.
     76       VLIW              // Scheduling for VLIW targets.
     77     };
     78   }
     79 
     80 /// This base class for TargetLowering contains the SelectionDAG-independent
     81 /// parts that can be used from the rest of CodeGen.
     82 class TargetLoweringBase {
     83   TargetLoweringBase(const TargetLoweringBase&) = delete;
     84   void operator=(const TargetLoweringBase&) = delete;
     85 
     86 public:
     87   /// This enum indicates whether operations are valid for a target, and if not,
     88   /// what action should be used to make them valid.
     89   enum LegalizeAction : uint8_t {
     90     Legal,      // The target natively supports this operation.
     91     Promote,    // This operation should be executed in a larger type.
     92     Expand,     // Try to expand this to other ops, otherwise use a libcall.
     93     LibCall,    // Don't try to expand this to other ops, always use a libcall.
     94     Custom      // Use the LowerOperation hook to implement custom lowering.
     95   };
     96 
     97   /// This enum indicates whether a types are legal for a target, and if not,
     98   /// what action should be used to make them valid.
     99   enum LegalizeTypeAction : uint8_t {
    100     TypeLegal,           // The target natively supports this type.
    101     TypePromoteInteger,  // Replace this integer with a larger one.
    102     TypeExpandInteger,   // Split this integer into two of half the size.
    103     TypeSoftenFloat,     // Convert this float to a same size integer type,
    104                          // if an operation is not supported in target HW.
    105     TypeExpandFloat,     // Split this float into two of half the size.
    106     TypeScalarizeVector, // Replace this one-element vector with its element.
    107     TypeSplitVector,     // Split this vector into two of half the size.
    108     TypeWidenVector,     // This vector should be widened into a larger vector.
    109     TypePromoteFloat     // Replace this float with a larger one.
    110   };
    111 
    112   /// LegalizeKind holds the legalization kind that needs to happen to EVT
    113   /// in order to type-legalize it.
    114   typedef std::pair<LegalizeTypeAction, EVT> LegalizeKind;
    115 
    116   /// Enum that describes how the target represents true/false values.
    117   enum BooleanContent {
    118     UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
    119     ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
    120     ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
    121   };
    122 
    123   /// Enum that describes what type of support for selects the target has.
    124   enum SelectSupportKind {
    125     ScalarValSelect,      // The target supports scalar selects (ex: cmov).
    126     ScalarCondVectorVal,  // The target supports selects with a scalar condition
    127                           // and vector values (ex: cmov).
    128     VectorMaskSelect      // The target supports vector selects with a vector
    129                           // mask (ex: x86 blends).
    130   };
    131 
    132   /// Enum that specifies what an atomic load/AtomicRMWInst is expanded
    133   /// to, if at all. Exists because different targets have different levels of
    134   /// support for these atomic instructions, and also have different options
    135   /// w.r.t. what they should expand to.
    136   enum class AtomicExpansionKind {
    137     None,    // Don't expand the instruction.
    138     LLSC,    // Expand the instruction into loadlinked/storeconditional; used
    139              // by ARM/AArch64.
    140     LLOnly,  // Expand the (load) instruction into just a load-linked, which has
    141              // greater atomic guarantees than a normal load.
    142     CmpXChg, // Expand the instruction into cmpxchg; used by at least X86.
    143   };
    144 
    145   static ISD::NodeType getExtendForContent(BooleanContent Content) {
    146     switch (Content) {
    147     case UndefinedBooleanContent:
    148       // Extend by adding rubbish bits.
    149       return ISD::ANY_EXTEND;
    150     case ZeroOrOneBooleanContent:
    151       // Extend by adding zero bits.
    152       return ISD::ZERO_EXTEND;
    153     case ZeroOrNegativeOneBooleanContent:
    154       // Extend by copying the sign bit.
    155       return ISD::SIGN_EXTEND;
    156     }
    157     llvm_unreachable("Invalid content kind");
    158   }
    159 
    160   /// NOTE: The TargetMachine owns TLOF.
    161   explicit TargetLoweringBase(const TargetMachine &TM);
    162   virtual ~TargetLoweringBase() {}
    163 
    164 protected:
    165   /// \brief Initialize all of the actions to default values.
    166   void initActions();
    167 
    168 public:
    169   const TargetMachine &getTargetMachine() const { return TM; }
    170 
    171   virtual bool useSoftFloat() const { return false; }
    172 
    173   /// Return the pointer type for the given address space, defaults to
    174   /// the pointer type from the data layout.
    175   /// FIXME: The default needs to be removed once all the code is updated.
    176   MVT getPointerTy(const DataLayout &DL, uint32_t AS = 0) const {
    177     return MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
    178   }
    179 
    180   /// EVT is not used in-tree, but is used by out-of-tree target.
    181   /// A documentation for this function would be nice...
    182   virtual MVT getScalarShiftAmountTy(const DataLayout &, EVT) const;
    183 
    184   EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL) const;
    185 
    186   /// Returns the type to be used for the index operand of:
    187   /// ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT,
    188   /// ISD::INSERT_SUBVECTOR, and ISD::EXTRACT_SUBVECTOR
    189   virtual MVT getVectorIdxTy(const DataLayout &DL) const {
    190     return getPointerTy(DL);
    191   }
    192 
    193   /// Return true if the select operation is expensive for this target.
    194   bool isSelectExpensive() const { return SelectIsExpensive; }
    195 
    196   virtual bool isSelectSupported(SelectSupportKind /*kind*/) const {
    197     return true;
    198   }
    199 
    200   /// Return true if multiple condition registers are available.
    201   bool hasMultipleConditionRegisters() const {
    202     return HasMultipleConditionRegisters;
    203   }
    204 
    205   /// Return true if the target has BitExtract instructions.
    206   bool hasExtractBitsInsn() const { return HasExtractBitsInsn; }
    207 
    208   /// Return the preferred vector type legalization action.
    209   virtual TargetLoweringBase::LegalizeTypeAction
    210   getPreferredVectorAction(EVT VT) const {
    211     // The default action for one element vectors is to scalarize
    212     if (VT.getVectorNumElements() == 1)
    213       return TypeScalarizeVector;
    214     // The default action for other vectors is to promote
    215     return TypePromoteInteger;
    216   }
    217 
    218   // There are two general methods for expanding a BUILD_VECTOR node:
    219   //  1. Use SCALAR_TO_VECTOR on the defined scalar values and then shuffle
    220   //     them together.
    221   //  2. Build the vector on the stack and then load it.
    222   // If this function returns true, then method (1) will be used, subject to
    223   // the constraint that all of the necessary shuffles are legal (as determined
    224   // by isShuffleMaskLegal). If this function returns false, then method (2) is
    225   // always used. The vector type, and the number of defined values, are
    226   // provided.
    227   virtual bool
    228   shouldExpandBuildVectorWithShuffles(EVT /* VT */,
    229                                       unsigned DefinedValues) const {
    230     return DefinedValues < 3;
    231   }
    232 
    233   /// Return true if integer divide is usually cheaper than a sequence of
    234   /// several shifts, adds, and multiplies for this target.
    235   /// The definition of "cheaper" may depend on whether we're optimizing
    236   /// for speed or for size.
    237   virtual bool isIntDivCheap(EVT VT, AttributeSet Attr) const {
    238     return false;
    239   }
    240 
    241   /// Return true if sqrt(x) is as cheap or cheaper than 1 / rsqrt(x)
    242   bool isFsqrtCheap() const {
    243     return FsqrtIsCheap;
    244   }
    245 
    246   /// Returns true if target has indicated at least one type should be bypassed.
    247   bool isSlowDivBypassed() const { return !BypassSlowDivWidths.empty(); }
    248 
    249   /// Returns map of slow types for division or remainder with corresponding
    250   /// fast types
    251   const DenseMap<unsigned int, unsigned int> &getBypassSlowDivWidths() const {
    252     return BypassSlowDivWidths;
    253   }
    254 
    255   /// Return true if Flow Control is an expensive operation that should be
    256   /// avoided.
    257   bool isJumpExpensive() const { return JumpIsExpensive; }
    258 
    259   /// Return true if selects are only cheaper than branches if the branch is
    260   /// unlikely to be predicted right.
    261   bool isPredictableSelectExpensive() const {
    262     return PredictableSelectIsExpensive;
    263   }
    264 
    265   /// If a branch or a select condition is skewed in one direction by more than
    266   /// this factor, it is very likely to be predicted correctly.
    267   virtual BranchProbability getPredictableBranchThreshold() const;
    268 
    269   /// Return true if the following transform is beneficial:
    270   /// fold (conv (load x)) -> (load (conv*)x)
    271   /// On architectures that don't natively support some vector loads
    272   /// efficiently, casting the load to a smaller vector of larger types and
    273   /// loading is more efficient, however, this can be undone by optimizations in
    274   /// dag combiner.
    275   virtual bool isLoadBitCastBeneficial(EVT LoadVT,
    276                                        EVT BitcastVT) const {
    277     // Don't do if we could do an indexed load on the original type, but not on
    278     // the new one.
    279     if (!LoadVT.isSimple() || !BitcastVT.isSimple())
    280       return true;
    281 
    282     MVT LoadMVT = LoadVT.getSimpleVT();
    283 
    284     // Don't bother doing this if it's just going to be promoted again later, as
    285     // doing so might interfere with other combines.
    286     if (getOperationAction(ISD::LOAD, LoadMVT) == Promote &&
    287         getTypeToPromoteTo(ISD::LOAD, LoadMVT) == BitcastVT.getSimpleVT())
    288       return false;
    289 
    290     return true;
    291   }
    292 
    293   /// Return true if the following transform is beneficial:
    294   /// (store (y (conv x)), y*)) -> (store x, (x*))
    295   virtual bool isStoreBitCastBeneficial(EVT StoreVT, EVT BitcastVT) const {
    296     // Default to the same logic as loads.
    297     return isLoadBitCastBeneficial(StoreVT, BitcastVT);
    298   }
    299 
    300   /// Return true if it is expected to be cheaper to do a store of a non-zero
    301   /// vector constant with the given size and type for the address space than to
    302   /// store the individual scalar element constants.
    303   virtual bool storeOfVectorConstantIsCheap(EVT MemVT,
    304                                             unsigned NumElem,
    305                                             unsigned AddrSpace) const {
    306     return false;
    307   }
    308 
    309   /// \brief Return true if it is cheap to speculate a call to intrinsic cttz.
    310   virtual bool isCheapToSpeculateCttz() const {
    311     return false;
    312   }
    313 
    314   /// \brief Return true if it is cheap to speculate a call to intrinsic ctlz.
    315   virtual bool isCheapToSpeculateCtlz() const {
    316     return false;
    317   }
    318 
    319   /// Return true if it is safe to transform an integer-domain bitwise operation
    320   /// into the equivalent floating-point operation. This should be set to true
    321   /// if the target has IEEE-754-compliant fabs/fneg operations for the input
    322   /// type.
    323   virtual bool hasBitPreservingFPLogic(EVT VT) const {
    324     return false;
    325   }
    326 
    327   /// \brief Return if the target supports combining a
    328   /// chain like:
    329   /// \code
    330   ///   %andResult = and %val1, #imm-with-one-bit-set;
    331   ///   %icmpResult = icmp %andResult, 0
    332   ///   br i1 %icmpResult, label %dest1, label %dest2
    333   /// \endcode
    334   /// into a single machine instruction of a form like:
    335   /// \code
    336   ///   brOnBitSet %register, #bitNumber, dest
    337   /// \endcode
    338   bool isMaskAndBranchFoldingLegal() const {
    339     return MaskAndBranchFoldingIsLegal;
    340   }
    341 
    342   /// Return true if the target should transform:
    343   /// (X & Y) == Y ---> (~X & Y) == 0
    344   /// (X & Y) != Y ---> (~X & Y) != 0
    345   ///
    346   /// This may be profitable if the target has a bitwise and-not operation that
    347   /// sets comparison flags. A target may want to limit the transformation based
    348   /// on the type of Y or if Y is a constant.
    349   ///
    350   /// Note that the transform will not occur if Y is known to be a power-of-2
    351   /// because a mask and compare of a single bit can be handled by inverting the
    352   /// predicate, for example:
    353   /// (X & 8) == 8 ---> (X & 8) != 0
    354   virtual bool hasAndNotCompare(SDValue Y) const {
    355     return false;
    356   }
    357 
    358   /// \brief Return true if the target wants to use the optimization that
    359   /// turns ext(promotableInst1(...(promotableInstN(load)))) into
    360   /// promotedInst1(...(promotedInstN(ext(load)))).
    361   bool enableExtLdPromotion() const { return EnableExtLdPromotion; }
    362 
    363   /// Return true if the target can combine store(extractelement VectorTy,
    364   /// Idx).
    365   /// \p Cost[out] gives the cost of that transformation when this is true.
    366   virtual bool canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
    367                                          unsigned &Cost) const {
    368     return false;
    369   }
    370 
    371   /// Return true if target supports floating point exceptions.
    372   bool hasFloatingPointExceptions() const {
    373     return HasFloatingPointExceptions;
    374   }
    375 
    376   /// Return true if target always beneficiates from combining into FMA for a
    377   /// given value type. This must typically return false on targets where FMA
    378   /// takes more cycles to execute than FADD.
    379   virtual bool enableAggressiveFMAFusion(EVT VT) const {
    380     return false;
    381   }
    382 
    383   /// Return the ValueType of the result of SETCC operations.
    384   virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
    385                                  EVT VT) const;
    386 
    387   /// Return the ValueType for comparison libcalls. Comparions libcalls include
    388   /// floating point comparion calls, and Ordered/Unordered check calls on
    389   /// floating point numbers.
    390   virtual
    391   MVT::SimpleValueType getCmpLibcallReturnType() const;
    392 
    393   /// For targets without i1 registers, this gives the nature of the high-bits
    394   /// of boolean values held in types wider than i1.
    395   ///
    396   /// "Boolean values" are special true/false values produced by nodes like
    397   /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
    398   /// Not to be confused with general values promoted from i1.  Some cpus
    399   /// distinguish between vectors of boolean and scalars; the isVec parameter
    400   /// selects between the two kinds.  For example on X86 a scalar boolean should
    401   /// be zero extended from i1, while the elements of a vector of booleans
    402   /// should be sign extended from i1.
    403   ///
    404   /// Some cpus also treat floating point types the same way as they treat
    405   /// vectors instead of the way they treat scalars.
    406   BooleanContent getBooleanContents(bool isVec, bool isFloat) const {
    407     if (isVec)
    408       return BooleanVectorContents;
    409     return isFloat ? BooleanFloatContents : BooleanContents;
    410   }
    411 
    412   BooleanContent getBooleanContents(EVT Type) const {
    413     return getBooleanContents(Type.isVector(), Type.isFloatingPoint());
    414   }
    415 
    416   /// Return target scheduling preference.
    417   Sched::Preference getSchedulingPreference() const {
    418     return SchedPreferenceInfo;
    419   }
    420 
    421   /// Some scheduler, e.g. hybrid, can switch to different scheduling heuristics
    422   /// for different nodes. This function returns the preference (or none) for
    423   /// the given node.
    424   virtual Sched::Preference getSchedulingPreference(SDNode *) const {
    425     return Sched::None;
    426   }
    427 
    428   /// Return the register class that should be used for the specified value
    429   /// type.
    430   virtual const TargetRegisterClass *getRegClassFor(MVT VT) const {
    431     const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
    432     assert(RC && "This value type is not natively supported!");
    433     return RC;
    434   }
    435 
    436   /// Return the 'representative' register class for the specified value
    437   /// type.
    438   ///
    439   /// The 'representative' register class is the largest legal super-reg
    440   /// register class for the register class of the value type.  For example, on
    441   /// i386 the rep register class for i8, i16, and i32 are GR32; while the rep
    442   /// register class is GR64 on x86_64.
    443   virtual const TargetRegisterClass *getRepRegClassFor(MVT VT) const {
    444     const TargetRegisterClass *RC = RepRegClassForVT[VT.SimpleTy];
    445     return RC;
    446   }
    447 
    448   /// Return the cost of the 'representative' register class for the specified
    449   /// value type.
    450   virtual uint8_t getRepRegClassCostFor(MVT VT) const {
    451     return RepRegClassCostForVT[VT.SimpleTy];
    452   }
    453 
    454   /// Return true if the target has native support for the specified value type.
    455   /// This means that it has a register that directly holds it without
    456   /// promotions or expansions.
    457   bool isTypeLegal(EVT VT) const {
    458     assert(!VT.isSimple() ||
    459            (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
    460     return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != nullptr;
    461   }
    462 
    463   class ValueTypeActionImpl {
    464     /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
    465     /// that indicates how instruction selection should deal with the type.
