Home | History | Annotate | Download | only in CodeGen
      1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This is the internal per-function state used for llvm translation.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
     15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
     16 
     17 #include "CGBuilder.h"
     18 #include "CGDebugInfo.h"
     19 #include "CGLoopInfo.h"
     20 #include "CGValue.h"
     21 #include "CodeGenModule.h"
     22 #include "CodeGenPGO.h"
     23 #include "EHScopeStack.h"
     24 #include "clang/AST/CharUnits.h"
     25 #include "clang/AST/ExprCXX.h"
     26 #include "clang/AST/ExprObjC.h"
     27 #include "clang/AST/ExprOpenMP.h"
     28 #include "clang/AST/Type.h"
     29 #include "clang/Basic/ABI.h"
     30 #include "clang/Basic/CapturedStmt.h"
     31 #include "clang/Basic/OpenMPKinds.h"
     32 #include "clang/Basic/TargetInfo.h"
     33 #include "clang/Frontend/CodeGenOptions.h"
     34 #include "llvm/ADT/ArrayRef.h"
     35 #include "llvm/ADT/DenseMap.h"
     36 #include "llvm/ADT/SmallVector.h"
     37 #include "llvm/IR/ValueHandle.h"
     38 #include "llvm/Support/Debug.h"
     39 #include "llvm/Transforms/Utils/SanitizerStats.h"
     40 
     41 namespace llvm {
     42 class BasicBlock;
     43 class LLVMContext;
     44 class MDNode;
     45 class Module;
     46 class SwitchInst;
     47 class Twine;
     48 class Value;
     49 class CallSite;
     50 }
     51 
     52 namespace clang {
     53 class ASTContext;
     54 class BlockDecl;
     55 class CXXDestructorDecl;
     56 class CXXForRangeStmt;
     57 class CXXTryStmt;
     58 class Decl;
     59 class LabelDecl;
     60 class EnumConstantDecl;
     61 class FunctionDecl;
     62 class FunctionProtoType;
     63 class LabelStmt;
     64 class ObjCContainerDecl;
     65 class ObjCInterfaceDecl;
     66 class ObjCIvarDecl;
     67 class ObjCMethodDecl;
     68 class ObjCImplementationDecl;
     69 class ObjCPropertyImplDecl;
     70 class TargetInfo;
     71 class VarDecl;
     72 class ObjCForCollectionStmt;
     73 class ObjCAtTryStmt;
     74 class ObjCAtThrowStmt;
     75 class ObjCAtSynchronizedStmt;
     76 class ObjCAutoreleasePoolStmt;
     77 
     78 namespace CodeGen {
     79 class CodeGenTypes;
     80 class CGFunctionInfo;
     81 class CGRecordLayout;
     82 class CGBlockInfo;
     83 class CGCXXABI;
     84 class BlockByrefHelpers;
     85 class BlockByrefInfo;
     86 class BlockFlags;
     87 class BlockFieldFlags;
     88 class RegionCodeGenTy;
     89 class TargetCodeGenInfo;
     90 struct OMPTaskDataTy;
     91 
     92 /// The kind of evaluation to perform on values of a particular
     93 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
     94 /// CGExprAgg?
     95 ///
     96 /// TODO: should vectors maybe be split out into their own thing?
     97 enum TypeEvaluationKind {
     98   TEK_Scalar,
     99   TEK_Complex,
    100   TEK_Aggregate
    101 };
    102 
    103 /// CodeGenFunction - This class organizes the per-function state that is used
    104 /// while generating LLVM code.
    105 class CodeGenFunction : public CodeGenTypeCache {
    106   CodeGenFunction(const CodeGenFunction &) = delete;
    107   void operator=(const CodeGenFunction &) = delete;
    108 
    109   friend class CGCXXABI;
    110 public:
    111   /// A jump destination is an abstract label, branching to which may
    112   /// require a jump out through normal cleanups.
    113   struct JumpDest {
    114     JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
    115     JumpDest(llvm::BasicBlock *Block,
    116              EHScopeStack::stable_iterator Depth,
    117              unsigned Index)
    118       : Block(Block), ScopeDepth(Depth), Index(Index) {}
    119 
    120     bool isValid() const { return Block != nullptr; }
    121     llvm::BasicBlock *getBlock() const { return Block; }
    122     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
    123     unsigned getDestIndex() const { return Index; }
    124 
    125     // This should be used cautiously.
    126     void setScopeDepth(EHScopeStack::stable_iterator depth) {
    127       ScopeDepth = depth;
    128     }
    129 
    130   private:
    131     llvm::BasicBlock *Block;
    132     EHScopeStack::stable_iterator ScopeDepth;
    133     unsigned Index;
    134   };
    135 
    136   CodeGenModule &CGM;  // Per-module state.
    137   const TargetInfo &Target;
    138 
    139   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
    140   LoopInfoStack LoopStack;
    141   CGBuilderTy Builder;
    142 
    143   /// \brief CGBuilder insert helper. This function is called after an
    144   /// instruction is created using Builder.
    145   void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
    146                     llvm::BasicBlock *BB,
    147                     llvm::BasicBlock::iterator InsertPt) const;
    148 
    149   /// CurFuncDecl - Holds the Decl for the current outermost
    150   /// non-closure context.
    151   const Decl *CurFuncDecl;
    152   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
    153   const Decl *CurCodeDecl;
    154   const CGFunctionInfo *CurFnInfo;
    155   QualType FnRetTy;
    156   llvm::Function *CurFn;
    157 
    158   /// CurGD - The GlobalDecl for the current function being compiled.
    159   GlobalDecl CurGD;
    160 
    161   /// PrologueCleanupDepth - The cleanup depth enclosing all the
    162   /// cleanups associated with the parameters.
    163   EHScopeStack::stable_iterator PrologueCleanupDepth;
    164 
    165   /// ReturnBlock - Unified return block.
    166   JumpDest ReturnBlock;
    167 
    168   /// ReturnValue - The temporary alloca to hold the return
    169   /// value. This is invalid iff the function has no return value.
    170   Address ReturnValue;
    171 
    172   /// AllocaInsertPoint - This is an instruction in the entry block before which
    173   /// we prefer to insert allocas.
    174   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
    175 
    176   /// \brief API for captured statement code generation.
    177   class CGCapturedStmtInfo {
    178   public:
    179     explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
    180         : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
    181     explicit CGCapturedStmtInfo(const CapturedStmt &S,
    182                                 CapturedRegionKind K = CR_Default)
    183       : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
    184 
    185       RecordDecl::field_iterator Field =
    186         S.getCapturedRecordDecl()->field_begin();
    187       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
    188                                                 E = S.capture_end();
    189            I != E; ++I, ++Field) {
    190         if (I->capturesThis())
    191           CXXThisFieldDecl = *Field;
    192         else if (I->capturesVariable())
    193           CaptureFields[I->getCapturedVar()] = *Field;
    194         else if (I->capturesVariableByCopy())
    195           CaptureFields[I->getCapturedVar()] = *Field;
    196       }
    197     }
    198 
    199     virtual ~CGCapturedStmtInfo();
    200 
    201     CapturedRegionKind getKind() const { return Kind; }
    202 
    203     virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
    204     // \brief Retrieve the value of the context parameter.
    205     virtual llvm::Value *getContextValue() const { return ThisValue; }
    206 
    207     /// \brief Lookup the captured field decl for a variable.
