Home | History | Annotate | Download | only in SelectionDAG
      1 //===-- FastISel.cpp - Implementation of the FastISel class ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the implementation of the FastISel class.
     11 //
     12 // "Fast" instruction selection is designed to emit very poor code quickly.
     13 // Also, it is not designed to be able to do much lowering, so most illegal
     14 // types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
     15 // also not intended to be able to do much optimization, except in a few cases
     16 // where doing optimizations reduces overall compile time.  For example, folding
     17 // constants into immediate fields is often done, because it's cheap and it
     18 // reduces the number of instructions later phases have to examine.
     19 //
     20 // "Fast" instruction selection is able to fail gracefully and transfer
     21 // control to the SelectionDAG selector for operations that it doesn't
     22 // support.  In many cases, this allows us to avoid duplicating a lot of
     23 // the complicated lowering logic that SelectionDAG currently has.
     24 //
     25 // The intended use for "fast" instruction selection is "-O0" mode
     26 // compilation, where the quality of the generated code is irrelevant when
     27 // weighed against the speed at which the code can be generated.  Also,
     28 // at -O0, the LLVM optimizers are not running, and this makes the
     29 // compile time of codegen a much higher portion of the overall compile
     30 // time.  Despite its limitations, "fast" instruction selection is able to
     31 // handle enough code on its own to provide noticeable overall speedups
     32 // in -O0 compiles.
     33 //
     34 // Basic operations are supported in a target-independent way, by reading
     35 // the same instruction descriptions that the SelectionDAG selector reads,
     36 // and identifying simple arithmetic operations that can be directly selected
     37 // from simple operators.  More complicated operations currently require
     38 // target-specific code.
     39 //
     40 //===----------------------------------------------------------------------===//
     41 
     42 #include "llvm/ADT/Optional.h"
     43 #include "llvm/ADT/Statistic.h"
     44 #include "llvm/Analysis/BranchProbabilityInfo.h"
     45 #include "llvm/Analysis/Loads.h"
     46 #include "llvm/Analysis/TargetLibraryInfo.h"
     47 #include "llvm/CodeGen/Analysis.h"
     48 #include "llvm/CodeGen/FastISel.h"
     49 #include "llvm/CodeGen/FunctionLoweringInfo.h"
     50 #include "llvm/CodeGen/MachineFrameInfo.h"
     51 #include "llvm/CodeGen/MachineInstrBuilder.h"
     52 #include "llvm/CodeGen/MachineModuleInfo.h"
     53 #include "llvm/CodeGen/MachineRegisterInfo.h"
     54 #include "llvm/CodeGen/StackMaps.h"
     55 #include "llvm/IR/DataLayout.h"
     56 #include "llvm/IR/DebugInfo.h"
     57 #include "llvm/IR/Function.h"
     58 #include "llvm/IR/GetElementPtrTypeIterator.h"
     59 #include "llvm/IR/GlobalVariable.h"
     60 #include "llvm/IR/Instructions.h"
     61 #include "llvm/IR/IntrinsicInst.h"
     62 #include "llvm/IR/Mangler.h"
     63 #include "llvm/IR/Operator.h"
     64 #include "llvm/Support/Debug.h"
     65 #include "llvm/Support/ErrorHandling.h"
     66 #include "llvm/Support/raw_ostream.h"
     67 #include "llvm/Target/TargetInstrInfo.h"
     68 #include "llvm/Target/TargetLowering.h"
     69 #include "llvm/Target/TargetMachine.h"
     70 #include "llvm/Target/TargetSubtargetInfo.h"
     71 using namespace llvm;
     72 
     73 #define DEBUG_TYPE "isel"
     74 
     75 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by "
     76                                          "target-independent selector");
     77 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by "
     78                                     "target-specific selector");
     79 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure");
     80 
     81 void FastISel::ArgListEntry::setAttributes(ImmutableCallSite *CS,
     82                                            unsigned AttrIdx) {
     83   IsSExt = CS->paramHasAttr(AttrIdx, Attribute::SExt);
     84   IsZExt = CS->paramHasAttr(AttrIdx, Attribute::ZExt);
     85   IsInReg = CS->paramHasAttr(AttrIdx, Attribute::InReg);
     86   IsSRet = CS->paramHasAttr(AttrIdx, Attribute::StructRet);
     87   IsNest = CS->paramHasAttr(AttrIdx, Attribute::Nest);
     88   IsByVal = CS->paramHasAttr(AttrIdx, Attribute::ByVal);
     89   IsInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca);
     90   IsReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned);
     91   IsSwiftSelf = CS->paramHasAttr(AttrIdx, Attribute::SwiftSelf);
     92   IsSwiftError = CS->paramHasAttr(AttrIdx, Attribute::SwiftError);
     93   Alignment = CS->getParamAlignment(AttrIdx);
     94 }
     95 
     96 /// Set the current block to which generated machine instructions will be
     97 /// appended, and clear the local CSE map.
     98 void FastISel::startNewBlock() {
     99   LocalValueMap.clear();
    100 
    101   // Instructions are appended to FuncInfo.MBB. If the basic block already
    102   // contains labels or copies, use the last instruction as the last local
    103   // value.
    104   EmitStartPt = nullptr;
    105   if (!FuncInfo.MBB->empty())
    106     EmitStartPt = &FuncInfo.MBB->back();
    107   LastLocalValue = EmitStartPt;
    108 }
    109 
    110 bool FastISel::lowerArguments() {
    111   if (!FuncInfo.CanLowerReturn)
    112     // Fallback to SDISel argument lowering code to deal with sret pointer
    113     // parameter.
    114     return false;
    115 
    116   if (!fastLowerArguments())
    117     return false;
    118 
    119   // Enter arguments into ValueMap for uses in non-entry BBs.
    120   for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(),
    121                                     E = FuncInfo.Fn->arg_end();
    122        I != E; ++I) {
    123     DenseMap<const Value *, unsigned>::iterator VI = LocalValueMap.find(&*I);
    124     assert(VI != LocalValueMap.end() && "Missed an argument?");
    125     FuncInfo.ValueMap[&*I] = VI->second;
    126   }
    127   return true;
    128 }
    129 
    130 void FastISel::flushLocalValueMap() {
    131   LocalValueMap.clear();
    132   LastLocalValue = EmitStartPt;
    133   recomputeInsertPt();
    134   SavedInsertPt = FuncInfo.InsertPt;
    135 }
    136 
    137 bool FastISel::hasTrivialKill(const Value *V) {
    138   // Don't consider constants or arguments to have trivial kills.
    139   const Instruction *I = dyn_cast<Instruction>(V);
    140   if (!I)
    141     return false;
    142 
    143   // No-op casts are trivially coalesced by fast-isel.
    144   if (const auto *Cast = dyn_cast<CastInst>(I))
    145     if (Cast->isNoopCast(DL.getIntPtrType(Cast->getContext())) &&
    146         !hasTrivialKill(Cast->getOperand(0)))
    147       return false;
    148 
    149   // Even the value might have only one use in the LLVM IR, it is possible that
    150   // FastISel might fold the use into another instruction and now there is more
    151   // than one use at the Machine Instruction level.
    152   unsigned Reg = lookUpRegForValue(V);
    153   if (Reg && !MRI.use_empty(Reg))
    154     return false;
    155 
    156   // GEPs with all zero indices are trivially coalesced by fast-isel.
    157   if (const auto *GEP = dyn_cast<GetElementPtrInst>(I))
    158     if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0)))
    159       return false;
    160 
    161   // Only instructions with a single use in the same basic block are considered
    162   // to have trivial kills.
    163   return I->hasOneUse() &&
    164          !(I->getOpcode() == Instruction::BitCast ||
    165            I->getOpcode() == Instruction::PtrToInt ||
    166            I->getOpcode() == Instruction::IntToPtr) &&
    167          cast<Instruction>(*I->user_begin())->getParent() == I->getParent();
    168 }
    169 
    170 unsigned FastISel::getRegForValue(const Value *V) {
    171   EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true);
    172   // Don't handle non-simple values in FastISel.
    173   if (!RealVT.isSimple())
    174     return 0;
    175 
    176   // Ignore illegal types. We must do this before looking up the value
    177   // in ValueMap because Arguments are given virtual registers regardless
    178   // of whether FastISel can handle them.
    179   MVT VT = RealVT.getSimpleVT();
    180   if (!TLI.isTypeLegal(VT)) {
    181     // Handle integer promotions, though, because they're common and easy.
    182     if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
    183       VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
    184     else
    185       return 0;
    186   }
    187 
    188   // Look up the value to see if we already have a register for it.
    189   unsigned Reg = lookUpRegForValue(V);
    190   if (Reg)
    191     return Reg;
    192 
    193   // In bottom-up mode, just create the virtual register which will be used
    194   // to hold the value. It will be materialized later.
    195   if (isa<Instruction>(V) &&
    196       (!isa<AllocaInst>(V) ||
    197        !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V))))
    198     return FuncInfo.InitializeRegForValue(V);
    199 
    200   SavePoint SaveInsertPt = enterLocalValueArea();
    201 
    202   // Materialize the value in a register. Emit any instructions in the
    203   // local value area.
    204   Reg = materializeRegForValue(V, VT);
    205 
    206   leaveLocalValueArea(SaveInsertPt);
    207 
    208   return Reg;
    209 }
    210 
    211 unsigned FastISel::materializeConstant(const Value *V, MVT VT) {
    212   unsigned Reg = 0;
    213   if (const auto *CI = dyn_cast<ConstantInt>(V)) {
    214     if (CI->getValue().getActiveBits() <= 64)
    215       Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
    216   } else if (isa<AllocaInst>(V))
    217     Reg = fastMaterializeAlloca(cast<AllocaInst>(V));
    218   else if (isa<ConstantPointerNull>(V))
    219     // Translate this as an integer zero so that it can be
    220     // local-CSE'd with actual integer zeros.
    221     Reg = getRegForValue(
    222         Constant::getNullValue(DL.getIntPtrType(V->getContext())));
    223   else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
    224     if (CF->isNullValue())
    225       Reg = fastMaterializeFloatZero(CF);
    226     else
    227       // Try to emit the constant directly.
    228       Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF);
    229 
    230     if (!Reg) {
    231       // Try to emit the constant by using an integer constant with a cast.
    232       const APFloat &Flt = CF->getValueAPF();
    233       EVT IntVT = TLI.getPointerTy(DL);
    234 
    235       uint64_t x[2];
    236       uint32_t IntBitWidth = IntVT.getSizeInBits();
    237       bool isExact;
    238       (void)Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
    239                                  APFloat::rmTowardZero, &isExact);
    240       if (isExact) {
    241         APInt IntVal(IntBitWidth, x);
    242 
    243         unsigned IntegerReg =
    244             getRegForValue(ConstantInt::get(V->getContext(), IntVal));
    245         if (IntegerReg != 0)
    246           Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg,
    247                            /*Kill=*/false);
    248       }
    249     }
    250   } else if (const auto *Op = dyn_cast<Operator>(V)) {
    251     if (!selectOperator(Op, Op->getOpcode()))
    252       if (!isa<Instruction>(Op) ||
    253           !fastSelectInstruction(cast<Instruction>(Op)))
    254         return 0;
    255     Reg = lookUpRegForValue(Op);
    256   } else if (isa<UndefValue>(V)) {
    257     Reg = createResultReg(TLI.getRegClassFor(VT));
    258     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
    259             TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
    260   }
    261   return Reg;
    262 }
    263 
    264 /// Helper for getRegForValue. This function is called when the value isn't
    265 /// already available in a register and must be materialized with new
    266 /// instructions.