    466     LegalizeTypeAction ValueTypeActions[MVT::LAST_VALUETYPE];
    467 
    468   public:
    469     ValueTypeActionImpl() {
    470       std::fill(std::begin(ValueTypeActions), std::end(ValueTypeActions),
    471                 TypeLegal);
    472     }
    473 
    474     LegalizeTypeAction getTypeAction(MVT VT) const {
    475       return ValueTypeActions[VT.SimpleTy];
    476     }
    477 
    478     void setTypeAction(MVT VT, LegalizeTypeAction Action) {
    479       ValueTypeActions[VT.SimpleTy] = Action;
    480     }
    481   };
    482 
    483   const ValueTypeActionImpl &getValueTypeActions() const {
    484     return ValueTypeActions;
    485   }
    486 
    487   /// Return how we should legalize values of this type, either it is already
    488   /// legal (return 'Legal') or we need to promote it to a larger type (return
    489   /// 'Promote'), or we need to expand it into multiple registers of smaller
    490   /// integer type (return 'Expand').  'Custom' is not an option.
    491   LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const {
    492     return getTypeConversion(Context, VT).first;
    493   }
    494   LegalizeTypeAction getTypeAction(MVT VT) const {
    495     return ValueTypeActions.getTypeAction(VT);
    496   }
    497 
    498   /// For types supported by the target, this is an identity function.  For
    499   /// types that must be promoted to larger types, this returns the larger type
    500   /// to promote to.  For integer types that are larger than the largest integer
    501   /// register, this contains one step in the expansion to get to the smaller
    502   /// register. For illegal floating point types, this returns the integer type
    503   /// to transform to.
    504   EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
    505     return getTypeConversion(Context, VT).second;
    506   }
    507 
    508   /// For types supported by the target, this is an identity function.  For
    509   /// types that must be expanded (i.e. integer types that are larger than the
    510   /// largest integer register or illegal floating point types), this returns
    511   /// the largest legal type it will be expanded to.
    512   EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
    513     assert(!VT.isVector());
    514     while (true) {
    515       switch (getTypeAction(Context, VT)) {
    516       case TypeLegal:
    517         return VT;
    518       case TypeExpandInteger:
    519         VT = getTypeToTransformTo(Context, VT);
    520         break;
    521       default:
    522         llvm_unreachable("Type is not legal nor is it to be expanded!");
    523       }
    524     }
    525   }
    526 
    527   /// Vector types are broken down into some number of legal first class types.
    528   /// For example, EVT::v8f32 maps to 2 EVT::v4f32 with Altivec or SSE1, or 8
    529   /// promoted EVT::f64 values with the X86 FP stack.  Similarly, EVT::v2i64
    530   /// turns into 4 EVT::i32 values with both PPC and X86.
    531   ///
    532   /// This method returns the number of registers needed, and the VT for each
    533   /// register.  It also returns the VT and quantity of the intermediate values
    534   /// before they are promoted/expanded.
    535   unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
    536                                   EVT &IntermediateVT,
    537                                   unsigned &NumIntermediates,
    538                                   MVT &RegisterVT) const;
    539 
    540   struct IntrinsicInfo {
    541     unsigned     opc;         // target opcode
    542     EVT          memVT;       // memory VT
    543     const Value* ptrVal;      // value representing memory location
    544     int          offset;      // offset off of ptrVal
    545     unsigned     size;        // the size of the memory location
    546                               // (taken from memVT if zero)
    547     unsigned     align;       // alignment
    548     bool         vol;         // is volatile?
    549     bool         readMem;     // reads memory?
    550     bool         writeMem;    // writes memory?
    551 
    552     IntrinsicInfo() : opc(0), ptrVal(nullptr), offset(0), size(0), align(1),
    553                       vol(false), readMem(false), writeMem(false) {}
    554   };
    555 
    556   /// Given an intrinsic, checks if on the target the intrinsic will need to map
    557   /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
    558   /// true and store the intrinsic information into the IntrinsicInfo that was
    559   /// passed to the function.
    560   virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &,
    561                                   unsigned /*Intrinsic*/) const {
    562     return false;
    563   }
    564 
    565   /// Returns true if the target can instruction select the specified FP
    566   /// immediate natively. If false, the legalizer will materialize the FP
    567   /// immediate as a load from a constant pool.
    568   virtual bool isFPImmLegal(const APFloat &/*Imm*/, EVT /*VT*/) const {
    569     return false;
    570   }
    571 
    572   /// Targets can use this to indicate that they only support *some*
    573   /// VECTOR_SHUFFLE operations, those with specific masks.  By default, if a
    574   /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to be
    575   /// legal.
    576   virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
    577                                   EVT /*VT*/) const {
    578     return true;
    579   }
    580 
    581   /// Returns true if the operation can trap for the value type.
    582   ///
    583   /// VT must be a legal type. By default, we optimistically assume most
    584   /// operations don't trap except for divide and remainder.
    585   virtual bool canOpTrap(unsigned Op, EVT VT) const;
    586 
    587   /// Similar to isShuffleMaskLegal. This is used by Targets can use this to
    588   /// indicate if there is a suitable VECTOR_SHUFFLE that can be used to replace
    589   /// a VAND with a constant pool entry.
    590   virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
    591                                       EVT /*VT*/) const {
    592     return false;
    593   }
    594 
    595   /// Return how this operation should be treated: either it is legal, needs to
    596   /// be promoted to a larger size, needs to be expanded to some other code
    597   /// sequence, or the target has a custom expander for it.
    598   LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
    599     if (VT.isExtended()) return Expand;
    600     // If a target-specific SDNode requires legalization, require the target
    601     // to provide custom legalization for it.
    602     if (Op > array_lengthof(OpActions[0])) return Custom;
    603     return OpActions[(unsigned)VT.getSimpleVT().SimpleTy][Op];
    604   }
    605 
    606   /// Return true if the specified operation is legal on this target or can be
    607   /// made legal with custom lowering. This is used to help guide high-level
    608   /// lowering decisions.
    609   bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
    610     return (VT == MVT::Other || isTypeLegal(VT)) &&
    611       (getOperationAction(Op, VT) == Legal ||
    612        getOperationAction(Op, VT) == Custom);
    613   }
    614 
    615   /// Return true if the specified operation is legal on this target or can be
    616   /// made legal using promotion. This is used to help guide high-level lowering
    617   /// decisions.
    618   bool isOperationLegalOrPromote(unsigned Op, EVT VT) const {
    619     return (VT == MVT::Other || isTypeLegal(VT)) &&
    620       (getOperationAction(Op, VT) == Legal ||
    621        getOperationAction(Op, VT) == Promote);
    622   }
    623 
    624   /// Return true if the specified operation is legal on this target or can be
    625   /// made legal with custom lowering or using promotion. This is used to help
    626   /// guide high-level lowering decisions.
    627   bool isOperationLegalOrCustomOrPromote(unsigned Op, EVT VT) const {
    628     return (VT == MVT::Other || isTypeLegal(VT)) &&
    629       (getOperationAction(Op, VT) == Legal ||
    630        getOperationAction(Op, VT) == Custom ||
    631        getOperationAction(Op, VT) == Promote);
    632   }
    633 
    634   /// Return true if the specified operation is illegal but has a custom lowering
    635   /// on that type. This is used to help guide high-level lowering
    636   /// decisions.
    637   bool isOperationCustom(unsigned Op, EVT VT) const {
    638     return (!isTypeLegal(VT) && getOperationAction(Op, VT) == Custom);
    639   }
    640 
    641   /// Return true if the specified operation is illegal on this target or
    642   /// unlikely to be made legal with custom lowering. This is used to help guide
    643   /// high-level lowering decisions.
    644   bool isOperationExpand(unsigned Op, EVT VT) const {
    645     return (!isTypeLegal(VT) || getOperationAction(Op, VT) == Expand);
    646   }
    647 
    648   /// Return true if the specified operation is legal on this target.
    649   bool isOperationLegal(unsigned Op, EVT VT) const {
    650     return (VT == MVT::Other || isTypeLegal(VT)) &&
    651            getOperationAction(Op, VT) == Legal;
    652   }
    653 
    654   /// Return how this load with extension should be treated: either it is legal,
    655   /// needs to be promoted to a larger size, needs to be expanded to some other
    656   /// code sequence, or the target has a custom expander for it.
    657   LegalizeAction getLoadExtAction(unsigned ExtType, EVT ValVT,
    658                                   EVT MemVT) const {
    659     if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
    660     unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy;
    661     unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy;
    662     assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValI < MVT::LAST_VALUETYPE &&
    663            MemI < MVT::LAST_VALUETYPE && "Table isn't big enough!");
    664     unsigned Shift = 4 * ExtType;
    665     return (LegalizeAction)((LoadExtActions[ValI][MemI] >> Shift) & 0xf);
    666   }
    667 
    668   /// Return true if the specified load with extension is legal on this target.
    669   bool isLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const {
    670     return getLoadExtAction(ExtType, ValVT, MemVT) == Legal;
    671   }
    672 
    673   /// Return true if the specified load with extension is legal or custom
    674   /// on this target.
    675   bool isLoadExtLegalOrCustom(unsigned ExtType, EVT ValVT, EVT MemVT) const {
    676     return getLoadExtAction(ExtType, ValVT, MemVT) == Legal ||
    677            getLoadExtAction(ExtType, ValVT, MemVT) == Custom;
    678   }
    679 
    680   /// Return how this store with truncation should be treated: either it is
    681   /// legal, needs to be promoted to a larger size, needs to be expanded to some
    682   /// other code sequence, or the target has a custom expander for it.
    683   LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const {
    684     if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
    685     unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy;
    686     unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy;
    687     assert(ValI < MVT::LAST_VALUETYPE && MemI < MVT::LAST_VALUETYPE &&
    688            "Table isn't big enough!");
    689     return TruncStoreActions[ValI][MemI];
    690   }
    691 
    692   /// Return true if the specified store with truncation is legal on this
    693   /// target.
    694   bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
    695     return isTypeLegal(ValVT) && getTruncStoreAction(ValVT, MemVT) == Legal;
    696   }
    697 
    698   /// Return true if the specified store with truncation has solution on this
    699   /// target.
    700   bool isTruncStoreLegalOrCustom(EVT ValVT, EVT MemVT) const {
    701     return isTypeLegal(ValVT) &&
    702       (getTruncStoreAction(ValVT, MemVT) == Legal ||
    703        getTruncStoreAction(ValVT, MemVT) == Custom);
    704   }
    705 
    706   /// Return how the indexed load should be treated: either it is legal, needs
    707   /// to be promoted to a larger size, needs to be expanded to some other code
    708   /// sequence, or the target has a custom expander for it.
    709   LegalizeAction
    710   getIndexedLoadAction(unsigned IdxMode, MVT VT) const {
    711     assert(IdxMode < ISD::LAST_INDEXED_MODE && VT.isValid() &&
    712            "Table isn't big enough!");
    713     unsigned Ty = (unsigned)VT.SimpleTy;
    714     return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4);
    715   }
    716 
    717   /// Return true if the specified indexed load is legal on this target.
    718   bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
    719     return VT.isSimple() &&
    720       (getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Legal ||
    721        getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Custom);
    722   }
    723 
    724   /// Return how the indexed store should be treated: either it is legal, needs
    725   /// to be promoted to a larger size, needs to be expanded to some other code
    726   /// sequence, or the target has a custom expander for it.
    727   LegalizeAction
    728   getIndexedStoreAction(unsigned IdxMode, MVT VT) const {
    729     assert(IdxMode < ISD::LAST_INDEXED_MODE && VT.isValid() &&
    730            "Table isn't big enough!");
    731     unsigned Ty = (unsigned)VT.SimpleTy;
    732     return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f);
    733   }
    734 
    735   /// Return true if the specified indexed load is legal on this target.
    736   bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
    737     return VT.isSimple() &&
    738       (getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Legal ||
    739        getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Custom);
    740   }
    741 
    742   /// Return how the condition code should be treated: either it is legal, needs
    743   /// to be expanded to some other code sequence, or the target has a custom
    744   /// expander for it.
    745   LegalizeAction
    746   getCondCodeAction(ISD::CondCode CC, MVT VT) const {
    747     assert((unsigned)CC < array_lengthof(CondCodeActions) &&
    748            ((unsigned)VT.SimpleTy >> 3) < array_lengthof(CondCodeActions[0]) &&
    749            "Table isn't big enough!");
    750     // See setCondCodeAction for how this is encoded.
    751     uint32_t Shift = 4 * (VT.SimpleTy & 0x7);
    752     uint32_t Value = CondCodeActions[CC][VT.SimpleTy >> 3];
    753     LegalizeAction Action = (LegalizeAction) ((Value >> Shift) & 0xF);
    754     assert(Action != Promote && "Can't promote condition code!");
    755     return Action;
    756   }
    757 
    758   /// Return true if the specified condition code is legal on this target.
    759   bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const {
    760     return
    761       getCondCodeAction(CC, VT) == Legal ||
    762       getCondCodeAction(CC, VT) == Custom;
    763   }
    764 
    765 
    766   /// If the action for this operation is to promote, this method returns the
    767   /// ValueType to promote to.
    768   MVT getTypeToPromoteTo(unsigned Op, MVT VT) const {
    769     assert(getOperationAction(Op, VT) == Promote &&
    770            "This operation isn't promoted!");
    771 
    772     // See if this has an explicit type specified.
    773     std::map<std::pair<unsigned, MVT::SimpleValueType>,
    774              MVT::SimpleValueType>::const_iterator PTTI =
    775       PromoteToType.find(std::make_pair(Op, VT.SimpleTy));
    776     if (PTTI != PromoteToType.end()) return PTTI->second;
    777 
    778     assert((VT.isInteger() || VT.isFloatingPoint()) &&
    779            "Cannot autopromote this type, add it with AddPromotedToType.");
    780 
    781     MVT NVT = VT;
    782     do {
    783       NVT = (MVT::SimpleValueType)(NVT.SimpleTy+1);
    784       assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
    785              "Didn't find type to promote to!");
    786     } while (!isTypeLegal(NVT) ||
    787               getOperationAction(Op, NVT) == Promote);
    788     return NVT;
    789   }
    790 
    791   /// Return the EVT corresponding to this LLVM type.  This is fixed by the LLVM
    792   /// operations except for the pointer size.  If AllowUnknown is true, this
    793   /// will return MVT::Other for types with no EVT counterpart (e.g. structs),
    794   /// otherwise it will assert.
    795   EVT getValueType(const DataLayout &DL, Type *Ty,
    796                    bool AllowUnknown = false) const {
    797     // Lower scalar pointers to native pointer types.
    798     if (PointerType *PTy = dyn_cast<PointerType>(Ty))
    799       return getPointerTy(DL, PTy->getAddressSpace());
    800 
    801     if (Ty->isVectorTy()) {
    802       VectorType *VTy = cast<VectorType>(Ty);
    803       Type *Elm = VTy->getElementType();
    804       // Lower vectors of pointers to native pointer types.
    805       if (PointerType *PT = dyn_cast<PointerType>(Elm)) {
    806         EVT PointerTy(getPointerTy(DL, PT->getAddressSpace()));
    807         Elm = PointerTy.getTypeForEVT(Ty->getContext());
    808       }
    809 
    810       return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(Elm, false),
    811                        VTy->getNumElements());
    812     }
    813     return EVT::getEVT(Ty, AllowUnknown);
    814   }
    815 
    816   /// Return the MVT corresponding to this LLVM type. See getValueType.
    817   MVT getSimpleValueType(const DataLayout &DL, Type *Ty,
    818                          bool AllowUnknown = false) const {
    819     return getValueType(DL, Ty, AllowUnknown).getSimpleVT();
    820   }
    821 
    822   /// Return the desired alignment for ByVal or InAlloca aggregate function
    823   /// arguments in the caller parameter area.  This is the actual alignment, not
    824   /// its logarithm.
    825   virtual unsigned getByValTypeAlignment(Type *Ty, const DataLayout &DL) const;
    826 
    827   /// Return the type of registers that this ValueType will eventually require.
    828   MVT getRegisterType(MVT VT) const {
    829     assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
    830     return RegisterTypeForVT[VT.SimpleTy];
    831   }
    832 
    833   /// Return the type of registers that this ValueType will eventually require.
    834   MVT getRegisterType(LLVMContext &Context, EVT VT) const {
    835     if (VT.isSimple()) {
    836       assert((unsigned)VT.getSimpleVT().SimpleTy <
    837                 array_lengthof(RegisterTypeForVT));
    838       return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
    839     }
    840     if (VT.isVector()) {
    841       EVT VT1;
    842       MVT RegisterVT;
    843       unsigned NumIntermediates;
    844       (void)getVectorTypeBreakdown(Context, VT, VT1,
    845                                    NumIntermediates, RegisterVT);
    846       return RegisterVT;
    847     }
    848     if (VT.isInteger()) {
    849       return getRegisterType(Context, getTypeToTransformTo(Context, VT));
    850     }
    851     llvm_unreachable("Unsupported extended type!");
    852   }
    853 
    854   /// Return the number of registers that this ValueType will eventually
    855   /// require.
