1 //===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// \file 11 /// This file describes how to lower LLVM code to machine code. This has two 12 /// main components: 13 /// 14 /// 1. Which ValueTypes are natively supported by the target. 15 /// 2. Which operations are supported for supported ValueTypes. 16 /// 3. Cost thresholds for alternative implementations of certain operations. 17 /// 18 /// In addition it has a few other components, like information about FP 19 /// immediates. 20 /// 21 //===----------------------------------------------------------------------===// 22 23 #ifndef LLVM_TARGET_TARGETLOWERING_H 24 #define LLVM_TARGET_TARGETLOWERING_H 25 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/CodeGen/DAGCombine.h" 28 #include "llvm/CodeGen/RuntimeLibcalls.h" 29 #include "llvm/CodeGen/SelectionDAGNodes.h" 30 #include "llvm/IR/Attributes.h" 31 #include "llvm/IR/CallSite.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/InlineAsm.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/MC/MCRegisterInfo.h" 37 #include "llvm/Target/TargetCallingConv.h" 38 #include "llvm/Target/TargetMachine.h" 39 #include <climits> 40 #include <map> 41 #include <vector> 42 43 namespace llvm { 44 class BranchProbability; 45 class CallInst; 46 class CCState; 47 class CCValAssign; 48 class FastISel; 49 class FunctionLoweringInfo; 50 class ImmutableCallSite; 51 class IntrinsicInst; 52 class MachineBasicBlock; 53 class MachineFunction; 54 class MachineInstr; 55 class MachineJumpTableInfo; 56 class MachineLoop; 57 class MachineRegisterInfo; 58 class Mangler; 59 class MCContext; 60 class MCExpr; 61 class MCSymbol; 62 template<typename T> class SmallVectorImpl; 63 class DataLayout; 64 class TargetRegisterClass; 65 class TargetLibraryInfo; 66 class TargetLoweringObjectFile; 67 class Value; 68 69 namespace Sched { 70 enum Preference { 71 None, // No preference 72 Source, // Follow source order. 73 RegPressure, // Scheduling for lowest register pressure. 74 Hybrid, // Scheduling for both latency and register pressure. 75 ILP, // Scheduling for ILP in low register pressure mode. 76 VLIW // Scheduling for VLIW targets. 77 }; 78 } 79 80 /// This base class for TargetLowering contains the SelectionDAG-independent 81 /// parts that can be used from the rest of CodeGen. 82 class TargetLoweringBase { 83 TargetLoweringBase(const TargetLoweringBase&) = delete; 84 void operator=(const TargetLoweringBase&) = delete; 85 86 public: 87 /// This enum indicates whether operations are valid for a target, and if not, 88 /// what action should be used to make them valid. 89 enum LegalizeAction : uint8_t { 90 Legal, // The target natively supports this operation. 91 Promote, // This operation should be executed in a larger type. 92 Expand, // Try to expand this to other ops, otherwise use a libcall. 93 LibCall, // Don't try to expand this to other ops, always use a libcall. 94 Custom // Use the LowerOperation hook to implement custom lowering. 95 }; 96 97 /// This enum indicates whether a types are legal for a target, and if not, 98 /// what action should be used to make them valid. 99 enum LegalizeTypeAction : uint8_t { 100 TypeLegal, // The target natively supports this type. 101 TypePromoteInteger, // Replace this integer with a larger one. 102 TypeExpandInteger, // Split this integer into two of half the size. 103 TypeSoftenFloat, // Convert this float to a same size integer type, 104 // if an operation is not supported in target HW. 105 TypeExpandFloat, // Split this float into two of half the size. 106 TypeScalarizeVector, // Replace this one-element vector with its element. 107 TypeSplitVector, // Split this vector into two of half the size. 108 TypeWidenVector, // This vector should be widened into a larger vector. 109 TypePromoteFloat // Replace this float with a larger one. 110 }; 111 112 /// LegalizeKind holds the legalization kind that needs to happen to EVT 113 /// in order to type-legalize it. 114 typedef std::pair<LegalizeTypeAction, EVT> LegalizeKind; 115 116 /// Enum that describes how the target represents true/false values. 117 enum BooleanContent { 118 UndefinedBooleanContent, // Only bit 0 counts, the rest can hold garbage. 119 ZeroOrOneBooleanContent, // All bits zero except for bit 0. 120 ZeroOrNegativeOneBooleanContent // All bits equal to bit 0. 121 }; 122 123 /// Enum that describes what type of support for selects the target has. 124 enum SelectSupportKind { 125 ScalarValSelect, // The target supports scalar selects (ex: cmov). 126 ScalarCondVectorVal, // The target supports selects with a scalar condition 127 // and vector values (ex: cmov). 128 VectorMaskSelect // The target supports vector selects with a vector 129 // mask (ex: x86 blends). 130 }; 131 132 /// Enum that specifies what an atomic load/AtomicRMWInst is expanded 133 /// to, if at all. Exists because different targets have different levels of 134 /// support for these atomic instructions, and also have different options 135 /// w.r.t. what they should expand to. 136 enum class AtomicExpansionKind { 137 None, // Don't expand the instruction. 138 LLSC, // Expand the instruction into loadlinked/storeconditional; used 139 // by ARM/AArch64. 140 LLOnly, // Expand the (load) instruction into just a load-linked, which has 141 // greater atomic guarantees than a normal load. 142 CmpXChg, // Expand the instruction into cmpxchg; used by at least X86. 143 }; 144 145 static ISD::NodeType getExtendForContent(BooleanContent Content) { 146 switch (Content) { 147 case UndefinedBooleanContent: 148 // Extend by adding rubbish bits. 149 return ISD::ANY_EXTEND; 150 case ZeroOrOneBooleanContent: 151 // Extend by adding zero bits. 152 return ISD::ZERO_EXTEND; 153 case ZeroOrNegativeOneBooleanContent: 154 // Extend by copying the sign bit. 155 return ISD::SIGN_EXTEND; 156 } 157 llvm_unreachable("Invalid content kind"); 158 } 159 160 /// NOTE: The TargetMachine owns TLOF. 161 explicit TargetLoweringBase(const TargetMachine &TM); 162 virtual ~TargetLoweringBase() {} 163 164 protected: 165 /// \brief Initialize all of the actions to default values. 166 void initActions(); 167 168 public: 169 const TargetMachine &getTargetMachine() const { return TM; } 170 171 virtual bool useSoftFloat() const { return false; } 172 173 /// Return the pointer type for the given address space, defaults to 174 /// the pointer type from the data layout. 175 /// FIXME: The default needs to be removed once all the code is updated. 176 MVT getPointerTy(const DataLayout &DL, uint32_t AS = 0) const { 177 return MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 178 } 179 180 /// EVT is not used in-tree, but is used by out-of-tree target. 181 /// A documentation for this function would be nice... 182 virtual MVT getScalarShiftAmountTy(const DataLayout &, EVT) const; 183 184 EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL) const; 185 186 /// Returns the type to be used for the index operand of: 187 /// ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT, 188 /// ISD::INSERT_SUBVECTOR, and ISD::EXTRACT_SUBVECTOR 189 virtual MVT getVectorIdxTy(const DataLayout &DL) const { 190 return getPointerTy(DL); 191 } 192 193 /// Return true if the select operation is expensive for this target. 194 bool isSelectExpensive() const { return SelectIsExpensive; } 195 196 virtual bool isSelectSupported(SelectSupportKind /*kind*/) const { 197 return true; 198 } 199 200 /// Return true if multiple condition registers are available. 201 bool hasMultipleConditionRegisters() const { 202 return HasMultipleConditionRegisters; 203 } 204 205 /// Return true if the target has BitExtract instructions. 206 bool hasExtractBitsInsn() const { return HasExtractBitsInsn; } 207 208 /// Return the preferred vector type legalization action. 209 virtual TargetLoweringBase::LegalizeTypeAction 210 getPreferredVectorAction(EVT VT) const { 211 // The default action for one element vectors is to scalarize 212 if (VT.getVectorNumElements() == 1) 213 return TypeScalarizeVector; 214 // The default action for other vectors is to promote 215 return TypePromoteInteger; 216 } 217 218 // There are two general methods for expanding a BUILD_VECTOR node: 219 // 1. Use SCALAR_TO_VECTOR on the defined scalar values and then shuffle 220 // them together. 221 // 2. Build the vector on the stack and then load it. 222 // If this function returns true, then method (1) will be used, subject to 223 // the constraint that all of the necessary shuffles are legal (as determined 224 // by isShuffleMaskLegal). If this function returns false, then method (2) is 225 // always used. The vector type, and the number of defined values, are 226 // provided. 227 virtual bool 228 shouldExpandBuildVectorWithShuffles(EVT /* VT */, 229 unsigned DefinedValues) const { 230 return DefinedValues < 3; 231 } 232 233 /// Return true if integer divide is usually cheaper than a sequence of 234 /// several shifts, adds, and multiplies for this target. 235 /// The definition of "cheaper" may depend on whether we're optimizing 236 /// for speed or for size. 237 virtual bool isIntDivCheap(EVT VT, AttributeSet Attr) const { 238 return false; 239 } 240 241 /// Return true if sqrt(x) is as cheap or cheaper than 1 / rsqrt(x) 242 bool isFsqrtCheap() const { 243 return FsqrtIsCheap; 244 } 245 246 /// Returns true if target has indicated at least one type should be bypassed. 247 bool isSlowDivBypassed() const { return !BypassSlowDivWidths.empty(); } 248 249 /// Returns map of slow types for division or remainder with corresponding 250 /// fast types 251 const DenseMap<unsigned int, unsigned int> &getBypassSlowDivWidths() const { 252 return BypassSlowDivWidths; 253 } 254 255 /// Return true if Flow Control is an expensive operation that should be 256 /// avoided. 257 bool isJumpExpensive() const { return JumpIsExpensive; } 258 259 /// Return true if selects are only cheaper than branches if the branch is 260 /// unlikely to be predicted right. 261 bool isPredictableSelectExpensive() const { 262 return PredictableSelectIsExpensive; 263 } 264 265 /// If a branch or a select condition is skewed in one direction by more than 266 /// this factor, it is very likely to be predicted correctly. 267 virtual BranchProbability getPredictableBranchThreshold() const; 268 269 /// Return true if the following transform is beneficial: 270 /// fold (conv (load x)) -> (load (conv*)x) 271 /// On architectures that don't natively support some vector loads 272 /// efficiently, casting the load to a smaller vector of larger types and 273 /// loading is more efficient, however, this can be undone by optimizations in 274 /// dag combiner. 275 virtual bool isLoadBitCastBeneficial(EVT LoadVT, 276 EVT BitcastVT) const { 277 // Don't do if we could do an indexed load on the original type, but not on 278 // the new one. 279 if (!LoadVT.isSimple() || !BitcastVT.isSimple()) 280 return true; 281 282 MVT LoadMVT = LoadVT.getSimpleVT(); 283 284 // Don't bother doing this if it's just going to be promoted again later, as 285 // doing so might interfere with other combines. 286 if (getOperationAction(ISD::LOAD, LoadMVT) == Promote && 287 getTypeToPromoteTo(ISD::LOAD, LoadMVT) == BitcastVT.getSimpleVT()) 288 return false; 289 290 return true; 291 } 292 293 /// Return true if the following transform is beneficial: 294 /// (store (y (conv x)), y*)) -> (store x, (x*)) 295 virtual bool isStoreBitCastBeneficial(EVT StoreVT, EVT BitcastVT) const { 296 // Default to the same logic as loads. 297 return isLoadBitCastBeneficial(StoreVT, BitcastVT); 298 } 299 300 /// Return true if it is expected to be cheaper to do a store of a non-zero 301 /// vector constant with the given size and type for the address space than to 302 /// store the individual scalar element constants. 303 virtual bool storeOfVectorConstantIsCheap(EVT MemVT, 304 unsigned NumElem, 305 unsigned AddrSpace) const { 306 return false; 307 } 308 309 /// \brief Return true if it is cheap to speculate a call to intrinsic cttz. 310 virtual bool isCheapToSpeculateCttz() const { 311 return false; 312 } 313 314 /// \brief Return true if it is cheap to speculate a call to intrinsic ctlz. 315 virtual bool isCheapToSpeculateCtlz() const { 316 return false; 317 } 318 319 /// Return true if it is safe to transform an integer-domain bitwise operation 320 /// into the equivalent floating-point operation. This should be set to true 321 /// if the target has IEEE-754-compliant fabs/fneg operations for the input 322 /// type. 323 virtual bool hasBitPreservingFPLogic(EVT VT) const { 324 return false; 325 } 326 327 /// \brief Return if the target supports combining a 328 /// chain like: 329 /// \code 330 /// %andResult = and %val1, #imm-with-one-bit-set; 331 /// %icmpResult = icmp %andResult, 0 332 /// br i1 %icmpResult, label %dest1, label %dest2 333 /// \endcode 334 /// into a single machine instruction of a form like: 335 /// \code 336 /// brOnBitSet %register, #bitNumber, dest 337 /// \endcode 338 bool isMaskAndBranchFoldingLegal() const { 339 return MaskAndBranchFoldingIsLegal; 340 } 341 342 /// Return true if the target should transform: 343 /// (X & Y) == Y ---> (~X & Y) == 0 344 /// (X & Y) != Y ---> (~X & Y) != 0 345 /// 346 /// This may be profitable if the target has a bitwise and-not operation that 347 /// sets comparison flags. A target may want to limit the transformation based 348 /// on the type of Y or if Y is a constant. 349 /// 350 /// Note that the transform will not occur if Y is known to be a power-of-2 351 /// because a mask and compare of a single bit can be handled by inverting the 352 /// predicate, for example: 353 /// (X & 8) == 8 ---> (X & 8) != 0 354 virtual bool hasAndNotCompare(SDValue Y) const { 355 return false; 356 } 357 358 /// \brief Return true if the target wants to use the optimization that 359 /// turns ext(promotableInst1(...(promotableInstN(load)))) into 360 /// promotedInst1(...(promotedInstN(ext(load)))). 361 bool enableExtLdPromotion() const { return EnableExtLdPromotion; } 362 363 /// Return true if the target can combine store(extractelement VectorTy, 364 /// Idx). 365 /// \p Cost[out] gives the cost of that transformation when this is true. 366 virtual bool canCombineStoreAndExtract(Type *VectorTy, Value *Idx, 367 unsigned &Cost) const { 368 return false; 369 } 370 371 /// Return true if target supports floating point exceptions. 372 bool hasFloatingPointExceptions() const { 373 return HasFloatingPointExceptions; 374 } 375 376 /// Return true if target always beneficiates from combining into FMA for a 377 /// given value type. This must typically return false on targets where FMA 378 /// takes more cycles to execute than FADD. 379 virtual bool enableAggressiveFMAFusion(EVT VT) const { 380 return false; 381 } 382 383 /// Return the ValueType of the result of SETCC operations. 384 virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, 385 EVT VT) const; 386 387 /// Return the ValueType for comparison libcalls. Comparions libcalls include 388 /// floating point comparion calls, and Ordered/Unordered check calls on 389 /// floating point numbers. 390 virtual 391 MVT::SimpleValueType getCmpLibcallReturnType() const; 392 393 /// For targets without i1 registers, this gives the nature of the high-bits 394 /// of boolean values held in types wider than i1. 395 /// 396 /// "Boolean values" are special true/false values produced by nodes like 397 /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND. 398 /// Not to be confused with general values promoted from i1. Some cpus 399 /// distinguish between vectors of boolean and scalars; the isVec parameter 400 /// selects between the two kinds. For example on X86 a scalar boolean should 401 /// be zero extended from i1, while the elements of a vector of booleans 402 /// should be sign extended from i1. 403 /// 404 /// Some cpus also treat floating point types the same way as they treat 405 /// vectors instead of the way they treat scalars. 406 BooleanContent getBooleanContents(bool isVec, bool isFloat) const { 407 if (isVec) 408 return BooleanVectorContents; 409 return isFloat ? BooleanFloatContents : BooleanContents; 410 } 411 412 BooleanContent getBooleanContents(EVT Type) const { 413 return getBooleanContents(Type.isVector(), Type.isFloatingPoint()); 414 } 415 416 /// Return target scheduling preference. 