    267 unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) {
    268   unsigned Reg = 0;
    269   // Give the target-specific code a try first.
    270   if (isa<Constant>(V))
    271     Reg = fastMaterializeConstant(cast<Constant>(V));
    272 
    273   // If target-specific code couldn't or didn't want to handle the value, then
    274   // give target-independent code a try.
    275   if (!Reg)
    276     Reg = materializeConstant(V, VT);
    277 
    278   // Don't cache constant materializations in the general ValueMap.
    279   // To do so would require tracking what uses they dominate.
    280   if (Reg) {
    281     LocalValueMap[V] = Reg;
    282     LastLocalValue = MRI.getVRegDef(Reg);
    283   }
    284   return Reg;
    285 }
    286 
    287 unsigned FastISel::lookUpRegForValue(const Value *V) {
    288   // Look up the value to see if we already have a register for it. We
    289   // cache values defined by Instructions across blocks, and other values
    290   // only locally. This is because Instructions already have the SSA
    291   // def-dominates-use requirement enforced.
    292   DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V);
    293   if (I != FuncInfo.ValueMap.end())
    294     return I->second;
    295   return LocalValueMap[V];
    296 }
    297 
    298 void FastISel::updateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) {
    299   if (!isa<Instruction>(I)) {
    300     LocalValueMap[I] = Reg;
    301     return;
    302   }
    303 
    304   unsigned &AssignedReg = FuncInfo.ValueMap[I];
    305   if (AssignedReg == 0)
    306     // Use the new register.
    307     AssignedReg = Reg;
    308   else if (Reg != AssignedReg) {
    309     // Arrange for uses of AssignedReg to be replaced by uses of Reg.
    310     for (unsigned i = 0; i < NumRegs; i++)
    311       FuncInfo.RegFixups[AssignedReg + i] = Reg + i;
    312 
    313     AssignedReg = Reg;
    314   }
    315 }
    316 
    317 std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) {
    318   unsigned IdxN = getRegForValue(Idx);
    319   if (IdxN == 0)
    320     // Unhandled operand. Halt "fast" selection and bail.
    321     return std::pair<unsigned, bool>(0, false);
    322 
    323   bool IdxNIsKill = hasTrivialKill(Idx);
    324 
    325   // If the index is smaller or larger than intptr_t, truncate or extend it.
    326   MVT PtrVT = TLI.getPointerTy(DL);
    327   EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
    328   if (IdxVT.bitsLT(PtrVT)) {
    329     IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN,
    330                       IdxNIsKill);
    331     IdxNIsKill = true;
    332   } else if (IdxVT.bitsGT(PtrVT)) {
    333     IdxN =
    334         fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN, IdxNIsKill);
    335     IdxNIsKill = true;
    336   }
    337   return std::pair<unsigned, bool>(IdxN, IdxNIsKill);
    338 }
    339 
    340 void FastISel::recomputeInsertPt() {
    341   if (getLastLocalValue()) {
    342     FuncInfo.InsertPt = getLastLocalValue();
    343     FuncInfo.MBB = FuncInfo.InsertPt->getParent();
    344     ++FuncInfo.InsertPt;
    345   } else
    346     FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI();
    347 
    348   // Now skip past any EH_LABELs, which must remain at the beginning.
    349   while (FuncInfo.InsertPt != FuncInfo.MBB->end() &&
    350          FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL)
    351     ++FuncInfo.InsertPt;
    352 }
    353 
    354 void FastISel::removeDeadCode(MachineBasicBlock::iterator I,
    355                               MachineBasicBlock::iterator E) {
    356   assert(static_cast<MachineInstr *>(I) && static_cast<MachineInstr *>(E) &&
    357          std::distance(I, E) > 0 && "Invalid iterator!");
    358   while (I != E) {
    359     MachineInstr *Dead = &*I;
    360     ++I;
    361     Dead->eraseFromParent();
    362     ++NumFastIselDead;
    363   }
    364   recomputeInsertPt();
    365 }
    366 
    367 FastISel::SavePoint FastISel::enterLocalValueArea() {
    368   MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt;
    369   DebugLoc OldDL = DbgLoc;
    370   recomputeInsertPt();
    371   DbgLoc = DebugLoc();
    372   SavePoint SP = {OldInsertPt, OldDL};
    373   return SP;
    374 }
    375 
    376 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) {
    377   if (FuncInfo.InsertPt != FuncInfo.MBB->begin())
    378     LastLocalValue = &*std::prev(FuncInfo.InsertPt);
    379 
    380   // Restore the previous insert position.
    381   FuncInfo.InsertPt = OldInsertPt.InsertPt;
    382   DbgLoc = OldInsertPt.DL;
    383 }
    384 
    385 bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) {
    386   EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
    387   if (VT == MVT::Other || !VT.isSimple())
    388     // Unhandled type. Halt "fast" selection and bail.
    389     return false;
    390 
    391   // We only handle legal types. For example, on x86-32 the instruction
    392   // selector contains all of the 64-bit instructions from x86-64,
    393   // under the assumption that i64 won't be used if the target doesn't
    394   // support it.
    395   if (!TLI.isTypeLegal(VT)) {
    396     // MVT::i1 is special. Allow AND, OR, or XOR because they
    397     // don't require additional zeroing, which makes them easy.
    398     if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
    399                           ISDOpcode == ISD::XOR))
    400       VT = TLI.getTypeToTransformTo(I->getContext(), VT);
    401     else
    402       return false;
    403   }
    404 
    405   // Check if the first operand is a constant, and handle it as "ri".  At -O0,
    406   // we don't have anything that canonicalizes operand order.
    407   if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0)))
    408     if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) {
    409       unsigned Op1 = getRegForValue(I->getOperand(1));
    410       if (!Op1)
    411         return false;
    412       bool Op1IsKill = hasTrivialKill(I->getOperand(1));
    413 
    414       unsigned ResultReg =
    415           fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, Op1IsKill,
    416                        CI->getZExtValue(), VT.getSimpleVT());
    417       if (!ResultReg)
    418         return false;
    419 
    420       // We successfully emitted code for the given LLVM Instruction.
    421       updateValueMap(I, ResultReg);
    422       return true;
    423     }
    424 
    425   unsigned Op0 = getRegForValue(I->getOperand(0));
    426   if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
    427     return false;
    428   bool Op0IsKill = hasTrivialKill(I->getOperand(0));
    429 
    430   // Check if the second operand is a constant and handle it appropriately.
    431   if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
    432     uint64_t Imm = CI->getSExtValue();
    433 
    434     // Transform "sdiv exact X, 8" -> "sra X, 3".
    435     if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) &&
    436         cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) {
    437       Imm = Log2_64(Imm);
    438       ISDOpcode = ISD::SRA;
    439     }
    440 
    441     // Transform "urem x, pow2" -> "and x, pow2-1".
    442     if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) &&
    443         isPowerOf2_64(Imm)) {
    444       --Imm;
    445       ISDOpcode = ISD::AND;
    446     }
    447 
    448     unsigned ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0,
    449                                       Op0IsKill, Imm, VT.getSimpleVT());
    450     if (!ResultReg)
    451       return false;
    452 
    453     // We successfully emitted code for the given LLVM Instruction.
    454     updateValueMap(I, ResultReg);
    455     return true;
    456   }
    457 
    458   // Check if the second operand is a constant float.
    459   if (const auto *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
    460     unsigned ResultReg = fastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
    461                                      ISDOpcode, Op0, Op0IsKill, CF);
    462     if (ResultReg) {
    463       // We successfully emitted code for the given LLVM Instruction.
    464       updateValueMap(I, ResultReg);
    465       return true;
    466     }
    467   }
    468 
    469   unsigned Op1 = getRegForValue(I->getOperand(1));
    470   if (!Op1) // Unhandled operand. Halt "fast" selection and bail.
    471     return false;
    472   bool Op1IsKill = hasTrivialKill(I->getOperand(1));
    473 
    474   // Now we have both operands in registers. Emit the instruction.
    475   unsigned ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
    476                                    ISDOpcode, Op0, Op0IsKill, Op1, Op1IsKill);
    477   if (!ResultReg)
    478     // Target-specific code wasn't able to find a machine opcode for
    479     // the given ISD opcode and type. Halt "fast" selection and bail.
    480     return false;
    481 
    482   // We successfully emitted code for the given LLVM Instruction.
    483   updateValueMap(I, ResultReg);
    484   return true;
    485 }
    486 
    487 bool FastISel::selectGetElementPtr(const User *I) {
    488   unsigned N = getRegForValue(I->getOperand(0));
    489   if (!N) // Unhandled operand. Halt "fast" selection and bail.
    490     return false;
    491   bool NIsKill = hasTrivialKill(I->getOperand(0));
    492 
    493   // Keep a running tab of the total offset to coalesce multiple N = N + Offset
    494   // into a single N = N + TotalOffset.
    495   uint64_t TotalOffs = 0;
    496   // FIXME: What's a good SWAG number for MaxOffs?
    497   uint64_t MaxOffs = 2048;
    498   MVT VT = TLI.getPointerTy(DL);
    499   for (gep_type_iterator GTI = gep_type_begin(I), E = gep_type_end(I);
    500        GTI != E; ++GTI) {
    501     const Value *Idx = GTI.getOperand();
    502     if (auto *StTy = dyn_cast<StructType>(*GTI)) {
    503       uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue();
    504       if (Field) {
    505         // N = N + Offset
    506         TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field);
    507         if (TotalOffs >= MaxOffs) {
    508           N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
    509           if (!N) // Unhandled operand. Halt "fast" selection and bail.
    510             return false;
    511           NIsKill = true;
    512           TotalOffs = 0;
    513         }
    514       }
    515     } else {
    516       Type *Ty = GTI.getIndexedType();
    517 
    518       // If this is a constant subscript, handle it quickly.
    519       if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
    520         if (CI->isZero())
    521           continue;
    522         // N = N + Offset
    523         uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue();
    524         TotalOffs += DL.getTypeAllocSize(Ty) * IdxN;
    525         if (TotalOffs >= MaxOffs) {
    526           N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
    527           if (!N) // Unhandled operand. Halt "fast" selection and bail.
    528             return false;
    529           NIsKill = true;
    530           TotalOffs = 0;
    531         }
    532         continue;
    533       }
    534       if (TotalOffs) {
    535         N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
    536         if (!N) // Unhandled operand. Halt "fast" selection and bail.
    537           return false;
    538         NIsKill = true;
    539         TotalOffs = 0;
    540       }
    541 
    542       // N = N + Idx * ElementSize;
    543       uint64_t ElementSize = DL.getTypeAllocSize(Ty);
    544       std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx);
    545       unsigned IdxN = Pair.first;
    546       bool IdxNIsKill = Pair.second;
    547       if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
    548         return false;
    549 
    550       if (ElementSize != 1) {
    551         IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT);
    552         if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
    553           return false;
    554         IdxNIsKill = true;
    555       }
    556       N = fastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill);
    557       if (!N) // Unhandled operand. Halt "fast" selection and bail.