    856   ///
    857   /// This is one for any types promoted to live in larger registers, but may be
    858   /// more than one for types (like i64) that are split into pieces.  For types
    859   /// like i140, which are first promoted then expanded, it is the number of
    860   /// registers needed to hold all the bits of the original type.  For an i140
    861   /// on a 32 bit machine this means 5 registers.
    862   unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
    863     if (VT.isSimple()) {
    864       assert((unsigned)VT.getSimpleVT().SimpleTy <
    865                 array_lengthof(NumRegistersForVT));
    866       return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
    867     }
    868     if (VT.isVector()) {
    869       EVT VT1;
    870       MVT VT2;
    871       unsigned NumIntermediates;
    872       return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
    873     }
    874     if (VT.isInteger()) {
    875       unsigned BitWidth = VT.getSizeInBits();
    876       unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
    877       return (BitWidth + RegWidth - 1) / RegWidth;
    878     }
    879     llvm_unreachable("Unsupported extended type!");
    880   }
    881 
    882   /// If true, then instruction selection should seek to shrink the FP constant
    883   /// of the specified type to a smaller type in order to save space and / or
    884   /// reduce runtime.
    885   virtual bool ShouldShrinkFPConstant(EVT) const { return true; }
    886 
    887   // Return true if it is profitable to reduce the given load node to a smaller
    888   // type.
    889   //
    890   // e.g. (i16 (trunc (i32 (load x))) -> i16 load x should be performed
    891   virtual bool shouldReduceLoadWidth(SDNode *Load,
    892                                      ISD::LoadExtType ExtTy,
    893                                      EVT NewVT) const {
    894     return true;
    895   }
    896 
    897   /// When splitting a value of the specified type into parts, does the Lo
    898   /// or Hi part come first?  This usually follows the endianness, except
    899   /// for ppcf128, where the Hi part always comes first.
    900   bool hasBigEndianPartOrdering(EVT VT, const DataLayout &DL) const {
    901     return DL.isBigEndian() || VT == MVT::ppcf128;
    902   }
    903 
    904   /// If true, the target has custom DAG combine transformations that it can
    905   /// perform for the specified node.
    906   bool hasTargetDAGCombine(ISD::NodeType NT) const {
    907     assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
    908     return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
    909   }
    910 
    911   unsigned getGatherAllAliasesMaxDepth() const {
    912     return GatherAllAliasesMaxDepth;
    913   }
    914 
    915   /// \brief Get maximum # of store operations permitted for llvm.memset
    916   ///
    917   /// This function returns the maximum number of store operations permitted
    918   /// to replace a call to llvm.memset. The value is set by the target at the
    919   /// performance threshold for such a replacement. If OptSize is true,
    920   /// return the limit for functions that have OptSize attribute.
    921   unsigned getMaxStoresPerMemset(bool OptSize) const {
    922     return OptSize ? MaxStoresPerMemsetOptSize : MaxStoresPerMemset;
    923   }
    924 
    925   /// \brief Get maximum # of store operations permitted for llvm.memcpy
    926   ///
    927   /// This function returns the maximum number of store operations permitted
    928   /// to replace a call to llvm.memcpy. The value is set by the target at the
    929   /// performance threshold for such a replacement. If OptSize is true,
    930   /// return the limit for functions that have OptSize attribute.
    931   unsigned getMaxStoresPerMemcpy(bool OptSize) const {
    932     return OptSize ? MaxStoresPerMemcpyOptSize : MaxStoresPerMemcpy;
    933   }
    934 
    935   /// \brief Get maximum # of store operations permitted for llvm.memmove
    936   ///
    937   /// This function returns the maximum number of store operations permitted
    938   /// to replace a call to llvm.memmove. The value is set by the target at the
    939   /// performance threshold for such a replacement. If OptSize is true,
    940   /// return the limit for functions that have OptSize attribute.
    941   unsigned getMaxStoresPerMemmove(bool OptSize) const {
    942     return OptSize ? MaxStoresPerMemmoveOptSize : MaxStoresPerMemmove;
    943   }
    944 
    945   /// \brief Determine if the target supports unaligned memory accesses.
    946   ///
    947   /// This function returns true if the target allows unaligned memory accesses
    948   /// of the specified type in the given address space. If true, it also returns
    949   /// whether the unaligned memory access is "fast" in the last argument by
    950   /// reference. This is used, for example, in situations where an array
    951   /// copy/move/set is converted to a sequence of store operations. Its use
    952   /// helps to ensure that such replacements don't generate code that causes an
    953   /// alignment error (trap) on the target machine.
    954   virtual bool allowsMisalignedMemoryAccesses(EVT,
    955                                               unsigned AddrSpace = 0,
    956                                               unsigned Align = 1,
    957                                               bool * /*Fast*/ = nullptr) const {
    958     return false;
    959   }
    960 
    961   /// Return true if the target supports a memory access of this type for the
    962   /// given address space and alignment. If the access is allowed, the optional
    963   /// final parameter returns if the access is also fast (as defined by the
    964   /// target).
    965   bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT,
    966                           unsigned AddrSpace = 0, unsigned Alignment = 1,
    967                           bool *Fast = nullptr) const;
    968 
    969   /// Returns the target specific optimal type for load and store operations as
    970   /// a result of memset, memcpy, and memmove lowering.
    971   ///
    972   /// If DstAlign is zero that means it's safe to destination alignment can
    973   /// satisfy any constraint. Similarly if SrcAlign is zero it means there isn't
    974   /// a need to check it against alignment requirement, probably because the
    975   /// source does not need to be loaded. If 'IsMemset' is true, that means it's
    976   /// expanding a memset. If 'ZeroMemset' is true, that means it's a memset of
    977   /// zero. 'MemcpyStrSrc' indicates whether the memcpy source is constant so it
    978   /// does not need to be loaded.  It returns EVT::Other if the type should be
    979   /// determined using generic target-independent logic.
    980   virtual EVT getOptimalMemOpType(uint64_t /*Size*/,
    981                                   unsigned /*DstAlign*/, unsigned /*SrcAlign*/,
    982                                   bool /*IsMemset*/,
    983                                   bool /*ZeroMemset*/,
    984                                   bool /*MemcpyStrSrc*/,
    985                                   MachineFunction &/*MF*/) const {
    986     return MVT::Other;
    987   }
    988 
    989   /// Returns true if it's safe to use load / store of the specified type to
    990   /// expand memcpy / memset inline.
    991   ///
    992   /// This is mostly true for all types except for some special cases. For
    993   /// example, on X86 targets without SSE2 f64 load / store are done with fldl /
    994   /// fstpl which also does type conversion. Note the specified type doesn't
    995   /// have to be legal as the hook is used before type legalization.
    996   virtual bool isSafeMemOpType(MVT /*VT*/) const { return true; }
    997 
    998   /// Determine if we should use _setjmp or setjmp to implement llvm.setjmp.
    999   bool usesUnderscoreSetJmp() const {
   1000     return UseUnderscoreSetJmp;
   1001   }
   1002 
   1003   /// Determine if we should use _longjmp or longjmp to implement llvm.longjmp.
   1004   bool usesUnderscoreLongJmp() const {
   1005     return UseUnderscoreLongJmp;
   1006   }
   1007 
   1008   /// Return integer threshold on number of blocks to use jump tables rather
   1009   /// than if sequence.
   1010   int getMinimumJumpTableEntries() const {
   1011     return MinimumJumpTableEntries;
   1012   }
   1013 
   1014   /// If a physical register, this specifies the register that
   1015   /// llvm.savestack/llvm.restorestack should save and restore.
   1016   unsigned getStackPointerRegisterToSaveRestore() const {
   1017     return StackPointerRegisterToSaveRestore;
   1018   }
   1019 
   1020   /// If a physical register, this returns the register that receives the
   1021   /// exception address on entry to an EH pad.
   1022   virtual unsigned
   1023   getExceptionPointerRegister(const Constant *PersonalityFn) const {
   1024     // 0 is guaranteed to be the NoRegister value on all targets
   1025     return 0;
   1026   }
   1027 
   1028   /// If a physical register, this returns the register that receives the
   1029   /// exception typeid on entry to a landing pad.
   1030   virtual unsigned
   1031   getExceptionSelectorRegister(const Constant *PersonalityFn) const {
   1032     // 0 is guaranteed to be the NoRegister value on all targets
   1033     return 0;
   1034   }
   1035 
   1036   virtual bool needsFixedCatchObjects() const {
   1037     report_fatal_error("Funclet EH is not implemented for this target");
   1038   }
   1039 
   1040   /// Returns the target's jmp_buf size in bytes (if never set, the default is
   1041   /// 200)
   1042   unsigned getJumpBufSize() const {
   1043     return JumpBufSize;
   1044   }
   1045 
   1046   /// Returns the target's jmp_buf alignment in bytes (if never set, the default
   1047   /// is 0)
   1048   unsigned getJumpBufAlignment() const {
   1049     return JumpBufAlignment;
   1050   }
   1051 
   1052   /// Return the minimum stack alignment of an argument.
   1053   unsigned getMinStackArgumentAlignment() const {
   1054     return MinStackArgumentAlignment;
   1055   }
   1056 
   1057   /// Return the minimum function alignment.
   1058   unsigned getMinFunctionAlignment() const {
   1059     return MinFunctionAlignment;
   1060   }
   1061 
   1062   /// Return the preferred function alignment.
   1063   unsigned getPrefFunctionAlignment() const {
   1064     return PrefFunctionAlignment;
   1065   }
   1066 
   1067   /// Return the preferred loop alignment.
   1068   virtual unsigned getPrefLoopAlignment(MachineLoop *ML = nullptr) const {
   1069     return PrefLoopAlignment;
   1070   }
   1071 
   1072   /// If the target has a standard location for the stack protector guard,
   1073   /// returns the address of that location. Otherwise, returns nullptr.
   1074   /// DEPRECATED: please override useLoadStackGuardNode and customize
   1075   ///             LOAD_STACK_GUARD, or customize @llvm.stackguard().
   1076   virtual Value *getIRStackGuard(IRBuilder<> &IRB) const;
   1077 
   1078   /// Inserts necessary declarations for SSP (stack protection) purpose.
   1079   /// Should be used only when getIRStackGuard returns nullptr.
   1080   virtual void insertSSPDeclarations(Module &M) const;
   1081 
   1082   /// Return the variable that's previously inserted by insertSSPDeclarations,
   1083   /// if any, otherwise return nullptr. Should be used only when
   1084   /// getIRStackGuard returns nullptr.
   1085   virtual Value *getSDagStackGuard(const Module &M) const;
   1086 
   1087   /// If the target has a standard stack protection check function that
   1088   /// performs validation and error handling, returns the function. Otherwise,
   1089   /// returns nullptr. Must be previously inserted by insertSSPDeclarations.
   1090   /// Should be used only when getIRStackGuard returns nullptr.
   1091   virtual Value *getSSPStackGuardCheck(const Module &M) const;
   1092 
   1093   /// If the target has a standard location for the unsafe stack pointer,
   1094   /// returns the address of that location. Otherwise, returns nullptr.
   1095   virtual Value *getSafeStackPointerLocation(IRBuilder<> &IRB) const;
   1096 
   1097   /// Returns true if a cast between SrcAS and DestAS is a noop.
   1098   virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const {
   1099     return false;
   1100   }
   1101 
   1102   /// Return true if the pointer arguments to CI should be aligned by aligning
   1103   /// the object whose address is being passed. If so then MinSize is set to the
   1104   /// minimum size the object must be to be aligned and PrefAlign is set to the
   1105   /// preferred alignment.
   1106   virtual bool shouldAlignPointerArgs(CallInst * /*CI*/, unsigned & /*MinSize*/,
   1107                                       unsigned & /*PrefAlign*/) const {
   1108     return false;
   1109   }
   1110 
   1111   //===--------------------------------------------------------------------===//
   1112   /// \name Helpers for TargetTransformInfo implementations
   1113   /// @{
   1114 
   1115   /// Get the ISD node that corresponds to the Instruction class opcode.
   1116   int InstructionOpcodeToISD(unsigned Opcode) const;
   1117 
   1118   /// Estimate the cost of type-legalization and the legalized type.
   1119   std::pair<int, MVT> getTypeLegalizationCost(const DataLayout &DL,
   1120                                               Type *Ty) const;
   1121 
   1122   /// @}
   1123 
   1124   //===--------------------------------------------------------------------===//
   1125   /// \name Helpers for atomic expansion.
   1126   /// @{
   1127 
   1128   /// Returns the maximum atomic operation size (in bits) supported by
   1129   /// the backend. Atomic operations greater than this size (as well
   1130   /// as ones that are not naturally aligned), will be expanded by
   1131   /// AtomicExpandPass into an __atomic_* library call.
   1132   unsigned getMaxAtomicSizeInBitsSupported() const {
   1133     return MaxAtomicSizeInBitsSupported;
   1134   }
   1135 
   1136   /// Returns the size of the smallest cmpxchg or ll/sc instruction
   1137   /// the backend supports.  Any smaller operations are widened in
   1138   /// AtomicExpandPass.
   1139   ///
   1140   /// Note that *unlike* operations above the maximum size, atomic ops
   1141   /// are still natively supported below the minimum; they just
   1142   /// require a more complex expansion.
   1143   unsigned getMinCmpXchgSizeInBits() const { return MinCmpXchgSizeInBits; }
   1144 
   1145   /// Whether AtomicExpandPass should automatically insert fences and reduce
   1146   /// ordering for this atomic. This should be true for most architectures with
   1147   /// weak memory ordering. Defaults to false.
   1148   virtual bool shouldInsertFencesForAtomic(const Instruction *I) const {
   1149     return false;
   1150   }
   1151 
   1152   /// Perform a load-linked operation on Addr, returning a "Value *" with the
   1153   /// corresponding pointee type. This may entail some non-trivial operations to
   1154   /// truncate or reconstruct types that will be illegal in the backend. See
   1155   /// ARMISelLowering for an example implementation.
   1156   virtual Value *emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
   1157                                 AtomicOrdering Ord) const {
   1158     llvm_unreachable("Load linked unimplemented on this target");
   1159   }
   1160 
   1161   /// Perform a store-conditional operation to Addr. Return the status of the
   1162   /// store. This should be 0 if the store succeeded, non-zero otherwise.
   1163   virtual Value *emitStoreConditional(IRBuilder<> &Builder, Value *Val,
   1164                                       Value *Addr, AtomicOrdering Ord) const {
   1165     llvm_unreachable("Store conditional unimplemented on this target");
   1166   }
   1167 
   1168   /// Inserts in the IR a target-specific intrinsic specifying a fence.
   1169   /// It is called by AtomicExpandPass before expanding an
   1170   ///   AtomicRMW/AtomicCmpXchg/AtomicStore/AtomicLoad
   1171   ///   if shouldInsertFencesForAtomic returns true.
   1172   /// RMW and CmpXchg set both IsStore and IsLoad to true.
   1173   /// This function should either return a nullptr, or a pointer to an IR-level
   1174   ///   Instruction*. Even complex fence sequences can be represented by a
   1175   ///   single Instruction* through an intrinsic to be lowered later.
   1176   /// Backends should override this method to produce target-specific intrinsic
   1177   ///   for their fences.
   1178   /// FIXME: Please note that the default implementation here in terms of
   1179   ///   IR-level fences exists for historical/compatibility reasons and is
   1180   ///   *unsound* ! Fences cannot, in general, be used to restore sequential
   1181   ///   consistency. For example, consider the following example:
   1182   /// atomic<int> x = y = 0;
   1183   /// int r1, r2, r3, r4;
   1184   /// Thread 0:
   1185   ///   x.store(1);
   1186   /// Thread 1:
   1187   ///   y.store(1);
   1188   /// Thread 2:
   1189   ///   r1 = x.load();
   1190   ///   r2 = y.load();
   1191   /// Thread 3:
   1192   ///   r3 = y.load();
   1193   ///   r4 = x.load();
   1194   ///  r1 = r3 = 1 and r2 = r4 = 0 is impossible as long as the accesses are all
   1195   ///  seq_cst. But if they are lowered to monotonic accesses, no amount of
   1196   ///  IR-level fences can prevent it.
   1197   /// @{
   1198   virtual Instruction *emitLeadingFence(IRBuilder<> &Builder,
   1199                                         AtomicOrdering Ord, bool IsStore,
   1200                                         bool IsLoad) const {
   1201     if (isReleaseOrStronger(Ord) && IsStore)
   1202       return Builder.CreateFence(Ord);
   1203     else
   1204       return nullptr;
   1205   }
   1206 
   1207   virtual Instruction *emitTrailingFence(IRBuilder<> &Builder,
   1208                                          AtomicOrdering Ord, bool IsStore,
   1209                                          bool IsLoad) const {
   1210     if (isAcquireOrStronger(Ord))
   1211       return Builder.CreateFence(Ord);
   1212     else
   1213       return nullptr;
   1214   }
   1215   /// @}
   1216 
   1217   // Emits code that executes when the comparison result in the ll/sc
   1218   // expansion of a cmpxchg instruction is such that the store-conditional will
   1219   // not execute.  This makes it possible to balance out the load-linked with
   1220   // a dedicated instruction, if desired.
