Home | History | Annotate | Download | only in CodeGen
      1 //===-- FastISel.h - Definition of the FastISel class ---*- C++ -*---------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 ///
     10 /// \file
     11 /// This file defines the FastISel class.
     12 ///
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_CODEGEN_FASTISEL_H
     16 #define LLVM_CODEGEN_FASTISEL_H
     17 
     18 #include "llvm/ADT/DenseMap.h"
     19 #include "llvm/CodeGen/MachineBasicBlock.h"
     20 #include "llvm/IR/CallingConv.h"
     21 #include "llvm/IR/IntrinsicInst.h"
     22 #include "llvm/Target/TargetLowering.h"
     23 
     24 namespace llvm {
     25 
     26 class MachineConstantPool;
     27 
     28 /// \brief This is a fast-path instruction selection class that generates poor
     29 /// code and doesn't support illegal types or non-trivial lowering, but runs
     30 /// quickly.
     31 class FastISel {
     32 public:
     33   struct ArgListEntry {
     34     Value *Val;
     35     Type *Ty;
     36     bool IsSExt : 1;
     37     bool IsZExt : 1;
     38     bool IsInReg : 1;
     39     bool IsSRet : 1;
     40     bool IsNest : 1;
     41     bool IsByVal : 1;
     42     bool IsInAlloca : 1;
     43     bool IsReturned : 1;
     44     bool IsSwiftSelf : 1;
     45     bool IsSwiftError : 1;
     46     uint16_t Alignment;
     47 
     48     ArgListEntry()
     49         : Val(nullptr), Ty(nullptr), IsSExt(false), IsZExt(false),
     50           IsInReg(false), IsSRet(false), IsNest(false), IsByVal(false),
     51           IsInAlloca(false), IsReturned(false), IsSwiftSelf(false),
     52           IsSwiftError(false), Alignment(0) {}
     53 
     54     /// \brief Set CallLoweringInfo attribute flags based on a call instruction
     55     /// and called function attributes.
     56     void setAttributes(ImmutableCallSite *CS, unsigned AttrIdx);
     57   };
     58   typedef std::vector<ArgListEntry> ArgListTy;
     59 
     60   struct CallLoweringInfo {
     61     Type *RetTy;
     62     bool RetSExt : 1;
     63     bool RetZExt : 1;
     64     bool IsVarArg : 1;
     65     bool IsInReg : 1;
     66     bool DoesNotReturn : 1;
     67     bool IsReturnValueUsed : 1;
     68 
     69     // \brief IsTailCall Should be modified by implementations of FastLowerCall
     70     // that perform tail call conversions.
     71     bool IsTailCall;
     72 
     73     unsigned NumFixedArgs;
     74     CallingConv::ID CallConv;
     75     const Value *Callee;
     76     MCSymbol *Symbol;
     77     ArgListTy Args;
     78     ImmutableCallSite *CS;
     79     MachineInstr *Call;
     80     unsigned ResultReg;
     81     unsigned NumResultRegs;
     82 
     83     bool IsPatchPoint;
     84 
     85     SmallVector<Value *, 16> OutVals;
     86     SmallVector<ISD::ArgFlagsTy, 16> OutFlags;
     87     SmallVector<unsigned, 16> OutRegs;
     88     SmallVector<ISD::InputArg, 4> Ins;
     89     SmallVector<unsigned, 4> InRegs;
     90 
     91     CallLoweringInfo()
     92         : RetTy(nullptr), RetSExt(false), RetZExt(false), IsVarArg(false),
     93           IsInReg(false), DoesNotReturn(false), IsReturnValueUsed(true),
     94           IsTailCall(false), NumFixedArgs(-1), CallConv(CallingConv::C),
     95           Callee(nullptr), Symbol(nullptr), CS(nullptr), Call(nullptr),
     96           ResultReg(0), NumResultRegs(0), IsPatchPoint(false) {}
     97 
     98     CallLoweringInfo &setCallee(Type *ResultTy, FunctionType *FuncTy,
     99                                 const Value *Target, ArgListTy &&ArgsList,
    100                                 ImmutableCallSite &Call) {
    101       RetTy = ResultTy;
    102       Callee = Target;
    103 
    104       IsInReg = Call.paramHasAttr(0, Attribute::InReg);
    105       DoesNotReturn = Call.doesNotReturn();
    106       IsVarArg = FuncTy->isVarArg();
    107       IsReturnValueUsed = !Call.getInstruction()->use_empty();
    108       RetSExt = Call.paramHasAttr(0, Attribute::SExt);
    109       RetZExt = Call.paramHasAttr(0, Attribute::ZExt);
    110 
    111       CallConv = Call.getCallingConv();
    112       Args = std::move(ArgsList);
    113       NumFixedArgs = FuncTy->getNumParams();
    114 
    115       CS = &Call;
    116 
    117       return *this;