    558         return false;
    559     }
    560   }
    561   if (TotalOffs) {
    562     N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
    563     if (!N) // Unhandled operand. Halt "fast" selection and bail.
    564       return false;
    565   }
    566 
    567   // We successfully emitted code for the given LLVM Instruction.
    568   updateValueMap(I, N);
    569   return true;
    570 }
    571 
    572 bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops,
    573                                    const CallInst *CI, unsigned StartIdx) {
    574   for (unsigned i = StartIdx, e = CI->getNumArgOperands(); i != e; ++i) {
    575     Value *Val = CI->getArgOperand(i);
    576     // Check for constants and encode them with a StackMaps::ConstantOp prefix.
    577     if (const auto *C = dyn_cast<ConstantInt>(Val)) {
    578       Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
    579       Ops.push_back(MachineOperand::CreateImm(C->getSExtValue()));
    580     } else if (isa<ConstantPointerNull>(Val)) {
    581       Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
    582       Ops.push_back(MachineOperand::CreateImm(0));
    583     } else if (auto *AI = dyn_cast<AllocaInst>(Val)) {
    584       // Values coming from a stack location also require a sepcial encoding,
    585       // but that is added later on by the target specific frame index
    586       // elimination implementation.
    587       auto SI = FuncInfo.StaticAllocaMap.find(AI);
    588       if (SI != FuncInfo.StaticAllocaMap.end())
    589         Ops.push_back(MachineOperand::CreateFI(SI->second));
    590       else
    591         return false;
    592     } else {
    593       unsigned Reg = getRegForValue(Val);
    594       if (!Reg)
    595         return false;
    596       Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false));
    597     }
    598   }
    599   return true;
    600 }
    601 
    602 bool FastISel::selectStackmap(const CallInst *I) {
    603   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
    604   //                                  [live variables...])
    605   assert(I->getCalledFunction()->getReturnType()->isVoidTy() &&
    606          "Stackmap cannot return a value.");
    607 
    608   // The stackmap intrinsic only records the live variables (the arguments
    609   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
    610   // intrinsic, this won't be lowered to a function call. This means we don't
    611   // have to worry about calling conventions and target-specific lowering code.
    612   // Instead we perform the call lowering right here.
    613   //
    614   // CALLSEQ_START(0...)
    615   // STACKMAP(id, nbytes, ...)
    616   // CALLSEQ_END(0, 0)
    617   //
    618   SmallVector<MachineOperand, 32> Ops;
    619 
    620   // Add the <id> and <numBytes> constants.
    621   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
    622          "Expected a constant integer.");
    623   const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
    624   Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
    625 
    626   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
    627          "Expected a constant integer.");
    628   const auto *NumBytes =
    629       cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
    630   Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
    631 
    632   // Push live variables for the stack map (skipping the first two arguments
    633   // <id> and <numBytes>).
    634   if (!addStackMapLiveVars(Ops, I, 2))
    635     return false;
    636 
    637   // We are not adding any register mask info here, because the stackmap doesn't
    638   // clobber anything.
    639 
    640   // Add scratch registers as implicit def and early clobber.
    641   CallingConv::ID CC = I->getCallingConv();
    642   const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
    643   for (unsigned i = 0; ScratchRegs[i]; ++i)
    644     Ops.push_back(MachineOperand::CreateReg(
    645         ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false,
    646         /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true));
    647 
    648   // Issue CALLSEQ_START
    649   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
    650   auto Builder =
    651       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown));
    652   const MCInstrDesc &MCID = Builder.getInstr()->getDesc();
    653   for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I)
    654     Builder.addImm(0);
    655 
    656   // Issue STACKMAP.
    657   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
    658                                     TII.get(TargetOpcode::STACKMAP));
    659   for (auto const &MO : Ops)
    660     MIB.addOperand(MO);
    661 
    662   // Issue CALLSEQ_END
    663   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
    664   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
    665       .addImm(0)
    666       .addImm(0);
    667 
    668   // Inform the Frame Information that we have a stackmap in this function.
    669   FuncInfo.MF->getFrameInfo()->setHasStackMap();
    670 
    671   return true;
    672 }
    673 
    674 /// \brief Lower an argument list according to the target calling convention.
    675 ///
    676 /// This is a helper for lowering intrinsics that follow a target calling
    677 /// convention or require stack pointer adjustment. Only a subset of the
    678 /// intrinsic's operands need to participate in the calling convention.
    679 bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx,
    680                                  unsigned NumArgs, const Value *Callee,
    681                                  bool ForceRetVoidTy, CallLoweringInfo &CLI) {
    682   ArgListTy Args;
    683   Args.reserve(NumArgs);
    684 
    685   // Populate the argument list.
    686   // Attributes for args start at offset 1, after the return attribute.
    687   ImmutableCallSite CS(CI);
    688   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1;
    689        ArgI != ArgE; ++ArgI) {
    690     Value *V = CI->getOperand(ArgI);
    691 
    692     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
    693 
    694     ArgListEntry Entry;
    695     Entry.Val = V;
    696     Entry.Ty = V->getType();
    697     Entry.setAttributes(&CS, AttrI);
    698     Args.push_back(Entry);
    699   }
    700 
    701   Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext())
    702                                : CI->getType();
    703   CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs);
    704 
    705   return lowerCallTo(CLI);
    706 }
    707 
    708 FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee(
    709     const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy,
    710     const char *Target, ArgListTy &&ArgsList, unsigned FixedArgs) {
    711   SmallString<32> MangledName;
    712   Mangler::getNameWithPrefix(MangledName, Target, DL);
    713   MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
    714   return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs);
    715 }
    716 
    717 bool FastISel::selectPatchpoint(const CallInst *I) {
    718   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
    719   //                                                 i32 <numBytes>,
    720   //                                                 i8* <target>,
    721   //                                                 i32 <numArgs>,
    722   //                                                 [Args...],
    723   //                                                 [live variables...])
    724   CallingConv::ID CC = I->getCallingConv();
    725   bool IsAnyRegCC = CC == CallingConv::AnyReg;
    726   bool HasDef = !I->getType()->isVoidTy();
    727   Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts();
    728 
    729   // Get the real number of arguments participating in the call <numArgs>
    730   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) &&
    731          "Expected a constant integer.");
    732   const auto *NumArgsVal =
    733       cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos));
    734   unsigned NumArgs = NumArgsVal->getZExtValue();
    735 
    736   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
    737   // This includes all meta-operands up to but not including CC.
    738   unsigned NumMetaOpers = PatchPointOpers::CCPos;
    739   assert(I->getNumArgOperands() >= NumMetaOpers + NumArgs &&
    740          "Not enough arguments provided to the patchpoint intrinsic");
    741 
    742   // For AnyRegCC the arguments are lowered later on manually.
    743   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
    744   CallLoweringInfo CLI;
    745   CLI.setIsPatchPoint();
    746   if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI))
    747     return false;
    748 
    749   assert(CLI.Call && "No call instruction specified.");
    750 
    751   SmallVector<MachineOperand, 32> Ops;
    752 
    753   // Add an explicit result reg if we use the anyreg calling convention.
    754   if (IsAnyRegCC && HasDef) {
    755     assert(CLI.NumResultRegs == 0 && "Unexpected result register.");
    756     CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64));
    757     CLI.NumResultRegs = 1;
    758     Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*IsDef=*/true));
    759   }
    760 
    761   // Add the <id> and <numBytes> constants.
    762   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
    763          "Expected a constant integer.");
    764   const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
    765   Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
    766 
    767   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
    768          "Expected a constant integer.");
    769   const auto *NumBytes =
    770       cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
    771   Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
    772 
    773   // Add the call target.
    774   if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) {
    775     uint64_t CalleeConstAddr =
    776       cast<ConstantInt>(C->getOperand(0))->getZExtValue();
    777     Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
    778   } else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) {
    779     if (C->getOpcode() == Instruction::IntToPtr) {
    780       uint64_t CalleeConstAddr =
    781         cast<ConstantInt>(C->getOperand(0))->getZExtValue();
    782       Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
    783     } else
    784       llvm_unreachable("Unsupported ConstantExpr.");
    785   } else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) {
    786     Ops.push_back(MachineOperand::CreateGA(GV, 0));
    787   } else if (isa<ConstantPointerNull>(Callee))
    788     Ops.push_back(MachineOperand::CreateImm(0));
    789   else
    790     llvm_unreachable("Unsupported callee address.");
    791 
    792   // Adjust <numArgs> to account for any arguments that have been passed on
    793   // the stack instead.
    794   unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size();
    795   Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs));
    796 
    797   // Add the calling convention
    798   Ops.push_back(MachineOperand::CreateImm((unsigned)CC));
    799 
    800   // Add the arguments we omitted previously. The register allocator should
    801   // place these in any free register.
    802   if (IsAnyRegCC) {
    803     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) {
    804       unsigned Reg = getRegForValue(I->getArgOperand(i));
    805       if (!Reg)
    806         return false;
    807       Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false));
    808     }
    809   }
    810 
    811   // Push the arguments from the call instruction.
    812   for (auto Reg : CLI.OutRegs)
    813     Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false));
    814 
    815   // Push live variables for the stack map.
    816   if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs))
    817     return false;
    818 
    819   // Push the register mask info.
    820   Ops.push_back(MachineOperand::CreateRegMask(
    821       TRI.getCallPreservedMask(*FuncInfo.MF, CC)));
    822 
    823   // Add scratch registers as implicit def and early clobber.
    824   const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
    825   for (unsigned i = 0; ScratchRegs[i]; ++i)
    826     Ops.push_back(MachineOperand::CreateReg(
    827         ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false,
    828         /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true));
    829 
    830   // Add implicit defs (return values).
    831   for (auto Reg : CLI.InRegs)
    832     Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/true,
    833                                             /*IsImpl=*/true));
    834 
    835   // Insert the patchpoint instruction before the call generated by the target.
    836   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, DbgLoc,
    837                                     TII.get(TargetOpcode::PATCHPOINT));
    838 
    839   for (auto &MO : Ops)
    840     MIB.addOperand(MO);
    841 
    842   MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI);
    843 
    844   // Delete the original call instruction.
    845   CLI.Call->eraseFromParent();
    846 
    847   // Inform the Frame Information that we have a patchpoint in this function.
    848   FuncInfo.MF->getFrameInfo()->setHasPatchPoint();
    849 
    850   if (CLI.NumResultRegs)
    851     updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs);
    852   return true;
    853 }
    854 
    855 /// Returns an AttributeSet representing the attributes applied to the return
    856 /// value of the given call.
    857 static AttributeSet getReturnAttrs(FastISel::CallLoweringInfo &CLI) {
    858   SmallVector<Attribute::AttrKind, 2> Attrs;
    859   if (CLI.RetSExt)
    860     Attrs.push_back(Attribute::SExt);
    861   if (CLI.RetZExt)
    862     Attrs.push_back(Attribute::ZExt);
    863   if (CLI.IsInReg)
    864     Attrs.push_back(Attribute::InReg);
    865 
    866   return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex,
    867                            Attrs);
    868 }
    869 
    870 bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName,
    871                            unsigned NumArgs) {
    872   MCContext &Ctx = MF->getContext();
    873   SmallString<32> MangledName;
    874   Mangler::getNameWithPrefix(MangledName, SymName, DL);
    875   MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
    876   return lowerCallTo(CI, Sym, NumArgs);
    877 }
    878 
    879 bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol,
    880                            unsigned NumArgs) {
    881   ImmutableCallSite CS(CI);
    882 
    883   FunctionType *FTy = CS.getFunctionType();
    884   Type *RetTy = CS.getType();
    885 
    886   ArgListTy Args;
    887   Args.reserve(NumArgs);
    888 
    889   // Populate the argument list.