   1221   // E.g., on ARM, if ldrex isn't followed by strex, the exclusive monitor would
   1222   // be unnecessarily held, except if clrex, inserted by this hook, is executed.
   1223   virtual void emitAtomicCmpXchgNoStoreLLBalance(IRBuilder<> &Builder) const {}
   1224 
   1225   /// Returns true if the given (atomic) store should be expanded by the
   1226   /// IR-level AtomicExpand pass into an "atomic xchg" which ignores its input.
   1227   virtual bool shouldExpandAtomicStoreInIR(StoreInst *SI) const {
   1228     return false;
   1229   }
   1230 
   1231   /// Returns true if arguments should be sign-extended in lib calls.
   1232   virtual bool shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
   1233     return IsSigned;
   1234   }
   1235 
   1236   /// Returns how the given (atomic) load should be expanded by the
   1237   /// IR-level AtomicExpand pass.
   1238   virtual AtomicExpansionKind shouldExpandAtomicLoadInIR(LoadInst *LI) const {
   1239     return AtomicExpansionKind::None;
   1240   }
   1241 
   1242   /// Returns true if the given atomic cmpxchg should be expanded by the
   1243   /// IR-level AtomicExpand pass into a load-linked/store-conditional sequence
   1244   /// (through emitLoadLinked() and emitStoreConditional()).
   1245   virtual bool shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const {
   1246     return false;
   1247   }
   1248 
   1249   /// Returns how the IR-level AtomicExpand pass should expand the given
   1250   /// AtomicRMW, if at all. Default is to never expand.
   1251   virtual AtomicExpansionKind shouldExpandAtomicRMWInIR(AtomicRMWInst *) const {
   1252     return AtomicExpansionKind::None;
   1253   }
   1254 
   1255   /// On some platforms, an AtomicRMW that never actually modifies the value
   1256   /// (such as fetch_add of 0) can be turned into a fence followed by an
   1257   /// atomic load. This may sound useless, but it makes it possible for the
   1258   /// processor to keep the cacheline shared, dramatically improving
   1259   /// performance. And such idempotent RMWs are useful for implementing some
   1260   /// kinds of locks, see for example (justification + benchmarks):
   1261   /// http://www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf
   1262   /// This method tries doing that transformation, returning the atomic load if
   1263   /// it succeeds, and nullptr otherwise.
   1264   /// If shouldExpandAtomicLoadInIR returns true on that load, it will undergo
   1265   /// another round of expansion.
   1266   virtual LoadInst *
   1267   lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *RMWI) const {
   1268     return nullptr;
   1269   }
   1270 
   1271   /// Returns how the platform's atomic operations are extended (ZERO_EXTEND,
   1272   /// SIGN_EXTEND, or ANY_EXTEND).
   1273   virtual ISD::NodeType getExtendForAtomicOps() const {
   1274     return ISD::ZERO_EXTEND;
   1275   }
   1276 
   1277   /// @}
   1278 
   1279   /// Returns true if we should normalize
   1280   /// select(N0&N1, X, Y) => select(N0, select(N1, X, Y), Y) and
   1281   /// select(N0|N1, X, Y) => select(N0, select(N1, X, Y, Y)) if it is likely
   1282   /// that it saves us from materializing N0 and N1 in an integer register.
   1283   /// Targets that are able to perform and/or on flags should return false here.
   1284   virtual bool shouldNormalizeToSelectSequence(LLVMContext &Context,
   1285                                                EVT VT) const {
   1286     // If a target has multiple condition registers, then it likely has logical
   1287     // operations on those registers.
   1288     if (hasMultipleConditionRegisters())
   1289       return false;
   1290     // Only do the transform if the value won't be split into multiple
   1291     // registers.
   1292     LegalizeTypeAction Action = getTypeAction(Context, VT);
   1293     return Action != TypeExpandInteger && Action != TypeExpandFloat &&
   1294       Action != TypeSplitVector;
   1295   }
   1296 
   1297   //===--------------------------------------------------------------------===//
   1298   // TargetLowering Configuration Methods - These methods should be invoked by
   1299   // the derived class constructor to configure this object for the target.
   1300   //
   1301 protected:
   1302   /// Specify how the target extends the result of integer and floating point
   1303   /// boolean values from i1 to a wider type.  See getBooleanContents.
   1304   void setBooleanContents(BooleanContent Ty) {
   1305     BooleanContents = Ty;
   1306     BooleanFloatContents = Ty;
   1307   }
   1308 
   1309   /// Specify how the target extends the result of integer and floating point
   1310   /// boolean values from i1 to a wider type.  See getBooleanContents.
   1311   void setBooleanContents(BooleanContent IntTy, BooleanContent FloatTy) {
   1312     BooleanContents = IntTy;
   1313     BooleanFloatContents = FloatTy;
   1314   }
   1315 
   1316   /// Specify how the target extends the result of a vector boolean value from a
   1317   /// vector of i1 to a wider type.  See getBooleanContents.
   1318   void setBooleanVectorContents(BooleanContent Ty) {
   1319     BooleanVectorContents = Ty;
   1320   }
   1321 
   1322   /// Specify the target scheduling preference.
   1323   void setSchedulingPreference(Sched::Preference Pref) {
   1324     SchedPreferenceInfo = Pref;
   1325   }
   1326 
   1327   /// Indicate whether this target prefers to use _setjmp to implement
   1328   /// llvm.setjmp or the version without _.  Defaults to false.
   1329   void setUseUnderscoreSetJmp(bool Val) {
   1330     UseUnderscoreSetJmp = Val;
   1331   }
   1332 
   1333   /// Indicate whether this target prefers to use _longjmp to implement
   1334   /// llvm.longjmp or the version without _.  Defaults to false.
   1335   void setUseUnderscoreLongJmp(bool Val) {
   1336     UseUnderscoreLongJmp = Val;
   1337   }
   1338 
   1339   /// Indicate the number of blocks to generate jump tables rather than if
   1340   /// sequence.
   1341   void setMinimumJumpTableEntries(int Val) {
   1342     MinimumJumpTableEntries = Val;
   1343   }
   1344 
   1345   /// If set to a physical register, this specifies the register that
   1346   /// llvm.savestack/llvm.restorestack should save and restore.
   1347   void setStackPointerRegisterToSaveRestore(unsigned R) {
   1348     StackPointerRegisterToSaveRestore = R;
   1349   }
   1350 
   1351   /// Tells the code generator not to expand operations into sequences that use
   1352   /// the select operations if possible.
   1353   void setSelectIsExpensive(bool isExpensive = true) {
   1354     SelectIsExpensive = isExpensive;
   1355   }
   1356 
   1357   /// Tells the code generator that the target has multiple (allocatable)
   1358   /// condition registers that can be used to store the results of comparisons
   1359   /// for use by selects and conditional branches. With multiple condition
   1360   /// registers, the code generator will not aggressively sink comparisons into
   1361   /// the blocks of their users.
   1362   void setHasMultipleConditionRegisters(bool hasManyRegs = true) {
   1363     HasMultipleConditionRegisters = hasManyRegs;
   1364   }
   1365 
   1366   /// Tells the code generator that the target has BitExtract instructions.
   1367   /// The code generator will aggressively sink "shift"s into the blocks of
   1368   /// their users if the users will generate "and" instructions which can be
   1369   /// combined with "shift" to BitExtract instructions.
   1370   void setHasExtractBitsInsn(bool hasExtractInsn = true) {
   1371     HasExtractBitsInsn = hasExtractInsn;
   1372   }
   1373 
   1374   /// Tells the code generator not to expand logic operations on comparison
   1375   /// predicates into separate sequences that increase the amount of flow
   1376   /// control.
   1377   void setJumpIsExpensive(bool isExpensive = true);
   1378 
   1379   /// Tells the code generator that fsqrt is cheap, and should not be replaced
   1380   /// with an alternative sequence of instructions.
   1381   void setFsqrtIsCheap(bool isCheap = true) { FsqrtIsCheap = isCheap; }
   1382 
   1383   /// Tells the code generator that this target supports floating point
   1384   /// exceptions and cares about preserving floating point exception behavior.
   1385   void setHasFloatingPointExceptions(bool FPExceptions = true) {
   1386     HasFloatingPointExceptions = FPExceptions;
   1387   }
   1388 
   1389   /// Tells the code generator which bitwidths to bypass.
   1390   void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth) {
   1391     BypassSlowDivWidths[SlowBitWidth] = FastBitWidth;
   1392   }
   1393 
   1394   /// Add the specified register class as an available regclass for the
   1395   /// specified value type. This indicates the selector can handle values of
   1396   /// that class natively.
   1397   void addRegisterClass(MVT VT, const TargetRegisterClass *RC) {
   1398     assert((unsigned)VT.SimpleTy < array_lengthof(RegClassForVT));
   1399     AvailableRegClasses.push_back(std::make_pair(VT, RC));
   1400     RegClassForVT[VT.SimpleTy] = RC;
   1401   }
   1402 
   1403   /// Remove all register classes.
   1404   void clearRegisterClasses() {
   1405     std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr);
   1406 
   1407     AvailableRegClasses.clear();
   1408   }
   1409 
   1410   /// \brief Remove all operation actions.
   1411   void clearOperationActions() {
   1412   }
   1413 
   1414   /// Return the largest legal super-reg register class of the register class
   1415   /// for the specified type and its associated "cost".
   1416   virtual std::pair<const TargetRegisterClass *, uint8_t>
   1417   findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const;
   1418 
   1419   /// Once all of the register classes are added, this allows us to compute
   1420   /// derived properties we expose.
   1421   void computeRegisterProperties(const TargetRegisterInfo *TRI);
   1422 
   1423   /// Indicate that the specified operation does not work with the specified
   1424   /// type and indicate what to do about it.
   1425   void setOperationAction(unsigned Op, MVT VT,
   1426                           LegalizeAction Action) {
   1427     assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
   1428     OpActions[(unsigned)VT.SimpleTy][Op] = Action;
   1429   }
   1430 
   1431   /// Indicate that the specified load with extension does not work with the
   1432   /// specified type and indicate what to do about it.
   1433   void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT,
   1434                         LegalizeAction Action) {
   1435     assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValVT.isValid() &&
   1436            MemVT.isValid() && "Table isn't big enough!");
   1437     assert((unsigned)Action < 0x10 && "too many bits for bitfield array");
   1438     unsigned Shift = 4 * ExtType;
   1439     LoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy] &= ~((uint16_t)0xF << Shift);
   1440     LoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy] |= (uint16_t)Action << Shift;
   1441   }
   1442 
   1443   /// Indicate that the specified truncating store does not work with the
   1444   /// specified type and indicate what to do about it.
   1445   void setTruncStoreAction(MVT ValVT, MVT MemVT,
   1446                            LegalizeAction Action) {
   1447     assert(ValVT.isValid() && MemVT.isValid() && "Table isn't big enough!");
   1448     TruncStoreActions[(unsigned)ValVT.SimpleTy][MemVT.SimpleTy] = Action;
   1449   }
   1450 
   1451   /// Indicate that the specified indexed load does or does not work with the
   1452   /// specified type and indicate what to do abort it.
   1453   ///
   1454   /// NOTE: All indexed mode loads are initialized to Expand in
   1455   /// TargetLowering.cpp
   1456   void setIndexedLoadAction(unsigned IdxMode, MVT VT,
   1457                             LegalizeAction Action) {
   1458     assert(VT.isValid() && IdxMode < ISD::LAST_INDEXED_MODE &&
   1459            (unsigned)Action < 0xf && "Table isn't big enough!");
   1460     // Load action are kept in the upper half.
   1461     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0;
   1462     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4;
   1463   }
   1464 
   1465   /// Indicate that the specified indexed store does or does not work with the
   1466   /// specified type and indicate what to do about it.
   1467   ///
   1468   /// NOTE: All indexed mode stores are initialized to Expand in
   1469   /// TargetLowering.cpp
   1470   void setIndexedStoreAction(unsigned IdxMode, MVT VT,
   1471                              LegalizeAction Action) {
   1472     assert(VT.isValid() && IdxMode < ISD::LAST_INDEXED_MODE &&
   1473            (unsigned)Action < 0xf && "Table isn't big enough!");
   1474     // Store action are kept in the lower half.
   1475     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f;
   1476     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action);
   1477   }
   1478 
   1479   /// Indicate that the specified condition code is or isn't supported on the
   1480   /// target and indicate what to do about it.
   1481   void setCondCodeAction(ISD::CondCode CC, MVT VT,
   1482                          LegalizeAction Action) {
   1483     assert(VT.isValid() && (unsigned)CC < array_lengthof(CondCodeActions) &&
   1484            "Table isn't big enough!");
   1485     assert((unsigned)Action < 0x10 && "too many bits for bitfield array");
   1486     /// The lower 3 bits of the SimpleTy index into Nth 4bit set from the 32-bit
   1487     /// value and the upper 29 bits index into the second dimension of the array
   1488     /// to select what 32-bit value to use.
   1489     uint32_t Shift = 4 * (VT.SimpleTy & 0x7);
   1490     CondCodeActions[CC][VT.SimpleTy >> 3] &= ~((uint32_t)0xF << Shift);
   1491     CondCodeActions[CC][VT.SimpleTy >> 3] |= (uint32_t)Action << Shift;
   1492   }
   1493 
   1494   /// If Opc/OrigVT is specified as being promoted, the promotion code defaults
   1495   /// to trying a larger integer/fp until it can find one that works. If that
   1496   /// default is insufficient, this method can be used by the target to override
   1497   /// the default.
   1498   void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
   1499     PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
   1500   }
   1501 
   1502   /// Convenience method to set an operation to Promote and specify the type
   1503   /// in a single call.
   1504   void setOperationPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
   1505     setOperationAction(Opc, OrigVT, Promote);
   1506     AddPromotedToType(Opc, OrigVT, DestVT);
   1507   }
   1508 
   1509   /// Targets should invoke this method for each target independent node that
   1510   /// they want to provide a custom DAG combiner for by implementing the
   1511   /// PerformDAGCombine virtual method.
   1512   void setTargetDAGCombine(ISD::NodeType NT) {
   1513     assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
   1514     TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
   1515   }
   1516 
   1517   /// Set the target's required jmp_buf buffer size (in bytes); default is 200
   1518   void setJumpBufSize(unsigned Size) {
   1519     JumpBufSize = Size;
   1520   }
   1521 
   1522   /// Set the target's required jmp_buf buffer alignment (in bytes); default is
   1523   /// 0
   1524   void setJumpBufAlignment(unsigned Align) {
   1525     JumpBufAlignment = Align;
   1526   }
   1527 
   1528   /// Set the target's minimum function alignment (in log2(bytes))
   1529   void setMinFunctionAlignment(unsigned Align) {
   1530     MinFunctionAlignment = Align;
   1531   }
   1532 
   1533   /// Set the target's preferred function alignment.  This should be set if
   1534   /// there is a performance benefit to higher-than-minimum alignment (in
   1535   /// log2(bytes))
   1536   void setPrefFunctionAlignment(unsigned Align) {
   1537     PrefFunctionAlignment = Align;
   1538   }
   1539 
   1540   /// Set the target's preferred loop alignment. Default alignment is zero, it
   1541   /// means the target does not care about loop alignment.  The alignment is
   1542   /// specified in log2(bytes). The target may also override
   1543   /// getPrefLoopAlignment to provide per-loop values.
   1544   void setPrefLoopAlignment(unsigned Align) {
   1545     PrefLoopAlignment = Align;
   1546   }
   1547 
   1548   /// Set the minimum stack alignment of an argument (in log2(bytes)).
   1549   void setMinStackArgumentAlignment(unsigned Align) {
   1550     MinStackArgumentAlignment = Align;
   1551   }
   1552 
   1553   /// Set the maximum atomic operation size supported by the
   1554   /// backend. Atomic operations greater than this size (as well as
   1555   /// ones that are not naturally aligned), will be expanded by
   1556   /// AtomicExpandPass into an __atomic_* library call.
   1557   void setMaxAtomicSizeInBitsSupported(unsigned SizeInBits) {
   1558     MaxAtomicSizeInBitsSupported = SizeInBits;
   1559   }
   1560 
   1561   // Sets the minimum cmpxchg or ll/sc size supported by the backend.
   1562   void setMinCmpXchgSizeInBits(unsigned SizeInBits) {
   1563     MinCmpXchgSizeInBits = SizeInBits;
   1564   }
   1565 
   1566 public:
   1567   //===--------------------------------------------------------------------===//
   1568   // Addressing mode description hooks (used by LSR etc).
   1569   //
   1570 
   1571   /// CodeGenPrepare sinks address calculations into the same BB as Load/Store
   1572   /// instructions reading the address. This allows as much computation as
   1573   /// possible to be done in the address mode for that operand. This hook lets
   1574   /// targets also pass back when this should be done on intrinsics which
   1575   /// load/store.