    118     }
    119 
    120     CallLoweringInfo &setCallee(Type *ResultTy, FunctionType *FuncTy,
    121                                 MCSymbol *Target, ArgListTy &&ArgsList,
    122                                 ImmutableCallSite &Call,
    123                                 unsigned FixedArgs = ~0U) {
    124       RetTy = ResultTy;
    125       Callee = Call.getCalledValue();
    126       Symbol = Target;
    127 
    128       IsInReg = Call.paramHasAttr(0, Attribute::InReg);
    129       DoesNotReturn = Call.doesNotReturn();
    130       IsVarArg = FuncTy->isVarArg();
    131       IsReturnValueUsed = !Call.getInstruction()->use_empty();
    132       RetSExt = Call.paramHasAttr(0, Attribute::SExt);
    133       RetZExt = Call.paramHasAttr(0, Attribute::ZExt);
    134 
    135       CallConv = Call.getCallingConv();
    136       Args = std::move(ArgsList);
    137       NumFixedArgs = (FixedArgs == ~0U) ? FuncTy->getNumParams() : FixedArgs;
    138 
    139       CS = &Call;
    140 
    141       return *this;
    142     }
    143 
    144     CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultTy,
    145                                 const Value *Target, ArgListTy &&ArgsList,
    146                                 unsigned FixedArgs = ~0U) {
    147       RetTy = ResultTy;
    148       Callee = Target;
    149       CallConv = CC;
    150       Args = std::move(ArgsList);
    151       NumFixedArgs = (FixedArgs == ~0U) ? Args.size() : FixedArgs;
    152       return *this;
    153     }
    154 
    155     CallLoweringInfo &setCallee(const DataLayout &DL, MCContext &Ctx,
    156                                 CallingConv::ID CC, Type *ResultTy,
    157                                 const char *Target, ArgListTy &&ArgsList,
    158                                 unsigned FixedArgs = ~0U);
    159 
    160     CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultTy,
    161                                 MCSymbol *Target, ArgListTy &&ArgsList,
    162                                 unsigned FixedArgs = ~0U) {
    163       RetTy = ResultTy;
    164       Symbol = Target;
    165       CallConv = CC;
    166       Args = std::move(ArgsList);
    167       NumFixedArgs = (FixedArgs == ~0U) ? Args.size() : FixedArgs;
    168       return *this;
    169     }
    170 
    171     CallLoweringInfo &setTailCall(bool Value = true) {
    172       IsTailCall = Value;
    173       return *this;
    174     }
    175 
    176     CallLoweringInfo &setIsPatchPoint(bool Value = true) {
    177       IsPatchPoint = Value;
    178       return *this;
    179     }
    180 
    181     ArgListTy &getArgs() { return Args; }
    182 
    183     void clearOuts() {
    184       OutVals.clear();
    185       OutFlags.clear();
    186       OutRegs.clear();
    187     }
    188 
    189     void clearIns() {
    190       Ins.clear();
    191       InRegs.clear();
    192     }
    193   };
    194 
    195 protected:
    196   DenseMap<const Value *, unsigned> LocalValueMap;
    197   FunctionLoweringInfo &FuncInfo;
    198   MachineFunction *MF;
    199   MachineRegisterInfo &MRI;
    200   MachineFrameInfo &MFI;
    201   MachineConstantPool &MCP;
    202   DebugLoc DbgLoc;
    203   const TargetMachine &TM;
    204   const DataLayout &DL;
    205   const TargetInstrInfo &TII;
    206   const TargetLowering &TLI;
    207   const TargetRegisterInfo &TRI;
    208   const TargetLibraryInfo *LibInfo;
    209   bool SkipTargetIndependentISel;
    210 
    211   /// \brief The position of the last instruction for materializing constants
    212   /// for use in the current block. It resets to EmitStartPt when it makes sense
    213   /// (for example, it's usually profitable to avoid function calls between the
    214   /// definition and the use)
    215   MachineInstr *LastLocalValue;
    216 
    217   /// \brief The top most instruction in the current block that is allowed for
    218   /// emitting local variables. LastLocalValue resets to EmitStartPt when it
    219   /// makes sense (for example, on function calls)
    220   MachineInstr *EmitStartPt;
    221 
    222 public:
    223   /// \brief Return the position of the last instruction emitted for
    224   /// materializing constants for use in the current block.