    208     virtual const FieldDecl *lookup(const VarDecl *VD) const {
    209       return CaptureFields.lookup(VD);
    210     }
    211 
    212     bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
    213     virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
    214 
    215     static bool classof(const CGCapturedStmtInfo *) {
    216       return true;
    217     }
    218 
    219     /// \brief Emit the captured statement body.
    220     virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
    221       CGF.incrementProfileCounter(S);
    222       CGF.EmitStmt(S);
    223     }
    224 
    225     /// \brief Get the name of the capture helper.
    226     virtual StringRef getHelperName() const { return "__captured_stmt"; }
    227 
    228   private:
    229     /// \brief The kind of captured statement being generated.
    230     CapturedRegionKind Kind;
    231 
    232     /// \brief Keep the map between VarDecl and FieldDecl.
    233     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
    234 
    235     /// \brief The base address of the captured record, passed in as the first
    236     /// argument of the parallel region function.
    237     llvm::Value *ThisValue;
    238 
    239     /// \brief Captured 'this' type.
    240     FieldDecl *CXXThisFieldDecl;
    241   };
    242   CGCapturedStmtInfo *CapturedStmtInfo;
    243 
    244   /// \brief RAII for correct setting/restoring of CapturedStmtInfo.
    245   class CGCapturedStmtRAII {
    246   private:
    247     CodeGenFunction &CGF;
    248     CGCapturedStmtInfo *PrevCapturedStmtInfo;
    249   public:
    250     CGCapturedStmtRAII(CodeGenFunction &CGF,
    251                        CGCapturedStmtInfo *NewCapturedStmtInfo)
    252         : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
    253       CGF.CapturedStmtInfo = NewCapturedStmtInfo;
    254     }
    255     ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
    256   };
    257 
    258   /// \brief Sanitizers enabled for this function.
    259   SanitizerSet SanOpts;
    260 
    261   /// \brief True if CodeGen currently emits code implementing sanitizer checks.
    262   bool IsSanitizerScope;
    263 
    264   /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope.
    265   class SanitizerScope {
    266     CodeGenFunction *CGF;
    267   public:
    268     SanitizerScope(CodeGenFunction *CGF);
    269     ~SanitizerScope();
    270   };
    271 
    272   /// In C++, whether we are code generating a thunk.  This controls whether we
    273   /// should emit cleanups.
    274   bool CurFuncIsThunk;
    275 
    276   /// In ARC, whether we should autorelease the return value.
    277   bool AutoreleaseResult;
    278 
    279   /// Whether we processed a Microsoft-style asm block during CodeGen. These can
    280   /// potentially set the return value.
    281   bool SawAsmBlock;
    282 
    283   const FunctionDecl *CurSEHParent = nullptr;
    284 
    285   /// True if the current function is an outlined SEH helper. This can be a
    286   /// finally block or filter expression.
    287   bool IsOutlinedSEHHelper;
    288 
    289   const CodeGen::CGBlockInfo *BlockInfo;
    290   llvm::Value *BlockPointer;
    291 
    292   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
    293   FieldDecl *LambdaThisCaptureField;
    294 
    295   /// \brief A mapping from NRVO variables to the flags used to indicate
    296   /// when the NRVO has been applied to this variable.
    297   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
    298 
    299   EHScopeStack EHStack;
    300   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
    301   llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
    302 
    303   llvm::Instruction *CurrentFuncletPad = nullptr;
    304 
    305   class CallLifetimeEnd final : public EHScopeStack::Cleanup {
    306     llvm::Value *Addr;
    307     llvm::Value *Size;
    308 
    309   public:
    310     CallLifetimeEnd(Address addr, llvm::Value *size)
    311         : Addr(addr.getPointer()), Size(size) {}
    312 
    313     void Emit(CodeGenFunction &CGF, Flags flags) override {
    314       CGF.EmitLifetimeEnd(Size, Addr);
    315     }
    316   };
    317 
    318   /// Header for data within LifetimeExtendedCleanupStack.
    319   struct LifetimeExtendedCleanupHeader {
    320     /// The size of the following cleanup object.
    321     unsigned Size;
    322     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
    323     CleanupKind Kind;
    324 
    325     size_t getSize() const { return Size; }
    326     CleanupKind getKind() const { return Kind; }
    327   };
    328 
    329   /// i32s containing the indexes of the cleanup destinations.
    330   llvm::AllocaInst *NormalCleanupDest;
    331 
    332   unsigned NextCleanupDestIndex;
    333 
    334   /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
    335   CGBlockInfo *FirstBlockInfo;
    336 
    337   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
    338   llvm::BasicBlock *EHResumeBlock;
    339 
    340   /// The exception slot.  All landing pads write the current exception pointer
    341   /// into this alloca.
    342   llvm::Value *ExceptionSlot;
    343 
    344   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
    345   /// write the current selector value into this alloca.
    346   llvm::AllocaInst *EHSelectorSlot;
    347 
    348   /// A stack of exception code slots. Entering an __except block pushes a slot
    349   /// on the stack and leaving pops one. The __exception_code() intrinsic loads
    350   /// a value from the top of the stack.
    351   SmallVector<Address, 1> SEHCodeSlotStack;
    352 
    353   /// Value returned by __exception_info intrinsic.
    354   llvm::Value *SEHInfo = nullptr;
    355 
    356   /// Emits a landing pad for the current EH stack.
    357   llvm::BasicBlock *EmitLandingPad();
    358 
    359   llvm::BasicBlock *getInvokeDestImpl();
    360 
    361   template <class T>
    362   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
    363     return DominatingValue<T>::save(*this, value);
    364   }
    365 
    366 public:
    367   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
    368   /// rethrows.
    369   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
    370 
    371   /// A class controlling the emission of a finally block.
    372   class FinallyInfo {
    373     /// Where the catchall's edge through the cleanup should go.
    374     JumpDest RethrowDest;
    375 
    376     /// A function to call to enter the catch.
    377     llvm::Constant *BeginCatchFn;
    378 
    379     /// An i1 variable indicating whether or not the @finally is
    380     /// running for an exception.
    381     llvm::AllocaInst *ForEHVar;
    382 
    383     /// An i8* variable into which the exception pointer to rethrow
    384     /// has been saved.
    385     llvm::AllocaInst *SavedExnVar;
    386 
    387   public:
    388     void enter(CodeGenFunction &CGF, const Stmt *Finally,
    389                llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
    390                llvm::Constant *rethrowFn);
    391     void exit(CodeGenFunction &CGF);
    392   };
    393 
    394   /// Returns true inside SEH __try blocks.
    395   bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
    396 
    397   /// Returns true while emitting a cleanuppad.
    398   bool isCleanupPadScope() const {
    399     return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
    400   }
    401 
    402   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
    403   /// current full-expression.  Safe against the possibility that
    404   /// we're currently inside a conditionally-evaluated expression.
    405   template <class T, class... As>
    406   void pushFullExprCleanup(CleanupKind kind, As... A) {
    407     // If we're not in a conditional branch, or if none of the
    408     // arguments requires saving, then use the unconditional cleanup.
    409     if (!isInConditionalBranch())
    410       return EHStack.pushCleanup<T>(kind, A...);
    411 
    412     // Stash values in a tuple so we can guarantee the order of saves.
    413     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
    414     SavedTuple Saved{saveValueInCond(A)...};
    415 
    416     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
    417     EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
    418     initFullExprCleanup();
    419   }
    420 
    421   /// \brief Queue a cleanup to be pushed after finishing the current
    422   /// full-expression.