417 Sched::Preference getSchedulingPreference() const { 418 return SchedPreferenceInfo; 419 } 420 421 /// Some scheduler, e.g. hybrid, can switch to different scheduling heuristics 422 /// for different nodes. This function returns the preference (or none) for 423 /// the given node. 424 virtual Sched::Preference getSchedulingPreference(SDNode *) const { 425 return Sched::None; 426 } 427 428 /// Return the register class that should be used for the specified value 429 /// type. 430 virtual const TargetRegisterClass *getRegClassFor(MVT VT) const { 431 const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy]; 432 assert(RC && "This value type is not natively supported!"); 433 return RC; 434 } 435 436 /// Return the 'representative' register class for the specified value 437 /// type. 438 /// 439 /// The 'representative' register class is the largest legal super-reg 440 /// register class for the register class of the value type. For example, on 441 /// i386 the rep register class for i8, i16, and i32 are GR32; while the rep 442 /// register class is GR64 on x86_64. 443 virtual const TargetRegisterClass *getRepRegClassFor(MVT VT) const { 444 const TargetRegisterClass *RC = RepRegClassForVT[VT.SimpleTy]; 445 return RC; 446 } 447 448 /// Return the cost of the 'representative' register class for the specified 449 /// value type. 450 virtual uint8_t getRepRegClassCostFor(MVT VT) const { 451 return RepRegClassCostForVT[VT.SimpleTy]; 452 } 453 454 /// Return true if the target has native support for the specified value type. 455 /// This means that it has a register that directly holds it without 456 /// promotions or expansions. 457 bool isTypeLegal(EVT VT) const { 458 assert(!VT.isSimple() || 459 (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT)); 460 return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != nullptr; 461 } 462 463 class ValueTypeActionImpl { 464 /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum 465 /// that indicates how instruction selection should deal with the type. 466 LegalizeTypeAction ValueTypeActions[MVT::LAST_VALUETYPE]; 467 468 public: 469 ValueTypeActionImpl() { 470 std::fill(std::begin(ValueTypeActions), std::end(ValueTypeActions), 471 TypeLegal); 472 } 473 474 LegalizeTypeAction getTypeAction(MVT VT) const { 475 return ValueTypeActions[VT.SimpleTy]; 476 } 477 478 void setTypeAction(MVT VT, LegalizeTypeAction Action) { 479 ValueTypeActions[VT.SimpleTy] = Action; 480 } 481 }; 482 483 const ValueTypeActionImpl &getValueTypeActions() const { 484 return ValueTypeActions; 485 } 486 487 /// Return how we should legalize values of this type, either it is already 488 /// legal (return 'Legal') or we need to promote it to a larger type (return 489 /// 'Promote'), or we need to expand it into multiple registers of smaller 490 /// integer type (return 'Expand'). 'Custom' is not an option. 491 LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const { 492 return getTypeConversion(Context, VT).first; 493 } 494 LegalizeTypeAction getTypeAction(MVT VT) const { 495 return ValueTypeActions.getTypeAction(VT); 496 } 497 498 /// For types supported by the target, this is an identity function. For 499 /// types that must be promoted to larger types, this returns the larger type 500 /// to promote to. For integer types that are larger than the largest integer 501 /// register, this contains one step in the expansion to get to the smaller 502 /// register. For illegal floating point types, this returns the integer type 503 /// to transform to. 504 EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const { 505 return getTypeConversion(Context, VT).second; 506 } 507 508 /// For types supported by the target, this is an identity function. For 509 /// types that must be expanded (i.e. integer types that are larger than the 510 /// largest integer register or illegal floating point types), this returns 511 /// the largest legal type it will be expanded to. 512 EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const { 513 assert(!VT.isVector()); 514 while (true) { 515 switch (getTypeAction(Context, VT)) { 516 case TypeLegal: 517 return VT; 518 case TypeExpandInteger: 519 VT = getTypeToTransformTo(Context, VT); 520 break; 521 default: 522 llvm_unreachable("Type is not legal nor is it to be expanded!"); 523 } 524 } 525 } 526 527 /// Vector types are broken down into some number of legal first class types. 528 /// For example, EVT::v8f32 maps to 2 EVT::v4f32 with Altivec or SSE1, or 8 529 /// promoted EVT::f64 values with the X86 FP stack. Similarly, EVT::v2i64 530 /// turns into 4 EVT::i32 values with both PPC and X86. 531 /// 532 /// This method returns the number of registers needed, and the VT for each 533 /// register. It also returns the VT and quantity of the intermediate values 534 /// before they are promoted/expanded. 535 unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT, 536 EVT &IntermediateVT, 537 unsigned &NumIntermediates, 538 MVT &RegisterVT) const; 539 540 struct IntrinsicInfo { 541 unsigned opc; // target opcode 542 EVT memVT; // memory VT 543 const Value* ptrVal; // value representing memory location 544 int offset; // offset off of ptrVal 545 unsigned size; // the size of the memory location 546 // (taken from memVT if zero) 547 unsigned align; // alignment 548 bool vol; // is volatile? 549 bool readMem; // reads memory? 550 bool writeMem; // writes memory? 551 552 IntrinsicInfo() : opc(0), ptrVal(nullptr), offset(0), size(0), align(1), 553 vol(false), readMem(false), writeMem(false) {} 554 }; 555 556 /// Given an intrinsic, checks if on the target the intrinsic will need to map 557 /// to a MemIntrinsicNode (touches memory). If this is the case, it returns 558 /// true and store the intrinsic information into the IntrinsicInfo that was 559 /// passed to the function. 560 virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &, 561 unsigned /*Intrinsic*/) const { 562 return false; 563 } 564 565 /// Returns true if the target can instruction select the specified FP 566 /// immediate natively. If false, the legalizer will materialize the FP 567 /// immediate as a load from a constant pool. 568 virtual bool isFPImmLegal(const APFloat &/*Imm*/, EVT /*VT*/) const { 569 return false; 570 } 571 572 /// Targets can use this to indicate that they only support *some* 573 /// VECTOR_SHUFFLE operations, those with specific masks. By default, if a 574 /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to be 575 /// legal. 576 virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &/*Mask*/, 577 EVT /*VT*/) const { 578 return true; 579 } 580 581 /// Returns true if the operation can trap for the value type. 582 /// 583 /// VT must be a legal type. By default, we optimistically assume most 584 /// operations don't trap except for divide and remainder. 585 virtual bool canOpTrap(unsigned Op, EVT VT) const; 586 587 /// Similar to isShuffleMaskLegal. This is used by Targets can use this to 588 /// indicate if there is a suitable VECTOR_SHUFFLE that can be used to replace 589 /// a VAND with a constant pool entry. 590 virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &/*Mask*/, 591 EVT /*VT*/) const { 592 return false; 593 } 594 595 /// Return how this operation should be treated: either it is legal, needs to 596 /// be promoted to a larger size, needs to be expanded to some other code 597 /// sequence, or the target has a custom expander for it. 598 LegalizeAction getOperationAction(unsigned Op, EVT VT) const { 599 if (VT.isExtended()) return Expand; 600 // If a target-specific SDNode requires legalization, require the target 601 // to provide custom legalization for it. 602 if (Op > array_lengthof(OpActions[0])) return Custom; 603 return OpActions[(unsigned)VT.getSimpleVT().SimpleTy][Op]; 604 } 605 606 /// Return true if the specified operation is legal on this target or can be 607 /// made legal with custom lowering. This is used to help guide high-level 608 /// lowering decisions. 609 bool isOperationLegalOrCustom(unsigned Op, EVT VT) const { 610 return (VT == MVT::Other || isTypeLegal(VT)) && 611 (getOperationAction(Op, VT) == Legal || 612 getOperationAction(Op, VT) == Custom); 613 } 614 615 /// Return true if the specified operation is legal on this target or can be 616 /// made legal using promotion. This is used to help guide high-level lowering 617 /// decisions. 618 bool isOperationLegalOrPromote(unsigned Op, EVT VT) const { 619 return (VT == MVT::Other || isTypeLegal(VT)) && 620 (getOperationAction(Op, VT) == Legal || 621 getOperationAction(Op, VT) == Promote); 622 } 623 624 /// Return true if the specified operation is legal on this target or can be 625 /// made legal with custom lowering or using promotion. This is used to help 626 /// guide high-level lowering decisions. 627 bool isOperationLegalOrCustomOrPromote(unsigned Op, EVT VT) const { 628 return (VT == MVT::Other || isTypeLegal(VT)) && 629 (getOperationAction(Op, VT) == Legal || 630 getOperationAction(Op, VT) == Custom || 631 getOperationAction(Op, VT) == Promote); 632 } 633 634 /// Return true if the specified operation is illegal but has a custom lowering 635 /// on that type. This is used to help guide high-level lowering 636 /// decisions. 637 bool isOperationCustom(unsigned Op, EVT VT) const { 638 return (!isTypeLegal(VT) && getOperationAction(Op, VT) == Custom); 639 } 640 641 /// Return true if the specified operation is illegal on this target or 642 /// unlikely to be made legal with custom lowering. This is used to help guide 643 /// high-level lowering decisions. 644 bool isOperationExpand(unsigned Op, EVT VT) const { 645 return (!isTypeLegal(VT) || getOperationAction(Op, VT) == Expand); 646 } 647 648 /// Return true if the specified operation is legal on this target. 649 bool isOperationLegal(unsigned Op, EVT VT) const { 650 return (VT == MVT::Other || isTypeLegal(VT)) && 651 getOperationAction(Op, VT) == Legal; 652 } 653 654 /// Return how this load with extension should be treated: either it is legal, 655 /// needs to be promoted to a larger size, needs to be expanded to some other 656 /// code sequence, or the target has a custom expander for it. 657 LegalizeAction getLoadExtAction(unsigned ExtType, EVT ValVT, 658 EVT MemVT) const { 659 if (ValVT.isExtended() || MemVT.isExtended()) return Expand; 660 unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy; 661 unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy; 662 assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValI < MVT::LAST_VALUETYPE && 663 MemI < MVT::LAST_VALUETYPE && "Table isn't big enough!"); 664 unsigned Shift = 4 * ExtType; 665 return (LegalizeAction)((LoadExtActions[ValI][MemI] >> Shift) & 0xf); 666 } 667 668 /// Return true if the specified load with extension is legal on this target. 669 bool isLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const { 670 return getLoadExtAction(ExtType, ValVT, MemVT) == Legal; 671 } 672 673 /// Return true if the specified load with extension is legal or custom 674 /// on this target. 675 bool isLoadExtLegalOrCustom(unsigned ExtType, EVT ValVT, EVT MemVT) const { 676 return getLoadExtAction(ExtType, ValVT, MemVT) == Legal || 677 getLoadExtAction(ExtType, ValVT, MemVT) == Custom; 678 } 679 680 /// Return how this store with truncation should be treated: either it is 681 /// legal, needs to be promoted to a larger size, needs to be expanded to some 682 /// other code sequence, or the target has a custom expander for it. 683 LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const { 684 if (ValVT.isExtended() || MemVT.isExtended()) return Expand; 685 unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy; 686 unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy; 687 assert(ValI < MVT::LAST_VALUETYPE && MemI < MVT::LAST_VALUETYPE && 688 "Table isn't big enough!"); 689 return TruncStoreActions[ValI][MemI]; 690 } 691 692 /// Return true if the specified store with truncation is legal on this 693 /// target. 694 bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const { 695 return isTypeLegal(ValVT) && getTruncStoreAction(ValVT, MemVT) == Legal; 696 } 697 698 /// Return true if the specified store with truncation has solution on this 699 /// target. 700 bool isTruncStoreLegalOrCustom(EVT ValVT, EVT MemVT) const { 701 return isTypeLegal(ValVT) && 702 (getTruncStoreAction(ValVT, MemVT) == Legal || 703 getTruncStoreAction(ValVT, MemVT) == Custom); 704 } 705 706 /// Return how the indexed load should be treated: either it is legal, needs 707 /// to be promoted to a larger size, needs to be expanded to some other code 708 /// sequence, or the target has a custom expander for it. 709 LegalizeAction 710 getIndexedLoadAction(unsigned IdxMode, MVT VT) const { 711 assert(IdxMode < ISD::LAST_INDEXED_MODE && VT.isValid() && 712 "Table isn't big enough!"); 713 unsigned Ty = (unsigned)VT.SimpleTy; 714 return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4); 715 } 716 717 /// Return true if the specified indexed load is legal on this target. 718 bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const { 719 return VT.isSimple() && 720 (getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Legal || 721 getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Custom); 722 } 723 724 /// Return how the indexed store should be treated: either it is legal, needs 725 /// to be promoted to a larger size, needs to be expanded to some other code 726 /// sequence, or the target has a custom expander for it. 727 LegalizeAction 728 getIndexedStoreAction(unsigned IdxMode, MVT VT) const { 729 assert(IdxMode < ISD::LAST_INDEXED_MODE && VT.isValid() && 730 "Table isn't big enough!"); 731 unsigned Ty = (unsigned)VT.SimpleTy; 732 return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f); 733 } 734 735 /// Return true if the specified indexed load is legal on this target. 736 bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const { 737 return VT.isSimple() && 738 (getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Legal || 739 getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Custom); 740 } 741 742 /// Return how the condition code should be treated: either it is legal, needs 743 /// to be expanded to some other code sequence, or the target has a custom 744 /// expander for it. 745 LegalizeAction 746 getCondCodeAction(ISD::CondCode CC, MVT VT) const { 747 assert((unsigned)CC < array_lengthof(CondCodeActions) && 748 ((unsigned)VT.SimpleTy >> 3) < array_lengthof(CondCodeActions[0]) && 749 "Table isn't big enough!"); 750 // See setCondCodeAction for how this is encoded. 751 uint32_t Shift = 4 * (VT.SimpleTy & 0x7); 752 uint32_t Value = CondCodeActions[CC][VT.SimpleTy >> 3]; 753 LegalizeAction Action = (LegalizeAction) ((Value >> Shift) & 0xF); 754 assert(Action != Promote && "Can't promote condition code!"); 755 return Action; 756 } 757 758 /// Return true if the specified condition code is legal on this target. 759 bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const { 760 return 761 getCondCodeAction(CC, VT) == Legal || 762 getCondCodeAction(CC, VT) == Custom; 763 } 764 765 766 /// If the action for this operation is to promote, this method returns the 767 /// ValueType to promote to. 768 MVT getTypeToPromoteTo(unsigned Op, MVT VT) const { 769 assert(getOperationAction(Op, VT) == Promote && 770 "This operation isn't promoted!"); 771 772 // See if this has an explicit type specified. 773 std::map<std::pair<unsigned, MVT::SimpleValueType>, 774 MVT::SimpleValueType>::const_iterator PTTI = 775 PromoteToType.find(std::make_pair(Op, VT.SimpleTy)); 776 if (PTTI != PromoteToType.end()) return PTTI->second; 777 778 assert((VT.isInteger() || VT.isFloatingPoint()) && 779 "Cannot autopromote this type, add it with AddPromotedToType."); 780 781 MVT NVT = VT; 782 do { 783 NVT = (MVT::SimpleValueType)(NVT.SimpleTy+1); 784 assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid && 785 "Didn't find type to promote to!"); 786 } while (!isTypeLegal(NVT) || 787 getOperationAction(Op, NVT) == Promote); 788 return NVT; 789 } 790 791 /// Return the EVT corresponding to this LLVM type. This is fixed by the LLVM 792 /// operations except for the pointer size. If AllowUnknown is true, this 793 /// will return MVT::Other for types with no EVT counterpart (e.g. structs), 794 /// otherwise it will assert. 795 EVT getValueType(const DataLayout &DL, Type *Ty, 796 bool AllowUnknown = false) const { 797 // Lower scalar pointers to native pointer types. 798 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) 799 return getPointerTy(DL, PTy->getAddressSpace()); 800 801 if (Ty->isVectorTy()) { 802 VectorType *VTy = cast<VectorType>(Ty); 803 Type *Elm = VTy->getElementType(); 804 // Lower vectors of pointers to native pointer types. 