    225   MachineInstr *getLastLocalValue() { return LastLocalValue; }
    226 
    227   /// \brief Update the position of the last instruction emitted for
    228   /// materializing constants for use in the current block.
    229   void setLastLocalValue(MachineInstr *I) {
    230     EmitStartPt = I;
    231     LastLocalValue = I;
    232   }
    233 
    234   /// \brief Set the current block to which generated machine instructions will
    235   /// be appended, and clear the local CSE map.
    236   void startNewBlock();
    237 
    238   /// \brief Return current debug location information.
    239   DebugLoc getCurDebugLoc() const { return DbgLoc; }
    240 
    241   /// \brief Do "fast" instruction selection for function arguments and append
    242   /// the machine instructions to the current block. Returns true when
    243   /// successful.
    244   bool lowerArguments();
    245 
    246   /// \brief Do "fast" instruction selection for the given LLVM IR instruction
    247   /// and append the generated machine instructions to the current block.
    248   /// Returns true if selection was successful.
    249   bool selectInstruction(const Instruction *I);
    250 
    251   /// \brief Do "fast" instruction selection for the given LLVM IR operator
    252   /// (Instruction or ConstantExpr), and append generated machine instructions
    253   /// to the current block. Return true if selection was successful.
    254   bool selectOperator(const User *I, unsigned Opcode);
    255 
    256   /// \brief Create a virtual register and arrange for it to be assigned the
    257   /// value for the given LLVM value.
    258   unsigned getRegForValue(const Value *V);
    259 
    260   /// \brief Look up the value to see if its value is already cached in a
    261   /// register. It may be defined by instructions across blocks or defined
    262   /// locally.
    263   unsigned lookUpRegForValue(const Value *V);
    264 
    265   /// \brief This is a wrapper around getRegForValue that also takes care of
    266   /// truncating or sign-extending the given getelementptr index value.
    267   std::pair<unsigned, bool> getRegForGEPIndex(const Value *V);
    268 
    269   /// \brief We're checking to see if we can fold \p LI into \p FoldInst. Note
    270   /// that we could have a sequence where multiple LLVM IR instructions are
    271   /// folded into the same machineinstr.  For example we could have:
    272   ///
    273   ///   A: x = load i32 *P
    274   ///   B: y = icmp A, 42
    275   ///   C: br y, ...
    276   ///
    277   /// In this scenario, \p LI is "A", and \p FoldInst is "C".  We know about "B"
    278   /// (and any other folded instructions) because it is between A and C.
    279   ///
    280   /// If we succeed folding, return true.
    281   bool tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst);
    282 
    283   /// \brief The specified machine instr operand is a vreg, and that vreg is
    284   /// being provided by the specified load instruction.  If possible, try to
    285   /// fold the load as an operand to the instruction, returning true if
    286   /// possible.
    287   ///
    288   /// This method should be implemented by targets.
    289   virtual bool tryToFoldLoadIntoMI(MachineInstr * /*MI*/, unsigned /*OpNo*/,
    290                                    const LoadInst * /*LI*/) {
    291     return false;
    292   }
    293 
    294   /// \brief Reset InsertPt to prepare for inserting instructions into the
    295   /// current block.
    296   void recomputeInsertPt();
    297 
    298   /// \brief Remove all dead instructions between the I and E.
    299   void removeDeadCode(MachineBasicBlock::iterator I,
    300                       MachineBasicBlock::iterator E);
    301 
    302   struct SavePoint {
    303     MachineBasicBlock::iterator InsertPt;
    304     DebugLoc DL;
    305   };
    306 
    307   /// \brief Prepare InsertPt to begin inserting instructions into the local
    308   /// value area and return the old insert position.
    309   SavePoint enterLocalValueArea();
    310 
    311   /// \brief Reset InsertPt to the given old insert position.