    890   // Attributes for args start at offset 1, after the return attribute.
    891   for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) {
    892     Value *V = CI->getOperand(ArgI);
    893 
    894     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
    895 
    896     ArgListEntry Entry;
    897     Entry.Val = V;
    898     Entry.Ty = V->getType();
    899     Entry.setAttributes(&CS, ArgI + 1);
    900     Args.push_back(Entry);
    901   }
    902 
    903   CallLoweringInfo CLI;
    904   CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), CS, NumArgs);
    905 
    906   return lowerCallTo(CLI);
    907 }
    908 
    909 bool FastISel::lowerCallTo(CallLoweringInfo &CLI) {
    910   // Handle the incoming return values from the call.
    911   CLI.clearIns();
    912   SmallVector<EVT, 4> RetTys;
    913   ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys);
    914 
    915   SmallVector<ISD::OutputArg, 4> Outs;
    916   GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL);
    917 
    918   bool CanLowerReturn = TLI.CanLowerReturn(
    919       CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext());
    920 
    921   // FIXME: sret demotion isn't supported yet - bail out.
    922   if (!CanLowerReturn)
    923     return false;
    924 
    925   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
    926     EVT VT = RetTys[I];
    927     MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT);
    928     unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT);
    929     for (unsigned i = 0; i != NumRegs; ++i) {
    930       ISD::InputArg MyFlags;
    931       MyFlags.VT = RegisterVT;
    932       MyFlags.ArgVT = VT;
    933       MyFlags.Used = CLI.IsReturnValueUsed;
    934       if (CLI.RetSExt)
    935         MyFlags.Flags.setSExt();
    936       if (CLI.RetZExt)
    937         MyFlags.Flags.setZExt();
    938       if (CLI.IsInReg)
    939         MyFlags.Flags.setInReg();
    940       CLI.Ins.push_back(MyFlags);
    941     }
    942   }
    943 
    944   // Handle all of the outgoing arguments.
    945   CLI.clearOuts();
    946   for (auto &Arg : CLI.getArgs()) {
    947     Type *FinalType = Arg.Ty;
    948     if (Arg.IsByVal)
    949       FinalType = cast<PointerType>(Arg.Ty)->getElementType();
    950     bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
    951         FinalType, CLI.CallConv, CLI.IsVarArg);
    952 
    953     ISD::ArgFlagsTy Flags;
    954     if (Arg.IsZExt)
    955       Flags.setZExt();
    956     if (Arg.IsSExt)
    957       Flags.setSExt();
    958     if (Arg.IsInReg)
    959       Flags.setInReg();
    960     if (Arg.IsSRet)
    961       Flags.setSRet();
    962     if (Arg.IsSwiftSelf)
    963       Flags.setSwiftSelf();
    964     if (Arg.IsSwiftError)
    965       Flags.setSwiftError();
    966     if (Arg.IsByVal)
    967       Flags.setByVal();
    968     if (Arg.IsInAlloca) {
    969       Flags.setInAlloca();
    970       // Set the byval flag for CCAssignFn callbacks that don't know about
    971       // inalloca. This way we can know how many bytes we should've allocated
    972       // and how many bytes a callee cleanup function will pop.  If we port
    973       // inalloca to more targets, we'll have to add custom inalloca handling in
    974       // the various CC lowering callbacks.
    975       Flags.setByVal();
    976     }
    977     if (Arg.IsByVal || Arg.IsInAlloca) {
    978       PointerType *Ty = cast<PointerType>(Arg.Ty);
    979       Type *ElementTy = Ty->getElementType();
    980       unsigned FrameSize = DL.getTypeAllocSize(ElementTy);
    981       // For ByVal, alignment should come from FE. BE will guess if this info is
    982       // not there, but there are cases it cannot get right.
    983       unsigned FrameAlign = Arg.Alignment;
    984       if (!FrameAlign)
    985         FrameAlign = TLI.getByValTypeAlignment(ElementTy, DL);
    986       Flags.setByValSize(FrameSize);
    987       Flags.setByValAlign(FrameAlign);
    988     }
    989     if (Arg.IsNest)
    990       Flags.setNest();
    991     if (NeedsRegBlock)
    992       Flags.setInConsecutiveRegs();
    993     unsigned OriginalAlignment = DL.getABITypeAlignment(Arg.Ty);
    994     Flags.setOrigAlign(OriginalAlignment);
    995 
    996     CLI.OutVals.push_back(Arg.Val);
    997     CLI.OutFlags.push_back(Flags);
    998   }
    999 
   1000   if (!fastLowerCall(CLI))
   1001     return false;
   1002 
   1003   // Set all unused physreg defs as dead.
   1004   assert(CLI.Call && "No call instruction specified.");
   1005   CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI);
   1006 
   1007   if (CLI.NumResultRegs && CLI.CS)
   1008     updateValueMap(CLI.CS->getInstruction(), CLI.ResultReg, CLI.NumResultRegs);
   1009 
   1010   return true;
   1011 }
   1012 
   1013 bool FastISel::lowerCall(const CallInst *CI) {
   1014   ImmutableCallSite CS(CI);
   1015 
   1016   FunctionType *FuncTy = CS.getFunctionType();
   1017   Type *RetTy = CS.getType();
   1018 
   1019   ArgListTy Args;
   1020   ArgListEntry Entry;
   1021   Args.reserve(CS.arg_size());
   1022 
   1023   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
   1024        i != e; ++i) {
   1025     Value *V = *i;
   1026 
   1027     // Skip empty types
   1028     if (V->getType()->isEmptyTy())
   1029       continue;
   1030 
   1031     Entry.Val = V;
   1032     Entry.Ty = V->getType();
   1033 
   1034     // Skip the first return-type Attribute to get to params.
   1035     Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
   1036     Args.push_back(Entry);
   1037   }
   1038 
   1039   // Check if target-independent constraints permit a tail call here.
   1040   // Target-dependent constraints are checked within fastLowerCall.
   1041   bool IsTailCall = CI->isTailCall();
   1042   if (IsTailCall && !isInTailCallPosition(CS, TM))
   1043     IsTailCall = false;
   1044 
   1045   CallLoweringInfo CLI;
   1046   CLI.setCallee(RetTy, FuncTy, CI->getCalledValue(), std::move(Args), CS)
   1047       .setTailCall(IsTailCall);
   1048 
   1049   return lowerCallTo(CLI);
   1050 }
   1051 
   1052 bool FastISel::selectCall(const User *I) {
   1053   const CallInst *Call = cast<CallInst>(I);
   1054 
   1055   // Handle simple inline asms.
   1056   if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) {
   1057     // If the inline asm has side effects, then make sure that no local value
   1058     // lives across by flushing the local value map.
   1059     if (IA->hasSideEffects())
   1060       flushLocalValueMap();
   1061 
   1062     // Don't attempt to handle constraints.
   1063     if (!IA->getConstraintString().empty())
   1064       return false;
   1065 
   1066     unsigned ExtraInfo = 0;
   1067     if (IA->hasSideEffects())
   1068       ExtraInfo |= InlineAsm::Extra_HasSideEffects;
   1069     if (IA->isAlignStack())
   1070       ExtraInfo |= InlineAsm::Extra_IsAlignStack;
   1071 
   1072     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1073             TII.get(TargetOpcode::INLINEASM))
   1074         .addExternalSymbol(IA->getAsmString().c_str())
   1075         .addImm(ExtraInfo);
   1076     return true;
   1077   }
   1078 
   1079   MachineModuleInfo &MMI = FuncInfo.MF->getMMI();
   1080   ComputeUsesVAFloatArgument(*Call, &MMI);
   1081 
   1082   // Handle intrinsic function calls.
   1083   if (const auto *II = dyn_cast<IntrinsicInst>(Call))
   1084     return selectIntrinsicCall(II);
   1085 
   1086   // Usually, it does not make sense to initialize a value,
   1087   // make an unrelated function call and use the value, because
   1088   // it tends to be spilled on the stack. So, we move the pointer
   1089   // to the last local value to the beginning of the block, so that
   1090   // all the values which have already been materialized,
   1091   // appear after the call. It also makes sense to skip intrinsics
   1092   // since they tend to be inlined.
   1093   flushLocalValueMap();
   1094 
   1095   return lowerCall(Call);
   1096 }
   1097 
   1098 bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) {
   1099   switch (II->getIntrinsicID()) {
   1100   default:
   1101     break;
   1102   // At -O0 we don't care about the lifetime intrinsics.
   1103   case Intrinsic::lifetime_start:
   1104   case Intrinsic::lifetime_end:
   1105   // The donothing intrinsic does, well, nothing.
   1106   case Intrinsic::donothing:
   1107     return true;
   1108   case Intrinsic::dbg_declare: {
   1109     const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
   1110     assert(DI->getVariable() && "Missing variable");
   1111     if (!FuncInfo.MF->getMMI().hasDebugInfo()) {
   1112       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
   1113       return true;
   1114     }
   1115 
   1116     const Value *Address = DI->getAddress();
   1117     if (!Address || isa<UndefValue>(Address)) {
   1118       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
   1119       return true;
   1120     }
   1121 
   1122     unsigned Offset = 0;
   1123     Optional<MachineOperand> Op;
   1124     if (const auto *Arg = dyn_cast<Argument>(Address))
   1125       // Some arguments' frame index is recorded during argument lowering.
   1126       Offset = FuncInfo.getArgumentFrameIndex(Arg);
   1127     if (Offset)
   1128       Op = MachineOperand::CreateFI(Offset);
   1129     if (!Op)
   1130       if (unsigned Reg = lookUpRegForValue(Address))
   1131         Op = MachineOperand::CreateReg(Reg, false);
   1132 
   1133     // If we have a VLA that has a "use" in a metadata node that's then used
   1134     // here but it has no other uses, then we have a problem. E.g.,
   1135     //
   1136     //   int foo (const int *x) {
   1137     //     char a[*x];
   1138     //     return 0;
   1139     //   }
   1140     //
   1141     // If we assign 'a' a vreg and fast isel later on has to use the selection
   1142     // DAG isel, it will want to copy the value to the vreg. However, there are
   1143     // no uses, which goes counter to what selection DAG isel expects.
   1144     if (!Op && !Address->use_empty() && isa<Instruction>(Address) &&
   1145         (!isa<AllocaInst>(Address) ||
   1146          !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address))))
   1147       Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address),
   1148                                      false);
   1149 
   1150     if (Op) {
   1151       assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
   1152              "Expected inlined-at fields to agree");
   1153       if (Op->isReg()) {
   1154         Op->setIsDebug(true);
   1155         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1156                 TII.get(TargetOpcode::DBG_VALUE), false, Op->getReg(), 0,
   1157                 DI->getVariable(), DI->getExpression());
   1158       } else
   1159         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1160                 TII.get(TargetOpcode::DBG_VALUE))
   1161             .addOperand(*Op)
   1162             .addImm(0)
   1163             .addMetadata(DI->getVariable())
   1164             .addMetadata(DI->getExpression());
   1165     } else {
   1166       // We can't yet handle anything else here because it would require
   1167       // generating code, thus altering codegen because of debug info.