    423   template <class T, class... As>
    424   void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
    425     assert(!isInConditionalBranch() && "can't defer conditional cleanup");
    426 
    427     LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind };
    428 
    429     size_t OldSize = LifetimeExtendedCleanupStack.size();
    430     LifetimeExtendedCleanupStack.resize(
    431         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size);
    432 
    433     static_assert(sizeof(Header) % llvm::AlignOf<T>::Alignment == 0,
    434                   "Cleanup will be allocated on misaligned address");
    435     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
    436     new (Buffer) LifetimeExtendedCleanupHeader(Header);
    437     new (Buffer + sizeof(Header)) T(A...);
    438   }
    439 
    440   /// Set up the last cleaup that was pushed as a conditional
    441   /// full-expression cleanup.
    442   void initFullExprCleanup();
    443 
    444   /// PushDestructorCleanup - Push a cleanup to call the
    445   /// complete-object destructor of an object of the given type at the
    446   /// given address.  Does nothing if T is not a C++ class type with a
    447   /// non-trivial destructor.
    448   void PushDestructorCleanup(QualType T, Address Addr);
    449 
    450   /// PushDestructorCleanup - Push a cleanup to call the
    451   /// complete-object variant of the given destructor on the object at
    452   /// the given address.
    453   void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr);
    454 
    455   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
    456   /// process all branch fixups.
    457   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
    458 
    459   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
    460   /// The block cannot be reactivated.  Pops it if it's the top of the
    461   /// stack.
    462   ///
    463   /// \param DominatingIP - An instruction which is known to
    464   ///   dominate the current IP (if set) and which lies along
    465   ///   all paths of execution between the current IP and the
    466   ///   the point at which the cleanup comes into scope.
    467   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
    468                               llvm::Instruction *DominatingIP);
    469 
    470   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
    471   /// Cannot be used to resurrect a deactivated cleanup.
    472   ///
    473   /// \param DominatingIP - An instruction which is known to
    474   ///   dominate the current IP (if set) and which lies along
    475   ///   all paths of execution between the current IP and the
    476   ///   the point at which the cleanup comes into scope.
    477   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
    478                             llvm::Instruction *DominatingIP);
    479 
    480   /// \brief Enters a new scope for capturing cleanups, all of which
    481   /// will be executed once the scope is exited.
    482   class RunCleanupsScope {
    483     EHScopeStack::stable_iterator CleanupStackDepth;
    484     size_t LifetimeExtendedCleanupStackSize;
    485     bool OldDidCallStackSave;
    486   protected:
    487     bool PerformCleanup;
    488   private:
    489 
    490     RunCleanupsScope(const RunCleanupsScope &) = delete;
    491     void operator=(const RunCleanupsScope &) = delete;
    492 
    493   protected:
    494     CodeGenFunction& CGF;
    495 
    496   public:
    497     /// \brief Enter a new cleanup scope.
    498     explicit RunCleanupsScope(CodeGenFunction &CGF)
    499       : PerformCleanup(true), CGF(CGF)
    500     {
    501       CleanupStackDepth = CGF.EHStack.stable_begin();
    502       LifetimeExtendedCleanupStackSize =
    503           CGF.LifetimeExtendedCleanupStack.size();
    504       OldDidCallStackSave = CGF.DidCallStackSave;
    505       CGF.DidCallStackSave = false;
    506     }
    507 
    508     /// \brief Exit this cleanup scope, emitting any accumulated
    509     /// cleanups.
    510     ~RunCleanupsScope() {
    511       if (PerformCleanup) {
    512         CGF.DidCallStackSave = OldDidCallStackSave;
    513         CGF.PopCleanupBlocks(CleanupStackDepth,
    514                              LifetimeExtendedCleanupStackSize);
    515       }
    516     }
    517 
    518     /// \brief Determine whether this scope requires any cleanups.
    519     bool requiresCleanups() const {
    520       return CGF.EHStack.stable_begin() != CleanupStackDepth;
    521     }
    522 
    523     /// \brief Force the emission of cleanups now, instead of waiting
    524     /// until this object is destroyed.
    525     void ForceCleanup() {
    526       assert(PerformCleanup && "Already forced cleanup");
    527       CGF.DidCallStackSave = OldDidCallStackSave;
    528       CGF.PopCleanupBlocks(CleanupStackDepth,
    529                            LifetimeExtendedCleanupStackSize);
    530       PerformCleanup = false;
    531     }
    532   };
    533 
    534   class LexicalScope : public RunCleanupsScope {
    535     SourceRange Range;
    536     SmallVector<const LabelDecl*, 4> Labels;
    537     LexicalScope *ParentScope;
    538 
    539     LexicalScope(const LexicalScope &) = delete;
    540     void operator=(const LexicalScope &) = delete;
    541 
    542   public:
    543     /// \brief Enter a new cleanup scope.
    544     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
    545       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
    546       CGF.CurLexicalScope = this;
    547       if (CGDebugInfo *DI = CGF.getDebugInfo())
    548         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
    549     }
    550 
    551     void addLabel(const LabelDecl *label) {
    552       assert(PerformCleanup && "adding label to dead scope?");
    553       Labels.push_back(label);
    554     }
    555 
    556     /// \brief Exit this cleanup scope, emitting any accumulated
    557     /// cleanups.
    558     ~LexicalScope() {
    559       if (CGDebugInfo *DI = CGF.getDebugInfo())
    560         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
    561 
    562       // If we should perform a cleanup, force them now.  Note that
    563       // this ends the cleanup scope before rescoping any labels.
    564       if (PerformCleanup) {
    565         ApplyDebugLocation DL(CGF, Range.getEnd());
    566         ForceCleanup();
    567       }
    568     }
    569 
    570     /// \brief Force the emission of cleanups now, instead of waiting
    571     /// until this object is destroyed.
    572     void ForceCleanup() {
    573       CGF.CurLexicalScope = ParentScope;
    574       RunCleanupsScope::ForceCleanup();
    575 
    576       if (!Labels.empty())
    577         rescopeLabels();
    578     }
    579 
    580     void rescopeLabels();
    581   };
    582 
    583   typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
    584 
    585   /// \brief The scope used to remap some variables as private in the OpenMP
    586   /// loop body (or other captured region emitted without outlining), and to
    587   /// restore old vars back on exit.
    588   class OMPPrivateScope : public RunCleanupsScope {
    589     DeclMapTy SavedLocals;
    590     DeclMapTy SavedPrivates;
    591 
    592   private:
    593     OMPPrivateScope(const OMPPrivateScope &) = delete;
    594     void operator=(const OMPPrivateScope &) = delete;
    595 
    596   public:
    597     /// \brief Enter a new OpenMP private scope.
    598     explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
    599 
    600     /// \brief Registers \a LocalVD variable as a private and apply \a
    601     /// PrivateGen function for it to generate corresponding private variable.
    602     /// \a PrivateGen returns an address of the generated private variable.
    603     /// \return true if the variable is registered as private, false if it has
    604     /// been privatized already.
    605     bool
    606     addPrivate(const VarDecl *LocalVD,
    607                llvm::function_ref<Address()> PrivateGen) {
    608       assert(PerformCleanup && "adding private to dead scope");
    609 
    610       // Only save it once.
    611       if (SavedLocals.count(LocalVD)) return false;
    612 
    613       // Copy the existing local entry to SavedLocals.