    312   void leaveLocalValueArea(SavePoint Old);
    313 
    314   virtual ~FastISel();
    315 
    316 protected:
    317   explicit FastISel(FunctionLoweringInfo &FuncInfo,
    318                     const TargetLibraryInfo *LibInfo,
    319                     bool SkipTargetIndependentISel = false);
    320 
    321   /// \brief This method is called by target-independent code when the normal
    322   /// FastISel process fails to select an instruction. This gives targets a
    323   /// chance to emit code for anything that doesn't fit into FastISel's
    324   /// framework. It returns true if it was successful.
    325   virtual bool fastSelectInstruction(const Instruction *I) = 0;
    326 
    327   /// \brief This method is called by target-independent code to do target-
    328   /// specific argument lowering. It returns true if it was successful.
    329   virtual bool fastLowerArguments();
    330 
    331   /// \brief This method is called by target-independent code to do target-
    332   /// specific call lowering. It returns true if it was successful.
    333   virtual bool fastLowerCall(CallLoweringInfo &CLI);
    334 
    335   /// \brief This method is called by target-independent code to do target-
    336   /// specific intrinsic lowering. It returns true if it was successful.
    337   virtual bool fastLowerIntrinsicCall(const IntrinsicInst *II);
    338 
    339   /// \brief This method is called by target-independent code to request that an
    340   /// instruction with the given type and opcode be emitted.
    341   virtual unsigned fastEmit_(MVT VT, MVT RetVT, unsigned Opcode);
    342 
    343   /// \brief This method is called by target-independent code to request that an
    344   /// instruction with the given type, opcode, and register operand be emitted.
    345   virtual unsigned fastEmit_r(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0,
    346                               bool Op0IsKill);
    347 
    348   /// \brief This method is called by target-independent code to request that an
    349   /// instruction with the given type, opcode, and register operands be emitted.
    350   virtual unsigned fastEmit_rr(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0,
    351                                bool Op0IsKill, unsigned Op1, bool Op1IsKill);
    352 
    353   /// \brief This method is called by target-independent code to request that an
    354   /// instruction with the given type, opcode, and register and immediate
    355   // operands be emitted.
    356   virtual unsigned fastEmit_ri(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0,
    357                                bool Op0IsKill, uint64_t Imm);
    358 
    359   /// \brief This method is called by target-independent code to request that an
    360   /// instruction with the given type, opcode, and register and floating-point
    361   /// immediate operands be emitted.
    362   virtual unsigned fastEmit_rf(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0,
    363                                bool Op0IsKill, const ConstantFP *FPImm);
    364 
    365   /// \brief This method is called by target-independent code to request that an
    366   /// instruction with the given type, opcode, and register and immediate
    367   /// operands be emitted.
    368   virtual unsigned fastEmit_rri(MVT VT, MVT RetVT, unsigned Opcode,
    369                                 unsigned Op0, bool Op0IsKill, unsigned Op1,
    370                                 bool Op1IsKill, uint64_t Imm);
    371 
    372   /// \brief This method is a wrapper of fastEmit_ri.
    373   ///
    374   /// It first tries to emit an instruction with an immediate operand using
    375   /// fastEmit_ri.  If that fails, it materializes the immediate into a register
    376   /// and try fastEmit_rr instead.
    377   unsigned fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0, bool Op0IsKill,
    378                         uint64_t Imm, MVT ImmType);
    379 
    380   /// \brief This method is called by target-independent code to request that an
    381   /// instruction with the given type, opcode, and immediate operand be emitted.
    382   virtual unsigned fastEmit_i(MVT VT, MVT RetVT, unsigned Opcode, uint64_t Imm);
    383 
    384   /// \brief This method is called by target-independent code to request that an
    385   /// instruction with the given type, opcode, and floating-point immediate
    386   /// operand be emitted.
    387   virtual unsigned fastEmit_f(MVT VT, MVT RetVT, unsigned Opcode,
    388                               const ConstantFP *FPImm);
    389 
    390   /// \brief Emit a MachineInstr with no operands and a result register in the
    391   /// given register class.
    392   unsigned fastEmitInst_(unsigned MachineInstOpcode,
    393                          const TargetRegisterClass *RC);
    394 
    395   /// \brief Emit a MachineInstr with one register operand and a result register
    396   /// in the given register class.
    397   unsigned fastEmitInst_r(unsigned MachineInstOpcode,
    398                           const TargetRegisterClass *RC, unsigned Op0,
    399                           bool Op0IsKill);
    400 
    401   /// \brief Emit a MachineInstr with two register operands and a result
    402   /// register in the given register class.