805 if (PointerType *PT = dyn_cast<PointerType>(Elm)) { 806 EVT PointerTy(getPointerTy(DL, PT->getAddressSpace())); 807 Elm = PointerTy.getTypeForEVT(Ty->getContext()); 808 } 809 810 return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(Elm, false), 811 VTy->getNumElements()); 812 } 813 return EVT::getEVT(Ty, AllowUnknown); 814 } 815 816 /// Return the MVT corresponding to this LLVM type. See getValueType. 817 MVT getSimpleValueType(const DataLayout &DL, Type *Ty, 818 bool AllowUnknown = false) const { 819 return getValueType(DL, Ty, AllowUnknown).getSimpleVT(); 820 } 821 822 /// Return the desired alignment for ByVal or InAlloca aggregate function 823 /// arguments in the caller parameter area. This is the actual alignment, not 824 /// its logarithm. 825 virtual unsigned getByValTypeAlignment(Type *Ty, const DataLayout &DL) const; 826 827 /// Return the type of registers that this ValueType will eventually require. 828 MVT getRegisterType(MVT VT) const { 829 assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT)); 830 return RegisterTypeForVT[VT.SimpleTy]; 831 } 832 833 /// Return the type of registers that this ValueType will eventually require. 834 MVT getRegisterType(LLVMContext &Context, EVT VT) const { 835 if (VT.isSimple()) { 836 assert((unsigned)VT.getSimpleVT().SimpleTy < 837 array_lengthof(RegisterTypeForVT)); 838 return RegisterTypeForVT[VT.getSimpleVT().SimpleTy]; 839 } 840 if (VT.isVector()) { 841 EVT VT1; 842 MVT RegisterVT; 843 unsigned NumIntermediates; 844 (void)getVectorTypeBreakdown(Context, VT, VT1, 845 NumIntermediates, RegisterVT); 846 return RegisterVT; 847 } 848 if (VT.isInteger()) { 849 return getRegisterType(Context, getTypeToTransformTo(Context, VT)); 850 } 851 llvm_unreachable("Unsupported extended type!"); 852 } 853 854 /// Return the number of registers that this ValueType will eventually 855 /// require. 856 /// 857 /// This is one for any types promoted to live in larger registers, but may be 858 /// more than one for types (like i64) that are split into pieces. For types 859 /// like i140, which are first promoted then expanded, it is the number of 860 /// registers needed to hold all the bits of the original type. For an i140 861 /// on a 32 bit machine this means 5 registers. 862 unsigned getNumRegisters(LLVMContext &Context, EVT VT) const { 863 if (VT.isSimple()) { 864 assert((unsigned)VT.getSimpleVT().SimpleTy < 865 array_lengthof(NumRegistersForVT)); 866 return NumRegistersForVT[VT.getSimpleVT().SimpleTy]; 867 } 868 if (VT.isVector()) { 869 EVT VT1; 870 MVT VT2; 871 unsigned NumIntermediates; 872 return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2); 873 } 874 if (VT.isInteger()) { 875 unsigned BitWidth = VT.getSizeInBits(); 876 unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits(); 877 return (BitWidth + RegWidth - 1) / RegWidth; 878 } 879 llvm_unreachable("Unsupported extended type!"); 880 } 881 882 /// If true, then instruction selection should seek to shrink the FP constant 883 /// of the specified type to a smaller type in order to save space and / or 884 /// reduce runtime. 885 virtual bool ShouldShrinkFPConstant(EVT) const { return true; } 886 887 // Return true if it is profitable to reduce the given load node to a smaller 888 // type. 889 // 890 // e.g. (i16 (trunc (i32 (load x))) -> i16 load x should be performed 891 virtual bool shouldReduceLoadWidth(SDNode *Load, 892 ISD::LoadExtType ExtTy, 893 EVT NewVT) const { 894 return true; 895 } 896 897 /// When splitting a value of the specified type into parts, does the Lo 898 /// or Hi part come first? This usually follows the endianness, except 899 /// for ppcf128, where the Hi part always comes first. 900 bool hasBigEndianPartOrdering(EVT VT, const DataLayout &DL) const { 901 return DL.isBigEndian() || VT == MVT::ppcf128; 902 } 903 904 /// If true, the target has custom DAG combine transformations that it can 905 /// perform for the specified node. 906 bool hasTargetDAGCombine(ISD::NodeType NT) const { 907 assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray)); 908 return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7)); 909 } 910 911 unsigned getGatherAllAliasesMaxDepth() const { 912 return GatherAllAliasesMaxDepth; 913 } 914 915 /// \brief Get maximum # of store operations permitted for llvm.memset 916 /// 917 /// This function returns the maximum number of store operations permitted 918 /// to replace a call to llvm.memset. The value is set by the target at the 919 /// performance threshold for such a replacement. If OptSize is true, 920 /// return the limit for functions that have OptSize attribute. 921 unsigned getMaxStoresPerMemset(bool OptSize) const { 922 return OptSize ? MaxStoresPerMemsetOptSize : MaxStoresPerMemset; 923 } 924 925 /// \brief Get maximum # of store operations permitted for llvm.memcpy 926 /// 927 /// This function returns the maximum number of store operations permitted 928 /// to replace a call to llvm.memcpy. The value is set by the target at the 929 /// performance threshold for such a replacement. If OptSize is true, 930 /// return the limit for functions that have OptSize attribute. 931 unsigned getMaxStoresPerMemcpy(bool OptSize) const { 932 return OptSize ? MaxStoresPerMemcpyOptSize : MaxStoresPerMemcpy; 933 } 934 935 /// \brief Get maximum # of store operations permitted for llvm.memmove 936 /// 937 /// This function returns the maximum number of store operations permitted 938 /// to replace a call to llvm.memmove. The value is set by the target at the 939 /// performance threshold for such a replacement. If OptSize is true, 940 /// return the limit for functions that have OptSize attribute. 941 unsigned getMaxStoresPerMemmove(bool OptSize) const { 942 return OptSize ? MaxStoresPerMemmoveOptSize : MaxStoresPerMemmove; 943 } 944 945 /// \brief Determine if the target supports unaligned memory accesses. 946 /// 947 /// This function returns true if the target allows unaligned memory accesses 948 /// of the specified type in the given address space. If true, it also returns 949 /// whether the unaligned memory access is "fast" in the last argument by 950 /// reference. This is used, for example, in situations where an array 951 /// copy/move/set is converted to a sequence of store operations. Its use 952 /// helps to ensure that such replacements don't generate code that causes an 953 /// alignment error (trap) on the target machine. 954 virtual bool allowsMisalignedMemoryAccesses(EVT, 955 unsigned AddrSpace = 0, 956 unsigned Align = 1, 957 bool * /*Fast*/ = nullptr) const { 958 return false; 959 } 960 961 /// Return true if the target supports a memory access of this type for the 962 /// given address space and alignment. If the access is allowed, the optional 963 /// final parameter returns if the access is also fast (as defined by the 964 /// target). 965 bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT, 966 unsigned AddrSpace = 0, unsigned Alignment = 1, 967 bool *Fast = nullptr) const; 968 969 /// Returns the target specific optimal type for load and store operations as 970 /// a result of memset, memcpy, and memmove lowering. 971 /// 972 /// If DstAlign is zero that means it's safe to destination alignment can 973 /// satisfy any constraint. Similarly if SrcAlign is zero it means there isn't 974 /// a need to check it against alignment requirement, probably because the 975 /// source does not need to be loaded. If 'IsMemset' is true, that means it's 976 /// expanding a memset. If 'ZeroMemset' is true, that means it's a memset of 977 /// zero. 'MemcpyStrSrc' indicates whether the memcpy source is constant so it 978 /// does not need to be loaded. It returns EVT::Other if the type should be 979 /// determined using generic target-independent logic. 980 virtual EVT getOptimalMemOpType(uint64_t /*Size*/, 981 unsigned /*DstAlign*/, unsigned /*SrcAlign*/, 982 bool /*IsMemset*/, 983 bool /*ZeroMemset*/, 984 bool /*MemcpyStrSrc*/, 985 MachineFunction &/*MF*/) const { 986 return MVT::Other; 987 } 988 989 /// Returns true if it's safe to use load / store of the specified type to 990 /// expand memcpy / memset inline. 991 /// 992 /// This is mostly true for all types except for some special cases. For 993 /// example, on X86 targets without SSE2 f64 load / store are done with fldl / 994 /// fstpl which also does type conversion. Note the specified type doesn't 995 /// have to be legal as the hook is used before type legalization. 996 virtual bool isSafeMemOpType(MVT /*VT*/) const { return true; } 997 998 /// Determine if we should use _setjmp or setjmp to implement llvm.setjmp. 999 bool usesUnderscoreSetJmp() const { 1000 return UseUnderscoreSetJmp; 1001 } 1002 1003 /// Determine if we should use _longjmp or longjmp to implement llvm.longjmp. 1004 bool usesUnderscoreLongJmp() const { 1005 return UseUnderscoreLongJmp; 1006 } 1007 1008 /// Return integer threshold on number of blocks to use jump tables rather 1009 /// than if sequence. 1010 int getMinimumJumpTableEntries() const { 1011 return MinimumJumpTableEntries; 1012 } 1013 1014 /// If a physical register, this specifies the register that 1015 /// llvm.savestack/llvm.restorestack should save and restore. 1016 unsigned getStackPointerRegisterToSaveRestore() const { 1017 return StackPointerRegisterToSaveRestore; 1018 } 1019 1020 /// If a physical register, this returns the register that receives the 1021 /// exception address on entry to an EH pad. 1022 virtual unsigned 1023 getExceptionPointerRegister(const Constant *PersonalityFn) const { 1024 // 0 is guaranteed to be the NoRegister value on all targets 1025 return 0; 1026 } 1027 1028 /// If a physical register, this returns the register that receives the 1029 /// exception typeid on entry to a landing pad. 1030 virtual unsigned 1031 getExceptionSelectorRegister(const Constant *PersonalityFn) const { 1032 // 0 is guaranteed to be the NoRegister value on all targets 1033 return 0; 1034 } 1035 1036 virtual bool needsFixedCatchObjects() const { 1037 report_fatal_error("Funclet EH is not implemented for this target"); 1038 } 1039 1040 /// Returns the target's jmp_buf size in bytes (if never set, the default is 1041 /// 200) 1042 unsigned getJumpBufSize() const { 1043 return JumpBufSize; 1044 } 1045 1046 /// Returns the target's jmp_buf alignment in bytes (if never set, the default 1047 /// is 0) 1048 unsigned getJumpBufAlignment() const { 1049 return JumpBufAlignment; 1050 } 1051 1052 /// Return the minimum stack alignment of an argument. 1053 unsigned getMinStackArgumentAlignment() const { 1054 return MinStackArgumentAlignment; 1055 } 1056 1057 /// Return the minimum function alignment. 1058 unsigned getMinFunctionAlignment() const { 1059 return MinFunctionAlignment; 1060 } 1061 1062 /// Return the preferred function alignment. 1063 unsigned getPrefFunctionAlignment() const { 1064 return PrefFunctionAlignment; 1065 } 1066 1067 /// Return the preferred loop alignment. 1068 virtual unsigned getPrefLoopAlignment(MachineLoop *ML = nullptr) const { 1069 return PrefLoopAlignment; 1070 } 1071 1072 /// If the target has a standard location for the stack protector guard, 1073 /// returns the address of that location. Otherwise, returns nullptr. 1074 /// DEPRECATED: please override useLoadStackGuardNode and customize 1075 /// LOAD_STACK_GUARD, or customize @llvm.stackguard(). 1076 virtual Value *getIRStackGuard(IRBuilder<> &IRB) const; 1077 1078 /// Inserts necessary declarations for SSP (stack protection) purpose. 1079 /// Should be used only when getIRStackGuard returns nullptr. 1080 virtual void insertSSPDeclarations(Module &M) const; 1081 1082 /// Return the variable that's previously inserted by insertSSPDeclarations, 1083 /// if any, otherwise return nullptr. Should be used only when 1084 /// getIRStackGuard returns nullptr. 1085 virtual Value *getSDagStackGuard(const Module &M) const; 1086 1087 /// If the target has a standard stack protection check function that 1088 /// performs validation and error handling, returns the function. Otherwise, 1089 /// returns nullptr. Must be previously inserted by insertSSPDeclarations. 1090 /// Should be used only when getIRStackGuard returns nullptr. 1091 virtual Value *getSSPStackGuardCheck(const Module &M) const; 1092 1093 /// If the target has a standard location for the unsafe stack pointer, 1094 /// returns the address of that location. Otherwise, returns nullptr. 1095 virtual Value *getSafeStackPointerLocation(IRBuilder<> &IRB) const; 1096 1097 /// Returns true if a cast between SrcAS and DestAS is a noop. 1098 virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const { 1099 return false; 1100 } 1101 1102 /// Return true if the pointer arguments to CI should be aligned by aligning 1103 /// the object whose address is being passed. If so then MinSize is set to the 1104 /// minimum size the object must be to be aligned and PrefAlign is set to the 1105 /// preferred alignment. 1106 virtual bool shouldAlignPointerArgs(CallInst * /*CI*/, unsigned & /*MinSize*/, 1107 unsigned & /*PrefAlign*/) const { 1108 return false; 1109 } 1110 1111 //===--------------------------------------------------------------------===// 1112 /// \name Helpers for TargetTransformInfo implementations 1113 /// @{ 1114 1115 /// Get the ISD node that corresponds to the Instruction class opcode. 1116 int InstructionOpcodeToISD(unsigned Opcode) const; 1117 1118 /// Estimate the cost of type-legalization and the legalized type. 1119 std::pair<int, MVT> getTypeLegalizationCost(const DataLayout &DL, 1120 Type *Ty) const; 1121 1122 /// @} 1123 1124 //===--------------------------------------------------------------------===// 1125 /// \name Helpers for atomic expansion. 1126 /// @{ 1127 1128 /// Returns the maximum atomic operation size (in bits) supported by 1129 /// the backend. Atomic operations greater than this size (as well 1130 /// as ones that are not naturally aligned), will be expanded by 1131 /// AtomicExpandPass into an __atomic_* library call. 1132 unsigned getMaxAtomicSizeInBitsSupported() const { 1133 return MaxAtomicSizeInBitsSupported; 1134 } 1135 1136 /// Returns the size of the smallest cmpxchg or ll/sc instruction 1137 /// the backend supports. Any smaller operations are widened in 1138 /// AtomicExpandPass. 1139 /// 1140 /// Note that *unlike* operations above the maximum size, atomic ops 1141 /// are still natively supported below the minimum; they just 1142 /// require a more complex expansion. 1143 unsigned getMinCmpXchgSizeInBits() const { return MinCmpXchgSizeInBits; } 1144 1145 /// Whether AtomicExpandPass should automatically insert fences and reduce 1146 /// ordering for this atomic. This should be true for most architectures with 1147 /// weak memory ordering. Defaults to false. 1148 virtual bool shouldInsertFencesForAtomic(const Instruction *I) const { 1149 return false; 1150 } 1151 1152 /// Perform a load-linked operation on Addr, returning a "Value *" with the 1153 /// corresponding pointee type. This may entail some non-trivial operations to 1154 /// truncate or reconstruct types that will be illegal in the backend. See 1155 /// ARMISelLowering for an example implementation. 1156 virtual Value *emitLoadLinked(IRBuilder<> &Builder, Value *Addr, 1157 AtomicOrdering Ord) const { 1158 llvm_unreachable("Load linked unimplemented on this target"); 1159 } 1160 1161 /// Perform a store-conditional operation to Addr. Return the status of the 1162 /// store. This should be 0 if the store succeeded, non-zero otherwise. 1163 virtual Value *emitStoreConditional(IRBuilder<> &Builder, Value *Val, 1164 Value *Addr, AtomicOrdering Ord) const { 1165 llvm_unreachable("Store conditional unimplemented on this target"); 1166 } 1167 1168 /// Inserts in the IR a target-specific intrinsic specifying a fence. 1169 /// It is called by AtomicExpandPass before expanding an 1170 /// AtomicRMW/AtomicCmpXchg/AtomicStore/AtomicLoad 1171 /// if shouldInsertFencesForAtomic returns true. 1172 /// RMW and CmpXchg set both IsStore and IsLoad to true. 1173 /// This function should either return a nullptr, or a pointer to an IR-level 1174 /// Instruction*. Even complex fence sequences can be represented by a 1175 /// single Instruction* through an intrinsic to be lowered later. 1176 /// Backends should override this method to produce target-specific intrinsic 1177 /// for their fences. 