   1168       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
   1169     }
   1170     return true;
   1171   }
   1172   case Intrinsic::dbg_value: {
   1173     // This form of DBG_VALUE is target-independent.
   1174     const DbgValueInst *DI = cast<DbgValueInst>(II);
   1175     const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
   1176     const Value *V = DI->getValue();
   1177     assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
   1178            "Expected inlined-at fields to agree");
   1179     if (!V) {
   1180       // Currently the optimizer can produce this; insert an undef to
   1181       // help debugging.  Probably the optimizer should not do this.
   1182       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
   1183           .addReg(0U)
   1184           .addImm(DI->getOffset())
   1185           .addMetadata(DI->getVariable())
   1186           .addMetadata(DI->getExpression());
   1187     } else if (const auto *CI = dyn_cast<ConstantInt>(V)) {
   1188       if (CI->getBitWidth() > 64)
   1189         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
   1190             .addCImm(CI)
   1191             .addImm(DI->getOffset())
   1192             .addMetadata(DI->getVariable())
   1193             .addMetadata(DI->getExpression());
   1194       else
   1195         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
   1196             .addImm(CI->getZExtValue())
   1197             .addImm(DI->getOffset())
   1198             .addMetadata(DI->getVariable())
   1199             .addMetadata(DI->getExpression());
   1200     } else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
   1201       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
   1202           .addFPImm(CF)
   1203           .addImm(DI->getOffset())
   1204           .addMetadata(DI->getVariable())
   1205           .addMetadata(DI->getExpression());
   1206     } else if (unsigned Reg = lookUpRegForValue(V)) {
   1207       // FIXME: This does not handle register-indirect values at offset 0.
   1208       bool IsIndirect = DI->getOffset() != 0;
   1209       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, Reg,
   1210               DI->getOffset(), DI->getVariable(), DI->getExpression());
   1211     } else {
   1212       // We can't yet handle anything else here because it would require
   1213       // generating code, thus altering codegen because of debug info.
   1214       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
   1215     }
   1216     return true;
   1217   }
   1218   case Intrinsic::objectsize: {
   1219     ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1));
   1220     unsigned long long Res = CI->isZero() ? -1ULL : 0;
   1221     Constant *ResCI = ConstantInt::get(II->getType(), Res);
   1222     unsigned ResultReg = getRegForValue(ResCI);
   1223     if (!ResultReg)
   1224       return false;
   1225     updateValueMap(II, ResultReg);
   1226     return true;
   1227   }
   1228   case Intrinsic::expect: {
   1229     unsigned ResultReg = getRegForValue(II->getArgOperand(0));
   1230     if (!ResultReg)
   1231       return false;
   1232     updateValueMap(II, ResultReg);
   1233     return true;
   1234   }
   1235   case Intrinsic::experimental_stackmap:
   1236     return selectStackmap(II);
   1237   case Intrinsic::experimental_patchpoint_void:
   1238   case Intrinsic::experimental_patchpoint_i64:
   1239     return selectPatchpoint(II);
   1240   }
   1241 
   1242   return fastLowerIntrinsicCall(II);
   1243 }
   1244 
   1245 bool FastISel::selectCast(const User *I, unsigned Opcode) {
   1246   EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
   1247   EVT DstVT = TLI.getValueType(DL, I->getType());
   1248 
   1249   if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other ||
   1250       !DstVT.isSimple())
   1251     // Unhandled type. Halt "fast" selection and bail.
   1252     return false;
   1253 
   1254   // Check if the destination type is legal.
   1255   if (!TLI.isTypeLegal(DstVT))
   1256     return false;
   1257 
   1258   // Check if the source operand is legal.
   1259   if (!TLI.isTypeLegal(SrcVT))
   1260     return false;
   1261 
   1262   unsigned InputReg = getRegForValue(I->getOperand(0));
   1263   if (!InputReg)
   1264     // Unhandled operand.  Halt "fast" selection and bail.
   1265     return false;
   1266 
   1267   bool InputRegIsKill = hasTrivialKill(I->getOperand(0));
   1268 
   1269   unsigned ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
   1270                                   Opcode, InputReg, InputRegIsKill);
   1271   if (!ResultReg)
   1272     return false;
   1273 
   1274   updateValueMap(I, ResultReg);
   1275   return true;
   1276 }
   1277 
   1278 bool FastISel::selectBitCast(const User *I) {
   1279   // If the bitcast doesn't change the type, just use the operand value.
   1280   if (I->getType() == I->getOperand(0)->getType()) {
   1281     unsigned Reg = getRegForValue(I->getOperand(0));
   1282     if (!Reg)
   1283       return false;
   1284     updateValueMap(I, Reg);
   1285     return true;
   1286   }
   1287 
   1288   // Bitcasts of other values become reg-reg copies or BITCAST operators.
   1289   EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType());
   1290   EVT DstEVT = TLI.getValueType(DL, I->getType());
   1291   if (SrcEVT == MVT::Other || DstEVT == MVT::Other ||
   1292       !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT))
   1293     // Unhandled type. Halt "fast" selection and bail.
   1294     return false;
   1295 
   1296   MVT SrcVT = SrcEVT.getSimpleVT();
   1297   MVT DstVT = DstEVT.getSimpleVT();
   1298   unsigned Op0 = getRegForValue(I->getOperand(0));
   1299   if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
   1300     return false;
   1301   bool Op0IsKill = hasTrivialKill(I->getOperand(0));
   1302 
   1303   // First, try to perform the bitcast by inserting a reg-reg copy.
   1304   unsigned ResultReg = 0;
   1305   if (SrcVT == DstVT) {
   1306     const TargetRegisterClass *SrcClass = TLI.getRegClassFor(SrcVT);
   1307     const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT);
   1308     // Don't attempt a cross-class copy. It will likely fail.
   1309     if (SrcClass == DstClass) {
   1310       ResultReg = createResultReg(DstClass);
   1311       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1312               TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0);
   1313     }
   1314   }
   1315 
   1316   // If the reg-reg copy failed, select a BITCAST opcode.
   1317   if (!ResultReg)
   1318     ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill);
   1319 
   1320   if (!ResultReg)
   1321     return false;
   1322 
   1323   updateValueMap(I, ResultReg);
   1324   return true;
   1325 }
   1326 
   1327 // Return true if we should copy from swift error to the final vreg as specified
   1328 // by SwiftErrorWorklist.
   1329 static bool shouldCopySwiftErrorsToFinalVRegs(const TargetLowering &TLI,
   1330                                               FunctionLoweringInfo &FuncInfo) {
   1331   if (!TLI.supportSwiftError())
   1332     return false;
   1333   return FuncInfo.SwiftErrorWorklist.count(FuncInfo.MBB);
   1334 }
   1335 
   1336 // Remove local value instructions starting from the instruction after
   1337 // SavedLastLocalValue to the current function insert point.
   1338 void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue)
   1339 {
   1340   MachineInstr *CurLastLocalValue = getLastLocalValue();
   1341   if (CurLastLocalValue != SavedLastLocalValue) {
   1342     // Find the first local value instruction to be deleted.
   1343     // This is the instruction after SavedLastLocalValue if it is non-NULL.
   1344     // Otherwise it's the first instruction in the block.
   1345     MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue);
   1346     if (SavedLastLocalValue)
   1347       ++FirstDeadInst;
   1348     else
   1349       FirstDeadInst = FuncInfo.MBB->getFirstNonPHI();
   1350     setLastLocalValue(SavedLastLocalValue);
   1351     removeDeadCode(FirstDeadInst, FuncInfo.InsertPt);
   1352   }
   1353 }
   1354 
   1355 bool FastISel::selectInstruction(const Instruction *I) {
   1356   MachineInstr *SavedLastLocalValue = getLastLocalValue();
   1357   // Just before the terminator instruction, insert instructions to
   1358   // feed PHI nodes in successor blocks.
   1359   if (isa<TerminatorInst>(I)) {
   1360     // If we need to materialize any vreg from worklist, we bail out of
   1361     // FastISel.
   1362     if (shouldCopySwiftErrorsToFinalVRegs(TLI, FuncInfo))
   1363       return false;
   1364     if (!handlePHINodesInSuccessorBlocks(I->getParent())) {
   1365       // PHI node handling may have generated local value instructions,
   1366       // even though it failed to handle all PHI nodes.
   1367       // We remove these instructions because SelectionDAGISel will generate
   1368       // them again.
   1369       removeDeadLocalValueCode(SavedLastLocalValue);
   1370       return false;
   1371     }
   1372   }
   1373 
   1374   // FastISel does not handle any operand bundles except OB_funclet.
   1375   if (ImmutableCallSite CS = ImmutableCallSite(I))
   1376     for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i)
   1377       if (CS.getOperandBundleAt(i).getTagID() != LLVMContext::OB_funclet)
   1378         return false;
   1379 
   1380   DbgLoc = I->getDebugLoc();
   1381 
   1382   SavedInsertPt = FuncInfo.InsertPt;
   1383 
   1384   if (const auto *Call = dyn_cast<CallInst>(I)) {
   1385     const Function *F = Call->getCalledFunction();
   1386     LibFunc::Func Func;
   1387 
   1388     // As a special case, don't handle calls to builtin library functions that
   1389     // may be translated directly to target instructions.
   1390     if (F && !F->hasLocalLinkage() && F->hasName() &&
   1391         LibInfo->getLibFunc(F->getName(), Func) &&
   1392         LibInfo->hasOptimizedCodeGen(Func))
   1393       return false;
   1394 
   1395     // Don't handle Intrinsic::trap if a trap function is specified.
   1396     if (F && F->getIntrinsicID() == Intrinsic::trap &&
   1397         Call->hasFnAttr("trap-func-name"))
   1398       return false;
   1399   }
   1400 
   1401   // First, try doing target-independent selection.
   1402   if (!SkipTargetIndependentISel) {
   1403     if (selectOperator(I, I->getOpcode())) {
   1404       ++NumFastIselSuccessIndependent;
   1405       DbgLoc = DebugLoc();
   1406       return true;
   1407     }
   1408     // Remove dead code.
   1409     recomputeInsertPt();
   1410     if (SavedInsertPt != FuncInfo.InsertPt)
   1411       removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
   1412     SavedInsertPt = FuncInfo.InsertPt;
   1413   }
   1414   // Next, try calling the target to attempt to handle the instruction.
   1415   if (fastSelectInstruction(I)) {
   1416     ++NumFastIselSuccessTarget;
   1417     DbgLoc = DebugLoc();
   1418     return true;
   1419   }
   1420   // Remove dead code.
   1421   recomputeInsertPt();
   1422   if (SavedInsertPt != FuncInfo.InsertPt)
   1423     removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
   1424 
   1425   DbgLoc = DebugLoc();
   1426   // Undo phi node updates, because they will be added again by SelectionDAG.
   1427   if (isa<TerminatorInst>(I)) {
   1428     // PHI node handling may have generated local value instructions.
   1429     // We remove them because SelectionDAGISel will generate them again.