    403   unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
    404                            const TargetRegisterClass *RC, unsigned Op0,
    405                            bool Op0IsKill, unsigned Op1, bool Op1IsKill);
    406 
    407   /// \brief Emit a MachineInstr with three register operands and a result
    408   /// register in the given register class.
    409   unsigned fastEmitInst_rrr(unsigned MachineInstOpcode,
    410                             const TargetRegisterClass *RC, unsigned Op0,
    411                             bool Op0IsKill, unsigned Op1, bool Op1IsKill,
    412                             unsigned Op2, bool Op2IsKill);
    413 
    414   /// \brief Emit a MachineInstr with a register operand, an immediate, and a
    415   /// result register in the given register class.
    416   unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
    417                            const TargetRegisterClass *RC, unsigned Op0,
    418                            bool Op0IsKill, uint64_t Imm);
    419 
    420   /// \brief Emit a MachineInstr with one register operand and two immediate
    421   /// operands.
    422   unsigned fastEmitInst_rii(unsigned MachineInstOpcode,
    423                             const TargetRegisterClass *RC, unsigned Op0,
    424                             bool Op0IsKill, uint64_t Imm1, uint64_t Imm2);
    425 
    426   /// \brief Emit a MachineInstr with a floating point immediate, and a result
    427   /// register in the given register class.
    428   unsigned fastEmitInst_f(unsigned MachineInstOpcode,
    429                           const TargetRegisterClass *RC,
    430                           const ConstantFP *FPImm);
    431 
    432   /// \brief Emit a MachineInstr with two register operands, an immediate, and a
    433   /// result register in the given register class.
    434   unsigned fastEmitInst_rri(unsigned MachineInstOpcode,
    435                             const TargetRegisterClass *RC, unsigned Op0,
    436                             bool Op0IsKill, unsigned Op1, bool Op1IsKill,
    437                             uint64_t Imm);
    438 
    439   /// \brief Emit a MachineInstr with a single immediate operand, and a result
    440   /// register in the given register class.
    441   unsigned fastEmitInst_i(unsigned MachineInstrOpcode,
    442                           const TargetRegisterClass *RC, uint64_t Imm);
    443 
    444   /// \brief Emit a MachineInstr for an extract_subreg from a specified index of
    445   /// a superregister to a specified type.
    446   unsigned fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0, bool Op0IsKill,
    447                                       uint32_t Idx);
    448 
    449   /// \brief Emit MachineInstrs to compute the value of Op with all but the
    450   /// least significant bit set to zero.
    451   unsigned fastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill);
    452 
    453   /// \brief Emit an unconditional branch to the given block, unless it is the
    454   /// immediate (fall-through) successor, and update the CFG.
    455   void fastEmitBranch(MachineBasicBlock *MBB, const DebugLoc &DL);
    456 
    457   /// Emit an unconditional branch to \p FalseMBB, obtains the branch weight
    458   /// and adds TrueMBB and FalseMBB to the successor list.
    459   void finishCondBranch(const BasicBlock *BranchBB, MachineBasicBlock *TrueMBB,
    460                         MachineBasicBlock *FalseMBB);
    461 
    462   /// \brief Update the value map to include the new mapping for this
    463   /// instruction, or insert an extra copy to get the result in a previous
    464   /// determined register.
    465   ///
    466   /// NOTE: This is only necessary because we might select a block that uses a
    467   /// value before we select the block that defines the value. It might be
    468   /// possible to fix this by selecting blocks in reverse postorder.
    469   void updateValueMap(const Value *I, unsigned Reg, unsigned NumRegs = 1);
    470 
    471   unsigned createResultReg(const TargetRegisterClass *RC);
    472 
    473   /// \brief Try to constrain Op so that it is usable by argument OpNum of the
    474   /// provided MCInstrDesc. If this fails, create a new virtual register in the
    475   /// correct class and COPY the value there.
    476   unsigned constrainOperandRegClass(const MCInstrDesc &II, unsigned Op,
    477                                     unsigned OpNum);
    478 
    479   /// \brief Emit a constant in a register using target-specific logic, such as
    480   /// constant pool loads.
    481   virtual unsigned fastMaterializeConstant(const Constant *C) { return 0; }
    482 
    483   /// \brief Emit an alloca address in a register using target-specific logic.
    484   virtual unsigned fastMaterializeAlloca(const AllocaInst *C) { return 0; }
    485 
    486   /// \brief Emit the floating-point constant +0.0 in a register using target-
    487   /// specific logic.