1178 /// FIXME: Please note that the default implementation here in terms of 1179 /// IR-level fences exists for historical/compatibility reasons and is 1180 /// *unsound* ! Fences cannot, in general, be used to restore sequential 1181 /// consistency. For example, consider the following example: 1182 /// atomic<int> x = y = 0; 1183 /// int r1, r2, r3, r4; 1184 /// Thread 0: 1185 /// x.store(1); 1186 /// Thread 1: 1187 /// y.store(1); 1188 /// Thread 2: 1189 /// r1 = x.load(); 1190 /// r2 = y.load(); 1191 /// Thread 3: 1192 /// r3 = y.load(); 1193 /// r4 = x.load(); 1194 /// r1 = r3 = 1 and r2 = r4 = 0 is impossible as long as the accesses are all 1195 /// seq_cst. But if they are lowered to monotonic accesses, no amount of 1196 /// IR-level fences can prevent it. 1197 /// @{ 1198 virtual Instruction *emitLeadingFence(IRBuilder<> &Builder, 1199 AtomicOrdering Ord, bool IsStore, 1200 bool IsLoad) const { 1201 if (isReleaseOrStronger(Ord) && IsStore) 1202 return Builder.CreateFence(Ord); 1203 else 1204 return nullptr; 1205 } 1206 1207 virtual Instruction *emitTrailingFence(IRBuilder<> &Builder, 1208 AtomicOrdering Ord, bool IsStore, 1209 bool IsLoad) const { 1210 if (isAcquireOrStronger(Ord)) 1211 return Builder.CreateFence(Ord); 1212 else 1213 return nullptr; 1214 } 1215 /// @} 1216 1217 // Emits code that executes when the comparison result in the ll/sc 1218 // expansion of a cmpxchg instruction is such that the store-conditional will 1219 // not execute. This makes it possible to balance out the load-linked with 1220 // a dedicated instruction, if desired. 1221 // E.g., on ARM, if ldrex isn't followed by strex, the exclusive monitor would 1222 // be unnecessarily held, except if clrex, inserted by this hook, is executed. 1223 virtual void emitAtomicCmpXchgNoStoreLLBalance(IRBuilder<> &Builder) const {} 1224 1225 /// Returns true if the given (atomic) store should be expanded by the 1226 /// IR-level AtomicExpand pass into an "atomic xchg" which ignores its input. 1227 virtual bool shouldExpandAtomicStoreInIR(StoreInst *SI) const { 1228 return false; 1229 } 1230 1231 /// Returns true if arguments should be sign-extended in lib calls. 1232 virtual bool shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 1233 return IsSigned; 1234 } 1235 1236 /// Returns how the given (atomic) load should be expanded by the 1237 /// IR-level AtomicExpand pass. 1238 virtual AtomicExpansionKind shouldExpandAtomicLoadInIR(LoadInst *LI) const { 1239 return AtomicExpansionKind::None; 1240 } 1241 1242 /// Returns true if the given atomic cmpxchg should be expanded by the 1243 /// IR-level AtomicExpand pass into a load-linked/store-conditional sequence 1244 /// (through emitLoadLinked() and emitStoreConditional()). 1245 virtual bool shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const { 1246 return false; 1247 } 1248 1249 /// Returns how the IR-level AtomicExpand pass should expand the given 1250 /// AtomicRMW, if at all. Default is to never expand. 1251 virtual AtomicExpansionKind shouldExpandAtomicRMWInIR(AtomicRMWInst *) const { 1252 return AtomicExpansionKind::None; 1253 } 1254 1255 /// On some platforms, an AtomicRMW that never actually modifies the value 1256 /// (such as fetch_add of 0) can be turned into a fence followed by an 1257 /// atomic load. This may sound useless, but it makes it possible for the 1258 /// processor to keep the cacheline shared, dramatically improving 1259 /// performance. And such idempotent RMWs are useful for implementing some 1260 /// kinds of locks, see for example (justification + benchmarks): 1261 /// http://www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf 1262 /// This method tries doing that transformation, returning the atomic load if 1263 /// it succeeds, and nullptr otherwise. 1264 /// If shouldExpandAtomicLoadInIR returns true on that load, it will undergo 1265 /// another round of expansion. 1266 virtual LoadInst * 1267 lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *RMWI) const { 1268 return nullptr; 1269 } 1270 1271 /// Returns how the platform's atomic operations are extended (ZERO_EXTEND, 1272 /// SIGN_EXTEND, or ANY_EXTEND). 1273 virtual ISD::NodeType getExtendForAtomicOps() const { 1274 return ISD::ZERO_EXTEND; 1275 } 1276 1277 /// @} 1278 1279 /// Returns true if we should normalize 1280 /// select(N0&N1, X, Y) => select(N0, select(N1, X, Y), Y) and 1281 /// select(N0|N1, X, Y) => select(N0, select(N1, X, Y, Y)) if it is likely 1282 /// that it saves us from materializing N0 and N1 in an integer register. 1283 /// Targets that are able to perform and/or on flags should return false here. 1284 virtual bool shouldNormalizeToSelectSequence(LLVMContext &Context, 1285 EVT VT) const { 1286 // If a target has multiple condition registers, then it likely has logical 1287 // operations on those registers. 1288 if (hasMultipleConditionRegisters()) 1289 return false; 1290 // Only do the transform if the value won't be split into multiple 1291 // registers. 1292 LegalizeTypeAction Action = getTypeAction(Context, VT); 1293 return Action != TypeExpandInteger && Action != TypeExpandFloat && 1294 Action != TypeSplitVector; 1295 } 1296 1297 //===--------------------------------------------------------------------===// 1298 // TargetLowering Configuration Methods - These methods should be invoked by 1299 // the derived class constructor to configure this object for the target. 1300 // 1301 protected: 1302 /// Specify how the target extends the result of integer and floating point 1303 /// boolean values from i1 to a wider type. See getBooleanContents. 1304 void setBooleanContents(BooleanContent Ty) { 1305 BooleanContents = Ty; 1306 BooleanFloatContents = Ty; 1307 } 1308 1309 /// Specify how the target extends the result of integer and floating point 1310 /// boolean values from i1 to a wider type. See getBooleanContents. 1311 void setBooleanContents(BooleanContent IntTy, BooleanContent FloatTy) { 1312 BooleanContents = IntTy; 1313 BooleanFloatContents = FloatTy; 1314 } 1315 1316 /// Specify how the target extends the result of a vector boolean value from a 1317 /// vector of i1 to a wider type. See getBooleanContents. 1318 void setBooleanVectorContents(BooleanContent Ty) { 1319 BooleanVectorContents = Ty; 1320 } 1321 1322 /// Specify the target scheduling preference. 1323 void setSchedulingPreference(Sched::Preference Pref) { 1324 SchedPreferenceInfo = Pref; 1325 } 1326 1327 /// Indicate whether this target prefers to use _setjmp to implement 1328 /// llvm.setjmp or the version without _. Defaults to false. 1329 void setUseUnderscoreSetJmp(bool Val) { 1330 UseUnderscoreSetJmp = Val; 1331 } 1332 1333 /// Indicate whether this target prefers to use _longjmp to implement 1334 /// llvm.longjmp or the version without _. Defaults to false. 1335 void setUseUnderscoreLongJmp(bool Val) { 1336 UseUnderscoreLongJmp = Val; 1337 } 1338 1339 /// Indicate the number of blocks to generate jump tables rather than if 1340 /// sequence. 1341 void setMinimumJumpTableEntries(int Val) { 1342 MinimumJumpTableEntries = Val; 1343 } 1344 1345 /// If set to a physical register, this specifies the register that 1346 /// llvm.savestack/llvm.restorestack should save and restore. 1347 void setStackPointerRegisterToSaveRestore(unsigned R) { 1348 StackPointerRegisterToSaveRestore = R; 1349 } 1350 1351 /// Tells the code generator not to expand operations into sequences that use 1352 /// the select operations if possible. 1353 void setSelectIsExpensive(bool isExpensive = true) { 1354 SelectIsExpensive = isExpensive; 1355 } 1356 1357 /// Tells the code generator that the target has multiple (allocatable) 1358 /// condition registers that can be used to store the results of comparisons 1359 /// for use by selects and conditional branches. With multiple condition 1360 /// registers, the code generator will not aggressively sink comparisons into 1361 /// the blocks of their users. 1362 void setHasMultipleConditionRegisters(bool hasManyRegs = true) { 1363 HasMultipleConditionRegisters = hasManyRegs; 1364 } 1365 1366 /// Tells the code generator that the target has BitExtract instructions. 1367 /// The code generator will aggressively sink "shift"s into the blocks of 1368 /// their users if the users will generate "and" instructions which can be 1369 /// combined with "shift" to BitExtract instructions. 1370 void setHasExtractBitsInsn(bool hasExtractInsn = true) { 1371 HasExtractBitsInsn = hasExtractInsn; 1372 } 1373 1374 /// Tells the code generator not to expand logic operations on comparison 1375 /// predicates into separate sequences that increase the amount of flow 1376 /// control. 1377 void setJumpIsExpensive(bool isExpensive = true); 1378 1379 /// Tells the code generator that fsqrt is cheap, and should not be replaced 1380 /// with an alternative sequence of instructions. 1381 void setFsqrtIsCheap(bool isCheap = true) { FsqrtIsCheap = isCheap; } 1382 1383 /// Tells the code generator that this target supports floating point 1384 /// exceptions and cares about preserving floating point exception behavior. 1385 void setHasFloatingPointExceptions(bool FPExceptions = true) { 1386 HasFloatingPointExceptions = FPExceptions; 1387 } 1388 1389 /// Tells the code generator which bitwidths to bypass. 1390 void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth) { 1391 BypassSlowDivWidths[SlowBitWidth] = FastBitWidth; 1392 } 1393 1394 /// Add the specified register class as an available regclass for the 1395 /// specified value type. This indicates the selector can handle values of 1396 /// that class natively. 1397 void addRegisterClass(MVT VT, const TargetRegisterClass *RC) { 1398 assert((unsigned)VT.SimpleTy < array_lengthof(RegClassForVT)); 1399 AvailableRegClasses.push_back(std::make_pair(VT, RC)); 1400 RegClassForVT[VT.SimpleTy] = RC; 1401 } 1402 1403 /// Remove all register classes. 1404 void clearRegisterClasses() { 1405 std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr); 1406 1407 AvailableRegClasses.clear(); 1408 } 1409 1410 /// \brief Remove all operation actions. 1411 void clearOperationActions() { 1412 } 1413 1414 /// Return the largest legal super-reg register class of the register class 1415 /// for the specified type and its associated "cost". 1416 virtual std::pair<const TargetRegisterClass *, uint8_t> 1417 findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const; 1418 1419 /// Once all of the register classes are added, this allows us to compute 1420 /// derived properties we expose. 1421 void computeRegisterProperties(const TargetRegisterInfo *TRI); 1422 1423 /// Indicate that the specified operation does not work with the specified 1424 /// type and indicate what to do about it. 1425 void setOperationAction(unsigned Op, MVT VT, 1426 LegalizeAction Action) { 1427 assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!"); 1428 OpActions[(unsigned)VT.SimpleTy][Op] = Action; 1429 } 1430 1431 /// Indicate that the specified load with extension does not work with the 1432 /// specified type and indicate what to do about it. 1433 void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, 1434 LegalizeAction Action) { 1435 assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValVT.isValid() && 1436 MemVT.isValid() && "Table isn't big enough!"); 1437 assert((unsigned)Action < 0x10 && "too many bits for bitfield array"); 1438 unsigned Shift = 4 * ExtType; 1439 LoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy] &= ~((uint16_t)0xF << Shift); 1440 LoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy] |= (uint16_t)Action << Shift; 1441 } 1442 1443 /// Indicate that the specified truncating store does not work with the 1444 /// specified type and indicate what to do about it. 1445 void setTruncStoreAction(MVT ValVT, MVT MemVT, 1446 LegalizeAction Action) { 1447 assert(ValVT.isValid() && MemVT.isValid() && "Table isn't big enough!"); 1448 TruncStoreActions[(unsigned)ValVT.SimpleTy][MemVT.SimpleTy] = Action; 1449 } 1450 1451 /// Indicate that the specified indexed load does or does not work with the 1452 /// specified type and indicate what to do abort it. 1453 /// 1454 /// NOTE: All indexed mode loads are initialized to Expand in 1455 /// TargetLowering.cpp 1456 void setIndexedLoadAction(unsigned IdxMode, MVT VT, 1457 LegalizeAction Action) { 1458 assert(VT.isValid() && IdxMode < ISD::LAST_INDEXED_MODE && 1459 (unsigned)Action < 0xf && "Table isn't big enough!"); 1460 // Load action are kept in the upper half. 1461 IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0; 1462 IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4; 1463 } 1464 1465 /// Indicate that the specified indexed store does or does not work with the 1466 /// specified type and indicate what to do about it. 1467 /// 1468 /// NOTE: All indexed mode stores are initialized to Expand in 1469 /// TargetLowering.cpp 1470 void setIndexedStoreAction(unsigned IdxMode, MVT VT, 1471 LegalizeAction Action) { 1472 assert(VT.isValid() && IdxMode < ISD::LAST_INDEXED_MODE && 1473 (unsigned)Action < 0xf && "Table isn't big enough!"); 1474 // Store action are kept in the lower half. 1475 IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f; 1476 IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action); 1477 } 1478 1479 /// Indicate that the specified condition code is or isn't supported on the 1480 /// target and indicate what to do about it. 1481 void setCondCodeAction(ISD::CondCode CC, MVT VT, 1482 LegalizeAction Action) { 1483 assert(VT.isValid() && (unsigned)CC < array_lengthof(CondCodeActions) && 1484 "Table isn't big enough!"); 1485 assert((unsigned)Action < 0x10 && "too many bits for bitfield array"); 1486 /// The lower 3 bits of the SimpleTy index into Nth 4bit set from the 32-bit 1487 /// value and the upper 29 bits index into the second dimension of the array 1488 /// to select what 32-bit value to use. 1489 uint32_t Shift = 4 * (VT.SimpleTy & 0x7); 1490 CondCodeActions[CC][VT.SimpleTy >> 3] &= ~((uint32_t)0xF << Shift); 1491 CondCodeActions[CC][VT.SimpleTy >> 3] |= (uint32_t)Action << Shift; 1492 } 1493 1494 /// If Opc/OrigVT is specified as being promoted, the promotion code defaults 1495 /// to trying a larger integer/fp until it can find one that works. If that 1496 /// default is insufficient, this method can be used by the target to override 1497 /// the default. 1498 void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) { 1499 PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy; 1500 } 1501 1502 /// Convenience method to set an operation to Promote and specify the type 1503 /// in a single call. 1504 void setOperationPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) { 1505 setOperationAction(Opc, OrigVT, Promote); 1506 AddPromotedToType(Opc, OrigVT, DestVT); 1507 } 1508 1509 /// Targets should invoke this method for each target independent node that 1510 /// they want to provide a custom DAG combiner for by implementing the 1511 /// PerformDAGCombine virtual method. 1512 void setTargetDAGCombine(ISD::NodeType NT) { 1513 assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray)); 1514 TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7); 1515 } 1516 1517 /// Set the target's required jmp_buf buffer size (in bytes); default is 200 1518 void setJumpBufSize(unsigned Size) { 1519 JumpBufSize = Size; 1520 } 1521 1522 /// Set the target's required jmp_buf buffer alignment (in bytes); default is 1523 /// 0 1524 void setJumpBufAlignment(unsigned Align) { 1525 JumpBufAlignment = Align; 1526 } 1527 1528 /// Set the target's minimum function alignment (in log2(bytes)) 1529 void setMinFunctionAlignment(unsigned Align) { 1530 MinFunctionAlignment = Align; 1531 } 1532 1533 /// Set the target's preferred function alignment. This should be set if 1534 /// there is a performance benefit to higher-than-minimum alignment (in 1535 /// log2(bytes)) 1536 void setPrefFunctionAlignment(unsigned Align) { 1537 PrefFunctionAlignment = Align; 1538 } 1539 1540 /// Set the target's preferred loop alignment. Default alignment is zero, it 1541 /// means the target does not care about loop alignment. The alignment is 1542 /// specified in log2(bytes). The target may also override 1543 /// getPrefLoopAlignment to provide per-loop values. 1544 void setPrefLoopAlignment(unsigned Align) { 1545 PrefLoopAlignment = Align; 1546 } 1547 1548 /// Set the minimum stack alignment of an argument (in log2(bytes)). 