   1576   virtual bool GetAddrModeArguments(IntrinsicInst * /*I*/,
   1577                                     SmallVectorImpl<Value*> &/*Ops*/,
   1578                                     Type *&/*AccessTy*/,
   1579                                     unsigned AddrSpace = 0) const {
   1580     return false;
   1581   }
   1582 
   1583   /// This represents an addressing mode of:
   1584   ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
   1585   /// If BaseGV is null,  there is no BaseGV.
   1586   /// If BaseOffs is zero, there is no base offset.
   1587   /// If HasBaseReg is false, there is no base register.
   1588   /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
   1589   /// no scale.
   1590   struct AddrMode {
   1591     GlobalValue *BaseGV;
   1592     int64_t      BaseOffs;
   1593     bool         HasBaseReg;
   1594     int64_t      Scale;
   1595     AddrMode() : BaseGV(nullptr), BaseOffs(0), HasBaseReg(false), Scale(0) {}
   1596   };
   1597 
   1598   /// Return true if the addressing mode represented by AM is legal for this
   1599   /// target, for a load/store of the specified type.
   1600   ///
   1601   /// The type may be VoidTy, in which case only return true if the addressing
   1602   /// mode is legal for a load/store of any legal type.  TODO: Handle
   1603   /// pre/postinc as well.
   1604   ///
   1605   /// If the address space cannot be determined, it will be -1.
   1606   ///
   1607   /// TODO: Remove default argument
   1608   virtual bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
   1609                                      Type *Ty, unsigned AddrSpace) const;
   1610 
   1611   /// \brief Return the cost of the scaling factor used in the addressing mode
   1612   /// represented by AM for this target, for a load/store of the specified type.
   1613   ///
   1614   /// If the AM is supported, the return value must be >= 0.
   1615   /// If the AM is not supported, it returns a negative value.
   1616   /// TODO: Handle pre/postinc as well.
   1617   /// TODO: Remove default argument
   1618   virtual int getScalingFactorCost(const DataLayout &DL, const AddrMode &AM,
   1619                                    Type *Ty, unsigned AS = 0) const {
   1620     // Default: assume that any scaling factor used in a legal AM is free.
   1621     if (isLegalAddressingMode(DL, AM, Ty, AS))
   1622       return 0;
   1623     return -1;
   1624   }
   1625 
   1626   /// Return true if the specified immediate is legal icmp immediate, that is
   1627   /// the target has icmp instructions which can compare a register against the
   1628   /// immediate without having to materialize the immediate into a register.
   1629   virtual bool isLegalICmpImmediate(int64_t) const {
   1630     return true;
   1631   }
   1632 
   1633   /// Return true if the specified immediate is legal add immediate, that is the
   1634   /// target has add instructions which can add a register with the immediate
   1635   /// without having to materialize the immediate into a register.
   1636   virtual bool isLegalAddImmediate(int64_t) const {
   1637     return true;
   1638   }
   1639 
   1640   /// Return true if it's significantly cheaper to shift a vector by a uniform
   1641   /// scalar than by an amount which will vary across each lane. On x86, for
   1642   /// example, there is a "psllw" instruction for the former case, but no simple
   1643   /// instruction for a general "a << b" operation on vectors.
   1644   virtual bool isVectorShiftByScalarCheap(Type *Ty) const {
   1645     return false;
   1646   }
   1647 
   1648   /// Return true if it's free to truncate a value of type FromTy to type
   1649   /// ToTy. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
   1650   /// by referencing its sub-register AX.
   1651   /// Targets must return false when FromTy <= ToTy.
   1652   virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const {
   1653     return false;
   1654   }
   1655 
   1656   /// Return true if a truncation from FromTy to ToTy is permitted when deciding
   1657   /// whether a call is in tail position. Typically this means that both results
   1658   /// would be assigned to the same register or stack slot, but it could mean
   1659   /// the target performs adequate checks of its own before proceeding with the
   1660   /// tail call.  Targets must return false when FromTy <= ToTy.
   1661   virtual bool allowTruncateForTailCall(Type *FromTy, Type *ToTy) const {
   1662     return false;
   1663   }
   1664 
   1665   virtual bool isTruncateFree(EVT FromVT, EVT ToVT) const {
   1666     return false;
   1667   }
   1668 
   1669   virtual bool isProfitableToHoist(Instruction *I) const { return true; }
   1670 
   1671   /// Return true if the extension represented by \p I is free.
   1672   /// Unlikely the is[Z|FP]ExtFree family which is based on types,
   1673   /// this method can use the context provided by \p I to decide
   1674   /// whether or not \p I is free.
   1675   /// This method extends the behavior of the is[Z|FP]ExtFree family.
   1676   /// In other words, if is[Z|FP]Free returns true, then this method
   1677   /// returns true as well. The converse is not true.
   1678   /// The target can perform the adequate checks by overriding isExtFreeImpl.
   1679   /// \pre \p I must be a sign, zero, or fp extension.
   1680   bool isExtFree(const Instruction *I) const {
   1681     switch (I->getOpcode()) {
   1682     case Instruction::FPExt:
   1683       if (isFPExtFree(EVT::getEVT(I->getType())))
   1684         return true;
   1685       break;
   1686     case Instruction::ZExt:
   1687       if (isZExtFree(I->getOperand(0)->getType(), I->getType()))
   1688         return true;
   1689       break;
   1690     case Instruction::SExt:
   1691       break;
   1692     default:
   1693       llvm_unreachable("Instruction is not an extension");
   1694     }
   1695     return isExtFreeImpl(I);
   1696   }
   1697 
   1698   /// Return true if any actual instruction that defines a value of type FromTy
   1699   /// implicitly zero-extends the value to ToTy in the result register.
   1700   ///
   1701   /// The function should return true when it is likely that the truncate can
   1702   /// be freely folded with an instruction defining a value of FromTy. If
   1703   /// the defining instruction is unknown (because you're looking at a
   1704   /// function argument, PHI, etc.) then the target may require an
   1705   /// explicit truncate, which is not necessarily free, but this function
   1706   /// does not deal with those cases.
   1707   /// Targets must return false when FromTy >= ToTy.
   1708   virtual bool isZExtFree(Type *FromTy, Type *ToTy) const {
   1709     return false;
   1710   }
   1711 
   1712   virtual bool isZExtFree(EVT FromTy, EVT ToTy) const {
   1713     return false;
   1714   }
   1715 
   1716   /// Return true if the target supplies and combines to a paired load
   1717   /// two loaded values of type LoadedType next to each other in memory.
   1718   /// RequiredAlignment gives the minimal alignment constraints that must be met
   1719   /// to be able to select this paired load.
   1720   ///
   1721   /// This information is *not* used to generate actual paired loads, but it is
   1722   /// used to generate a sequence of loads that is easier to combine into a
   1723   /// paired load.
   1724   /// For instance, something like this:
   1725   /// a = load i64* addr
   1726   /// b = trunc i64 a to i32
   1727   /// c = lshr i64 a, 32
   1728   /// d = trunc i64 c to i32
   1729   /// will be optimized into:
   1730   /// b = load i32* addr1
   1731   /// d = load i32* addr2
   1732   /// Where addr1 = addr2 +/- sizeof(i32).
   1733   ///
   1734   /// In other words, unless the target performs a post-isel load combining,
   1735   /// this information should not be provided because it will generate more
   1736   /// loads.
   1737   virtual bool hasPairedLoad(Type * /*LoadedType*/,
   1738                              unsigned & /*RequiredAligment*/) const {
   1739     return false;
   1740   }
   1741 
   1742   virtual bool hasPairedLoad(EVT /*LoadedType*/,
   1743                              unsigned & /*RequiredAligment*/) const {
   1744     return false;
   1745   }
   1746 
   1747   /// \brief Get the maximum supported factor for interleaved memory accesses.
   1748   /// Default to be the minimum interleave factor: 2.
   1749   virtual unsigned getMaxSupportedInterleaveFactor() const { return 2; }
   1750 
   1751   /// \brief Lower an interleaved load to target specific intrinsics. Return
   1752   /// true on success.
   1753   ///
   1754   /// \p LI is the vector load instruction.
   1755   /// \p Shuffles is the shufflevector list to DE-interleave the loaded vector.
   1756   /// \p Indices is the corresponding indices for each shufflevector.
   1757   /// \p Factor is the interleave factor.
   1758   virtual bool lowerInterleavedLoad(LoadInst *LI,
   1759                                     ArrayRef<ShuffleVectorInst *> Shuffles,
   1760                                     ArrayRef<unsigned> Indices,
   1761                                     unsigned Factor) const {
   1762     return false;
   1763   }
   1764 
   1765   /// \brief Lower an interleaved store to target specific intrinsics. Return
   1766   /// true on success.
   1767   ///
   1768   /// \p SI is the vector store instruction.
   1769   /// \p SVI is the shufflevector to RE-interleave the stored vector.
   1770   /// \p Factor is the interleave factor.
   1771   virtual bool lowerInterleavedStore(StoreInst *SI, ShuffleVectorInst *SVI,
   1772                                      unsigned Factor) const {
   1773     return false;
   1774   }
   1775 
   1776   /// Return true if zero-extending the specific node Val to type VT2 is free
   1777   /// (either because it's implicitly zero-extended such as ARM ldrb / ldrh or
   1778   /// because it's folded such as X86 zero-extending loads).
   1779   virtual bool isZExtFree(SDValue Val, EVT VT2) const {
   1780     return isZExtFree(Val.getValueType(), VT2);
   1781   }
   1782 
   1783   /// Return true if an fpext operation is free (for instance, because
   1784   /// single-precision floating-point numbers are implicitly extended to
   1785   /// double-precision).
   1786   virtual bool isFPExtFree(EVT VT) const {
   1787     assert(VT.isFloatingPoint());
   1788     return false;
   1789   }
   1790 
   1791   /// Return true if folding a vector load into ExtVal (a sign, zero, or any
   1792   /// extend node) is profitable.
   1793   virtual bool isVectorLoadExtDesirable(SDValue ExtVal) const { return false; }
   1794 
   1795   /// Return true if an fneg operation is free to the point where it is never
   1796   /// worthwhile to replace it with a bitwise operation.
   1797   virtual bool isFNegFree(EVT VT) const {
   1798     assert(VT.isFloatingPoint());
   1799     return false;
   1800   }
   1801 
   1802   /// Return true if an fabs operation is free to the point where it is never
   1803   /// worthwhile to replace it with a bitwise operation.
   1804   virtual bool isFAbsFree(EVT VT) const {
   1805     assert(VT.isFloatingPoint());
   1806     return false;
   1807   }
   1808 
   1809   /// Return true if an FMA operation is faster than a pair of fmul and fadd
   1810   /// instructions. fmuladd intrinsics will be expanded to FMAs when this method
   1811   /// returns true, otherwise fmuladd is expanded to fmul + fadd.
   1812   ///
   1813   /// NOTE: This may be called before legalization on types for which FMAs are
   1814   /// not legal, but should return true if those types will eventually legalize
   1815   /// to types that support FMAs. After legalization, it will only be called on
   1816   /// types that support FMAs (via Legal or Custom actions)
   1817   virtual bool isFMAFasterThanFMulAndFAdd(EVT) const {
   1818     return false;
   1819   }
   1820 
   1821   /// Return true if it's profitable to narrow operations of type VT1 to
   1822   /// VT2. e.g. on x86, it's profitable to narrow from i32 to i8 but not from
   1823   /// i32 to i16.
   1824   virtual bool isNarrowingProfitable(EVT /*VT1*/, EVT /*VT2*/) const {
   1825     return false;
   1826   }
   1827 
   1828   /// \brief Return true if it is beneficial to convert a load of a constant to
   1829   /// just the constant itself.
   1830   /// On some targets it might be more efficient to use a combination of
   1831   /// arithmetic instructions to materialize the constant instead of loading it
   1832   /// from a constant pool.
   1833   virtual bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
   1834                                                  Type *Ty) const {
   1835     return false;
   1836   }
   1837 
   1838   /// Return true if EXTRACT_SUBVECTOR is cheap for this result type
   1839   /// with this index. This is needed because EXTRACT_SUBVECTOR usually
   1840   /// has custom lowering that depends on the index of the first element,
   1841   /// and only the target knows which lowering is cheap.
   1842   virtual bool isExtractSubvectorCheap(EVT ResVT, unsigned Index) const {
   1843     return false;
   1844   }
   1845 
   1846   // Return true if it is profitable to use a scalar input to a BUILD_VECTOR
   1847   // even if the vector itself has multiple uses.
   1848   virtual bool aggressivelyPreferBuildVectorSources(EVT VecVT) const {
   1849     return false;
   1850   }
   1851 
   1852   //===--------------------------------------------------------------------===//
   1853   // Runtime Library hooks
   1854   //
   1855 
   1856   /// Rename the default libcall routine name for the specified libcall.
   1857   void setLibcallName(RTLIB::Libcall Call, const char *Name) {
   1858     LibcallRoutineNames[Call] = Name;
   1859   }
   1860 
   1861   /// Get the libcall routine name for the specified libcall.
   1862   const char *getLibcallName(RTLIB::Libcall Call) const {
   1863     return LibcallRoutineNames[Call];
   1864   }
   1865 
   1866   /// Override the default CondCode to be used to test the result of the
   1867   /// comparison libcall against zero.
   1868   void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
   1869     CmpLibcallCCs[Call] = CC;
   1870   }
   1871 
   1872   /// Get the CondCode that's to be used to test the result of the comparison
   1873   /// libcall against zero.
   1874   ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
   1875     return CmpLibcallCCs[Call];
   1876   }
   1877 
   1878   /// Set the CallingConv that should be used for the specified libcall.
   1879   void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
   1880     LibcallCallingConvs[Call] = CC;
   1881   }
   1882 
   1883   /// Get the CallingConv that should be used for the specified libcall.
   1884   CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
   1885     return LibcallCallingConvs[Call];
   1886   }
   1887 
   1888 private:
   1889   const TargetMachine &TM;
   1890 
   1891   /// Tells the code generator not to expand operations into sequences that use
   1892   /// the select operations if possible.
   1893   bool SelectIsExpensive;
   1894 
   1895   /// Tells the code generator that the target has multiple (allocatable)
   1896   /// condition registers that can be used to store the results of comparisons
   1897   /// for use by selects and conditional branches. With multiple condition
   1898   /// registers, the code generator will not aggressively sink comparisons into
   1899   /// the blocks of their users.
   1900   bool HasMultipleConditionRegisters;
   1901 
   1902   /// Tells the code generator that the target has BitExtract instructions.
   1903   /// The code generator will aggressively sink "shift"s into the blocks of
   1904   /// their users if the users will generate "and" instructions which can be
   1905   /// combined with "shift" to BitExtract instructions.
   1906   bool HasExtractBitsInsn;
   1907 
   1908   // Don't expand fsqrt with an approximation based on the inverse sqrt.
   1909   bool FsqrtIsCheap;
   1910 
   1911   /// Tells the code generator to bypass slow divide or remainder
   1912   /// instructions. For example, BypassSlowDivWidths[32,8] tells the code
   1913   /// generator to bypass 32-bit integer div/rem with an 8-bit unsigned integer
   1914   /// div/rem when the operands are positive and less than 256.
   1915   DenseMap <unsigned int, unsigned int> BypassSlowDivWidths;
   1916 
   1917   /// Tells the code generator that it shouldn't generate extra flow control
   1918   /// instructions and should attempt to combine flow control instructions via
   1919   /// predication.
   1920   bool JumpIsExpensive;
   1921 
   1922   /// Whether the target supports or cares about preserving floating point
   1923   /// exception behavior.
   1924   bool HasFloatingPointExceptions;
   1925 
   1926   /// This target prefers to use _setjmp to implement llvm.setjmp.
   1927   ///
   1928   /// Defaults to false.
   1929   bool UseUnderscoreSetJmp;
   1930 
   1931   /// This target prefers to use _longjmp to implement llvm.longjmp.
   1932   ///
   1933   /// Defaults to false.
   1934   bool UseUnderscoreLongJmp;
   1935 
   1936   /// Number of blocks threshold to use jump tables.
   1937   int MinimumJumpTableEntries;
   1938 
   1939   /// Information about the contents of the high-bits in boolean values held in
   1940   /// a type wider than i1. See getBooleanContents.
   1941   BooleanContent BooleanContents;
   1942 
   1943   /// Information about the contents of the high-bits in boolean values held in
   1944   /// a type wider than i1. See getBooleanContents.
   1945   BooleanContent BooleanFloatContents;
   1946 
   1947   /// Information about the contents of the high-bits in boolean vector values
   1948   /// when the element type is wider than i1. See getBooleanContents.
   1949   BooleanContent BooleanVectorContents;
   1950 
   1951   /// The target scheduling preference: shortest possible total cycles or lowest
   1952   /// register usage.