    488   virtual unsigned fastMaterializeFloatZero(const ConstantFP *CF) {
    489     return 0;
    490   }
    491 
    492   /// \brief Check if \c Add is an add that can be safely folded into \c GEP.
    493   ///
    494   /// \c Add can be folded into \c GEP if:
    495   /// - \c Add is an add,
    496   /// - \c Add's size matches \c GEP's,
    497   /// - \c Add is in the same basic block as \c GEP, and
    498   /// - \c Add has a constant operand.
    499   bool canFoldAddIntoGEP(const User *GEP, const Value *Add);
    500 
    501   /// \brief Test whether the given value has exactly one use.
    502   bool hasTrivialKill(const Value *V);
    503 
    504   /// \brief Create a machine mem operand from the given instruction.
    505   MachineMemOperand *createMachineMemOperandFor(const Instruction *I) const;
    506 
    507   CmpInst::Predicate optimizeCmpPredicate(const CmpInst *CI) const;
    508 
    509   bool lowerCallTo(const CallInst *CI, MCSymbol *Symbol, unsigned NumArgs);
    510   bool lowerCallTo(const CallInst *CI, const char *SymbolName,
    511                    unsigned NumArgs);
    512   bool lowerCallTo(CallLoweringInfo &CLI);
    513 
    514   bool isCommutativeIntrinsic(IntrinsicInst const *II) {
    515     switch (II->getIntrinsicID()) {
    516     case Intrinsic::sadd_with_overflow:
    517     case Intrinsic::uadd_with_overflow:
    518     case Intrinsic::smul_with_overflow:
    519     case Intrinsic::umul_with_overflow:
    520       return true;
    521     default:
    522       return false;
    523     }
    524   }
    525 
    526 
    527   bool lowerCall(const CallInst *I);
    528   /// \brief Select and emit code for a binary operator instruction, which has
    529   /// an opcode which directly corresponds to the given ISD opcode.
    530   bool selectBinaryOp(const User *I, unsigned ISDOpcode);
    531   bool selectFNeg(const User *I);
    532   bool selectGetElementPtr(const User *I);
    533   bool selectStackmap(const CallInst *I);
    534   bool selectPatchpoint(const CallInst *I);
    535   bool selectCall(const User *Call);
    536   bool selectIntrinsicCall(const IntrinsicInst *II);
    537   bool selectBitCast(const User *I);
    538   bool selectCast(const User *I, unsigned Opcode);
    539   bool selectExtractValue(const User *I);
    540   bool selectInsertValue(const User *I);
    541 
    542 private:
    543   /// \brief Handle PHI nodes in successor blocks.
    544   ///
    545   /// Emit code to ensure constants are copied into registers when needed.
    546   /// Remember the virtual registers that need to be added to the Machine PHI
    547   /// nodes as input.  We cannot just directly add them, because expansion might
    548   /// result in multiple MBB's for one BB.  As such, the start of the BB might
    549   /// correspond to a different MBB than the end.
    550   bool handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB);
    551 
    552   /// \brief Helper for materializeRegForValue to materialize a constant in a
    553   /// target-independent way.
    554   unsigned materializeConstant(const Value *V, MVT VT);
    555 
    556   /// \brief Helper for getRegForVale. This function is called when the value
    557   /// isn't already available in a register and must be materialized with new
    558   /// instructions.
    559   unsigned materializeRegForValue(const Value *V, MVT VT);
    560 
    561   /// \brief Clears LocalValueMap and moves the area for the new local variables
    562   /// to the beginning of the block. It helps to avoid spilling cached variables
    563   /// across heavy instructions like calls.
    564   void flushLocalValueMap();
    565 
    566   /// \brief Removes dead local value instructions after SavedLastLocalvalue.
    567   void removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue);
    568 
    569   /// \brief Insertion point before trying to select the current instruction.
    570   MachineBasicBlock::iterator SavedInsertPt;
    571 
    572   /// \brief Add a stackmap or patchpoint intrinsic call's live variable
    573   /// operands to a stackmap or patchpoint machine instruction.
    574   bool addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops,
    575                            const CallInst *CI, unsigned StartIdx);
    576   bool lowerCallOperands(const CallInst *CI, unsigned ArgIdx, unsigned NumArgs,
    577                          const Value *Callee, bool ForceRetVoidTy,
    578                          CallLoweringInfo &CLI);
    579 };
    580 
    581 } // end namespace llvm
    582 
    583 #endif
    584