    614       auto it = CGF.LocalDeclMap.find(LocalVD);
    615       if (it != CGF.LocalDeclMap.end()) {
    616         SavedLocals.insert({LocalVD, it->second});
    617       } else {
    618         SavedLocals.insert({LocalVD, Address::invalid()});
    619       }
    620 
    621       // Generate the private entry.
    622       Address Addr = PrivateGen();
    623       QualType VarTy = LocalVD->getType();
    624       if (VarTy->isReferenceType()) {
    625         Address Temp = CGF.CreateMemTemp(VarTy);
    626         CGF.Builder.CreateStore(Addr.getPointer(), Temp);
    627         Addr = Temp;
    628       }
    629       SavedPrivates.insert({LocalVD, Addr});
    630 
    631       return true;
    632     }
    633 
    634     /// \brief Privatizes local variables previously registered as private.
    635     /// Registration is separate from the actual privatization to allow
    636     /// initializers use values of the original variables, not the private one.
    637     /// This is important, for example, if the private variable is a class
    638     /// variable initialized by a constructor that references other private
    639     /// variables. But at initialization original variables must be used, not
    640     /// private copies.
    641     /// \return true if at least one variable was privatized, false otherwise.
    642     bool Privatize() {
    643       copyInto(SavedPrivates, CGF.LocalDeclMap);
    644       SavedPrivates.clear();
    645       return !SavedLocals.empty();
    646     }
    647 
    648     void ForceCleanup() {
    649       RunCleanupsScope::ForceCleanup();
    650       copyInto(SavedLocals, CGF.LocalDeclMap);
    651       SavedLocals.clear();
    652     }
    653 
    654     /// \brief Exit scope - all the mapped variables are restored.
    655     ~OMPPrivateScope() {
    656       if (PerformCleanup)
    657         ForceCleanup();
    658     }
    659 
    660     /// Checks if the global variable is captured in current function.
    661     bool isGlobalVarCaptured(const VarDecl *VD) const {
    662       return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
    663     }
    664 
    665   private:
    666     /// Copy all the entries in the source map over the corresponding
    667     /// entries in the destination, which must exist.
    668     static void copyInto(const DeclMapTy &src, DeclMapTy &dest) {
    669       for (auto &pair : src) {
    670         if (!pair.second.isValid()) {
    671           dest.erase(pair.first);
    672           continue;
    673         }
    674 
    675         auto it = dest.find(pair.first);
    676         if (it != dest.end()) {
    677           it->second = pair.second;
    678         } else {
    679           dest.insert(pair);
    680         }
    681       }
    682     }
    683   };
    684 
    685   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
    686   /// that have been added.
    687   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
    688 
    689   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
    690   /// that have been added, then adds all lifetime-extended cleanups from
    691   /// the given position to the stack.
    692   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
    693                         size_t OldLifetimeExtendedStackSize);
    694 
    695   void ResolveBranchFixups(llvm::BasicBlock *Target);
    696 
    697   /// The given basic block lies in the current EH scope, but may be a
    698   /// target of a potentially scope-crossing jump; get a stable handle
    699   /// to which we can perform this jump later.
    700   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
    701     return JumpDest(Target,
    702                     EHStack.getInnermostNormalCleanup(),
    703                     NextCleanupDestIndex++);
    704   }
    705 
    706   /// The given basic block lies in the current EH scope, but may be a
    707   /// target of a potentially scope-crossing jump; get a stable handle
    708   /// to which we can perform this jump later.
    709   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
    710     return getJumpDestInCurrentScope(createBasicBlock(Name));
    711   }
    712 
    713   /// EmitBranchThroughCleanup - Emit a branch from the current insert
    714   /// block through the normal cleanup handling code (if any) and then
    715   /// on to \arg Dest.
    716   void EmitBranchThroughCleanup(JumpDest Dest);
    717 
    718   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
    719   /// specified destination obviously has no cleanups to run.  'false' is always
    720   /// a conservatively correct answer for this method.
    721   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
    722 
    723   /// popCatchScope - Pops the catch scope at the top of the EHScope
    724   /// stack, emitting any required code (other than the catch handlers
    725   /// themselves).
    726   void popCatchScope();
    727 
    728   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
    729   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
    730   llvm::BasicBlock *getMSVCDispatchBlock(EHScopeStack::stable_iterator scope);
    731 
    732   /// An object to manage conditionally-evaluated expressions.
    733   class ConditionalEvaluation {
    734     llvm::BasicBlock *StartBB;
    735 
    736   public:
    737     ConditionalEvaluation(CodeGenFunction &CGF)
    738       : StartBB(CGF.Builder.GetInsertBlock()) {}
    739 
    740     void begin(CodeGenFunction &CGF) {
    741       assert(CGF.OutermostConditional != this);
    742       if (!CGF.OutermostConditional)
    743         CGF.OutermostConditional = this;
    744     }
    745 
    746     void end(CodeGenFunction &CGF) {
    747       assert(CGF.OutermostConditional != nullptr);
    748       if (CGF.OutermostConditional == this)
    749         CGF.OutermostConditional = nullptr;
    750     }
    751 
    752     /// Returns a block which will be executed prior to each
    753     /// evaluation of the conditional code.
    754     llvm::BasicBlock *getStartingBlock() const {
    755       return StartBB;
    756     }
    757   };
    758 
    759   /// isInConditionalBranch - Return true if we're currently emitting
    760   /// one branch or the other of a conditional expression.
    761   bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
    762 
    763   void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
    764     assert(isInConditionalBranch());
    765     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
    766     auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
    767     store->setAlignment(addr.getAlignment().getQuantity());
    768   }
    769 
    770   /// An RAII object to record that we're evaluating a statement
    771   /// expression.
    772   class StmtExprEvaluation {
    773     CodeGenFunction &CGF;
    774 
    775     /// We have to save the outermost conditional: cleanups in a
    776     /// statement expression aren't conditional just because the
    777     /// StmtExpr is.
    778     ConditionalEvaluation *SavedOutermostConditional;
    779 
    780   public:
    781     StmtExprEvaluation(CodeGenFunction &CGF)
    782       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
    783       CGF.OutermostConditional = nullptr;
    784     }
    785 
    786     ~StmtExprEvaluation() {
    787       CGF.OutermostConditional = SavedOutermostConditional;
    788       CGF.EnsureInsertPoint();
    789     }
    790   };
    791 
    792   /// An object which temporarily prevents a value from being
    793   /// destroyed by aggressive peephole optimizations that assume that
    794   /// all uses of a value have been realized in the IR.
    795   class PeepholeProtection {
    796     llvm::Instruction *Inst;
    797     friend class CodeGenFunction;
    798 
    799   public:
    800     PeepholeProtection() : Inst(nullptr) {}
    801   };
    802 
    803   /// A non-RAII class containing all the information about a bound
    804   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
    805   /// this which makes individual mappings very simple; using this
    806   /// class directly is useful when you have a variable number of
    807   /// opaque values or don't want the RAII functionality for some
    808   /// reason.
    809   class OpaqueValueMappingData {
    810     const OpaqueValueExpr *OpaqueValue;
    811     bool BoundLValue;
    812     CodeGenFunction::PeepholeProtection Protection;
    813 
    814     OpaqueValueMappingData(const OpaqueValueExpr *ov,
    815                            bool boundLValue)
    816       : OpaqueValue(ov), BoundLValue(boundLValue) {}
    817   public:
    818     OpaqueValueMappingData() : OpaqueValue(nullptr) {}
    819 
    820     static bool shouldBindAsLValue(const Expr *expr) {
    821       // gl-values should be bound as l-values for obvious reasons.