   1430     removeDeadLocalValueCode(SavedLastLocalValue);
   1431     FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
   1432   }
   1433   return false;
   1434 }
   1435 
   1436 /// Emit an unconditional branch to the given block, unless it is the immediate
   1437 /// (fall-through) successor, and update the CFG.
   1438 void FastISel::fastEmitBranch(MachineBasicBlock *MSucc,
   1439                               const DebugLoc &DbgLoc) {
   1440   if (FuncInfo.MBB->getBasicBlock()->size() > 1 &&
   1441       FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
   1442     // For more accurate line information if this is the only instruction
   1443     // in the block then emit it, otherwise we have the unconditional
   1444     // fall-through case, which needs no instructions.
   1445   } else {
   1446     // The unconditional branch case.
   1447     TII.InsertBranch(*FuncInfo.MBB, MSucc, nullptr,
   1448                      SmallVector<MachineOperand, 0>(), DbgLoc);
   1449   }
   1450   if (FuncInfo.BPI) {
   1451     auto BranchProbability = FuncInfo.BPI->getEdgeProbability(
   1452         FuncInfo.MBB->getBasicBlock(), MSucc->getBasicBlock());
   1453     FuncInfo.MBB->addSuccessor(MSucc, BranchProbability);
   1454   } else
   1455     FuncInfo.MBB->addSuccessorWithoutProb(MSucc);
   1456 }
   1457 
   1458 void FastISel::finishCondBranch(const BasicBlock *BranchBB,
   1459                                 MachineBasicBlock *TrueMBB,
   1460                                 MachineBasicBlock *FalseMBB) {
   1461   // Add TrueMBB as successor unless it is equal to the FalseMBB: This can
   1462   // happen in degenerate IR and MachineIR forbids to have a block twice in the
   1463   // successor/predecessor lists.
   1464   if (TrueMBB != FalseMBB) {
   1465     if (FuncInfo.BPI) {
   1466       auto BranchProbability =
   1467           FuncInfo.BPI->getEdgeProbability(BranchBB, TrueMBB->getBasicBlock());
   1468       FuncInfo.MBB->addSuccessor(TrueMBB, BranchProbability);
   1469     } else
   1470       FuncInfo.MBB->addSuccessorWithoutProb(TrueMBB);
   1471   }
   1472 
   1473   fastEmitBranch(FalseMBB, DbgLoc);
   1474 }
   1475 
   1476 /// Emit an FNeg operation.
   1477 bool FastISel::selectFNeg(const User *I) {
   1478   unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I));
   1479   if (!OpReg)
   1480     return false;
   1481   bool OpRegIsKill = hasTrivialKill(I);
   1482 
   1483   // If the target has ISD::FNEG, use it.
   1484   EVT VT = TLI.getValueType(DL, I->getType());
   1485   unsigned ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG,
   1486                                   OpReg, OpRegIsKill);
   1487   if (ResultReg) {
   1488     updateValueMap(I, ResultReg);
   1489     return true;
   1490   }
   1491 
   1492   // Bitcast the value to integer, twiddle the sign bit with xor,
   1493   // and then bitcast it back to floating-point.
   1494   if (VT.getSizeInBits() > 64)
   1495     return false;
   1496   EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
   1497   if (!TLI.isTypeLegal(IntVT))
   1498     return false;
   1499 
   1500   unsigned IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
   1501                                ISD::BITCAST, OpReg, OpRegIsKill);
   1502   if (!IntReg)
   1503     return false;
   1504 
   1505   unsigned IntResultReg = fastEmit_ri_(
   1506       IntVT.getSimpleVT(), ISD::XOR, IntReg, /*IsKill=*/true,
   1507       UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT());
   1508   if (!IntResultReg)
   1509     return false;
   1510 
   1511   ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST,
   1512                          IntResultReg, /*IsKill=*/true);
   1513   if (!ResultReg)
   1514     return false;
   1515 
   1516   updateValueMap(I, ResultReg);
   1517   return true;
   1518 }
   1519 
   1520 bool FastISel::selectExtractValue(const User *U) {
   1521   const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U);
   1522   if (!EVI)
   1523     return false;
   1524 
   1525   // Make sure we only try to handle extracts with a legal result.  But also
   1526   // allow i1 because it's easy.
   1527   EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true);
   1528   if (!RealVT.isSimple())
   1529     return false;
   1530   MVT VT = RealVT.getSimpleVT();
   1531   if (!TLI.isTypeLegal(VT) && VT != MVT::i1)
   1532     return false;
   1533 
   1534   const Value *Op0 = EVI->getOperand(0);
   1535   Type *AggTy = Op0->getType();
   1536 
   1537   // Get the base result register.
   1538   unsigned ResultReg;
   1539   DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0);
   1540   if (I != FuncInfo.ValueMap.end())
   1541     ResultReg = I->second;
   1542   else if (isa<Instruction>(Op0))
   1543     ResultReg = FuncInfo.InitializeRegForValue(Op0);
   1544   else
   1545     return false; // fast-isel can't handle aggregate constants at the moment
   1546 
   1547   // Get the actual result register, which is an offset from the base register.
   1548   unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices());
   1549 
   1550   SmallVector<EVT, 4> AggValueVTs;
   1551   ComputeValueVTs(TLI, DL, AggTy, AggValueVTs);
   1552 
   1553   for (unsigned i = 0; i < VTIndex; i++)
   1554     ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]);
   1555 
   1556   updateValueMap(EVI, ResultReg);
   1557   return true;
   1558 }
   1559 
   1560 bool FastISel::selectOperator(const User *I, unsigned Opcode) {
   1561   switch (Opcode) {
   1562   case Instruction::Add:
   1563     return selectBinaryOp(I, ISD::ADD);
   1564   case Instruction::FAdd:
   1565     return selectBinaryOp(I, ISD::FADD);
   1566   case Instruction::Sub:
   1567     return selectBinaryOp(I, ISD::SUB);
   1568   case Instruction::FSub:
   1569     // FNeg is currently represented in LLVM IR as a special case of FSub.
   1570     if (BinaryOperator::isFNeg(I))
   1571       return selectFNeg(I);
   1572     return selectBinaryOp(I, ISD::FSUB);
   1573   case Instruction::Mul:
   1574     return selectBinaryOp(I, ISD::MUL);
   1575   case Instruction::FMul:
   1576     return selectBinaryOp(I, ISD::FMUL);
   1577   case Instruction::SDiv:
   1578     return selectBinaryOp(I, ISD::SDIV);
   1579   case Instruction::UDiv:
   1580     return selectBinaryOp(I, ISD::UDIV);
   1581   case Instruction::FDiv:
   1582     return selectBinaryOp(I, ISD::FDIV);
   1583   case Instruction::SRem:
   1584     return selectBinaryOp(I, ISD::SREM);
   1585   case Instruction::URem:
   1586     return selectBinaryOp(I, ISD::UREM);
   1587   case Instruction::FRem:
   1588     return selectBinaryOp(I, ISD::FREM);
   1589   case Instruction::Shl:
   1590     return selectBinaryOp(I, ISD::SHL);
   1591   case Instruction::LShr:
   1592     return selectBinaryOp(I, ISD::SRL);
   1593   case Instruction::AShr:
   1594     return selectBinaryOp(I, ISD::SRA);
   1595   case Instruction::And:
   1596     return selectBinaryOp(I, ISD::AND);
   1597   case Instruction::Or:
   1598     return selectBinaryOp(I, ISD::OR);
   1599   case Instruction::Xor:
   1600     return selectBinaryOp(I, ISD::XOR);
   1601 
   1602   case Instruction::GetElementPtr:
   1603     return selectGetElementPtr(I);
   1604 
   1605   case Instruction::Br: {
   1606     const BranchInst *BI = cast<BranchInst>(I);
   1607 
   1608     if (BI->isUnconditional()) {
   1609       const BasicBlock *LLVMSucc = BI->getSuccessor(0);
   1610       MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc];
   1611       fastEmitBranch(MSucc, BI->getDebugLoc());
   1612       return true;
   1613     }
   1614 
   1615     // Conditional branches are not handed yet.
   1616     // Halt "fast" selection and bail.
   1617     return false;
   1618   }
   1619 
   1620   case Instruction::Unreachable:
   1621     if (TM.Options.TrapUnreachable)
   1622       return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0;
   1623     else
   1624       return true;
   1625 
   1626   case Instruction::Alloca:
   1627     // FunctionLowering has the static-sized case covered.
   1628     if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I)))
   1629       return true;
   1630 
   1631     // Dynamic-sized alloca is not handled yet.
   1632     return false;
   1633 
   1634   case Instruction::Call:
   1635     return selectCall(I);
   1636 
   1637   case Instruction::BitCast:
   1638     return selectBitCast(I);
   1639 
   1640   case Instruction::FPToSI:
   1641     return selectCast(I, ISD::FP_TO_SINT);
   1642   case Instruction::ZExt:
   1643     return selectCast(I, ISD::ZERO_EXTEND);
   1644   case Instruction::SExt:
   1645     return selectCast(I, ISD::SIGN_EXTEND);
   1646   case Instruction::Trunc:
   1647     return selectCast(I, ISD::TRUNCATE);
   1648   case Instruction::SIToFP:
   1649     return selectCast(I, ISD::SINT_TO_FP);
   1650 
   1651   case Instruction::IntToPtr: // Deliberate fall-through.
   1652   case Instruction::PtrToInt: {
   1653     EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
   1654     EVT DstVT = TLI.getValueType(DL, I->getType());
   1655     if (DstVT.bitsGT(SrcVT))
   1656       return selectCast(I, ISD::ZERO_EXTEND);
   1657     if (DstVT.bitsLT(SrcVT))
   1658       return selectCast(I, ISD::TRUNCATE);
   1659     unsigned Reg = getRegForValue(I->getOperand(0));
   1660     if (!Reg)
   1661       return false;
   1662     updateValueMap(I, Reg);
   1663     return true;
   1664   }
   1665 
   1666   case Instruction::ExtractValue:
   1667     return selectExtractValue(I);
   1668 
   1669   case Instruction::PHI:
   1670     llvm_unreachable("FastISel shouldn't visit PHI nodes!");
   1671 
   1672   default:
   1673     // Unhandled instruction. Halt "fast" selection and bail.