1549 void setMinStackArgumentAlignment(unsigned Align) { 1550 MinStackArgumentAlignment = Align; 1551 } 1552 1553 /// Set the maximum atomic operation size supported by the 1554 /// backend. Atomic operations greater than this size (as well as 1555 /// ones that are not naturally aligned), will be expanded by 1556 /// AtomicExpandPass into an __atomic_* library call. 1557 void setMaxAtomicSizeInBitsSupported(unsigned SizeInBits) { 1558 MaxAtomicSizeInBitsSupported = SizeInBits; 1559 } 1560 1561 // Sets the minimum cmpxchg or ll/sc size supported by the backend. 1562 void setMinCmpXchgSizeInBits(unsigned SizeInBits) { 1563 MinCmpXchgSizeInBits = SizeInBits; 1564 } 1565 1566 public: 1567 //===--------------------------------------------------------------------===// 1568 // Addressing mode description hooks (used by LSR etc). 1569 // 1570 1571 /// CodeGenPrepare sinks address calculations into the same BB as Load/Store 1572 /// instructions reading the address. This allows as much computation as 1573 /// possible to be done in the address mode for that operand. This hook lets 1574 /// targets also pass back when this should be done on intrinsics which 1575 /// load/store. 1576 virtual bool GetAddrModeArguments(IntrinsicInst * /*I*/, 1577 SmallVectorImpl<Value*> &/*Ops*/, 1578 Type *&/*AccessTy*/, 1579 unsigned AddrSpace = 0) const { 1580 return false; 1581 } 1582 1583 /// This represents an addressing mode of: 1584 /// BaseGV + BaseOffs + BaseReg + Scale*ScaleReg 1585 /// If BaseGV is null, there is no BaseGV. 1586 /// If BaseOffs is zero, there is no base offset. 1587 /// If HasBaseReg is false, there is no base register. 1588 /// If Scale is zero, there is no ScaleReg. Scale of 1 indicates a reg with 1589 /// no scale. 1590 struct AddrMode { 1591 GlobalValue *BaseGV; 1592 int64_t BaseOffs; 1593 bool HasBaseReg; 1594 int64_t Scale; 1595 AddrMode() : BaseGV(nullptr), BaseOffs(0), HasBaseReg(false), Scale(0) {} 1596 }; 1597 1598 /// Return true if the addressing mode represented by AM is legal for this 1599 /// target, for a load/store of the specified type. 1600 /// 1601 /// The type may be VoidTy, in which case only return true if the addressing 1602 /// mode is legal for a load/store of any legal type. TODO: Handle 1603 /// pre/postinc as well. 1604 /// 1605 /// If the address space cannot be determined, it will be -1. 1606 /// 1607 /// TODO: Remove default argument 1608 virtual bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, 1609 Type *Ty, unsigned AddrSpace) const; 1610 1611 /// \brief Return the cost of the scaling factor used in the addressing mode 1612 /// represented by AM for this target, for a load/store of the specified type. 1613 /// 1614 /// If the AM is supported, the return value must be >= 0. 1615 /// If the AM is not supported, it returns a negative value. 1616 /// TODO: Handle pre/postinc as well. 1617 /// TODO: Remove default argument 1618 virtual int getScalingFactorCost(const DataLayout &DL, const AddrMode &AM, 1619 Type *Ty, unsigned AS = 0) const { 1620 // Default: assume that any scaling factor used in a legal AM is free. 1621 if (isLegalAddressingMode(DL, AM, Ty, AS)) 1622 return 0; 1623 return -1; 1624 } 1625 1626 /// Return true if the specified immediate is legal icmp immediate, that is 1627 /// the target has icmp instructions which can compare a register against the 1628 /// immediate without having to materialize the immediate into a register. 1629 virtual bool isLegalICmpImmediate(int64_t) const { 1630 return true; 1631 } 1632 1633 /// Return true if the specified immediate is legal add immediate, that is the 1634 /// target has add instructions which can add a register with the immediate 1635 /// without having to materialize the immediate into a register. 1636 virtual bool isLegalAddImmediate(int64_t) const { 1637 return true; 1638 } 1639 1640 /// Return true if it's significantly cheaper to shift a vector by a uniform 1641 /// scalar than by an amount which will vary across each lane. On x86, for 1642 /// example, there is a "psllw" instruction for the former case, but no simple 1643 /// instruction for a general "a << b" operation on vectors. 1644 virtual bool isVectorShiftByScalarCheap(Type *Ty) const { 1645 return false; 1646 } 1647 1648 /// Return true if it's free to truncate a value of type FromTy to type 1649 /// ToTy. e.g. On x86 it's free to truncate a i32 value in register EAX to i16 1650 /// by referencing its sub-register AX. 1651 /// Targets must return false when FromTy <= ToTy. 1652 virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const { 1653 return false; 1654 } 1655 1656 /// Return true if a truncation from FromTy to ToTy is permitted when deciding 1657 /// whether a call is in tail position. Typically this means that both results 1658 /// would be assigned to the same register or stack slot, but it could mean 1659 /// the target performs adequate checks of its own before proceeding with the 1660 /// tail call. Targets must return false when FromTy <= ToTy. 1661 virtual bool allowTruncateForTailCall(Type *FromTy, Type *ToTy) const { 1662 return false; 1663 } 1664 1665 virtual bool isTruncateFree(EVT FromVT, EVT ToVT) const { 1666 return false; 1667 } 1668 1669 virtual bool isProfitableToHoist(Instruction *I) const { return true; } 1670 1671 /// Return true if the extension represented by \p I is free. 1672 /// Unlikely the is[Z|FP]ExtFree family which is based on types, 1673 /// this method can use the context provided by \p I to decide 1674 /// whether or not \p I is free. 1675 /// This method extends the behavior of the is[Z|FP]ExtFree family. 1676 /// In other words, if is[Z|FP]Free returns true, then this method 1677 /// returns true as well. The converse is not true. 1678 /// The target can perform the adequate checks by overriding isExtFreeImpl. 1679 /// \pre \p I must be a sign, zero, or fp extension. 1680 bool isExtFree(const Instruction *I) const { 1681 switch (I->getOpcode()) { 1682 case Instruction::FPExt: 1683 if (isFPExtFree(EVT::getEVT(I->getType()))) 1684 return true; 1685 break; 1686 case Instruction::ZExt: 1687 if (isZExtFree(I->getOperand(0)->getType(), I->getType())) 1688 return true; 1689 break; 1690 case Instruction::SExt: 1691 break; 1692 default: 1693 llvm_unreachable("Instruction is not an extension"); 1694 } 1695 return isExtFreeImpl(I); 1696 } 1697 1698 /// Return true if any actual instruction that defines a value of type FromTy 1699 /// implicitly zero-extends the value to ToTy in the result register. 1700 /// 1701 /// The function should return true when it is likely that the truncate can 1702 /// be freely folded with an instruction defining a value of FromTy. If 1703 /// the defining instruction is unknown (because you're looking at a 1704 /// function argument, PHI, etc.) then the target may require an 1705 /// explicit truncate, which is not necessarily free, but this function 1706 /// does not deal with those cases. 1707 /// Targets must return false when FromTy >= ToTy. 1708 virtual bool isZExtFree(Type *FromTy, Type *ToTy) const { 1709 return false; 1710 } 1711 1712 virtual bool isZExtFree(EVT FromTy, EVT ToTy) const { 1713 return false; 1714 } 1715 1716 /// Return true if the target supplies and combines to a paired load 1717 /// two loaded values of type LoadedType next to each other in memory. 1718 /// RequiredAlignment gives the minimal alignment constraints that must be met 1719 /// to be able to select this paired load. 1720 /// 1721 /// This information is *not* used to generate actual paired loads, but it is 1722 /// used to generate a sequence of loads that is easier to combine into a 1723 /// paired load. 1724 /// For instance, something like this: 1725 /// a = load i64* addr 1726 /// b = trunc i64 a to i32 1727 /// c = lshr i64 a, 32 1728 /// d = trunc i64 c to i32 1729 /// will be optimized into: 1730 /// b = load i32* addr1 1731 /// d = load i32* addr2 1732 /// Where addr1 = addr2 +/- sizeof(i32). 1733 /// 1734 /// In other words, unless the target performs a post-isel load combining, 1735 /// this information should not be provided because it will generate more 1736 /// loads. 1737 virtual bool hasPairedLoad(Type * /*LoadedType*/, 1738 unsigned & /*RequiredAligment*/) const { 1739 return false; 1740 } 1741 1742 virtual bool hasPairedLoad(EVT /*LoadedType*/, 1743 unsigned & /*RequiredAligment*/) const { 1744 return false; 1745 } 1746 1747 /// \brief Get the maximum supported factor for interleaved memory accesses. 1748 /// Default to be the minimum interleave factor: 2. 1749 virtual unsigned getMaxSupportedInterleaveFactor() const { return 2; } 1750 1751 /// \brief Lower an interleaved load to target specific intrinsics. Return 1752 /// true on success. 1753 /// 1754 /// \p LI is the vector load instruction. 1755 /// \p Shuffles is the shufflevector list to DE-interleave the loaded vector. 1756 /// \p Indices is the corresponding indices for each shufflevector. 1757 /// \p Factor is the interleave factor. 1758 virtual bool lowerInterleavedLoad(LoadInst *LI, 1759 ArrayRef<ShuffleVectorInst *> Shuffles, 1760 ArrayRef<unsigned> Indices, 1761 unsigned Factor) const { 1762 return false; 1763 } 1764 1765 /// \brief Lower an interleaved store to target specific intrinsics. Return 1766 /// true on success. 1767 /// 1768 /// \p SI is the vector store instruction. 1769 /// \p SVI is the shufflevector to RE-interleave the stored vector. 1770 /// \p Factor is the interleave factor. 1771 virtual bool lowerInterleavedStore(StoreInst *SI, ShuffleVectorInst *SVI, 1772 unsigned Factor) const { 1773 return false; 1774 } 1775 1776 /// Return true if zero-extending the specific node Val to type VT2 is free 1777 /// (either because it's implicitly zero-extended such as ARM ldrb / ldrh or 1778 /// because it's folded such as X86 zero-extending loads). 1779 virtual bool isZExtFree(SDValue Val, EVT VT2) const { 1780 return isZExtFree(Val.getValueType(), VT2); 1781 } 1782 1783 /// Return true if an fpext operation is free (for instance, because 1784 /// single-precision floating-point numbers are implicitly extended to 1785 /// double-precision). 1786 virtual bool isFPExtFree(EVT VT) const { 1787 assert(VT.isFloatingPoint()); 1788 return false; 1789 } 1790 1791 /// Return true if folding a vector load into ExtVal (a sign, zero, or any 1792 /// extend node) is profitable. 1793 virtual bool isVectorLoadExtDesirable(SDValue ExtVal) const { return false; } 1794 1795 /// Return true if an fneg operation is free to the point where it is never 1796 /// worthwhile to replace it with a bitwise operation. 1797 virtual bool isFNegFree(EVT VT) const { 1798 assert(VT.isFloatingPoint()); 1799 return false; 1800 } 1801 1802 /// Return true if an fabs operation is free to the point where it is never 1803 /// worthwhile to replace it with a bitwise operation. 1804 virtual bool isFAbsFree(EVT VT) const { 1805 assert(VT.isFloatingPoint()); 1806 return false; 1807 } 1808 1809 /// Return true if an FMA operation is faster than a pair of fmul and fadd 1810 /// instructions. fmuladd intrinsics will be expanded to FMAs when this method 1811 /// returns true, otherwise fmuladd is expanded to fmul + fadd. 1812 /// 1813 /// NOTE: This may be called before legalization on types for which FMAs are 1814 /// not legal, but should return true if those types will eventually legalize 1815 /// to types that support FMAs. After legalization, it will only be called on 1816 /// types that support FMAs (via Legal or Custom actions) 1817 virtual bool isFMAFasterThanFMulAndFAdd(EVT) const { 1818 return false; 1819 } 1820 1821 /// Return true if it's profitable to narrow operations of type VT1 to 1822 /// VT2. e.g. on x86, it's profitable to narrow from i32 to i8 but not from 1823 /// i32 to i16. 1824 virtual bool isNarrowingProfitable(EVT /*VT1*/, EVT /*VT2*/) const { 1825 return false; 1826 } 1827 1828 /// \brief Return true if it is beneficial to convert a load of a constant to 1829 /// just the constant itself. 1830 /// On some targets it might be more efficient to use a combination of 1831 /// arithmetic instructions to materialize the constant instead of loading it 1832 /// from a constant pool. 1833 virtual bool shouldConvertConstantLoadToIntImm(const APInt &Imm, 1834 Type *Ty) const { 1835 return false; 1836 } 1837 1838 /// Return true if EXTRACT_SUBVECTOR is cheap for this result type 1839 /// with this index. This is needed because EXTRACT_SUBVECTOR usually 1840 /// has custom lowering that depends on the index of the first element, 1841 /// and only the target knows which lowering is cheap. 1842 virtual bool isExtractSubvectorCheap(EVT ResVT, unsigned Index) const { 1843 return false; 1844 } 1845 1846 // Return true if it is profitable to use a scalar input to a BUILD_VECTOR 1847 // even if the vector itself has multiple uses. 1848 virtual bool aggressivelyPreferBuildVectorSources(EVT VecVT) const { 1849 return false; 1850 } 1851 1852 //===--------------------------------------------------------------------===// 1853 // Runtime Library hooks 1854 // 1855 1856 /// Rename the default libcall routine name for the specified libcall. 1857 void setLibcallName(RTLIB::Libcall Call, const char *Name) { 1858 LibcallRoutineNames[Call] = Name; 1859 } 1860 1861 /// Get the libcall routine name for the specified libcall. 1862 const char *getLibcallName(RTLIB::Libcall Call) const { 1863 return LibcallRoutineNames[Call]; 1864 } 1865 1866 /// Override the default CondCode to be used to test the result of the 1867 /// comparison libcall against zero. 1868 void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) { 1869 CmpLibcallCCs[Call] = CC; 1870 } 1871 1872 /// Get the CondCode that's to be used to test the result of the comparison 1873 /// libcall against zero. 1874 ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const { 1875 return CmpLibcallCCs[Call]; 1876 } 1877 1878 /// Set the CallingConv that should be used for the specified libcall. 1879 void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) { 1880 LibcallCallingConvs[Call] = CC; 1881 } 1882 1883 /// Get the CallingConv that should be used for the specified libcall. 1884 CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const { 1885 return LibcallCallingConvs[Call]; 1886 } 1887 1888 private: 1889 const TargetMachine &TM; 1890 1891 /// Tells the code generator not to expand operations into sequences that use 1892 /// the select operations if possible. 1893 bool SelectIsExpensive; 1894 1895 /// Tells the code generator that the target has multiple (allocatable) 1896 /// condition registers that can be used to store the results of comparisons 1897 /// for use by selects and conditional branches. With multiple condition 1898 /// registers, the code generator will not aggressively sink comparisons into 1899 /// the blocks of their users. 1900 bool HasMultipleConditionRegisters; 1901 1902 /// Tells the code generator that the target has BitExtract instructions. 1903 /// The code generator will aggressively sink "shift"s into the blocks of 1904 /// their users if the users will generate "and" instructions which can be 1905 /// combined with "shift" to BitExtract instructions. 1906 bool HasExtractBitsInsn; 1907 1908 // Don't expand fsqrt with an approximation based on the inverse sqrt. 1909 bool FsqrtIsCheap; 1910 1911 /// Tells the code generator to bypass slow divide or remainder 1912 /// instructions. For example, BypassSlowDivWidths[32,8] tells the code 1913 /// generator to bypass 32-bit integer div/rem with an 8-bit unsigned integer 1914 /// div/rem when the operands are positive and less than 256. 1915 DenseMap <unsigned int, unsigned int> BypassSlowDivWidths; 1916 1917 /// Tells the code generator that it shouldn't generate extra flow control 1918 /// instructions and should attempt to combine flow control instructions via 1919 /// predication. 1920 bool JumpIsExpensive; 1921 1922 /// Whether the target supports or cares about preserving floating point 1923 /// exception behavior. 1924 bool HasFloatingPointExceptions; 1925 1926 /// This target prefers to use _setjmp to implement llvm.setjmp. 1927 /// 1928 /// Defaults to false. 1929 bool UseUnderscoreSetJmp; 1930 1931 /// This target prefers to use _longjmp to implement llvm.longjmp. 1932 /// 1933 /// Defaults to false. 1934 bool UseUnderscoreLongJmp; 1935 1936 /// Number of blocks threshold to use jump tables. 1937 int MinimumJumpTableEntries; 1938 1939 /// Information about the contents of the high-bits in boolean values held in 1940 /// a type wider than i1. See getBooleanContents. 