   1953   Sched::Preference SchedPreferenceInfo;
   1954 
   1955   /// The size, in bytes, of the target's jmp_buf buffers
   1956   unsigned JumpBufSize;
   1957 
   1958   /// The alignment, in bytes, of the target's jmp_buf buffers
   1959   unsigned JumpBufAlignment;
   1960 
   1961   /// The minimum alignment that any argument on the stack needs to have.
   1962   unsigned MinStackArgumentAlignment;
   1963 
   1964   /// The minimum function alignment (used when optimizing for size, and to
   1965   /// prevent explicitly provided alignment from leading to incorrect code).
   1966   unsigned MinFunctionAlignment;
   1967 
   1968   /// The preferred function alignment (used when alignment unspecified and
   1969   /// optimizing for speed).
   1970   unsigned PrefFunctionAlignment;
   1971 
   1972   /// The preferred loop alignment.
   1973   unsigned PrefLoopAlignment;
   1974 
   1975   /// Size in bits of the maximum atomics size the backend supports.
   1976   /// Accesses larger than this will be expanded by AtomicExpandPass.
   1977   unsigned MaxAtomicSizeInBitsSupported;
   1978 
   1979   /// Size in bits of the minimum cmpxchg or ll/sc operation the
   1980   /// backend supports.
   1981   unsigned MinCmpXchgSizeInBits;
   1982 
   1983   /// If set to a physical register, this specifies the register that
   1984   /// llvm.savestack/llvm.restorestack should save and restore.
   1985   unsigned StackPointerRegisterToSaveRestore;
   1986 
   1987   /// This indicates the default register class to use for each ValueType the
   1988   /// target supports natively.
   1989   const TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
   1990   unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
   1991   MVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
   1992 
   1993   /// This indicates the "representative" register class to use for each
   1994   /// ValueType the target supports natively. This information is used by the
   1995   /// scheduler to track register pressure. By default, the representative
   1996   /// register class is the largest legal super-reg register class of the
   1997   /// register class of the specified type. e.g. On x86, i8, i16, and i32's
   1998   /// representative class would be GR32.
   1999   const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE];
   2000 
   2001   /// This indicates the "cost" of the "representative" register class for each
   2002   /// ValueType. The cost is used by the scheduler to approximate register
   2003   /// pressure.
   2004   uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE];
   2005 
   2006   /// For any value types we are promoting or expanding, this contains the value
   2007   /// type that we are changing to.  For Expanded types, this contains one step
   2008   /// of the expand (e.g. i64 -> i32), even if there are multiple steps required
   2009   /// (e.g. i64 -> i16).  For types natively supported by the system, this holds
   2010   /// the same type (e.g. i32 -> i32).
   2011   MVT TransformToType[MVT::LAST_VALUETYPE];
   2012 
   2013   /// For each operation and each value type, keep a LegalizeAction that
   2014   /// indicates how instruction selection should deal with the operation.  Most
   2015   /// operations are Legal (aka, supported natively by the target), but
   2016   /// operations that are not should be described.  Note that operations on
   2017   /// non-legal value types are not described here.
   2018   LegalizeAction OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END];
   2019 
   2020   /// For each load extension type and each value type, keep a LegalizeAction
   2021   /// that indicates how instruction selection should deal with a load of a
   2022   /// specific value type and extension type. Uses 4-bits to store the action
   2023   /// for each of the 4 load ext types.
   2024   uint16_t LoadExtActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
   2025 
   2026   /// For each value type pair keep a LegalizeAction that indicates whether a
   2027   /// truncating store of a specific value type and truncating type is legal.
   2028   LegalizeAction TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
   2029 
   2030   /// For each indexed mode and each value type, keep a pair of LegalizeAction
   2031   /// that indicates how instruction selection should deal with the load /
   2032   /// store.
   2033   ///
   2034   /// The first dimension is the value_type for the reference. The second
   2035   /// dimension represents the various modes for load store.
   2036   uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE];
   2037 
   2038   /// For each condition code (ISD::CondCode) keep a LegalizeAction that
   2039   /// indicates how instruction selection should deal with the condition code.
   2040   ///
   2041   /// Because each CC action takes up 4 bits, we need to have the array size be
   2042   /// large enough to fit all of the value types. This can be done by rounding
   2043   /// up the MVT::LAST_VALUETYPE value to the next multiple of 8.
   2044   uint32_t CondCodeActions[ISD::SETCC_INVALID][(MVT::LAST_VALUETYPE + 7) / 8];
   2045 
   2046 protected:
   2047   ValueTypeActionImpl ValueTypeActions;
   2048 
   2049 private:
   2050   LegalizeKind getTypeConversion(LLVMContext &Context, EVT VT) const;
   2051 
   2052 private:
   2053   std::vector<std::pair<MVT, const TargetRegisterClass*> > AvailableRegClasses;
   2054 
   2055   /// Targets can specify ISD nodes that they would like PerformDAGCombine
   2056   /// callbacks for by calling setTargetDAGCombine(), which sets a bit in this
   2057   /// array.
   2058   unsigned char
   2059   TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
   2060 
   2061   /// For operations that must be promoted to a specific type, this holds the
   2062   /// destination type.  This map should be sparse, so don't hold it as an
   2063   /// array.
   2064   ///
   2065   /// Targets add entries to this map with AddPromotedToType(..), clients access
   2066   /// this with getTypeToPromoteTo(..).
   2067   std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
   2068     PromoteToType;
   2069 
   2070   /// Stores the name each libcall.
   2071   const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
   2072 
   2073   /// The ISD::CondCode that should be used to test the result of each of the
   2074   /// comparison libcall against zero.
   2075   ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
   2076 
   2077   /// Stores the CallingConv that should be used for each libcall.
   2078   CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
   2079 
   2080 protected:
   2081   /// Return true if the extension represented by \p I is free.
   2082   /// \pre \p I is a sign, zero, or fp extension and
   2083   ///      is[Z|FP]ExtFree of the related types is not true.
   2084   virtual bool isExtFreeImpl(const Instruction *I) const { return false; }
   2085 
   2086   /// Depth that GatherAllAliases should should continue looking for chain
   2087   /// dependencies when trying to find a more preferrable chain. As an
   2088   /// approximation, this should be more than the number of consecutive stores
   2089   /// expected to be merged.
   2090   unsigned GatherAllAliasesMaxDepth;
   2091 
   2092   /// \brief Specify maximum number of store instructions per memset call.
   2093   ///
   2094   /// When lowering \@llvm.memset this field specifies the maximum number of
   2095   /// store operations that may be substituted for the call to memset. Targets
   2096   /// must set this value based on the cost threshold for that target. Targets
   2097   /// should assume that the memset will be done using as many of the largest
   2098   /// store operations first, followed by smaller ones, if necessary, per
   2099   /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
   2100   /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
   2101   /// store.  This only applies to setting a constant array of a constant size.
   2102   unsigned MaxStoresPerMemset;
   2103 
   2104   /// Maximum number of stores operations that may be substituted for the call
   2105   /// to memset, used for functions with OptSize attribute.
   2106   unsigned MaxStoresPerMemsetOptSize;
   2107 
   2108   /// \brief Specify maximum bytes of store instructions per memcpy call.
   2109   ///
   2110   /// When lowering \@llvm.memcpy this field specifies the maximum number of
   2111   /// store operations that may be substituted for a call to memcpy. Targets
   2112   /// must set this value based on the cost threshold for that target. Targets
   2113   /// should assume that the memcpy will be done using as many of the largest
   2114   /// store operations first, followed by smaller ones, if necessary, per
   2115   /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
   2116   /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
   2117   /// and one 1-byte store. This only applies to copying a constant array of
   2118   /// constant size.
   2119   unsigned MaxStoresPerMemcpy;
   2120 
   2121   /// Maximum number of store operations that may be substituted for a call to
   2122   /// memcpy, used for functions with OptSize attribute.
   2123   unsigned MaxStoresPerMemcpyOptSize;
   2124 
   2125   /// \brief Specify maximum bytes of store instructions per memmove call.
   2126   ///
   2127   /// When lowering \@llvm.memmove this field specifies the maximum number of
   2128   /// store instructions that may be substituted for a call to memmove. Targets
   2129   /// must set this value based on the cost threshold for that target. Targets
   2130   /// should assume that the memmove will be done using as many of the largest
   2131   /// store operations first, followed by smaller ones, if necessary, per
   2132   /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
   2133   /// with 8-bit alignment would result in nine 1-byte stores.  This only
   2134   /// applies to copying a constant array of constant size.
   2135   unsigned MaxStoresPerMemmove;
   2136 
   2137   /// Maximum number of store instructions that may be substituted for a call to
   2138   /// memmove, used for functions with OptSize attribute.
   2139   unsigned MaxStoresPerMemmoveOptSize;
   2140 
   2141   /// Tells the code generator that select is more expensive than a branch if
   2142   /// the branch is usually predicted right.
   2143   bool PredictableSelectIsExpensive;
   2144 
   2145   /// MaskAndBranchFoldingIsLegal - Indicates if the target supports folding
   2146   /// a mask of a single bit, a compare, and a branch into a single instruction.
   2147   bool MaskAndBranchFoldingIsLegal;
   2148 
   2149   /// \see enableExtLdPromotion.
   2150   bool EnableExtLdPromotion;
   2151 
   2152 protected:
   2153   /// Return true if the value types that can be represented by the specified
   2154   /// register class are all legal.
   2155   bool isLegalRC(const TargetRegisterClass *RC) const;
   2156 
   2157   /// Replace/modify any TargetFrameIndex operands with a targte-dependent
   2158   /// sequence of memory operands that is recognized by PrologEpilogInserter.
   2159   MachineBasicBlock *emitPatchPoint(MachineInstr &MI,
   2160                                     MachineBasicBlock *MBB) const;
   2161 };
   2162 
   2163 /// This class defines information used to lower LLVM code to legal SelectionDAG
   2164 /// operators that the target instruction selector can accept natively.
   2165 ///
   2166 /// This class also defines callbacks that targets must implement to lower
   2167 /// target-specific constructs to SelectionDAG operators.
   2168 class TargetLowering : public TargetLoweringBase {
   2169   TargetLowering(const TargetLowering&) = delete;
   2170   void operator=(const TargetLowering&) = delete;
   2171 
   2172 public:
   2173   /// NOTE: The TargetMachine owns TLOF.
   2174   explicit TargetLowering(const TargetMachine &TM);
   2175 
   2176   bool isPositionIndependent() const;
   2177 
   2178   /// Returns true by value, base pointer and offset pointer and addressing mode
   2179   /// by reference if the node's address can be legally represented as
   2180   /// pre-indexed load / store address.
   2181   virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/,
   2182                                          SDValue &/*Offset*/,
   2183                                          ISD::MemIndexedMode &/*AM*/,
   2184                                          SelectionDAG &/*DAG*/) const {
   2185     return false;
   2186   }
   2187 
   2188   /// Returns true by value, base pointer and offset pointer and addressing mode
   2189   /// by reference if this node can be combined with a load / store to form a
   2190   /// post-indexed load / store.
   2191   virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/,
   2192                                           SDValue &/*Base*/,
   2193                                           SDValue &/*Offset*/,
   2194                                           ISD::MemIndexedMode &/*AM*/,
   2195                                           SelectionDAG &/*DAG*/) const {
   2196     return false;
   2197   }
   2198 
   2199   /// Return the entry encoding for a jump table in the current function.  The
   2200   /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
   2201   virtual unsigned getJumpTableEncoding() const;
   2202 
   2203   virtual const MCExpr *
   2204   LowerCustomJumpTableEntry(const MachineJumpTableInfo * /*MJTI*/,
   2205                             const MachineBasicBlock * /*MBB*/, unsigned /*uid*/,
   2206                             MCContext &/*Ctx*/) const {
   2207     llvm_unreachable("Need to implement this hook if target has custom JTIs");
   2208   }
   2209 
   2210   /// Returns relocation base for the given PIC jumptable.
   2211   virtual SDValue getPICJumpTableRelocBase(SDValue Table,
   2212                                            SelectionDAG &DAG) const;
   2213 
   2214   /// This returns the relocation base for the given PIC jumptable, the same as
   2215   /// getPICJumpTableRelocBase, but as an MCExpr.
   2216   virtual const MCExpr *
   2217   getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
   2218                                unsigned JTI, MCContext &Ctx) const;
   2219 
   2220   /// Return true if folding a constant offset with the given GlobalAddress is
   2221   /// legal.  It is frequently not legal in PIC relocation models.
   2222   virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
   2223 
   2224   bool isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
   2225                             SDValue &Chain) const;
   2226 
   2227   void softenSetCCOperands(SelectionDAG &DAG, EVT VT, SDValue &NewLHS,
   2228                            SDValue &NewRHS, ISD::CondCode &CCCode,
   2229                            const SDLoc &DL) const;
   2230 
   2231   /// Returns a pair of (return value, chain).
   2232   /// It is an error to pass RTLIB::UNKNOWN_LIBCALL as \p LC.
   2233   std::pair<SDValue, SDValue> makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC,
   2234                                           EVT RetVT, ArrayRef<SDValue> Ops,
   2235                                           bool isSigned, const SDLoc &dl,
   2236                                           bool doesNotReturn = false,
   2237                                           bool isReturnValueUsed = true) const;
   2238 
   2239   /// Check whether parameters to a call that are passed in callee saved
   2240   /// registers are the same as from the calling function.  This needs to be
   2241   /// checked for tail call eligibility.
   2242   bool parametersInCSRMatch(const MachineRegisterInfo &MRI,
   2243       const uint32_t *CallerPreservedMask,
   2244       const SmallVectorImpl<CCValAssign> &ArgLocs,
   2245       const SmallVectorImpl<SDValue> &OutVals) const;
   2246 
   2247   //===--------------------------------------------------------------------===//
   2248   // TargetLowering Optimization Methods
   2249   //
   2250 
   2251   /// A convenience struct that encapsulates a DAG, and two SDValues for
   2252   /// returning information from TargetLowering to its clients that want to
   2253   /// combine.
   2254   struct TargetLoweringOpt {
   2255     SelectionDAG &DAG;
   2256     bool LegalTys;
   2257     bool LegalOps;
   2258     SDValue Old;
   2259     SDValue New;
   2260 
   2261     explicit TargetLoweringOpt(SelectionDAG &InDAG,
   2262                                bool LT, bool LO) :
   2263       DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
   2264 
   2265     bool LegalTypes() const { return LegalTys; }
   2266     bool LegalOperations() const { return LegalOps; }
   2267 
   2268     bool CombineTo(SDValue O, SDValue N) {
   2269       Old = O;
   2270       New = N;
   2271       return true;
   2272     }
   2273 
   2274     /// Check to see if the specified operand of the specified instruction is a
   2275     /// constant integer.  If so, check to see if there are any bits set in the
   2276     /// constant that are not demanded.  If so, shrink the constant and return
   2277     /// true.
   2278     bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
   2279 
   2280     /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.  This
   2281     /// uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
   2282     /// generalized for targets with other types of implicit widening casts.
   2283     bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
   2284                           const SDLoc &dl);
   2285   };
   2286 
   2287   /// Look at Op.  At this point, we know that only the DemandedMask bits of the
   2288   /// result of Op are ever used downstream.  If we can use this information to
   2289   /// simplify Op, create a new simplified DAG node and return true, returning
   2290   /// the original and new nodes in Old and New.  Otherwise, analyze the
   2291   /// expression and return a mask of KnownOne and KnownZero bits for the
   2292   /// expression (used to simplify the caller).  The KnownZero/One bits may only
   2293   /// be accurate for those bits in the DemandedMask.
   2294   bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
   2295                             APInt &KnownZero, APInt &KnownOne,
   2296                             TargetLoweringOpt &TLO, unsigned Depth = 0) const;
   2297 
   2298   /// Determine which of the bits specified in Mask are known to be either zero
   2299   /// or one and return them in the KnownZero/KnownOne bitsets.
   2300   virtual void computeKnownBitsForTargetNode(const SDValue Op,
   2301                                              APInt &KnownZero,
   2302                                              APInt &KnownOne,
   2303                                              const SelectionDAG &DAG,
   2304                                              unsigned Depth = 0) const;
   2305 
   2306   /// This method can be implemented by targets that want to expose additional
   2307   /// information about sign bits to the DAG Combiner.
   2308   virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
   2309                                                    const SelectionDAG &DAG,
   2310                                                    unsigned Depth = 0) const;
   2311 
   2312   struct DAGCombinerInfo {
   2313     void *DC;  // The DAG Combiner object.