   1674     return false;
   1675   }
   1676 }
   1677 
   1678 FastISel::FastISel(FunctionLoweringInfo &FuncInfo,
   1679                    const TargetLibraryInfo *LibInfo,
   1680                    bool SkipTargetIndependentISel)
   1681     : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()),
   1682       MFI(*FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()),
   1683       TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()),
   1684       TII(*MF->getSubtarget().getInstrInfo()),
   1685       TLI(*MF->getSubtarget().getTargetLowering()),
   1686       TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo),
   1687       SkipTargetIndependentISel(SkipTargetIndependentISel) {}
   1688 
   1689 FastISel::~FastISel() {}
   1690 
   1691 bool FastISel::fastLowerArguments() { return false; }
   1692 
   1693 bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; }
   1694 
   1695 bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) {
   1696   return false;
   1697 }
   1698 
   1699 unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; }
   1700 
   1701 unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/,
   1702                               bool /*Op0IsKill*/) {
   1703   return 0;
   1704 }
   1705 
   1706 unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/,
   1707                                bool /*Op0IsKill*/, unsigned /*Op1*/,
   1708                                bool /*Op1IsKill*/) {
   1709   return 0;
   1710 }
   1711 
   1712 unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
   1713   return 0;
   1714 }
   1715 
   1716 unsigned FastISel::fastEmit_f(MVT, MVT, unsigned,
   1717                               const ConstantFP * /*FPImm*/) {
   1718   return 0;
   1719 }
   1720 
   1721 unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/,
   1722                                bool /*Op0IsKill*/, uint64_t /*Imm*/) {
   1723   return 0;
   1724 }
   1725 
   1726 unsigned FastISel::fastEmit_rf(MVT, MVT, unsigned, unsigned /*Op0*/,
   1727                                bool /*Op0IsKill*/,
   1728                                const ConstantFP * /*FPImm*/) {
   1729   return 0;
   1730 }
   1731 
   1732 unsigned FastISel::fastEmit_rri(MVT, MVT, unsigned, unsigned /*Op0*/,
   1733                                 bool /*Op0IsKill*/, unsigned /*Op1*/,
   1734                                 bool /*Op1IsKill*/, uint64_t /*Imm*/) {
   1735   return 0;
   1736 }
   1737 
   1738 /// This method is a wrapper of fastEmit_ri. It first tries to emit an
   1739 /// instruction with an immediate operand using fastEmit_ri.
   1740 /// If that fails, it materializes the immediate into a register and try
   1741 /// fastEmit_rr instead.
   1742 unsigned FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0,
   1743                                 bool Op0IsKill, uint64_t Imm, MVT ImmType) {
   1744   // If this is a multiply by a power of two, emit this as a shift left.
   1745   if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) {
   1746     Opcode = ISD::SHL;
   1747     Imm = Log2_64(Imm);
   1748   } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) {
   1749     // div x, 8 -> srl x, 3
   1750     Opcode = ISD::SRL;
   1751     Imm = Log2_64(Imm);
   1752   }
   1753 
   1754   // Horrible hack (to be removed), check to make sure shift amounts are
   1755   // in-range.
   1756   if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) &&
   1757       Imm >= VT.getSizeInBits())
   1758     return 0;
   1759 
   1760   // First check if immediate type is legal. If not, we can't use the ri form.
   1761   unsigned ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm);
   1762   if (ResultReg)
   1763     return ResultReg;
   1764   unsigned MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
   1765   bool IsImmKill = true;
   1766   if (!MaterialReg) {
   1767     // This is a bit ugly/slow, but failing here means falling out of
   1768     // fast-isel, which would be very slow.
   1769     IntegerType *ITy =
   1770         IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits());
   1771     MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm));
   1772     if (!MaterialReg)
   1773       return 0;
   1774     // FIXME: If the materialized register here has no uses yet then this
   1775     // will be the first use and we should be able to mark it as killed.
   1776     // However, the local value area for materialising constant expressions
   1777     // grows down, not up, which means that any constant expressions we generate
   1778     // later which also use 'Imm' could be after this instruction and therefore
   1779     // after this kill.
   1780     IsImmKill = false;
   1781   }
   1782   return fastEmit_rr(VT, VT, Opcode, Op0, Op0IsKill, MaterialReg, IsImmKill);
   1783 }
   1784 
   1785 unsigned FastISel::createResultReg(const TargetRegisterClass *RC) {
   1786   return MRI.createVirtualRegister(RC);
   1787 }
   1788 
   1789 unsigned FastISel::constrainOperandRegClass(const MCInstrDesc &II, unsigned Op,
   1790                                             unsigned OpNum) {
   1791   if (TargetRegisterInfo::isVirtualRegister(Op)) {
   1792     const TargetRegisterClass *RegClass =
   1793         TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF);
   1794     if (!MRI.constrainRegClass(Op, RegClass)) {
   1795       // If it's not legal to COPY between the register classes, something
   1796       // has gone very wrong before we got here.
   1797       unsigned NewOp = createResultReg(RegClass);
   1798       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1799               TII.get(TargetOpcode::COPY), NewOp).addReg(Op);
   1800       return NewOp;
   1801     }
   1802   }
   1803   return Op;
   1804 }
   1805 
   1806 unsigned FastISel::fastEmitInst_(unsigned MachineInstOpcode,
   1807                                  const TargetRegisterClass *RC) {
   1808   unsigned ResultReg = createResultReg(RC);
   1809   const MCInstrDesc &II = TII.get(MachineInstOpcode);
   1810 
   1811   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg);
   1812   return ResultReg;
   1813 }
   1814 
   1815 unsigned FastISel::fastEmitInst_r(unsigned MachineInstOpcode,
   1816                                   const TargetRegisterClass *RC, unsigned Op0,
   1817                                   bool Op0IsKill) {
   1818   const MCInstrDesc &II = TII.get(MachineInstOpcode);
   1819 
   1820   unsigned ResultReg = createResultReg(RC);
   1821   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
   1822 
   1823   if (II.getNumDefs() >= 1)
   1824     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
   1825         .addReg(Op0, getKillRegState(Op0IsKill));
   1826   else {
   1827     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
   1828         .addReg(Op0, getKillRegState(Op0IsKill));
   1829     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1830             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
   1831   }
   1832 
   1833   return ResultReg;
   1834 }
   1835 
   1836 unsigned FastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
   1837                                    const TargetRegisterClass *RC, unsigned Op0,
   1838                                    bool Op0IsKill, unsigned Op1,
   1839                                    bool Op1IsKill) {
   1840   const MCInstrDesc &II = TII.get(MachineInstOpcode);
   1841 
   1842   unsigned ResultReg = createResultReg(RC);
   1843   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
   1844   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
   1845 
   1846   if (II.getNumDefs() >= 1)
   1847     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
   1848         .addReg(Op0, getKillRegState(Op0IsKill))
   1849         .addReg(Op1, getKillRegState(Op1IsKill));
   1850   else {
   1851     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
   1852         .addReg(Op0, getKillRegState(Op0IsKill))
   1853         .addReg(Op1, getKillRegState(Op1IsKill));
   1854     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1855             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
   1856   }
   1857   return ResultReg;
   1858 }
   1859 
   1860 unsigned FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode,
   1861                                     const TargetRegisterClass *RC, unsigned Op0,
   1862                                     bool Op0IsKill, unsigned Op1,
   1863                                     bool Op1IsKill, unsigned Op2,
   1864                                     bool Op2IsKill) {
   1865   const MCInstrDesc &II = TII.get(MachineInstOpcode);
   1866 
   1867   unsigned ResultReg = createResultReg(RC);
   1868   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
   1869   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
   1870   Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2);
   1871 
   1872   if (II.getNumDefs() >= 1)
   1873     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
   1874         .addReg(Op0, getKillRegState(Op0IsKill))
   1875         .addReg(Op1, getKillRegState(Op1IsKill))
   1876         .addReg(Op2, getKillRegState(Op2IsKill));
   1877   else {
   1878     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
   1879         .addReg(Op0, getKillRegState(Op0IsKill))
   1880         .addReg(Op1, getKillRegState(Op1IsKill))
   1881         .addReg(Op2, getKillRegState(Op2IsKill));
   1882     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1883             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
   1884   }
   1885   return ResultReg;
   1886 }
   1887 
   1888 unsigned FastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
   1889                                    const TargetRegisterClass *RC, unsigned Op0,
   1890                                    bool Op0IsKill, uint64_t Imm) {
   1891   const MCInstrDesc &II = TII.get(MachineInstOpcode);
   1892 
   1893   unsigned ResultReg = createResultReg(RC);
   1894   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
   1895 
   1896   if (II.getNumDefs() >= 1)
   1897     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
   1898         .addReg(Op0, getKillRegState(Op0IsKill))
   1899         .addImm(Imm);
   1900   else {
   1901     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
   1902         .addReg(Op0, getKillRegState(Op0IsKill))
   1903         .addImm(Imm);
   1904     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1905             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
   1906   }
   1907   return ResultReg;
   1908 }
   1909 
   1910 unsigned FastISel::fastEmitInst_rii(unsigned MachineInstOpcode,
   1911                                     const TargetRegisterClass *RC, unsigned Op0,
   1912                                     bool Op0IsKill, uint64_t Imm1,
   1913                                     uint64_t Imm2) {
   1914   const MCInstrDesc &II = TII.get(MachineInstOpcode);
   1915 
   1916   unsigned ResultReg = createResultReg(RC);
   1917   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
   1918 
   1919   if (II.getNumDefs() >= 1)
   1920     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
   1921         .addReg(Op0, getKillRegState(Op0IsKill))
   1922         .addImm(Imm1)
   1923         .addImm(Imm2);
   1924   else {
   1925     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
   1926         .addReg(Op0, getKillRegState(Op0IsKill))
   1927         .addImm(Imm1)
   1928         .addImm(Imm2);
   1929     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1930             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
   1931   }
   1932   return ResultReg;
   1933 }
   1934 
   1935 unsigned FastISel::fastEmitInst_f(unsigned MachineInstOpcode,
   1936                                   const TargetRegisterClass *RC,
   1937                                   const ConstantFP *FPImm) {
   1938   const MCInstrDesc &II = TII.get(MachineInstOpcode);
   1939 
   1940   unsigned ResultReg = createResultReg(RC);
   1941 
   1942   if (II.getNumDefs() >= 1)
   1943     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
   1944         .addFPImm(FPImm);
   1945   else {
   1946     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
   1947         .addFPImm(FPImm);
   1948     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1949             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
   1950   }
   1951   return ResultReg;
   1952 }
   1953 
   1954 unsigned FastISel::fastEmitInst_rri(unsigned MachineInstOpcode,
   1955                                     const TargetRegisterClass *RC, unsigned Op0,
   1956                                     bool Op0IsKill, unsigned Op1,
   1957                                     bool Op1IsKill, uint64_t Imm) {
   1958   const MCInstrDesc &II = TII.get(MachineInstOpcode);
   1959 
   1960   unsigned ResultReg = createResultReg(RC);
   1961   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
   1962   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
   1963 
   1964   if (II.getNumDefs() >= 1)
   1965     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
   1966         .addReg(Op0, getKillRegState(Op0IsKill))
   1967         .addReg(Op1, getKillRegState(Op1IsKill))
   1968         .addImm(Imm);
   1969   else {
   1970     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
   1971         .addReg(Op0, getKillRegState(Op0IsKill))
   1972         .addReg(Op1, getKillRegState(Op1IsKill))
   1973         .addImm(Imm);
   1974     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1975             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
   1976   }
   1977   return ResultReg;
   1978 }
   1979 
   1980 unsigned FastISel::fastEmitInst_i(unsigned MachineInstOpcode,
   1981                                   const TargetRegisterClass *RC, uint64_t Imm) {
   1982   unsigned ResultReg = createResultReg(RC);
   1983   const MCInstrDesc &II = TII.get(MachineInstOpcode);
   1984 
   1985   if (II.getNumDefs() >= 1)
   1986     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
   1987         .addImm(Imm);
   1988   else {
   1989     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm);
   1990     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1991             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
   1992   }
   1993   return ResultReg;
   1994 }
   1995 
   1996 unsigned FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0,
   1997                                               bool Op0IsKill, uint32_t Idx) {
   1998   unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
   1999   assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
   2000          "Cannot yet extract from physregs");
   2001   const TargetRegisterClass *RC = MRI.getRegClass(Op0);
   2002   MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx));
   2003   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
   2004           ResultReg).addReg(Op0, getKillRegState(Op0IsKill), Idx);
   2005   return ResultReg;
   2006 }
   2007 
   2008 /// Emit MachineInstrs to compute the value of Op with all but the least
   2009 /// significant bit set to zero.