    822       // Records should be bound as l-values because IR generation
    823       // always keeps them in memory.  Expressions of function type
    824       // act exactly like l-values but are formally required to be
    825       // r-values in C.
    826       return expr->isGLValue() ||
    827              expr->getType()->isFunctionType() ||
    828              hasAggregateEvaluationKind(expr->getType());
    829     }
    830 
    831     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
    832                                        const OpaqueValueExpr *ov,
    833                                        const Expr *e) {
    834       if (shouldBindAsLValue(ov))
    835         return bind(CGF, ov, CGF.EmitLValue(e));
    836       return bind(CGF, ov, CGF.EmitAnyExpr(e));
    837     }
    838 
    839     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
    840                                        const OpaqueValueExpr *ov,
    841                                        const LValue &lv) {
    842       assert(shouldBindAsLValue(ov));
    843       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
    844       return OpaqueValueMappingData(ov, true);
    845     }
    846 
    847     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
    848                                        const OpaqueValueExpr *ov,
    849                                        const RValue &rv) {
    850       assert(!shouldBindAsLValue(ov));
    851       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
    852 
    853       OpaqueValueMappingData data(ov, false);
    854 
    855       // Work around an extremely aggressive peephole optimization in
    856       // EmitScalarConversion which assumes that all other uses of a
    857       // value are extant.
    858       data.Protection = CGF.protectFromPeepholes(rv);
    859 
    860       return data;
    861     }
    862 
    863     bool isValid() const { return OpaqueValue != nullptr; }
    864     void clear() { OpaqueValue = nullptr; }
    865 
    866     void unbind(CodeGenFunction &CGF) {
    867       assert(OpaqueValue && "no data to unbind!");
    868 
    869       if (BoundLValue) {
    870         CGF.OpaqueLValues.erase(OpaqueValue);
    871       } else {
    872         CGF.OpaqueRValues.erase(OpaqueValue);
    873         CGF.unprotectFromPeepholes(Protection);
    874       }
    875     }
    876   };
    877 
    878   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
    879   class OpaqueValueMapping {
    880     CodeGenFunction &CGF;
    881     OpaqueValueMappingData Data;
    882 
    883   public:
    884     static bool shouldBindAsLValue(const Expr *expr) {
    885       return OpaqueValueMappingData::shouldBindAsLValue(expr);
    886     }
    887 
    888     /// Build the opaque value mapping for the given conditional
    889     /// operator if it's the GNU ?: extension.  This is a common
    890     /// enough pattern that the convenience operator is really
    891     /// helpful.
    892     ///
    893     OpaqueValueMapping(CodeGenFunction &CGF,
    894                        const AbstractConditionalOperator *op) : CGF(CGF) {
    895       if (isa<ConditionalOperator>(op))
    896         // Leave Data empty.
    897         return;
    898 
    899       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
    900       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
    901                                           e->getCommon());
    902     }
    903 
    904     OpaqueValueMapping(CodeGenFunction &CGF,
    905                        const OpaqueValueExpr *opaqueValue,
    906                        LValue lvalue)
    907       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
    908     }
    909 
    910     OpaqueValueMapping(CodeGenFunction &CGF,
    911                        const OpaqueValueExpr *opaqueValue,
    912                        RValue rvalue)
    913       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
    914     }
    915 
    916     void pop() {
    917       Data.unbind(CGF);
    918       Data.clear();
    919     }
    920 
    921     ~OpaqueValueMapping() {
    922       if (Data.isValid()) Data.unbind(CGF);
    923     }
    924   };
    925 
    926 private:
    927   CGDebugInfo *DebugInfo;
    928   bool DisableDebugInfo;
    929 
    930   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
    931   /// calling llvm.stacksave for multiple VLAs in the same scope.
    932   bool DidCallStackSave;
    933 
    934   /// IndirectBranch - The first time an indirect goto is seen we create a block
    935   /// with an indirect branch.  Every time we see the address of a label taken,
    936   /// we add the label to the indirect goto.  Every subsequent indirect goto is
    937   /// codegen'd as a jump to the IndirectBranch's basic block.
    938   llvm::IndirectBrInst *IndirectBranch;
    939 
    940   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
    941   /// decls.
    942   DeclMapTy LocalDeclMap;
    943 
    944   /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
    945   /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
    946   /// parameter.
    947   llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
    948       SizeArguments;
    949 
    950   /// Track escaped local variables with auto storage. Used during SEH
    951   /// outlining to produce a call to llvm.localescape.
    952   llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
    953 
    954   /// LabelMap - This keeps track of the LLVM basic block for each C label.
    955   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
    956 
    957   // BreakContinueStack - This keeps track of where break and continue
    958   // statements should jump to.
    959   struct BreakContinue {
    960     BreakContinue(JumpDest Break, JumpDest Continue)
    961       : BreakBlock(Break), ContinueBlock(Continue) {}
    962 
    963     JumpDest BreakBlock;
    964     JumpDest ContinueBlock;
    965   };
    966   SmallVector<BreakContinue, 8> BreakContinueStack;
    967 
    968   CodeGenPGO PGO;
    969 
    970   /// Calculate branch weights appropriate for PGO data
    971   llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount);
    972   llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights);
    973   llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
    974                                             uint64_t LoopCount);
    975 
    976 public:
    977   /// Increment the profiler's counter for the given statement.
    978   void incrementProfileCounter(const Stmt *S) {
    979     if (CGM.getCodeGenOpts().hasProfileClangInstr())
    980       PGO.emitCounterIncrement(Builder, S);
    981     PGO.setCurrentStmt(S);
    982   }
    983 
    984   /// Get the profiler's count for the given statement.
    985   uint64_t getProfileCount(const Stmt *S) {
    986     Optional<uint64_t> Count = PGO.getStmtCount(S);
    987     if (!Count.hasValue())
    988       return 0;
    989     return *Count;
    990   }
    991 
    992   /// Set the profiler's current count.
    993   void setCurrentProfileCount(uint64_t Count) {
    994     PGO.setCurrentRegionCount(Count);
    995   }
    996 
    997   /// Get the profiler's current count. This is generally the count for the most
    998   /// recently incremented counter.
    999   uint64_t getCurrentProfileCount() {
   1000     return PGO.getCurrentRegionCount();
   1001   }
   1002 
   1003 private:
   1004 
   1005   /// SwitchInsn - This is nearest current switch instruction. It is null if
   1006   /// current context is not in a switch.
   1007   llvm::SwitchInst *SwitchInsn;
   1008   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
   1009   SmallVector<uint64_t, 16> *SwitchWeights;
   1010 
   1011   /// CaseRangeBlock - This block holds if condition check for last case
   1012   /// statement range in current switch instruction.
   1013   llvm::BasicBlock *CaseRangeBlock;
   1014 
   1015   /// OpaqueLValues - Keeps track of the current set of opaque value
   1016   /// expressions.
   1017   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
   1018   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
   1019 
   1020   // VLASizeMap - This keeps track of the associated size for each VLA type.
   1021   // We track this by the size expression rather than the type itself because
   1022   // in certain situations, like a const qualifier applied to an VLA typedef,
   1023   // multiple VLA types can share the same size expression.
   1024   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
   1025   // enter/leave scopes.
   1026   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
   1027 
   1028   /// A block containing a single 'unreachable' instruction.  Created
   1029   /// lazily by getUnreachableBlock().