1941 BooleanContent BooleanContents; 1942 1943 /// Information about the contents of the high-bits in boolean values held in 1944 /// a type wider than i1. See getBooleanContents. 1945 BooleanContent BooleanFloatContents; 1946 1947 /// Information about the contents of the high-bits in boolean vector values 1948 /// when the element type is wider than i1. See getBooleanContents. 1949 BooleanContent BooleanVectorContents; 1950 1951 /// The target scheduling preference: shortest possible total cycles or lowest 1952 /// register usage. 1953 Sched::Preference SchedPreferenceInfo; 1954 1955 /// The size, in bytes, of the target's jmp_buf buffers 1956 unsigned JumpBufSize; 1957 1958 /// The alignment, in bytes, of the target's jmp_buf buffers 1959 unsigned JumpBufAlignment; 1960 1961 /// The minimum alignment that any argument on the stack needs to have. 1962 unsigned MinStackArgumentAlignment; 1963 1964 /// The minimum function alignment (used when optimizing for size, and to 1965 /// prevent explicitly provided alignment from leading to incorrect code). 1966 unsigned MinFunctionAlignment; 1967 1968 /// The preferred function alignment (used when alignment unspecified and 1969 /// optimizing for speed). 1970 unsigned PrefFunctionAlignment; 1971 1972 /// The preferred loop alignment. 1973 unsigned PrefLoopAlignment; 1974 1975 /// Size in bits of the maximum atomics size the backend supports. 1976 /// Accesses larger than this will be expanded by AtomicExpandPass. 1977 unsigned MaxAtomicSizeInBitsSupported; 1978 1979 /// Size in bits of the minimum cmpxchg or ll/sc operation the 1980 /// backend supports. 1981 unsigned MinCmpXchgSizeInBits; 1982 1983 /// If set to a physical register, this specifies the register that 1984 /// llvm.savestack/llvm.restorestack should save and restore. 1985 unsigned StackPointerRegisterToSaveRestore; 1986 1987 /// This indicates the default register class to use for each ValueType the 1988 /// target supports natively. 1989 const TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE]; 1990 unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE]; 1991 MVT RegisterTypeForVT[MVT::LAST_VALUETYPE]; 1992 1993 /// This indicates the "representative" register class to use for each 1994 /// ValueType the target supports natively. This information is used by the 1995 /// scheduler to track register pressure. By default, the representative 1996 /// register class is the largest legal super-reg register class of the 1997 /// register class of the specified type. e.g. On x86, i8, i16, and i32's 1998 /// representative class would be GR32. 1999 const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE]; 2000 2001 /// This indicates the "cost" of the "representative" register class for each 2002 /// ValueType. The cost is used by the scheduler to approximate register 2003 /// pressure. 2004 uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE]; 2005 2006 /// For any value types we are promoting or expanding, this contains the value 2007 /// type that we are changing to. For Expanded types, this contains one step 2008 /// of the expand (e.g. i64 -> i32), even if there are multiple steps required 2009 /// (e.g. i64 -> i16). For types natively supported by the system, this holds 2010 /// the same type (e.g. i32 -> i32). 2011 MVT TransformToType[MVT::LAST_VALUETYPE]; 2012 2013 /// For each operation and each value type, keep a LegalizeAction that 2014 /// indicates how instruction selection should deal with the operation. Most 2015 /// operations are Legal (aka, supported natively by the target), but 2016 /// operations that are not should be described. Note that operations on 2017 /// non-legal value types are not described here. 2018 LegalizeAction OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END]; 2019 2020 /// For each load extension type and each value type, keep a LegalizeAction 2021 /// that indicates how instruction selection should deal with a load of a 2022 /// specific value type and extension type. Uses 4-bits to store the action 2023 /// for each of the 4 load ext types. 2024 uint16_t LoadExtActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE]; 2025 2026 /// For each value type pair keep a LegalizeAction that indicates whether a 2027 /// truncating store of a specific value type and truncating type is legal. 2028 LegalizeAction TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE]; 2029 2030 /// For each indexed mode and each value type, keep a pair of LegalizeAction 2031 /// that indicates how instruction selection should deal with the load / 2032 /// store. 2033 /// 2034 /// The first dimension is the value_type for the reference. The second 2035 /// dimension represents the various modes for load store. 2036 uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE]; 2037 2038 /// For each condition code (ISD::CondCode) keep a LegalizeAction that 2039 /// indicates how instruction selection should deal with the condition code. 2040 /// 2041 /// Because each CC action takes up 4 bits, we need to have the array size be 2042 /// large enough to fit all of the value types. This can be done by rounding 2043 /// up the MVT::LAST_VALUETYPE value to the next multiple of 8. 2044 uint32_t CondCodeActions[ISD::SETCC_INVALID][(MVT::LAST_VALUETYPE + 7) / 8]; 2045 2046 protected: 2047 ValueTypeActionImpl ValueTypeActions; 2048 2049 private: 2050 LegalizeKind getTypeConversion(LLVMContext &Context, EVT VT) const; 2051 2052 private: 2053 std::vector<std::pair<MVT, const TargetRegisterClass*> > AvailableRegClasses; 2054 2055 /// Targets can specify ISD nodes that they would like PerformDAGCombine 2056 /// callbacks for by calling setTargetDAGCombine(), which sets a bit in this 2057 /// array. 2058 unsigned char 2059 TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT]; 2060 2061 /// For operations that must be promoted to a specific type, this holds the 2062 /// destination type. This map should be sparse, so don't hold it as an 2063 /// array. 2064 /// 2065 /// Targets add entries to this map with AddPromotedToType(..), clients access 2066 /// this with getTypeToPromoteTo(..). 2067 std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType> 2068 PromoteToType; 2069 2070 /// Stores the name each libcall. 2071 const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL]; 2072 2073 /// The ISD::CondCode that should be used to test the result of each of the 2074 /// comparison libcall against zero. 2075 ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL]; 2076 2077 /// Stores the CallingConv that should be used for each libcall. 2078 CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL]; 2079 2080 protected: 2081 /// Return true if the extension represented by \p I is free. 2082 /// \pre \p I is a sign, zero, or fp extension and 2083 /// is[Z|FP]ExtFree of the related types is not true. 2084 virtual bool isExtFreeImpl(const Instruction *I) const { return false; } 2085 2086 /// Depth that GatherAllAliases should should continue looking for chain 2087 /// dependencies when trying to find a more preferrable chain. As an 2088 /// approximation, this should be more than the number of consecutive stores 2089 /// expected to be merged. 2090 unsigned GatherAllAliasesMaxDepth; 2091 2092 /// \brief Specify maximum number of store instructions per memset call. 2093 /// 2094 /// When lowering \@llvm.memset this field specifies the maximum number of 2095 /// store operations that may be substituted for the call to memset. Targets 2096 /// must set this value based on the cost threshold for that target. Targets 2097 /// should assume that the memset will be done using as many of the largest 2098 /// store operations first, followed by smaller ones, if necessary, per 2099 /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine 2100 /// with 16-bit alignment would result in four 2-byte stores and one 1-byte 2101 /// store. This only applies to setting a constant array of a constant size. 2102 unsigned MaxStoresPerMemset; 2103 2104 /// Maximum number of stores operations that may be substituted for the call 2105 /// to memset, used for functions with OptSize attribute. 2106 unsigned MaxStoresPerMemsetOptSize; 2107 2108 /// \brief Specify maximum bytes of store instructions per memcpy call. 2109 /// 2110 /// When lowering \@llvm.memcpy this field specifies the maximum number of 2111 /// store operations that may be substituted for a call to memcpy. Targets 2112 /// must set this value based on the cost threshold for that target. Targets 2113 /// should assume that the memcpy will be done using as many of the largest 2114 /// store operations first, followed by smaller ones, if necessary, per 2115 /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine 2116 /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store 2117 /// and one 1-byte store. This only applies to copying a constant array of 2118 /// constant size. 2119 unsigned MaxStoresPerMemcpy; 2120 2121 /// Maximum number of store operations that may be substituted for a call to 2122 /// memcpy, used for functions with OptSize attribute. 2123 unsigned MaxStoresPerMemcpyOptSize; 2124 2125 /// \brief Specify maximum bytes of store instructions per memmove call. 2126 /// 2127 /// When lowering \@llvm.memmove this field specifies the maximum number of 2128 /// store instructions that may be substituted for a call to memmove. Targets 2129 /// must set this value based on the cost threshold for that target. Targets 2130 /// should assume that the memmove will be done using as many of the largest 2131 /// store operations first, followed by smaller ones, if necessary, per 2132 /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine 2133 /// with 8-bit alignment would result in nine 1-byte stores. This only 2134 /// applies to copying a constant array of constant size. 2135 unsigned MaxStoresPerMemmove; 2136 2137 /// Maximum number of store instructions that may be substituted for a call to 2138 /// memmove, used for functions with OptSize attribute. 2139 unsigned MaxStoresPerMemmoveOptSize; 2140 2141 /// Tells the code generator that select is more expensive than a branch if 2142 /// the branch is usually predicted right. 2143 bool PredictableSelectIsExpensive; 2144 2145 /// MaskAndBranchFoldingIsLegal - Indicates if the target supports folding 2146 /// a mask of a single bit, a compare, and a branch into a single instruction. 2147 bool MaskAndBranchFoldingIsLegal; 2148 2149 /// \see enableExtLdPromotion. 2150 bool EnableExtLdPromotion; 2151 2152 protected: 2153 /// Return true if the value types that can be represented by the specified 2154 /// register class are all legal. 2155 bool isLegalRC(const TargetRegisterClass *RC) const; 2156 2157 /// Replace/modify any TargetFrameIndex operands with a targte-dependent 2158 /// sequence of memory operands that is recognized by PrologEpilogInserter. 2159 MachineBasicBlock *emitPatchPoint(MachineInstr &MI, 2160 MachineBasicBlock *MBB) const; 2161 }; 2162 2163 /// This class defines information used to lower LLVM code to legal SelectionDAG 2164 /// operators that the target instruction selector can accept natively. 2165 /// 2166 /// This class also defines callbacks that targets must implement to lower 2167 /// target-specific constructs to SelectionDAG operators. 2168 class TargetLowering : public TargetLoweringBase { 2169 TargetLowering(const TargetLowering&) = delete; 2170 void operator=(const TargetLowering&) = delete; 2171 2172 public: 2173 /// NOTE: The TargetMachine owns TLOF. 2174 explicit TargetLowering(const TargetMachine &TM); 2175 2176 bool isPositionIndependent() const; 2177 2178 /// Returns true by value, base pointer and offset pointer and addressing mode 2179 /// by reference if the node's address can be legally represented as 2180 /// pre-indexed load / store address. 2181 virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/, 2182 SDValue &/*Offset*/, 2183 ISD::MemIndexedMode &/*AM*/, 2184 SelectionDAG &/*DAG*/) const { 2185 return false; 2186 } 2187 2188 /// Returns true by value, base pointer and offset pointer and addressing mode 2189 /// by reference if this node can be combined with a load / store to form a 2190 /// post-indexed load / store. 2191 virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/, 2192 SDValue &/*Base*/, 2193 SDValue &/*Offset*/, 2194 ISD::MemIndexedMode &/*AM*/, 2195 SelectionDAG &/*DAG*/) const { 2196 return false; 2197 } 2198 2199 /// Return the entry encoding for a jump table in the current function. The 2200 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 2201 virtual unsigned getJumpTableEncoding() const; 2202 2203 virtual const MCExpr * 2204 LowerCustomJumpTableEntry(const MachineJumpTableInfo * /*MJTI*/, 2205 const MachineBasicBlock * /*MBB*/, unsigned /*uid*/, 2206 MCContext &/*Ctx*/) const { 2207 llvm_unreachable("Need to implement this hook if target has custom JTIs"); 2208 } 2209 2210 /// Returns relocation base for the given PIC jumptable. 2211 virtual SDValue getPICJumpTableRelocBase(SDValue Table, 2212 SelectionDAG &DAG) const; 2213 2214 /// This returns the relocation base for the given PIC jumptable, the same as 2215 /// getPICJumpTableRelocBase, but as an MCExpr. 2216 virtual const MCExpr * 2217 getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 2218 unsigned JTI, MCContext &Ctx) const; 2219 2220 /// Return true if folding a constant offset with the given GlobalAddress is 2221 /// legal. It is frequently not legal in PIC relocation models. 2222 virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const; 2223 2224 bool isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 2225 SDValue &Chain) const; 2226 2227 void softenSetCCOperands(SelectionDAG &DAG, EVT VT, SDValue &NewLHS, 2228 SDValue &NewRHS, ISD::CondCode &CCCode, 2229 const SDLoc &DL) const; 2230 2231 /// Returns a pair of (return value, chain). 2232 /// It is an error to pass RTLIB::UNKNOWN_LIBCALL as \p LC. 2233 std::pair<SDValue, SDValue> makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, 2234 EVT RetVT, ArrayRef<SDValue> Ops, 2235 bool isSigned, const SDLoc &dl, 2236 bool doesNotReturn = false, 2237 bool isReturnValueUsed = true) const; 2238 2239 /// Check whether parameters to a call that are passed in callee saved 2240 /// registers are the same as from the calling function. This needs to be 2241 /// checked for tail call eligibility. 2242 bool parametersInCSRMatch(const MachineRegisterInfo &MRI, 2243 const uint32_t *CallerPreservedMask, 2244 const SmallVectorImpl<CCValAssign> &ArgLocs, 2245 const SmallVectorImpl<SDValue> &OutVals) const; 2246 2247 //===--------------------------------------------------------------------===// 2248 // TargetLowering Optimization Methods 2249 // 2250 2251 /// A convenience struct that encapsulates a DAG, and two SDValues for 2252 /// returning information from TargetLowering to its clients that want to 2253 /// combine. 2254 struct TargetLoweringOpt { 2255 SelectionDAG &DAG; 2256 bool LegalTys; 2257 bool LegalOps; 2258 SDValue Old; 2259 SDValue New; 2260 2261 explicit TargetLoweringOpt(SelectionDAG &InDAG, 2262 bool LT, bool LO) : 2263 DAG(InDAG), LegalTys(LT), LegalOps(LO) {} 2264 2265 bool LegalTypes() const { return LegalTys; } 2266 bool LegalOperations() const { return LegalOps; } 2267 2268 bool CombineTo(SDValue O, SDValue N) { 2269 Old = O; 2270 New = N; 2271 return true; 2272 } 2273 2274 /// Check to see if the specified operand of the specified instruction is a 2275 /// constant integer. If so, check to see if there are any bits set in the 2276 /// constant that are not demanded. If so, shrink the constant and return 2277 /// true. 2278 bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded); 2279 2280 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. This 2281 /// uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 2282 /// generalized for targets with other types of implicit widening casts. 2283 bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded, 2284 const SDLoc &dl); 2285 }; 2286 2287 /// Look at Op. At this point, we know that only the DemandedMask bits of the 2288 /// result of Op are ever used downstream. If we can use this information to 2289 /// simplify Op, create a new simplified DAG node and return true, returning 2290 /// the original and new nodes in Old and New. Otherwise, analyze the 2291 /// expression and return a mask of KnownOne and KnownZero bits for the 2292 /// expression (used to simplify the caller). The KnownZero/One bits may only 2293 /// be accurate for those bits in the DemandedMask. 