   2010 unsigned FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) {
   2011   return fastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1);
   2012 }
   2013 
   2014 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
   2015 /// Emit code to ensure constants are copied into registers when needed.
   2016 /// Remember the virtual registers that need to be added to the Machine PHI
   2017 /// nodes as input.  We cannot just directly add them, because expansion
   2018 /// might result in multiple MBB's for one BB.  As such, the start of the
   2019 /// BB might correspond to a different MBB than the end.
   2020 bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
   2021   const TerminatorInst *TI = LLVMBB->getTerminator();
   2022 
   2023   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
   2024   FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();
   2025 
   2026   // Check successor nodes' PHI nodes that expect a constant to be available
   2027   // from this block.
   2028   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
   2029     const BasicBlock *SuccBB = TI->getSuccessor(succ);
   2030     if (!isa<PHINode>(SuccBB->begin()))
   2031       continue;
   2032     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
   2033 
   2034     // If this terminator has multiple identical successors (common for
   2035     // switches), only handle each succ once.
   2036     if (!SuccsHandled.insert(SuccMBB).second)
   2037       continue;
   2038 
   2039     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
   2040 
   2041     // At this point we know that there is a 1-1 correspondence between LLVM PHI
   2042     // nodes and Machine PHI nodes, but the incoming operands have not been
   2043     // emitted yet.
   2044     for (BasicBlock::const_iterator I = SuccBB->begin();
   2045          const auto *PN = dyn_cast<PHINode>(I); ++I) {
   2046 
   2047       // Ignore dead phi's.
   2048       if (PN->use_empty())
   2049         continue;
   2050 
   2051       // Only handle legal types. Two interesting things to note here. First,
   2052       // by bailing out early, we may leave behind some dead instructions,
   2053       // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
   2054       // own moves. Second, this check is necessary because FastISel doesn't
   2055       // use CreateRegs to create registers, so it always creates
   2056       // exactly one register for each non-void instruction.
   2057       EVT VT = TLI.getValueType(DL, PN->getType(), /*AllowUnknown=*/true);
   2058       if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
   2059         // Handle integer promotions, though, because they're common and easy.
   2060         if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) {
   2061           FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
   2062           return false;
   2063         }
   2064       }
   2065 
   2066       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
   2067 
   2068       // Set the DebugLoc for the copy. Prefer the location of the operand
   2069       // if there is one; use the location of the PHI otherwise.
   2070       DbgLoc = PN->getDebugLoc();
   2071       if (const auto *Inst = dyn_cast<Instruction>(PHIOp))
   2072         DbgLoc = Inst->getDebugLoc();
   2073 
   2074       unsigned Reg = getRegForValue(PHIOp);
   2075       if (!Reg) {
   2076         FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
   2077         return false;
   2078       }
   2079       FuncInfo.PHINodesToUpdate.push_back(std::make_pair(&*MBBI++, Reg));
   2080       DbgLoc = DebugLoc();
   2081     }
   2082   }
   2083 
   2084   return true;
   2085 }
   2086 
   2087 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) {
   2088   assert(LI->hasOneUse() &&
   2089          "tryToFoldLoad expected a LoadInst with a single use");
   2090   // We know that the load has a single use, but don't know what it is.  If it
   2091   // isn't one of the folded instructions, then we can't succeed here.  Handle
   2092   // this by scanning the single-use users of the load until we get to FoldInst.
   2093   unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs.
   2094 
   2095   const Instruction *TheUser = LI->user_back();
   2096   while (TheUser != FoldInst && // Scan up until we find FoldInst.
   2097          // Stay in the right block.
   2098          TheUser->getParent() == FoldInst->getParent() &&
   2099          --MaxUsers) { // Don't scan too far.
   2100     // If there are multiple or no uses of this instruction, then bail out.
   2101     if (!TheUser->hasOneUse())
   2102       return false;
   2103 
   2104     TheUser = TheUser->user_back();
   2105   }
   2106 
   2107   // If we didn't find the fold instruction, then we failed to collapse the
   2108   // sequence.
   2109   if (TheUser != FoldInst)
   2110     return false;
   2111 
   2112   // Don't try to fold volatile loads.  Target has to deal with alignment
   2113   // constraints.
   2114   if (LI->isVolatile())
   2115     return false;
   2116 
   2117   // Figure out which vreg this is going into.  If there is no assigned vreg yet
   2118   // then there actually was no reference to it.  Perhaps the load is referenced
   2119   // by a dead instruction.
   2120   unsigned LoadReg = getRegForValue(LI);
   2121   if (!LoadReg)
   2122     return false;
   2123 
   2124   // We can't fold if this vreg has no uses or more than one use.  Multiple uses
   2125   // may mean that the instruction got lowered to multiple MIs, or the use of
   2126   // the loaded value ended up being multiple operands of the result.
   2127   if (!MRI.hasOneUse(LoadReg))
   2128     return false;
   2129 
   2130   MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg);
   2131   MachineInstr *User = RI->getParent();
   2132 
   2133   // Set the insertion point properly.  Folding the load can cause generation of
   2134   // other random instructions (like sign extends) for addressing modes; make
   2135   // sure they get inserted in a logical place before the new instruction.
   2136   FuncInfo.InsertPt = User;
   2137   FuncInfo.MBB = User->getParent();
   2138 
   2139   // Ask the target to try folding the load.
   2140   return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI);
   2141 }
   2142 
   2143 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) {
   2144   // Must be an add.
   2145   if (!isa<AddOperator>(Add))
   2146     return false;
   2147   // Type size needs to match.
   2148   if (DL.getTypeSizeInBits(GEP->getType()) !=
   2149       DL.getTypeSizeInBits(Add->getType()))
   2150     return false;
   2151   // Must be in the same basic block.
   2152   if (isa<Instruction>(Add) &&
   2153       FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB)
   2154     return false;
   2155   // Must have a constant operand.
   2156   return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1));
   2157 }
   2158 
   2159 MachineMemOperand *
   2160 FastISel::createMachineMemOperandFor(const Instruction *I) const {
   2161   const Value *Ptr;
   2162   Type *ValTy;
   2163   unsigned Alignment;
   2164   unsigned Flags;
   2165   bool IsVolatile;
   2166 
   2167   if (const auto *LI = dyn_cast<LoadInst>(I)) {
   2168     Alignment = LI->getAlignment();
   2169     IsVolatile = LI->isVolatile();
   2170     Flags = MachineMemOperand::MOLoad;
   2171     Ptr = LI->getPointerOperand();
   2172     ValTy = LI->getType();
   2173   } else if (const auto *SI = dyn_cast<StoreInst>(I)) {
   2174     Alignment = SI->getAlignment();
   2175     IsVolatile = SI->isVolatile();
   2176     Flags = MachineMemOperand::MOStore;
   2177     Ptr = SI->getPointerOperand();
   2178     ValTy = SI->getValueOperand()->getType();
   2179   } else
   2180     return nullptr;
   2181 
   2182   bool IsNonTemporal = I->getMetadata(LLVMContext::MD_nontemporal) != nullptr;
   2183   bool IsInvariant = I->getMetadata(LLVMContext::MD_invariant_load) != nullptr;
   2184   const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range);
   2185 
   2186   AAMDNodes AAInfo;
   2187   I->getAAMetadata(AAInfo);
   2188 
   2189   if (Alignment == 0) // Ensure that codegen never sees alignment 0.
   2190     Alignment = DL.getABITypeAlignment(ValTy);
   2191 
   2192   unsigned Size = DL.getTypeStoreSize(ValTy);
   2193 
   2194   if (IsVolatile)
   2195     Flags |= MachineMemOperand::MOVolatile;
   2196   if (IsNonTemporal)
   2197     Flags |= MachineMemOperand::MONonTemporal;
   2198   if (IsInvariant)
   2199     Flags |= MachineMemOperand::MOInvariant;
   2200 
   2201   return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size,
   2202                                            Alignment, AAInfo, Ranges);
   2203 }
   2204 
   2205 CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const {
   2206   // If both operands are the same, then try to optimize or fold the cmp.
   2207   CmpInst::Predicate Predicate = CI->getPredicate();
   2208   if (CI->getOperand(0) != CI->getOperand(1))
   2209     return Predicate;
   2210 
   2211   switch (Predicate) {
   2212   default: llvm_unreachable("Invalid predicate!");
   2213   case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break;
   2214   case CmpInst::FCMP_OEQ:   Predicate = CmpInst::FCMP_ORD;   break;
   2215   case CmpInst::FCMP_OGT:   Predicate = CmpInst::FCMP_FALSE; break;
   2216   case CmpInst::FCMP_OGE:   Predicate = CmpInst::FCMP_ORD;   break;
   2217   case CmpInst::FCMP_OLT:   Predicate = CmpInst::FCMP_FALSE; break;
   2218   case CmpInst::FCMP_OLE:   Predicate = CmpInst::FCMP_ORD;   break;
   2219   case CmpInst::FCMP_ONE:   Predicate = CmpInst::FCMP_FALSE; break;
   2220   case CmpInst::FCMP_ORD:   Predicate = CmpInst::FCMP_ORD;   break;
   2221   case CmpInst::FCMP_UNO:   Predicate = CmpInst::FCMP_UNO;   break;
   2222   case CmpInst::FCMP_UEQ:   Predicate = CmpInst::FCMP_TRUE;  break;
   2223   case CmpInst::FCMP_UGT:   Predicate = CmpInst::FCMP_UNO;   break;
   2224   case CmpInst::FCMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break;
   2225   case CmpInst::FCMP_ULT:   Predicate = CmpInst::FCMP_UNO;   break;
   2226   case CmpInst::FCMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break;
   2227   case CmpInst::FCMP_UNE:   Predicate = CmpInst::FCMP_UNO;   break;
   2228   case CmpInst::FCMP_TRUE:  Predicate = CmpInst::FCMP_TRUE;  break;
   2229 
   2230   case CmpInst::ICMP_EQ:    Predicate = CmpInst::FCMP_TRUE;  break;
   2231   case CmpInst::ICMP_NE:    Predicate = CmpInst::FCMP_FALSE; break;
   2232   case CmpInst::ICMP_UGT:   Predicate = CmpInst::FCMP_FALSE; break;
   2233   case CmpInst::ICMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break;
   2234   case CmpInst::ICMP_ULT:   Predicate = CmpInst::FCMP_FALSE; break;
   2235   case CmpInst::ICMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break;
   2236   case CmpInst::ICMP_SGT:   Predicate = CmpInst::FCMP_FALSE; break;
   2237   case CmpInst::ICMP_SGE:   Predicate = CmpInst::FCMP_TRUE;  break;
   2238   case CmpInst::ICMP_SLT:   Predicate = CmpInst::FCMP_FALSE; break;
   2239   case CmpInst::ICMP_SLE:   Predicate = CmpInst::FCMP_TRUE;  break;
   2240   }
   2241 
   2242   return Predicate;
   2243 }
   2244