   1030   llvm::BasicBlock *UnreachableBlock;
   1031 
   1032   /// Counts of the number return expressions in the function.
   1033   unsigned NumReturnExprs;
   1034 
   1035   /// Count the number of simple (constant) return expressions in the function.
   1036   unsigned NumSimpleReturnExprs;
   1037 
   1038   /// The last regular (non-return) debug location (breakpoint) in the function.
   1039   SourceLocation LastStopPoint;
   1040 
   1041 public:
   1042   /// A scope within which we are constructing the fields of an object which
   1043   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
   1044   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
   1045   class FieldConstructionScope {
   1046   public:
   1047     FieldConstructionScope(CodeGenFunction &CGF, Address This)
   1048         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
   1049       CGF.CXXDefaultInitExprThis = This;
   1050     }
   1051     ~FieldConstructionScope() {
   1052       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
   1053     }
   1054 
   1055   private:
   1056     CodeGenFunction &CGF;
   1057     Address OldCXXDefaultInitExprThis;
   1058   };
   1059 
   1060   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
   1061   /// is overridden to be the object under construction.
   1062   class CXXDefaultInitExprScope {
   1063   public:
   1064     CXXDefaultInitExprScope(CodeGenFunction &CGF)
   1065       : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
   1066         OldCXXThisAlignment(CGF.CXXThisAlignment) {
   1067       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
   1068       CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
   1069     }
   1070     ~CXXDefaultInitExprScope() {
   1071       CGF.CXXThisValue = OldCXXThisValue;
   1072       CGF.CXXThisAlignment = OldCXXThisAlignment;
   1073     }
   1074 
   1075   public:
   1076     CodeGenFunction &CGF;
   1077     llvm::Value *OldCXXThisValue;
   1078     CharUnits OldCXXThisAlignment;
   1079   };
   1080 
   1081   class InlinedInheritingConstructorScope {
   1082   public:
   1083     InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
   1084         : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
   1085           OldCurCodeDecl(CGF.CurCodeDecl),
   1086           OldCXXABIThisDecl(CGF.CXXABIThisDecl),
   1087           OldCXXABIThisValue(CGF.CXXABIThisValue),
   1088           OldCXXThisValue(CGF.CXXThisValue),
   1089           OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
   1090           OldCXXThisAlignment(CGF.CXXThisAlignment),
   1091           OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
   1092           OldCXXInheritedCtorInitExprArgs(
   1093               std::move(CGF.CXXInheritedCtorInitExprArgs)) {
   1094       CGF.CurGD = GD;
   1095       CGF.CurFuncDecl = CGF.CurCodeDecl =
   1096           cast<CXXConstructorDecl>(GD.getDecl());
   1097       CGF.CXXABIThisDecl = nullptr;
   1098       CGF.CXXABIThisValue = nullptr;
   1099       CGF.CXXThisValue = nullptr;
   1100       CGF.CXXABIThisAlignment = CharUnits();
   1101       CGF.CXXThisAlignment = CharUnits();
   1102       CGF.ReturnValue = Address::invalid();
   1103       CGF.FnRetTy = QualType();
   1104       CGF.CXXInheritedCtorInitExprArgs.clear();
   1105     }
   1106     ~InlinedInheritingConstructorScope() {
   1107       CGF.CurGD = OldCurGD;
   1108       CGF.CurFuncDecl = OldCurFuncDecl;
   1109       CGF.CurCodeDecl = OldCurCodeDecl;
   1110       CGF.CXXABIThisDecl = OldCXXABIThisDecl;
   1111       CGF.CXXABIThisValue = OldCXXABIThisValue;
   1112       CGF.CXXThisValue = OldCXXThisValue;
   1113       CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
   1114       CGF.CXXThisAlignment = OldCXXThisAlignment;
   1115       CGF.ReturnValue = OldReturnValue;
   1116       CGF.FnRetTy = OldFnRetTy;
   1117       CGF.CXXInheritedCtorInitExprArgs =
   1118           std::move(OldCXXInheritedCtorInitExprArgs);
   1119     }
   1120 
   1121   private:
   1122     CodeGenFunction &CGF;
   1123     GlobalDecl OldCurGD;
   1124     const Decl *OldCurFuncDecl;
   1125     const Decl *OldCurCodeDecl;
   1126     ImplicitParamDecl *OldCXXABIThisDecl;
   1127     llvm::Value *OldCXXABIThisValue;
   1128     llvm::Value *OldCXXThisValue;
   1129     CharUnits OldCXXABIThisAlignment;
   1130     CharUnits OldCXXThisAlignment;
   1131     Address OldReturnValue;
   1132     QualType OldFnRetTy;
   1133     CallArgList OldCXXInheritedCtorInitExprArgs;
   1134   };
   1135 
   1136 private:
   1137   /// CXXThisDecl - When generating code for a C++ member function,
   1138   /// this will hold the implicit 'this' declaration.
   1139   ImplicitParamDecl *CXXABIThisDecl;
   1140   llvm::Value *CXXABIThisValue;
   1141   llvm::Value *CXXThisValue;
   1142   CharUnits CXXABIThisAlignment;
   1143   CharUnits CXXThisAlignment;
   1144 
   1145   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
   1146   /// this expression.
   1147   Address CXXDefaultInitExprThis = Address::invalid();
   1148 
   1149   /// The values of function arguments to use when evaluating
   1150   /// CXXInheritedCtorInitExprs within this context.
   1151   CallArgList CXXInheritedCtorInitExprArgs;
   1152 
   1153   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
   1154   /// destructor, this will hold the implicit argument (e.g. VTT).
   1155   ImplicitParamDecl *CXXStructorImplicitParamDecl;
   1156   llvm::Value *CXXStructorImplicitParamValue;
   1157 
   1158   /// OutermostConditional - Points to the outermost active
   1159   /// conditional control.  This is used so that we know if a
   1160   /// temporary should be destroyed conditionally.
   1161   ConditionalEvaluation *OutermostConditional;
   1162 
   1163   /// The current lexical scope.
   1164   LexicalScope *CurLexicalScope;
   1165 
   1166   /// The current source location that should be used for exception
   1167   /// handling code.
   1168   SourceLocation CurEHLocation;
   1169 
   1170   /// BlockByrefInfos - For each __block variable, contains
   1171   /// information about the layout of the variable.
   1172   llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
   1173 
   1174   llvm::BasicBlock *TerminateLandingPad;
   1175   llvm::BasicBlock *TerminateHandler;
   1176   llvm::BasicBlock *TrapBB;
   1177 
   1178   /// Add a kernel metadata node to the named metadata node 'opencl.kernels'.
   1179   /// In the kernel metadata node, reference the kernel function and metadata
   1180   /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2):
   1181   /// - A node for the vec_type_hint(<type>) qualifier contains string
   1182   ///   "vec_type_hint", an undefined value of the <type> data type,
   1183   ///   and a Boolean that is true if the <type> is integer and signed.
   1184   /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string
   1185   ///   "work_group_size_hint", and three 32-bit integers X, Y and Z.
   1186   /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string
   1187   ///   "reqd_work_group_size", and three 32-bit integers X, Y and Z.