2294 bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask, 2295 APInt &KnownZero, APInt &KnownOne, 2296 TargetLoweringOpt &TLO, unsigned Depth = 0) const; 2297 2298 /// Determine which of the bits specified in Mask are known to be either zero 2299 /// or one and return them in the KnownZero/KnownOne bitsets. 2300 virtual void computeKnownBitsForTargetNode(const SDValue Op, 2301 APInt &KnownZero, 2302 APInt &KnownOne, 2303 const SelectionDAG &DAG, 2304 unsigned Depth = 0) const; 2305 2306 /// This method can be implemented by targets that want to expose additional 2307 /// information about sign bits to the DAG Combiner. 2308 virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op, 2309 const SelectionDAG &DAG, 2310 unsigned Depth = 0) const; 2311 2312 struct DAGCombinerInfo { 2313 void *DC; // The DAG Combiner object. 2314 CombineLevel Level; 2315 bool CalledByLegalizer; 2316 public: 2317 SelectionDAG &DAG; 2318 2319 DAGCombinerInfo(SelectionDAG &dag, CombineLevel level, bool cl, void *dc) 2320 : DC(dc), Level(level), CalledByLegalizer(cl), DAG(dag) {} 2321 2322 bool isBeforeLegalize() const { return Level == BeforeLegalizeTypes; } 2323 bool isBeforeLegalizeOps() const { return Level < AfterLegalizeVectorOps; } 2324 bool isAfterLegalizeVectorOps() const { 2325 return Level == AfterLegalizeDAG; 2326 } 2327 CombineLevel getDAGCombineLevel() { return Level; } 2328 bool isCalledByLegalizer() const { return CalledByLegalizer; } 2329 2330 void AddToWorklist(SDNode *N); 2331 void RemoveFromWorklist(SDNode *N); 2332 SDValue CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo = true); 2333 SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true); 2334 SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true); 2335 2336 void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO); 2337 }; 2338 2339 /// Return if the N is a constant or constant vector equal to the true value 2340 /// from getBooleanContents(). 2341 bool isConstTrueVal(const SDNode *N) const; 2342 2343 /// Return if the N is a constant or constant vector equal to the false value 2344 /// from getBooleanContents(). 2345 bool isConstFalseVal(const SDNode *N) const; 2346 2347 /// Return if \p N is a True value when extended to \p VT. 2348 bool isExtendedTrueVal(const ConstantSDNode *N, EVT VT, bool Signed) const; 2349 2350 /// Try to simplify a setcc built with the specified operands and cc. If it is 2351 /// unable to simplify it, return a null SDValue. 2352 SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, 2353 bool foldBooleans, DAGCombinerInfo &DCI, 2354 const SDLoc &dl) const; 2355 2356 /// Returns true (and the GlobalValue and the offset) if the node is a 2357 /// GlobalAddress + offset. 2358 virtual bool 2359 isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const; 2360 2361 /// This method will be invoked for all target nodes and for any 2362 /// target-independent nodes that the target has registered with invoke it 2363 /// for. 2364 /// 2365 /// The semantics are as follows: 2366 /// Return Value: 2367 /// SDValue.Val == 0 - No change was made 2368 /// SDValue.Val == N - N was replaced, is dead, and is already handled. 2369 /// otherwise - N should be replaced by the returned Operand. 2370 /// 2371 /// In addition, methods provided by DAGCombinerInfo may be used to perform 2372 /// more complex transformations. 2373 /// 2374 virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const; 2375 2376 /// Return true if it is profitable to move a following shift through this 2377 // node, adjusting any immediate operands as necessary to preserve semantics. 2378 // This transformation may not be desirable if it disrupts a particularly 2379 // auspicious target-specific tree (e.g. bitfield extraction in AArch64). 2380 // By default, it returns true. 2381 virtual bool isDesirableToCommuteWithShift(const SDNode *N /*Op*/) const { 2382 return true; 2383 } 2384 2385 /// Return true if the target has native support for the specified value type 2386 /// and it is 'desirable' to use the type for the given node type. e.g. On x86 2387 /// i16 is legal, but undesirable since i16 instruction encodings are longer 2388 /// and some i16 instructions are slow. 2389 virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const { 2390 // By default, assume all legal types are desirable. 2391 return isTypeLegal(VT); 2392 } 2393 2394 /// Return true if it is profitable for dag combiner to transform a floating 2395 /// point op of specified opcode to a equivalent op of an integer 2396 /// type. e.g. f32 load -> i32 load can be profitable on ARM. 2397 virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/, 2398 EVT /*VT*/) const { 2399 return false; 2400 } 2401 2402 /// This method query the target whether it is beneficial for dag combiner to 2403 /// promote the specified node. If true, it should return the desired 2404 /// promotion type by reference. 2405 virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const { 2406 return false; 2407 } 2408 2409 /// Return true if the target supports swifterror attribute. It optimizes 2410 /// loads and stores to reading and writing a specific register. 2411 virtual bool supportSwiftError() const { 2412 return false; 2413 } 2414 2415 /// Return true if the target supports that a subset of CSRs for the given 2416 /// machine function is handled explicitly via copies. 2417 virtual bool supportSplitCSR(MachineFunction *MF) const { 2418 return false; 2419 } 2420 2421 /// Return true if the MachineFunction contains a COPY which would imply 2422 /// HasCopyImplyingStackAdjustment. 2423 virtual bool hasCopyImplyingStackAdjustment(MachineFunction *MF) const { 2424 return false; 2425 } 2426 2427 /// Perform necessary initialization to handle a subset of CSRs explicitly 2428 /// via copies. This function is called at the beginning of instruction 2429 /// selection. 2430 virtual void initializeSplitCSR(MachineBasicBlock *Entry) const { 2431 llvm_unreachable("Not Implemented"); 2432 } 2433 2434 /// Insert explicit copies in entry and exit blocks. We copy a subset of 2435 /// CSRs to virtual registers in the entry block, and copy them back to 2436 /// physical registers in the exit blocks. This function is called at the end 2437 /// of instruction selection. 2438 virtual void insertCopiesSplitCSR( 2439 MachineBasicBlock *Entry, 2440 const SmallVectorImpl<MachineBasicBlock *> &Exits) const { 2441 llvm_unreachable("Not Implemented"); 2442 } 2443 2444 //===--------------------------------------------------------------------===// 2445 // Lowering methods - These methods must be implemented by targets so that 2446 // the SelectionDAGBuilder code knows how to lower these. 2447 // 2448 2449 /// This hook must be implemented to lower the incoming (formal) arguments, 2450 /// described by the Ins array, into the specified DAG. The implementation 2451 /// should fill in the InVals array with legal-type argument values, and 2452 /// return the resulting token chain value. 2453 /// 2454 virtual SDValue LowerFormalArguments( 2455 SDValue /*Chain*/, CallingConv::ID /*CallConv*/, bool /*isVarArg*/, 2456 const SmallVectorImpl<ISD::InputArg> & /*Ins*/, const SDLoc & /*dl*/, 2457 SelectionDAG & /*DAG*/, SmallVectorImpl<SDValue> & /*InVals*/) const { 2458 llvm_unreachable("Not Implemented"); 2459 } 2460 2461 struct ArgListEntry { 2462 SDValue Node; 2463 Type* Ty; 2464 bool isSExt : 1; 2465 bool isZExt : 1; 2466 bool isInReg : 1; 2467 bool isSRet : 1; 2468 bool isNest : 1; 2469 bool isByVal : 1; 2470 bool isInAlloca : 1; 2471 bool isReturned : 1; 2472 bool isSwiftSelf : 1; 2473 bool isSwiftError : 1; 2474 uint16_t Alignment; 2475 2476 ArgListEntry() : isSExt(false), isZExt(false), isInReg(false), 2477 isSRet(false), isNest(false), isByVal(false), isInAlloca(false), 2478 isReturned(false), isSwiftSelf(false), isSwiftError(false), 2479 Alignment(0) { } 2480 2481 void setAttributes(ImmutableCallSite *CS, unsigned AttrIdx); 2482 }; 2483 typedef std::vector<ArgListEntry> ArgListTy; 2484 2485 /// This structure contains all information that is necessary for lowering 2486 /// calls. It is passed to TLI::LowerCallTo when the SelectionDAG builder 2487 /// needs to lower a call, and targets will see this struct in their LowerCall 2488 /// implementation. 2489 struct CallLoweringInfo { 2490 SDValue Chain; 2491 Type *RetTy; 2492 bool RetSExt : 1; 2493 bool RetZExt : 1; 2494 bool IsVarArg : 1; 2495 bool IsInReg : 1; 2496 bool DoesNotReturn : 1; 2497 bool IsReturnValueUsed : 1; 2498 bool IsConvergent : 1; 2499 2500 // IsTailCall should be modified by implementations of 2501 // TargetLowering::LowerCall that perform tail call conversions. 2502 bool IsTailCall; 2503 2504 unsigned NumFixedArgs; 2505 CallingConv::ID CallConv; 2506 SDValue Callee; 2507 ArgListTy Args; 2508 SelectionDAG &DAG; 2509 SDLoc DL; 2510 ImmutableCallSite *CS; 2511 bool IsPatchPoint; 2512 SmallVector<ISD::OutputArg, 32> Outs; 2513 SmallVector<SDValue, 32> OutVals; 2514 SmallVector<ISD::InputArg, 32> Ins; 2515 SmallVector<SDValue, 4> InVals; 2516 2517 CallLoweringInfo(SelectionDAG &DAG) 2518 : RetTy(nullptr), RetSExt(false), RetZExt(false), IsVarArg(false), 2519 IsInReg(false), DoesNotReturn(false), IsReturnValueUsed(true), 2520 IsConvergent(false), IsTailCall(false), NumFixedArgs(-1), 2521 CallConv(CallingConv::C), DAG(DAG), CS(nullptr), IsPatchPoint(false) { 2522 } 2523 2524 CallLoweringInfo &setDebugLoc(const SDLoc &dl) { 2525 DL = dl; 2526 return *this; 2527 } 2528 2529 CallLoweringInfo &setChain(SDValue InChain) { 2530 Chain = InChain; 2531 return *this; 2532 } 2533 2534 CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultType, 2535 SDValue Target, ArgListTy &&ArgsList) { 2536 RetTy = ResultType; 2537 Callee = Target; 2538 CallConv = CC; 2539 NumFixedArgs = Args.size(); 2540 Args = std::move(ArgsList); 2541 return *this; 2542 } 2543 2544 CallLoweringInfo &setCallee(Type *ResultType, FunctionType *FTy, 2545 SDValue Target, ArgListTy &&ArgsList, 2546 ImmutableCallSite &Call) { 2547 RetTy = ResultType; 2548 2549 IsInReg = Call.paramHasAttr(0, Attribute::InReg); 2550 DoesNotReturn = 2551 Call.doesNotReturn() || 2552 (!Call.isInvoke() && 2553 isa<UnreachableInst>(Call.getInstruction()->getNextNode())); 2554 IsVarArg = FTy->isVarArg(); 2555 IsReturnValueUsed = !Call.getInstruction()->use_empty(); 2556 RetSExt = Call.paramHasAttr(0, Attribute::SExt); 2557 RetZExt = Call.paramHasAttr(0, Attribute::ZExt); 2558 2559 Callee = Target; 2560 2561 CallConv = Call.getCallingConv(); 2562 NumFixedArgs = FTy->getNumParams(); 2563 Args = std::move(ArgsList); 2564 2565 CS = &Call; 2566 2567 return *this; 2568 } 2569 2570 CallLoweringInfo &setInRegister(bool Value = true) { 2571 IsInReg = Value; 2572 return *this; 2573 } 2574 2575 CallLoweringInfo &setNoReturn(bool Value = true) { 2576 DoesNotReturn = Value; 2577 return *this; 2578 } 2579 2580 CallLoweringInfo &setVarArg(bool Value = true) { 2581 IsVarArg = Value; 2582 return *this; 2583 } 2584 2585 CallLoweringInfo &setTailCall(bool Value = true) { 2586 IsTailCall = Value; 2587 return *this; 2588 } 2589 2590 CallLoweringInfo &setDiscardResult(bool Value = true) { 2591 IsReturnValueUsed = !Value; 2592 return *this; 2593 } 2594 2595 CallLoweringInfo &setConvergent(bool Value = true) { 2596 IsConvergent = Value; 2597 return *this; 2598 } 2599 2600 CallLoweringInfo &setSExtResult(bool Value = true) { 2601 RetSExt = Value; 2602 return *this; 2603 } 2604 2605 CallLoweringInfo &setZExtResult(bool Value = true) { 2606 RetZExt = Value; 2607 return *this; 2608 } 2609 2610 CallLoweringInfo &setIsPatchPoint(bool Value = true) { 2611 IsPatchPoint = Value; 2612 return *this; 2613 } 2614 2615 ArgListTy &getArgs() { 2616 return Args; 2617 } 2618 2619 }; 2620 2621 /// This function lowers an abstract call to a function into an actual call. 2622 /// This returns a pair of operands. The first element is the return value 2623 /// for the function (if RetTy is not VoidTy). The second element is the 2624 /// outgoing token chain. It calls LowerCall to do the actual lowering. 2625 std::pair<SDValue, SDValue> LowerCallTo(CallLoweringInfo &CLI) const; 2626 2627 /// This hook must be implemented to lower calls into the specified 2628 /// DAG. The outgoing arguments to the call are described by the Outs array, 2629 /// and the values to be returned by the call are described by the Ins 2630 /// array. The implementation should fill in the InVals array with legal-type 2631 /// return values from the call, and return the resulting token chain value. 2632 virtual SDValue 2633 LowerCall(CallLoweringInfo &/*CLI*/, 2634 SmallVectorImpl<SDValue> &/*InVals*/) const { 2635 llvm_unreachable("Not Implemented"); 2636 } 2637 2638 /// Target-specific cleanup for formal ByVal parameters. 2639 virtual void HandleByVal(CCState *, unsigned &, unsigned) const {} 2640 2641 /// This hook should be implemented to check whether the return values 2642 /// described by the Outs array can fit into the return registers. If false 2643 /// is returned, an sret-demotion is performed. 2644 virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/, 2645 MachineFunction &/*MF*/, bool /*isVarArg*/, 2646 const SmallVectorImpl<ISD::OutputArg> &/*Outs*/, 2647 LLVMContext &/*Context*/) const 2648 { 2649 // Return true by default to get preexisting behavior. 2650 return true; 2651 } 2652 2653 /// This hook must be implemented to lower outgoing return values, described 2654 /// by the Outs array, into the specified DAG. The implementation should 2655 /// return the resulting token chain value. 2656 virtual SDValue LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/, 2657 bool /*isVarArg*/, 2658 const SmallVectorImpl<ISD::OutputArg> & /*Outs*/, 2659 const SmallVectorImpl<SDValue> & /*OutVals*/, 2660 const SDLoc & /*dl*/, 2661 SelectionDAG & /*DAG*/) const { 2662 llvm_unreachable("Not Implemented"); 2663 } 2664 2665 /// Return true if result of the specified node is used by a return node 2666 /// only. It also compute and return the input chain for the tail call. 2667 /// 2668 /// This is used to determine whether it is possible to codegen a libcall as 2669 /// tail call at legalization time. 2670 virtual bool isUsedByReturnOnly(SDNode *, SDValue &/*Chain*/) const { 2671 return false; 2672 } 2673 2674 /// Return true if the target may be able emit the call instruction as a tail 2675 /// call. This is used by optimization passes to determine if it's profitable 2676 /// to duplicate return instructions to enable tailcall optimization. 2677 virtual bool mayBeEmittedAsTailCall(CallInst *) const { 2678 return false; 2679 } 2680 2681 /// Return the builtin name for the __builtin___clear_cache intrinsic 2682 /// Default is to invoke the clear cache library call 2683 virtual const char * getClearCacheBuiltinName() const { 2684 return "__clear_cache"; 2685 } 2686 2687 /// Return the register ID of the name passed in. Used by named register 2688 /// global variables extension. There is no target-independent behaviour 2689 /// so the default action is to bail. 2690 virtual unsigned getRegisterByName(const char* RegName, EVT VT, 2691 SelectionDAG &DAG) const { 2692 report_fatal_error("Named registers not implemented for this target"); 2693 } 2694 2695 /// Return the type that should be used to zero or sign extend a 2696 /// zeroext/signext integer return value. FIXME: Some C calling conventions 2697 /// require the return type to be promoted, but this is not true all the time, 2698 /// e.g. i1/i8/i16 on x86/x86_64. It is also not necessary for non-C calling 2699 /// conventions. The frontend should handle this and include all of the 2700 /// necessary information. 2701 virtual EVT getTypeForExtReturn(LLVMContext &Context, EVT VT, 2702 ISD::NodeType /*ExtendKind*/) const { 2703 EVT MinVT = getRegisterType(Context, MVT::i32); 2704 return VT.bitsLT(MinVT) ? MinVT : VT; 2705 } 2706 2707 /// For some targets, an LLVM struct type must be broken down into multiple 2708 /// simple types, but the calling convention specifies that the entire struct 2709 /// must be passed in a block of consecutive registers. 2710 virtual bool 2711 functionArgumentNeedsConsecutiveRegisters(Type *Ty, CallingConv::ID CallConv, 2712 bool isVarArg) const { 2713 return false; 2714 } 2715 2716 /// Returns a 0 terminated array of registers that can be safely used as 2717 /// scratch registers. 