   2314     CombineLevel Level;
   2315     bool CalledByLegalizer;
   2316   public:
   2317     SelectionDAG &DAG;
   2318 
   2319     DAGCombinerInfo(SelectionDAG &dag, CombineLevel level,  bool cl, void *dc)
   2320       : DC(dc), Level(level), CalledByLegalizer(cl), DAG(dag) {}
   2321 
   2322     bool isBeforeLegalize() const { return Level == BeforeLegalizeTypes; }
   2323     bool isBeforeLegalizeOps() const { return Level < AfterLegalizeVectorOps; }
   2324     bool isAfterLegalizeVectorOps() const {
   2325       return Level == AfterLegalizeDAG;
   2326     }
   2327     CombineLevel getDAGCombineLevel() { return Level; }
   2328     bool isCalledByLegalizer() const { return CalledByLegalizer; }
   2329 
   2330     void AddToWorklist(SDNode *N);
   2331     void RemoveFromWorklist(SDNode *N);
   2332     SDValue CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo = true);
   2333     SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
   2334     SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
   2335 
   2336     void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
   2337   };
   2338 
   2339   /// Return if the N is a constant or constant vector equal to the true value
   2340   /// from getBooleanContents().
   2341   bool isConstTrueVal(const SDNode *N) const;
   2342 
   2343   /// Return if the N is a constant or constant vector equal to the false value
   2344   /// from getBooleanContents().
   2345   bool isConstFalseVal(const SDNode *N) const;
   2346 
   2347   /// Return if \p N is a True value when extended to \p VT.
   2348   bool isExtendedTrueVal(const ConstantSDNode *N, EVT VT, bool Signed) const;
   2349 
   2350   /// Try to simplify a setcc built with the specified operands and cc. If it is
   2351   /// unable to simplify it, return a null SDValue.
   2352   SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
   2353                         bool foldBooleans, DAGCombinerInfo &DCI,
   2354                         const SDLoc &dl) const;
   2355 
   2356   /// Returns true (and the GlobalValue and the offset) if the node is a
   2357   /// GlobalAddress + offset.
   2358   virtual bool
   2359   isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
   2360 
   2361   /// This method will be invoked for all target nodes and for any
   2362   /// target-independent nodes that the target has registered with invoke it
   2363   /// for.
   2364   ///
   2365   /// The semantics are as follows:
   2366   /// Return Value:
   2367   ///   SDValue.Val == 0   - No change was made
   2368   ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
   2369   ///   otherwise          - N should be replaced by the returned Operand.
   2370   ///
   2371   /// In addition, methods provided by DAGCombinerInfo may be used to perform
   2372   /// more complex transformations.
   2373   ///
   2374   virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
   2375 
   2376   /// Return true if it is profitable to move a following shift through this
   2377   //  node, adjusting any immediate operands as necessary to preserve semantics.
   2378   //  This transformation may not be desirable if it disrupts a particularly
   2379   //  auspicious target-specific tree (e.g. bitfield extraction in AArch64).
   2380   //  By default, it returns true.
   2381   virtual bool isDesirableToCommuteWithShift(const SDNode *N /*Op*/) const {
   2382     return true;
   2383   }
   2384 
   2385   /// Return true if the target has native support for the specified value type
   2386   /// and it is 'desirable' to use the type for the given node type. e.g. On x86
   2387   /// i16 is legal, but undesirable since i16 instruction encodings are longer
   2388   /// and some i16 instructions are slow.
   2389   virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const {
   2390     // By default, assume all legal types are desirable.
   2391     return isTypeLegal(VT);
   2392   }
   2393 
   2394   /// Return true if it is profitable for dag combiner to transform a floating
   2395   /// point op of specified opcode to a equivalent op of an integer
   2396   /// type. e.g. f32 load -> i32 load can be profitable on ARM.
   2397   virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/,
   2398                                                  EVT /*VT*/) const {
   2399     return false;
   2400   }
   2401 
   2402   /// This method query the target whether it is beneficial for dag combiner to
   2403   /// promote the specified node. If true, it should return the desired
   2404   /// promotion type by reference.
   2405   virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const {
   2406     return false;
   2407   }
   2408 
   2409   /// Return true if the target supports swifterror attribute. It optimizes
   2410   /// loads and stores to reading and writing a specific register.
   2411   virtual bool supportSwiftError() const {
   2412     return false;
   2413   }
   2414 
   2415   /// Return true if the target supports that a subset of CSRs for the given
   2416   /// machine function is handled explicitly via copies.
   2417   virtual bool supportSplitCSR(MachineFunction *MF) const {
   2418     return false;
   2419   }
   2420 
   2421   /// Return true if the MachineFunction contains a COPY which would imply
   2422   /// HasCopyImplyingStackAdjustment.
   2423   virtual bool hasCopyImplyingStackAdjustment(MachineFunction *MF) const {
   2424     return false;
   2425   }
   2426 
   2427   /// Perform necessary initialization to handle a subset of CSRs explicitly
   2428   /// via copies. This function is called at the beginning of instruction
   2429   /// selection.
   2430   virtual void initializeSplitCSR(MachineBasicBlock *Entry) const {
   2431     llvm_unreachable("Not Implemented");
   2432   }
   2433 
   2434   /// Insert explicit copies in entry and exit blocks. We copy a subset of
   2435   /// CSRs to virtual registers in the entry block, and copy them back to
   2436   /// physical registers in the exit blocks. This function is called at the end
   2437   /// of instruction selection.
   2438   virtual void insertCopiesSplitCSR(
   2439       MachineBasicBlock *Entry,
   2440       const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
   2441     llvm_unreachable("Not Implemented");
   2442   }
   2443 
   2444   //===--------------------------------------------------------------------===//
   2445   // Lowering methods - These methods must be implemented by targets so that
   2446   // the SelectionDAGBuilder code knows how to lower these.
   2447   //
   2448 
   2449   /// This hook must be implemented to lower the incoming (formal) arguments,
   2450   /// described by the Ins array, into the specified DAG. The implementation
   2451   /// should fill in the InVals array with legal-type argument values, and
   2452   /// return the resulting token chain value.
   2453   ///
   2454   virtual SDValue LowerFormalArguments(
   2455       SDValue /*Chain*/, CallingConv::ID /*CallConv*/, bool /*isVarArg*/,
   2456       const SmallVectorImpl<ISD::InputArg> & /*Ins*/, const SDLoc & /*dl*/,
   2457       SelectionDAG & /*DAG*/, SmallVectorImpl<SDValue> & /*InVals*/) const {
   2458     llvm_unreachable("Not Implemented");
   2459   }
   2460 
   2461   struct ArgListEntry {
   2462     SDValue Node;
   2463     Type* Ty;
   2464     bool isSExt     : 1;
   2465     bool isZExt     : 1;
   2466     bool isInReg    : 1;
   2467     bool isSRet     : 1;
   2468     bool isNest     : 1;
   2469     bool isByVal    : 1;
   2470     bool isInAlloca : 1;
   2471     bool isReturned : 1;
   2472     bool isSwiftSelf : 1;
   2473     bool isSwiftError : 1;
   2474     uint16_t Alignment;
   2475 
   2476     ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
   2477       isSRet(false), isNest(false), isByVal(false), isInAlloca(false),
   2478       isReturned(false), isSwiftSelf(false), isSwiftError(false),
   2479       Alignment(0) { }
   2480 
   2481     void setAttributes(ImmutableCallSite *CS, unsigned AttrIdx);
   2482   };
   2483   typedef std::vector<ArgListEntry> ArgListTy;
   2484 
   2485   /// This structure contains all information that is necessary for lowering
   2486   /// calls. It is passed to TLI::LowerCallTo when the SelectionDAG builder
   2487   /// needs to lower a call, and targets will see this struct in their LowerCall
   2488   /// implementation.
   2489   struct CallLoweringInfo {
   2490     SDValue Chain;
   2491     Type *RetTy;
   2492     bool RetSExt           : 1;
   2493     bool RetZExt           : 1;
   2494     bool IsVarArg          : 1;
   2495     bool IsInReg           : 1;
   2496     bool DoesNotReturn     : 1;
   2497     bool IsReturnValueUsed : 1;
   2498     bool IsConvergent      : 1;
   2499 
   2500     // IsTailCall should be modified by implementations of
   2501     // TargetLowering::LowerCall that perform tail call conversions.
   2502     bool IsTailCall;
   2503 
   2504     unsigned NumFixedArgs;
   2505     CallingConv::ID CallConv;
   2506     SDValue Callee;
   2507     ArgListTy Args;
   2508     SelectionDAG &DAG;
   2509     SDLoc DL;
   2510     ImmutableCallSite *CS;
   2511     bool IsPatchPoint;
   2512     SmallVector<ISD::OutputArg, 32> Outs;
   2513     SmallVector<SDValue, 32> OutVals;
   2514     SmallVector<ISD::InputArg, 32> Ins;
   2515     SmallVector<SDValue, 4> InVals;
   2516 
   2517     CallLoweringInfo(SelectionDAG &DAG)
   2518         : RetTy(nullptr), RetSExt(false), RetZExt(false), IsVarArg(false),
   2519           IsInReg(false), DoesNotReturn(false), IsReturnValueUsed(true),
   2520           IsConvergent(false), IsTailCall(false), NumFixedArgs(-1),
   2521           CallConv(CallingConv::C), DAG(DAG), CS(nullptr), IsPatchPoint(false) {
   2522     }
   2523 
   2524     CallLoweringInfo &setDebugLoc(const SDLoc &dl) {
   2525       DL = dl;
   2526       return *this;
   2527     }
   2528 
   2529     CallLoweringInfo &setChain(SDValue InChain) {
   2530       Chain = InChain;
   2531       return *this;
   2532     }
   2533 
   2534     CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultType,
   2535                                 SDValue Target, ArgListTy &&ArgsList) {
   2536       RetTy = ResultType;
   2537       Callee = Target;
   2538       CallConv = CC;
   2539       NumFixedArgs = Args.size();
   2540       Args = std::move(ArgsList);
   2541       return *this;
   2542     }
   2543 
   2544     CallLoweringInfo &setCallee(Type *ResultType, FunctionType *FTy,
   2545                                 SDValue Target, ArgListTy &&ArgsList,
   2546                                 ImmutableCallSite &Call) {
   2547       RetTy = ResultType;
   2548 
   2549       IsInReg = Call.paramHasAttr(0, Attribute::InReg);
   2550       DoesNotReturn =
   2551           Call.doesNotReturn() ||
   2552           (!Call.isInvoke() &&
   2553            isa<UnreachableInst>(Call.getInstruction()->getNextNode()));
   2554       IsVarArg = FTy->isVarArg();
   2555       IsReturnValueUsed = !Call.getInstruction()->use_empty();
   2556       RetSExt = Call.paramHasAttr(0, Attribute::SExt);
   2557       RetZExt = Call.paramHasAttr(0, Attribute::ZExt);
   2558 
   2559       Callee = Target;
   2560 
   2561       CallConv = Call.getCallingConv();
   2562       NumFixedArgs = FTy->getNumParams();
   2563       Args = std::move(ArgsList);
   2564 
   2565       CS = &Call;
   2566 
   2567       return *this;
   2568     }
   2569 
   2570     CallLoweringInfo &setInRegister(bool Value = true) {
   2571       IsInReg = Value;
   2572       return *this;
   2573     }
   2574 
   2575     CallLoweringInfo &setNoReturn(bool Value = true) {
   2576       DoesNotReturn = Value;
   2577       return *this;
   2578     }
   2579 
   2580     CallLoweringInfo &setVarArg(bool Value = true) {
   2581       IsVarArg = Value;
   2582       return *this;
   2583     }
   2584 
   2585     CallLoweringInfo &setTailCall(bool Value = true) {
   2586       IsTailCall = Value;
   2587       return *this;
   2588     }
   2589 
   2590     CallLoweringInfo &setDiscardResult(bool Value = true) {
   2591       IsReturnValueUsed = !Value;
   2592       return *this;
   2593     }
   2594 
   2595     CallLoweringInfo &setConvergent(bool Value = true) {
   2596       IsConvergent = Value;
   2597       return *this;
   2598     }
   2599 
   2600     CallLoweringInfo &setSExtResult(bool Value = true) {
   2601       RetSExt = Value;
   2602       return *this;
   2603     }
   2604 
   2605     CallLoweringInfo &setZExtResult(bool Value = true) {
   2606       RetZExt = Value;
   2607       return *this;
   2608     }
   2609 
   2610     CallLoweringInfo &setIsPatchPoint(bool Value = true) {
   2611       IsPatchPoint = Value;
   2612       return *this;
   2613     }
   2614 
   2615     ArgListTy &getArgs() {
   2616       return Args;
   2617     }
   2618 
   2619   };
   2620 
   2621   /// This function lowers an abstract call to a function into an actual call.
   2622   /// This returns a pair of operands.  The first element is the return value
   2623   /// for the function (if RetTy is not VoidTy).  The second element is the
   2624   /// outgoing token chain. It calls LowerCall to do the actual lowering.
   2625   std::pair<SDValue, SDValue> LowerCallTo(CallLoweringInfo &CLI) const;
   2626 
   2627   /// This hook must be implemented to lower calls into the specified
   2628   /// DAG. The outgoing arguments to the call are described by the Outs array,
   2629   /// and the values to be returned by the call are described by the Ins
   2630   /// array. The implementation should fill in the InVals array with legal-type
   2631   /// return values from the call, and return the resulting token chain value.
   2632   virtual SDValue
   2633     LowerCall(CallLoweringInfo &/*CLI*/,
   2634               SmallVectorImpl<SDValue> &/*InVals*/) const {
   2635     llvm_unreachable("Not Implemented");
   2636   }
   2637 
   2638   /// Target-specific cleanup for formal ByVal parameters.
   2639   virtual void HandleByVal(CCState *, unsigned &, unsigned) const {}
   2640 
   2641   /// This hook should be implemented to check whether the return values
   2642   /// described by the Outs array can fit into the return registers.  If false
   2643   /// is returned, an sret-demotion is performed.
   2644   virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/,
   2645                               MachineFunction &/*MF*/, bool /*isVarArg*/,
   2646                const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
   2647                LLVMContext &/*Context*/) const
   2648   {
   2649     // Return true by default to get preexisting behavior.
   2650     return true;
   2651   }
   2652 
   2653   /// This hook must be implemented to lower outgoing return values, described
   2654   /// by the Outs array, into the specified DAG. The implementation should
   2655   /// return the resulting token chain value.
   2656   virtual SDValue LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
   2657                               bool /*isVarArg*/,
   2658                               const SmallVectorImpl<ISD::OutputArg> & /*Outs*/,
   2659                               const SmallVectorImpl<SDValue> & /*OutVals*/,
   2660                               const SDLoc & /*dl*/,
   2661                               SelectionDAG & /*DAG*/) const {
   2662     llvm_unreachable("Not Implemented");
   2663   }
   2664 
   2665   /// Return true if result of the specified node is used by a return node
   2666   /// only. It also compute and return the input chain for the tail call.
   2667   ///
   2668   /// This is used to determine whether it is possible to codegen a libcall as
   2669   /// tail call at legalization time.
   2670   virtual bool isUsedByReturnOnly(SDNode *, SDValue &/*Chain*/) const {
   2671     return false;
   2672   }
   2673 
   2674   /// Return true if the target may be able emit the call instruction as a tail
   2675   /// call. This is used by optimization passes to determine if it's profitable
   2676   /// to duplicate return instructions to enable tailcall optimization.
   2677   virtual bool mayBeEmittedAsTailCall(CallInst *) const {
   2678     return false;
   2679   }
   2680 
   2681   /// Return the builtin name for the __builtin___clear_cache intrinsic
   2682   /// Default is to invoke the clear cache library call
   2683   virtual const char * getClearCacheBuiltinName() const {
   2684     return "__clear_cache";
   2685   }
   2686 
   2687   /// Return the register ID of the name passed in. Used by named register
   2688   /// global variables extension. There is no target-independent behaviour
   2689   /// so the default action is to bail.
   2690   virtual unsigned getRegisterByName(const char* RegName, EVT VT,
   2691                                      SelectionDAG &DAG) const {
   2692     report_fatal_error("Named registers not implemented for this target");
   2693   }
   2694 
   2695   /// Return the type that should be used to zero or sign extend a
   2696   /// zeroext/signext integer return value.  FIXME: Some C calling conventions
   2697   /// require the return type to be promoted, but this is not true all the time,
   2698   /// e.g. i1/i8/i16 on x86/x86_64. It is also not necessary for non-C calling
   2699   /// conventions. The frontend should handle this and include all of the
   2700   /// necessary information.
   2701   virtual EVT getTypeForExtReturn(LLVMContext &Context, EVT VT,
   2702                                        ISD::NodeType /*ExtendKind*/) const {
   2703     EVT MinVT = getRegisterType(Context, MVT::i32);
   2704     return VT.bitsLT(MinVT) ? MinVT : VT;
   2705   }
   2706 
   2707   /// For some targets, an LLVM struct type must be broken down into multiple
   2708   /// simple types, but the calling convention specifies that the entire struct
   2709   /// must be passed in a block of consecutive registers.
   2710   virtual bool
   2711   functionArgumentNeedsConsecutiveRegisters(Type *Ty, CallingConv::ID CallConv,
   2712                                             bool isVarArg) const {
   2713     return false;
   2714   }
   2715 
   2716   /// Returns a 0 terminated array of registers that can be safely used as
   2717   /// scratch registers.