   1188   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
   1189                                 llvm::Function *Fn);
   1190 
   1191 public:
   1192   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
   1193   ~CodeGenFunction();
   1194 
   1195   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
   1196   ASTContext &getContext() const { return CGM.getContext(); }
   1197   CGDebugInfo *getDebugInfo() {
   1198     if (DisableDebugInfo)
   1199       return nullptr;
   1200     return DebugInfo;
   1201   }
   1202   void disableDebugInfo() { DisableDebugInfo = true; }
   1203   void enableDebugInfo() { DisableDebugInfo = false; }
   1204 
   1205   bool shouldUseFusedARCCalls() {
   1206     return CGM.getCodeGenOpts().OptimizationLevel == 0;
   1207   }
   1208 
   1209   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
   1210 
   1211   /// Returns a pointer to the function's exception object and selector slot,
   1212   /// which is assigned in every landing pad.
   1213   Address getExceptionSlot();
   1214   Address getEHSelectorSlot();
   1215 
   1216   /// Returns the contents of the function's exception object and selector
   1217   /// slots.
   1218   llvm::Value *getExceptionFromSlot();
   1219   llvm::Value *getSelectorFromSlot();
   1220 
   1221   Address getNormalCleanupDestSlot();
   1222 
   1223   llvm::BasicBlock *getUnreachableBlock() {
   1224     if (!UnreachableBlock) {
   1225       UnreachableBlock = createBasicBlock("unreachable");
   1226       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
   1227     }
   1228     return UnreachableBlock;
   1229   }
   1230 
   1231   llvm::BasicBlock *getInvokeDest() {
   1232     if (!EHStack.requiresLandingPad()) return nullptr;
   1233     return getInvokeDestImpl();
   1234   }
   1235 
   1236   bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; }
   1237 
   1238   const TargetInfo &getTarget() const { return Target; }
   1239   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
   1240 
   1241   //===--------------------------------------------------------------------===//
   1242   //                                  Cleanups
   1243   //===--------------------------------------------------------------------===//
   1244 
   1245   typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
   1246 
   1247   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
   1248                                         Address arrayEndPointer,
   1249                                         QualType elementType,
   1250                                         CharUnits elementAlignment,
   1251                                         Destroyer *destroyer);
   1252   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
   1253                                       llvm::Value *arrayEnd,
   1254                                       QualType elementType,
   1255                                       CharUnits elementAlignment,
   1256                                       Destroyer *destroyer);
   1257 
   1258   void pushDestroy(QualType::DestructionKind dtorKind,
   1259                    Address addr, QualType type);
   1260   void pushEHDestroy(QualType::DestructionKind dtorKind,
   1261                      Address addr, QualType type);
   1262   void pushDestroy(CleanupKind kind, Address addr, QualType type,
   1263                    Destroyer *destroyer, bool useEHCleanupForArray);
   1264   void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
   1265                                    QualType type, Destroyer *destroyer,
   1266                                    bool useEHCleanupForArray);
   1267   void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
   1268                                    llvm::Value *CompletePtr,
   1269                                    QualType ElementType);
   1270   void pushStackRestore(CleanupKind kind, Address SPMem);
   1271   void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
   1272                    bool useEHCleanupForArray);
   1273   llvm::Function *generateDestroyHelper(Address addr, QualType type,
   1274                                         Destroyer *destroyer,
   1275                                         bool useEHCleanupForArray,
   1276                                         const VarDecl *VD);
   1277   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
   1278                         QualType elementType, CharUnits elementAlign,
   1279                         Destroyer *destroyer,
   1280                         bool checkZeroLength, bool useEHCleanup);
   1281 
   1282   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
   1283 
   1284   /// Determines whether an EH cleanup is required to destroy a type
   1285   /// with the given destruction kind.
   1286   bool needsEHCleanup(QualType::DestructionKind kind) {
   1287     switch (kind) {
   1288     case QualType::DK_none:
   1289       return false;
   1290     case QualType::DK_cxx_destructor:
   1291     case QualType::DK_objc_weak_lifetime:
   1292       return getLangOpts().Exceptions;
   1293     case QualType::DK_objc_strong_lifetime:
   1294       return getLangOpts().Exceptions &&
   1295              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
   1296     }
   1297     llvm_unreachable("bad destruction kind");
   1298   }
   1299 
   1300   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
   1301     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
   1302   }
   1303 
   1304   //===--------------------------------------------------------------------===//
   1305   //                                  Objective-C
   1306   //===--------------------------------------------------------------------===//
   1307 
   1308   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
   1309 
   1310   void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
   1311 
   1312   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
   1313   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
   1314                           const ObjCPropertyImplDecl *PID);
   1315   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
   1316                               const ObjCPropertyImplDecl *propImpl,
   1317                               const ObjCMethodDecl *GetterMothodDecl,
   1318                               llvm::Constant *AtomicHelperFn);
   1319 
   1320   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
   1321                                   ObjCMethodDecl *MD, bool ctor);
   1322 
   1323   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
   1324   /// for the given property.
   1325   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
   1326                           const ObjCPropertyImplDecl *PID);
   1327   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
   1328                               const ObjCPropertyImplDecl *propImpl,
   1329                               llvm::Constant *AtomicHelperFn);
   1330 
   1331   //===--------------------------------------------------------------------===//
   1332   //                                  Block Bits
   1333   //===--------------------------------------------------------------------===//
   1334 
   1335   llvm::Value *EmitBlockLiteral(const BlockExpr *);
   1336   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
   1337   static void destroyBlockInfos(CGBlockInfo *info);
   1338 
   1339   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
   1340                                         const CGBlockInfo &Info,
   1341                                         const DeclMapTy &ldm,
   1342                                         bool IsLambdaConversionToBlock);
   1343 
   1344   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
   1345   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
   1346   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
   1347                                              const ObjCPropertyImplDecl *PID);
   1348   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
   1349                                              const ObjCPropertyImplDecl *PID);
   1350   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
   1351 
   1352   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
   1353 
   1354   class AutoVarEmission;
   1355 
   1356   void emitByrefStructureInit(const AutoVarEmission &emission);
   1357   void enterByrefCleanup(const AutoVarEmission &emission);
   1358 
   1359   void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
   1360                                 llvm::Value *ptr);
   1361 
   1362   Address LoadBlockStruct();
   1363   Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
   1364 
   1365   /// BuildBlockByrefAddress - Computes the location of the
   1366   /// data in a variable which is declared as __block.
   1367   Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
   1368                                 bool followForward = true);
   1369   Address emitBlockByrefAddress(Address baseAddr,
   1370                                 const BlockByrefInfo &info,
   1371                                 bool followForward,
   1372                                 const llvm::Twine &name);
   1373 
   1374   const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
   1375 
   1376   QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
   1377 
   1378   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
   1379                     const CGFunctionInfo &FnInfo);
   1380   /// \brief Emit code for the start of a function.
   1381   /// \param Loc       The location to be associated with the function.
   1382   /// \param StartLoc  The location of the function body.
   1383   void StartFunction(GlobalDecl GD,
   1384                      QualType RetTy,
   1385                      llvm::Function *Fn,
   1386                      const CGFunctionInfo &FnInfo,
   1387                      const FunctionArgList &Args,
   1388                      SourceLocation Loc = SourceLocation(),
   1389                      SourceLocation StartLoc = SourceLocation());
   1390 
   1391   void EmitConstructorBody(FunctionArgList &Args);
   1392   void EmitDestructorBody(FunctionArgList &Args);
   1393   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
   1394   void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body);
   1395   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
   1396 
   1397   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
   1398                                   CallArgList &CallArgs);
   1399   void EmitLambdaToBlockPointerBody(FunctionArgList &Args);
   1400   void EmitLambdaBlockInvokeBody();
   1401   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
   1402   void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD);
   1403   void EmitAsanPrologueOrEpilogue(bool Prologue);
   1404 
   1405   /// \brief Emit the unified return block, trying to avoid its emission when
   1406   /// possible.