2718 virtual const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const { 2719 return nullptr; 2720 } 2721 2722 /// This callback is used to prepare for a volatile or atomic load. 2723 /// It takes a chain node as input and returns the chain for the load itself. 2724 /// 2725 /// Having a callback like this is necessary for targets like SystemZ, 2726 /// which allows a CPU to reuse the result of a previous load indefinitely, 2727 /// even if a cache-coherent store is performed by another CPU. The default 2728 /// implementation does nothing. 2729 virtual SDValue prepareVolatileOrAtomicLoad(SDValue Chain, const SDLoc &DL, 2730 SelectionDAG &DAG) const { 2731 return Chain; 2732 } 2733 2734 /// This callback is invoked by the type legalizer to legalize nodes with an 2735 /// illegal operand type but legal result types. It replaces the 2736 /// LowerOperation callback in the type Legalizer. The reason we can not do 2737 /// away with LowerOperation entirely is that LegalizeDAG isn't yet ready to 2738 /// use this callback. 2739 /// 2740 /// TODO: Consider merging with ReplaceNodeResults. 2741 /// 2742 /// The target places new result values for the node in Results (their number 2743 /// and types must exactly match those of the original return values of 2744 /// the node), or leaves Results empty, which indicates that the node is not 2745 /// to be custom lowered after all. 2746 /// The default implementation calls LowerOperation. 2747 virtual void LowerOperationWrapper(SDNode *N, 2748 SmallVectorImpl<SDValue> &Results, 2749 SelectionDAG &DAG) const; 2750 2751 /// This callback is invoked for operations that are unsupported by the 2752 /// target, which are registered to use 'custom' lowering, and whose defined 2753 /// values are all legal. If the target has no operations that require custom 2754 /// lowering, it need not implement this. The default implementation of this 2755 /// aborts. 2756 virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const; 2757 2758 /// This callback is invoked when a node result type is illegal for the 2759 /// target, and the operation was registered to use 'custom' lowering for that 2760 /// result type. The target places new result values for the node in Results 2761 /// (their number and types must exactly match those of the original return 2762 /// values of the node), or leaves Results empty, which indicates that the 2763 /// node is not to be custom lowered after all. 2764 /// 2765 /// If the target has no operations that require custom lowering, it need not 2766 /// implement this. The default implementation aborts. 2767 virtual void ReplaceNodeResults(SDNode * /*N*/, 2768 SmallVectorImpl<SDValue> &/*Results*/, 2769 SelectionDAG &/*DAG*/) const { 2770 llvm_unreachable("ReplaceNodeResults not implemented for this target!"); 2771 } 2772 2773 /// This method returns the name of a target specific DAG node. 2774 virtual const char *getTargetNodeName(unsigned Opcode) const; 2775 2776 /// This method returns a target specific FastISel object, or null if the 2777 /// target does not support "fast" ISel. 2778 virtual FastISel *createFastISel(FunctionLoweringInfo &, 2779 const TargetLibraryInfo *) const { 2780 return nullptr; 2781 } 2782 2783 2784 bool verifyReturnAddressArgumentIsConstant(SDValue Op, 2785 SelectionDAG &DAG) const; 2786 2787 //===--------------------------------------------------------------------===// 2788 // Inline Asm Support hooks 2789 // 2790 2791 /// This hook allows the target to expand an inline asm call to be explicit 2792 /// llvm code if it wants to. This is useful for turning simple inline asms 2793 /// into LLVM intrinsics, which gives the compiler more information about the 2794 /// behavior of the code. 2795 virtual bool ExpandInlineAsm(CallInst *) const { 2796 return false; 2797 } 2798 2799 enum ConstraintType { 2800 C_Register, // Constraint represents specific register(s). 2801 C_RegisterClass, // Constraint represents any of register(s) in class. 2802 C_Memory, // Memory constraint. 2803 C_Other, // Something else. 2804 C_Unknown // Unsupported constraint. 2805 }; 2806 2807 enum ConstraintWeight { 2808 // Generic weights. 2809 CW_Invalid = -1, // No match. 2810 CW_Okay = 0, // Acceptable. 2811 CW_Good = 1, // Good weight. 2812 CW_Better = 2, // Better weight. 2813 CW_Best = 3, // Best weight. 2814 2815 // Well-known weights. 2816 CW_SpecificReg = CW_Okay, // Specific register operands. 2817 CW_Register = CW_Good, // Register operands. 2818 CW_Memory = CW_Better, // Memory operands. 2819 CW_Constant = CW_Best, // Constant operand. 2820 CW_Default = CW_Okay // Default or don't know type. 2821 }; 2822 2823 /// This contains information for each constraint that we are lowering. 2824 struct AsmOperandInfo : public InlineAsm::ConstraintInfo { 2825 /// This contains the actual string for the code, like "m". TargetLowering 2826 /// picks the 'best' code from ConstraintInfo::Codes that most closely 2827 /// matches the operand. 2828 std::string ConstraintCode; 2829 2830 /// Information about the constraint code, e.g. Register, RegisterClass, 2831 /// Memory, Other, Unknown. 2832 TargetLowering::ConstraintType ConstraintType; 2833 2834 /// If this is the result output operand or a clobber, this is null, 2835 /// otherwise it is the incoming operand to the CallInst. This gets 2836 /// modified as the asm is processed. 2837 Value *CallOperandVal; 2838 2839 /// The ValueType for the operand value. 2840 MVT ConstraintVT; 2841 2842 /// Return true of this is an input operand that is a matching constraint 2843 /// like "4". 2844 bool isMatchingInputConstraint() const; 2845 2846 /// If this is an input matching constraint, this method returns the output 2847 /// operand it matches. 2848 unsigned getMatchedOperand() const; 2849 2850 /// Copy constructor for copying from a ConstraintInfo. 2851 AsmOperandInfo(InlineAsm::ConstraintInfo Info) 2852 : InlineAsm::ConstraintInfo(std::move(Info)), 2853 ConstraintType(TargetLowering::C_Unknown), CallOperandVal(nullptr), 2854 ConstraintVT(MVT::Other) {} 2855 }; 2856 2857 typedef std::vector<AsmOperandInfo> AsmOperandInfoVector; 2858 2859 /// Split up the constraint string from the inline assembly value into the 2860 /// specific constraints and their prefixes, and also tie in the associated 2861 /// operand values. If this returns an empty vector, and if the constraint 2862 /// string itself isn't empty, there was an error parsing. 2863 virtual AsmOperandInfoVector ParseConstraints(const DataLayout &DL, 2864 const TargetRegisterInfo *TRI, 2865 ImmutableCallSite CS) const; 2866 2867 /// Examine constraint type and operand type and determine a weight value. 2868 /// The operand object must already have been set up with the operand type. 2869 virtual ConstraintWeight getMultipleConstraintMatchWeight( 2870 AsmOperandInfo &info, int maIndex) const; 2871 2872 /// Examine constraint string and operand type and determine a weight value. 2873 /// The operand object must already have been set up with the operand type. 2874 virtual ConstraintWeight getSingleConstraintMatchWeight( 2875 AsmOperandInfo &info, const char *constraint) const; 2876 2877 /// Determines the constraint code and constraint type to use for the specific 2878 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 2879 /// If the actual operand being passed in is available, it can be passed in as 2880 /// Op, otherwise an empty SDValue can be passed. 2881 virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo, 2882 SDValue Op, 2883 SelectionDAG *DAG = nullptr) const; 2884 2885 /// Given a constraint, return the type of constraint it is for this target. 2886 virtual ConstraintType getConstraintType(StringRef Constraint) const; 2887 2888 /// Given a physical register constraint (e.g. {edx}), return the register 2889 /// number and the register class for the register. 2890 /// 2891 /// Given a register class constraint, like 'r', if this corresponds directly 2892 /// to an LLVM register class, return a register of 0 and the register class 2893 /// pointer. 2894 /// 2895 /// This should only be used for C_Register constraints. On error, this 2896 /// returns a register number of 0 and a null register class pointer. 2897 virtual std::pair<unsigned, const TargetRegisterClass *> 2898 getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 2899 StringRef Constraint, MVT VT) const; 2900 2901 virtual unsigned getInlineAsmMemConstraint(StringRef ConstraintCode) const { 2902 if (ConstraintCode == "i") 2903 return InlineAsm::Constraint_i; 2904 else if (ConstraintCode == "m") 2905 return InlineAsm::Constraint_m; 2906 return InlineAsm::Constraint_Unknown; 2907 } 2908 2909 /// Try to replace an X constraint, which matches anything, with another that 2910 /// has more specific requirements based on the type of the corresponding 2911 /// operand. This returns null if there is no replacement to make. 2912 virtual const char *LowerXConstraint(EVT ConstraintVT) const; 2913 2914 /// Lower the specified operand into the Ops vector. If it is invalid, don't 2915 /// add anything to Ops. 2916 virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, 2917 std::vector<SDValue> &Ops, 2918 SelectionDAG &DAG) const; 2919 2920 //===--------------------------------------------------------------------===// 2921 // Div utility functions 2922 // 2923 SDValue BuildSDIV(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, 2924 bool IsAfterLegalization, 2925 std::vector<SDNode *> *Created) const; 2926 SDValue BuildUDIV(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, 2927 bool IsAfterLegalization, 2928 std::vector<SDNode *> *Created) const; 2929 2930 /// Targets may override this function to provide custom SDIV lowering for 2931 /// power-of-2 denominators. If the target returns an empty SDValue, LLVM 2932 /// assumes SDIV is expensive and replaces it with a series of other integer 2933 /// operations. 2934 virtual SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, 2935 SelectionDAG &DAG, 2936 std::vector<SDNode *> *Created) const; 2937 2938 /// Indicate whether this target prefers to combine FDIVs with the same 2939 /// divisor. If the transform should never be done, return zero. If the 2940 /// transform should be done, return the minimum number of divisor uses 2941 /// that must exist. 2942 virtual unsigned combineRepeatedFPDivisors() const { 2943 return 0; 2944 } 2945 2946 /// Hooks for building estimates in place of slower divisions and square 2947 /// roots. 2948 2949 /// Return a reciprocal square root estimate value for the input operand. 2950 /// The RefinementSteps output is the number of Newton-Raphson refinement 2951 /// iterations required to generate a sufficient (though not necessarily 2952 /// IEEE-754 compliant) estimate for the value type. 2953 /// The boolean UseOneConstNR output is used to select a Newton-Raphson 2954 /// algorithm implementation that uses one constant or two constants. 2955 /// A target may choose to implement its own refinement within this function. 2956 /// If that's true, then return '0' as the number of RefinementSteps to avoid 2957 /// any further refinement of the estimate. 2958 /// An empty SDValue return means no estimate sequence can be created. 2959 virtual SDValue getRsqrtEstimate(SDValue Operand, DAGCombinerInfo &DCI, 2960 unsigned &RefinementSteps, 2961 bool &UseOneConstNR) const { 2962 return SDValue(); 2963 } 2964 2965 /// Return a reciprocal estimate value for the input operand. 2966 /// The RefinementSteps output is the number of Newton-Raphson refinement 2967 /// iterations required to generate a sufficient (though not necessarily 2968 /// IEEE-754 compliant) estimate for the value type. 2969 /// A target may choose to implement its own refinement within this function. 2970 /// If that's true, then return '0' as the number of RefinementSteps to avoid 2971 /// any further refinement of the estimate. 2972 /// An empty SDValue return means no estimate sequence can be created. 2973 virtual SDValue getRecipEstimate(SDValue Operand, DAGCombinerInfo &DCI, 2974 unsigned &RefinementSteps) const { 2975 return SDValue(); 2976 } 2977 2978 //===--------------------------------------------------------------------===// 2979 // Legalization utility functions 2980 // 2981 2982 /// Expand a MUL into two nodes. One that computes the high bits of 2983 /// the result and one that computes the low bits. 2984 /// \param HiLoVT The value type to use for the Lo and Hi nodes. 2985 /// \param LL Low bits of the LHS of the MUL. You can use this parameter 2986 /// if you want to control how low bits are extracted from the LHS. 2987 /// \param LH High bits of the LHS of the MUL. See LL for meaning. 2988 /// \param RL Low bits of the RHS of the MUL. See LL for meaning 2989 /// \param RH High bits of the RHS of the MUL. See LL for meaning. 2990 /// \returns true if the node has been expanded. false if it has not 2991 bool expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 2992 SelectionDAG &DAG, SDValue LL = SDValue(), 2993 SDValue LH = SDValue(), SDValue RL = SDValue(), 2994 SDValue RH = SDValue()) const; 2995 2996 /// Expand float(f32) to SINT(i64) conversion 2997 /// \param N Node to expand 2998 /// \param Result output after conversion 2999 /// \returns True, if the expansion was successful, false otherwise 3000 bool expandFP_TO_SINT(SDNode *N, SDValue &Result, SelectionDAG &DAG) const; 3001 3002 /// Turn load of vector type into a load of the individual elements. 3003 /// \param LD load to expand 3004 /// \returns MERGE_VALUEs of the scalar loads with their chains. 3005 SDValue scalarizeVectorLoad(LoadSDNode *LD, SelectionDAG &DAG) const; 3006 3007 // Turn a store of a vector type into stores of the individual elements. 3008 /// \param ST Store with a vector value type 3009 /// \returns MERGE_VALUs of the individual store chains. 3010 SDValue scalarizeVectorStore(StoreSDNode *ST, SelectionDAG &DAG) const; 3011 3012 /// Expands an unaligned load to 2 half-size loads for an integer, and 3013 /// possibly more for vectors. 3014 std::pair<SDValue, SDValue> expandUnalignedLoad(LoadSDNode *LD, 3015 SelectionDAG &DAG) const; 3016 3017 /// Expands an unaligned store to 2 half-size stores for integer values, and 3018 /// possibly more for vectors. 3019 SDValue expandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG) const; 3020 3021 //===--------------------------------------------------------------------===// 3022 // Instruction Emitting Hooks 3023 // 3024 3025 /// This method should be implemented by targets that mark instructions with 3026 /// the 'usesCustomInserter' flag. These instructions are special in various 3027 /// ways, which require special support to insert. The specified MachineInstr 3028 /// is created but not inserted into any basic blocks, and this method is 3029 /// called to expand it into a sequence of instructions, potentially also 3030 /// creating new basic blocks and control flow. 3031 /// As long as the returned basic block is different (i.e., we created a new 3032 /// one), the custom inserter is free to modify the rest of \p MBB. 3033 virtual MachineBasicBlock * 3034 EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *MBB) const; 3035 3036 /// This method should be implemented by targets that mark instructions with 3037 /// the 'hasPostISelHook' flag. These instructions must be adjusted after 3038 /// instruction selection by target hooks. e.g. To fill in optional defs for 3039 /// ARM 's' setting instructions. 3040 virtual void AdjustInstrPostInstrSelection(MachineInstr &MI, 3041 SDNode *Node) const; 3042 3043 /// If this function returns true, SelectionDAGBuilder emits a 3044 /// LOAD_STACK_GUARD node when it is lowering Intrinsic::stackprotector. 3045 virtual bool useLoadStackGuardNode() const { 3046 return false; 3047 } 3048 3049 /// Lower TLS global address SDNode for target independent emulated TLS model. 3050 virtual SDValue LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 3051 SelectionDAG &DAG) const; 3052 3053 private: 3054 SDValue simplifySetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 3055 ISD::CondCode Cond, DAGCombinerInfo &DCI, 3056 const SDLoc &DL) const; 3057 }; 3058 3059 /// Given an LLVM IR type and return type attributes, compute the return value 3060 /// EVTs and flags, and optionally also the offsets, if the return value is 3061 /// being lowered to memory. 3062 void GetReturnInfo(Type *ReturnType, AttributeSet attr, 3063 SmallVectorImpl<ISD::OutputArg> &Outs, 3064 const TargetLowering &TLI, const DataLayout &DL); 3065 3066 } // end llvm namespace 3067 3068 #endif 3069