   2718   virtual const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const {
   2719     return nullptr;
   2720   }
   2721 
   2722   /// This callback is used to prepare for a volatile or atomic load.
   2723   /// It takes a chain node as input and returns the chain for the load itself.
   2724   ///
   2725   /// Having a callback like this is necessary for targets like SystemZ,
   2726   /// which allows a CPU to reuse the result of a previous load indefinitely,
   2727   /// even if a cache-coherent store is performed by another CPU.  The default
   2728   /// implementation does nothing.
   2729   virtual SDValue prepareVolatileOrAtomicLoad(SDValue Chain, const SDLoc &DL,
   2730                                               SelectionDAG &DAG) const {
   2731     return Chain;
   2732   }
   2733 
   2734   /// This callback is invoked by the type legalizer to legalize nodes with an
   2735   /// illegal operand type but legal result types.  It replaces the
   2736   /// LowerOperation callback in the type Legalizer.  The reason we can not do
   2737   /// away with LowerOperation entirely is that LegalizeDAG isn't yet ready to
   2738   /// use this callback.
   2739   ///
   2740   /// TODO: Consider merging with ReplaceNodeResults.
   2741   ///
   2742   /// The target places new result values for the node in Results (their number
   2743   /// and types must exactly match those of the original return values of
   2744   /// the node), or leaves Results empty, which indicates that the node is not
   2745   /// to be custom lowered after all.
   2746   /// The default implementation calls LowerOperation.
   2747   virtual void LowerOperationWrapper(SDNode *N,
   2748                                      SmallVectorImpl<SDValue> &Results,
   2749                                      SelectionDAG &DAG) const;
   2750 
   2751   /// This callback is invoked for operations that are unsupported by the
   2752   /// target, which are registered to use 'custom' lowering, and whose defined
   2753   /// values are all legal.  If the target has no operations that require custom
   2754   /// lowering, it need not implement this.  The default implementation of this
   2755   /// aborts.
   2756   virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
   2757 
   2758   /// This callback is invoked when a node result type is illegal for the
   2759   /// target, and the operation was registered to use 'custom' lowering for that
   2760   /// result type.  The target places new result values for the node in Results
   2761   /// (their number and types must exactly match those of the original return
   2762   /// values of the node), or leaves Results empty, which indicates that the
   2763   /// node is not to be custom lowered after all.
   2764   ///
   2765   /// If the target has no operations that require custom lowering, it need not
   2766   /// implement this.  The default implementation aborts.
   2767   virtual void ReplaceNodeResults(SDNode * /*N*/,
   2768                                   SmallVectorImpl<SDValue> &/*Results*/,
   2769                                   SelectionDAG &/*DAG*/) const {
   2770     llvm_unreachable("ReplaceNodeResults not implemented for this target!");
   2771   }
   2772 
   2773   /// This method returns the name of a target specific DAG node.
   2774   virtual const char *getTargetNodeName(unsigned Opcode) const;
   2775 
   2776   /// This method returns a target specific FastISel object, or null if the
   2777   /// target does not support "fast" ISel.
   2778   virtual FastISel *createFastISel(FunctionLoweringInfo &,
   2779                                    const TargetLibraryInfo *) const {
   2780     return nullptr;
   2781   }
   2782 
   2783 
   2784   bool verifyReturnAddressArgumentIsConstant(SDValue Op,
   2785                                              SelectionDAG &DAG) const;
   2786 
   2787   //===--------------------------------------------------------------------===//
   2788   // Inline Asm Support hooks
   2789   //
   2790 
   2791   /// This hook allows the target to expand an inline asm call to be explicit
   2792   /// llvm code if it wants to.  This is useful for turning simple inline asms
   2793   /// into LLVM intrinsics, which gives the compiler more information about the
   2794   /// behavior of the code.
   2795   virtual bool ExpandInlineAsm(CallInst *) const {
   2796     return false;
   2797   }
   2798 
   2799   enum ConstraintType {
   2800     C_Register,            // Constraint represents specific register(s).
   2801     C_RegisterClass,       // Constraint represents any of register(s) in class.
   2802     C_Memory,              // Memory constraint.
   2803     C_Other,               // Something else.
   2804     C_Unknown              // Unsupported constraint.
   2805   };
   2806 
   2807   enum ConstraintWeight {
   2808     // Generic weights.
   2809     CW_Invalid  = -1,     // No match.
   2810     CW_Okay     = 0,      // Acceptable.
   2811     CW_Good     = 1,      // Good weight.
   2812     CW_Better   = 2,      // Better weight.
   2813     CW_Best     = 3,      // Best weight.
   2814 
   2815     // Well-known weights.
   2816     CW_SpecificReg  = CW_Okay,    // Specific register operands.
   2817     CW_Register     = CW_Good,    // Register operands.
   2818     CW_Memory       = CW_Better,  // Memory operands.
   2819     CW_Constant     = CW_Best,    // Constant operand.
   2820     CW_Default      = CW_Okay     // Default or don't know type.
   2821   };
   2822 
   2823   /// This contains information for each constraint that we are lowering.
   2824   struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
   2825     /// This contains the actual string for the code, like "m".  TargetLowering
   2826     /// picks the 'best' code from ConstraintInfo::Codes that most closely
   2827     /// matches the operand.
   2828     std::string ConstraintCode;
   2829 
   2830     /// Information about the constraint code, e.g. Register, RegisterClass,
   2831     /// Memory, Other, Unknown.
   2832     TargetLowering::ConstraintType ConstraintType;
   2833 
   2834     /// If this is the result output operand or a clobber, this is null,
   2835     /// otherwise it is the incoming operand to the CallInst.  This gets
   2836     /// modified as the asm is processed.
   2837     Value *CallOperandVal;
   2838 
   2839     /// The ValueType for the operand value.
   2840     MVT ConstraintVT;
   2841 
   2842     /// Return true of this is an input operand that is a matching constraint
   2843     /// like "4".
   2844     bool isMatchingInputConstraint() const;
   2845 
   2846     /// If this is an input matching constraint, this method returns the output
   2847     /// operand it matches.
   2848     unsigned getMatchedOperand() const;
   2849 
   2850     /// Copy constructor for copying from a ConstraintInfo.
   2851     AsmOperandInfo(InlineAsm::ConstraintInfo Info)
   2852         : InlineAsm::ConstraintInfo(std::move(Info)),
   2853           ConstraintType(TargetLowering::C_Unknown), CallOperandVal(nullptr),
   2854           ConstraintVT(MVT::Other) {}
   2855   };
   2856 
   2857   typedef std::vector<AsmOperandInfo> AsmOperandInfoVector;
   2858 
   2859   /// Split up the constraint string from the inline assembly value into the
   2860   /// specific constraints and their prefixes, and also tie in the associated
   2861   /// operand values.  If this returns an empty vector, and if the constraint
   2862   /// string itself isn't empty, there was an error parsing.
   2863   virtual AsmOperandInfoVector ParseConstraints(const DataLayout &DL,
   2864                                                 const TargetRegisterInfo *TRI,
   2865                                                 ImmutableCallSite CS) const;
   2866 
   2867   /// Examine constraint type and operand type and determine a weight value.
   2868   /// The operand object must already have been set up with the operand type.
   2869   virtual ConstraintWeight getMultipleConstraintMatchWeight(
   2870       AsmOperandInfo &info, int maIndex) const;
   2871 
   2872   /// Examine constraint string and operand type and determine a weight value.
   2873   /// The operand object must already have been set up with the operand type.
   2874   virtual ConstraintWeight getSingleConstraintMatchWeight(
   2875       AsmOperandInfo &info, const char *constraint) const;
   2876 
   2877   /// Determines the constraint code and constraint type to use for the specific
   2878   /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
   2879   /// If the actual operand being passed in is available, it can be passed in as
   2880   /// Op, otherwise an empty SDValue can be passed.
   2881   virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
   2882                                       SDValue Op,
   2883                                       SelectionDAG *DAG = nullptr) const;
   2884 
   2885   /// Given a constraint, return the type of constraint it is for this target.
   2886   virtual ConstraintType getConstraintType(StringRef Constraint) const;
   2887 
   2888   /// Given a physical register constraint (e.g.  {edx}), return the register
   2889   /// number and the register class for the register.
   2890   ///
   2891   /// Given a register class constraint, like 'r', if this corresponds directly
   2892   /// to an LLVM register class, return a register of 0 and the register class
   2893   /// pointer.
   2894   ///
   2895   /// This should only be used for C_Register constraints.  On error, this
   2896   /// returns a register number of 0 and a null register class pointer.
   2897   virtual std::pair<unsigned, const TargetRegisterClass *>
   2898   getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
   2899                                StringRef Constraint, MVT VT) const;
   2900 
   2901   virtual unsigned getInlineAsmMemConstraint(StringRef ConstraintCode) const {
   2902     if (ConstraintCode == "i")
   2903       return InlineAsm::Constraint_i;
   2904     else if (ConstraintCode == "m")
   2905       return InlineAsm::Constraint_m;
   2906     return InlineAsm::Constraint_Unknown;
   2907   }
   2908 
   2909   /// Try to replace an X constraint, which matches anything, with another that
   2910   /// has more specific requirements based on the type of the corresponding
   2911   /// operand.  This returns null if there is no replacement to make.
   2912   virtual const char *LowerXConstraint(EVT ConstraintVT) const;
   2913 
   2914   /// Lower the specified operand into the Ops vector.  If it is invalid, don't
   2915   /// add anything to Ops.
   2916   virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
   2917                                             std::vector<SDValue> &Ops,
   2918                                             SelectionDAG &DAG) const;
   2919 
   2920   //===--------------------------------------------------------------------===//
   2921   // Div utility functions
   2922   //
   2923   SDValue BuildSDIV(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
   2924                     bool IsAfterLegalization,
   2925                     std::vector<SDNode *> *Created) const;
   2926   SDValue BuildUDIV(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
   2927                     bool IsAfterLegalization,
   2928                     std::vector<SDNode *> *Created) const;
   2929 
   2930   /// Targets may override this function to provide custom SDIV lowering for
   2931   /// power-of-2 denominators.  If the target returns an empty SDValue, LLVM
   2932   /// assumes SDIV is expensive and replaces it with a series of other integer
   2933   /// operations.
   2934   virtual SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor,
   2935                                 SelectionDAG &DAG,
   2936                                 std::vector<SDNode *> *Created) const;
   2937 
   2938   /// Indicate whether this target prefers to combine FDIVs with the same
   2939   /// divisor. If the transform should never be done, return zero. If the
   2940   /// transform should be done, return the minimum number of divisor uses
   2941   /// that must exist.
   2942   virtual unsigned combineRepeatedFPDivisors() const {
   2943     return 0;
   2944   }
   2945 
   2946   /// Hooks for building estimates in place of slower divisions and square
   2947   /// roots.
   2948 
   2949   /// Return a reciprocal square root estimate value for the input operand.
   2950   /// The RefinementSteps output is the number of Newton-Raphson refinement
   2951   /// iterations required to generate a sufficient (though not necessarily
   2952   /// IEEE-754 compliant) estimate for the value type.
   2953   /// The boolean UseOneConstNR output is used to select a Newton-Raphson
   2954   /// algorithm implementation that uses one constant or two constants.
   2955   /// A target may choose to implement its own refinement within this function.
   2956   /// If that's true, then return '0' as the number of RefinementSteps to avoid
   2957   /// any further refinement of the estimate.
   2958   /// An empty SDValue return means no estimate sequence can be created.
   2959   virtual SDValue getRsqrtEstimate(SDValue Operand, DAGCombinerInfo &DCI,
   2960                                    unsigned &RefinementSteps,
   2961                                    bool &UseOneConstNR) const {
   2962     return SDValue();
   2963   }
   2964 
   2965   /// Return a reciprocal estimate value for the input operand.
   2966   /// The RefinementSteps output is the number of Newton-Raphson refinement
   2967   /// iterations required to generate a sufficient (though not necessarily
   2968   /// IEEE-754 compliant) estimate for the value type.
   2969   /// A target may choose to implement its own refinement within this function.
   2970   /// If that's true, then return '0' as the number of RefinementSteps to avoid
   2971   /// any further refinement of the estimate.
   2972   /// An empty SDValue return means no estimate sequence can be created.
   2973   virtual SDValue getRecipEstimate(SDValue Operand, DAGCombinerInfo &DCI,
   2974                                    unsigned &RefinementSteps) const {
   2975     return SDValue();
   2976   }
   2977 
   2978   //===--------------------------------------------------------------------===//
   2979   // Legalization utility functions
   2980   //
   2981 
   2982   /// Expand a MUL into two nodes.  One that computes the high bits of
   2983   /// the result and one that computes the low bits.
   2984   /// \param HiLoVT The value type to use for the Lo and Hi nodes.
   2985   /// \param LL Low bits of the LHS of the MUL.  You can use this parameter
   2986   ///        if you want to control how low bits are extracted from the LHS.
   2987   /// \param LH High bits of the LHS of the MUL.  See LL for meaning.
   2988   /// \param RL Low bits of the RHS of the MUL.  See LL for meaning
   2989   /// \param RH High bits of the RHS of the MUL.  See LL for meaning.
   2990   /// \returns true if the node has been expanded. false if it has not
   2991   bool expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
   2992                  SelectionDAG &DAG, SDValue LL = SDValue(),
   2993                  SDValue LH = SDValue(), SDValue RL = SDValue(),
   2994                  SDValue RH = SDValue()) const;
   2995 
   2996   /// Expand float(f32) to SINT(i64) conversion
   2997   /// \param N Node to expand
   2998   /// \param Result output after conversion
   2999   /// \returns True, if the expansion was successful, false otherwise
   3000   bool expandFP_TO_SINT(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
   3001 
   3002   /// Turn load of vector type into a load of the individual elements.
   3003   /// \param LD load to expand
   3004   /// \returns MERGE_VALUEs of the scalar loads with their chains.
   3005   SDValue scalarizeVectorLoad(LoadSDNode *LD, SelectionDAG &DAG) const;
   3006 
   3007   // Turn a store of a vector type into stores of the individual elements.
   3008   /// \param ST Store with a vector value type
   3009   /// \returns MERGE_VALUs of the individual store chains.
   3010   SDValue scalarizeVectorStore(StoreSDNode *ST, SelectionDAG &DAG) const;
   3011 
   3012   /// Expands an unaligned load to 2 half-size loads for an integer, and
   3013   /// possibly more for vectors.
   3014   std::pair<SDValue, SDValue> expandUnalignedLoad(LoadSDNode *LD,
   3015                                                   SelectionDAG &DAG) const;
   3016 
   3017   /// Expands an unaligned store to 2 half-size stores for integer values, and
   3018   /// possibly more for vectors.
   3019   SDValue expandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG) const;
   3020 
   3021   //===--------------------------------------------------------------------===//
   3022   // Instruction Emitting Hooks
   3023   //
   3024 
   3025   /// This method should be implemented by targets that mark instructions with
   3026   /// the 'usesCustomInserter' flag.  These instructions are special in various
   3027   /// ways, which require special support to insert.  The specified MachineInstr
   3028   /// is created but not inserted into any basic blocks, and this method is
   3029   /// called to expand it into a sequence of instructions, potentially also
   3030   /// creating new basic blocks and control flow.
   3031   /// As long as the returned basic block is different (i.e., we created a new
   3032   /// one), the custom inserter is free to modify the rest of \p MBB.
   3033   virtual MachineBasicBlock *
   3034   EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *MBB) const;
   3035 
   3036   /// This method should be implemented by targets that mark instructions with
   3037   /// the 'hasPostISelHook' flag. These instructions must be adjusted after
   3038   /// instruction selection by target hooks.  e.g. To fill in optional defs for
   3039   /// ARM 's' setting instructions.
   3040   virtual void AdjustInstrPostInstrSelection(MachineInstr &MI,
   3041                                              SDNode *Node) const;
   3042 
   3043   /// If this function returns true, SelectionDAGBuilder emits a
   3044   /// LOAD_STACK_GUARD node when it is lowering Intrinsic::stackprotector.
   3045   virtual bool useLoadStackGuardNode() const {
   3046     return false;
   3047   }
   3048 
   3049   /// Lower TLS global address SDNode for target independent emulated TLS model.
   3050   virtual SDValue LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
   3051                                           SelectionDAG &DAG) const;
   3052 
   3053 private:
   3054   SDValue simplifySetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
   3055                                ISD::CondCode Cond, DAGCombinerInfo &DCI,
   3056                                const SDLoc &DL) const;
   3057 };
   3058 
   3059 /// Given an LLVM IR type and return type attributes, compute the return value
   3060 /// EVTs and flags, and optionally also the offsets, if the return value is
   3061 /// being lowered to memory.
   3062 void GetReturnInfo(Type *ReturnType, AttributeSet attr,
   3063                    SmallVectorImpl<ISD::OutputArg> &Outs,
   3064                    const TargetLowering &TLI, const DataLayout &DL);
   3065 
   3066 } // end llvm namespace
   3067 
   3068 #endif
   3069