   1407   /// \return The debug location of the user written return statement if the
   1408   /// return block is is avoided.
   1409   llvm::DebugLoc EmitReturnBlock();
   1410 
   1411   /// FinishFunction - Complete IR generation of the current function. It is
   1412   /// legal to call this function even if there is no current insertion point.
   1413   void FinishFunction(SourceLocation EndLoc=SourceLocation());
   1414 
   1415   void StartThunk(llvm::Function *Fn, GlobalDecl GD,
   1416                   const CGFunctionInfo &FnInfo);
   1417 
   1418   void EmitCallAndReturnForThunk(llvm::Value *Callee, const ThunkInfo *Thunk);
   1419 
   1420   void FinishThunk();
   1421 
   1422   /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
   1423   void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr,
   1424                          llvm::Value *Callee);
   1425 
   1426   /// Generate a thunk for the given method.
   1427   void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
   1428                      GlobalDecl GD, const ThunkInfo &Thunk);
   1429 
   1430   llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
   1431                                        const CGFunctionInfo &FnInfo,
   1432                                        GlobalDecl GD, const ThunkInfo &Thunk);
   1433 
   1434   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
   1435                         FunctionArgList &Args);
   1436 
   1437   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init,
   1438                                ArrayRef<VarDecl *> ArrayIndexes);
   1439 
   1440   /// Struct with all informations about dynamic [sub]class needed to set vptr.
   1441   struct VPtr {
   1442     BaseSubobject Base;
   1443     const CXXRecordDecl *NearestVBase;
   1444     CharUnits OffsetFromNearestVBase;
   1445     const CXXRecordDecl *VTableClass;
   1446   };
   1447 
   1448   /// Initialize the vtable pointer of the given subobject.
   1449   void InitializeVTablePointer(const VPtr &vptr);
   1450 
   1451   typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
   1452 
   1453   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
   1454   VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
   1455 
   1456   void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
   1457                          CharUnits OffsetFromNearestVBase,
   1458                          bool BaseIsNonVirtualPrimaryBase,
   1459                          const CXXRecordDecl *VTableClass,
   1460                          VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
   1461 
   1462   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
   1463 
   1464   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
   1465   /// to by This.
   1466   llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
   1467                             const CXXRecordDecl *VTableClass);
   1468 
   1469   enum CFITypeCheckKind {
   1470     CFITCK_VCall,
   1471     CFITCK_NVCall,
   1472     CFITCK_DerivedCast,
   1473     CFITCK_UnrelatedCast,
   1474     CFITCK_ICall,
   1475   };
   1476 
   1477   /// \brief Derived is the presumed address of an object of type T after a
   1478   /// cast. If T is a polymorphic class type, emit a check that the virtual
   1479   /// table for Derived belongs to a class derived from T.
   1480   void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
   1481                                  bool MayBeNull, CFITypeCheckKind TCK,
   1482                                  SourceLocation Loc);
   1483 
   1484   /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
   1485   /// If vptr CFI is enabled, emit a check that VTable is valid.
   1486   void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
   1487                                  CFITypeCheckKind TCK, SourceLocation Loc);
   1488 
   1489   /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
   1490   /// RD using llvm.type.test.
   1491   void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
   1492                           CFITypeCheckKind TCK, SourceLocation Loc);
   1493 
   1494   /// If whole-program virtual table optimization is enabled, emit an assumption
   1495   /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
   1496   /// enabled, emit a check that VTable is a member of RD's type identifier.
   1497   void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
   1498                                     llvm::Value *VTable, SourceLocation Loc);
   1499 
   1500   /// Returns whether we should perform a type checked load when loading a
   1501   /// virtual function for virtual calls to members of RD. This is generally
   1502   /// true when both vcall CFI and whole-program-vtables are enabled.
   1503   bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
   1504 
   1505   /// Emit a type checked load from the given vtable.
   1506   llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable,
   1507                                          uint64_t VTableByteOffset);
   1508 
   1509   /// CanDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given
   1510   /// expr can be devirtualized.
   1511   bool CanDevirtualizeMemberFunctionCall(const Expr *Base,
   1512                                          const CXXMethodDecl *MD);
   1513 
   1514   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
   1515   /// given phase of destruction for a destructor.  The end result
   1516   /// should call destructors on members and base classes in reverse
   1517   /// order of their construction.
   1518   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
   1519 
   1520   /// ShouldInstrumentFunction - Return true if the current function should be
   1521   /// instrumented with __cyg_profile_func_* calls
   1522   bool ShouldInstrumentFunction();
   1523 
   1524   /// ShouldXRayInstrument - Return true if the current function should be
   1525   /// instrumented with XRay nop sleds.
   1526   bool ShouldXRayInstrumentFunction() const;
   1527 
   1528   /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
   1529   /// instrumentation function with the current function and the call site, if
   1530   /// function instrumentation is enabled.
   1531   void EmitFunctionInstrumentation(const char *Fn);
   1532 
   1533   /// EmitMCountInstrumentation - Emit call to .mcount.
   1534   void EmitMCountInstrumentation();
   1535 
   1536   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
   1537   /// arguments for the given function. This is also responsible for naming the
   1538   /// LLVM function arguments.
   1539   void EmitFunctionProlog(const CGFunctionInfo &FI,
   1540                           llvm::Function *Fn,
   1541                           const FunctionArgList &Args);
   1542 
   1543   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
   1544   /// given temporary.
   1545   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
   1546                           SourceLocation EndLoc);
   1547 
   1548   /// EmitStartEHSpec - Emit the start of the exception spec.
   1549   void EmitStartEHSpec(const Decl *D);
   1550 
   1551   /// EmitEndEHSpec - Emit the end of the exception spec.
   1552   void EmitEndEHSpec(const Decl *D);
   1553 
   1554   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
   1555   llvm::BasicBlock *getTerminateLandingPad();
   1556 
   1557   /// getTerminateHandler - Return a handler (not a landing pad, just
   1558   /// a catch handler) that just calls terminate.  This is used when
   1559   /// a terminate scope encloses a try.
   1560   llvm::BasicBlock *getTerminateHandler();
   1561 
   1562   llvm::Type *ConvertTypeForMem(QualType T);
   1563   llvm::Type *ConvertType(QualType T);
   1564   llvm::Type *ConvertType(const TypeDecl *T) {
   1565     return ConvertType(getContext().getTypeDeclType(T));
   1566   }
   1567 
   1568   /// LoadObjCSelf - Load the value of self. This function is only valid while
   1569   /// generating code for an Objective-C method.
   1570   llvm::Value *LoadObjCSelf();
   1571 
   1572   /// TypeOfSelfObject - Return type of object that this self represents.
   1573   QualType TypeOfSelfObject();
   1574 
   1575   /// hasAggregateLLVMType - Return true if the specified AST type will map into
   1576   /// an aggregate LLVM type or is void.
   1577   static TypeEvaluationKind getEvaluationKind(QualType T);
   1578 
   1579   static bool hasScalarEvaluationKind(QualType T) {
   1580     return getEvaluationKind(T) == TEK_Scalar;
   1581   }
   1582 
   1583   static bool hasAggregateEvaluationKind(QualType T) {
   1584     return getEvaluationKind(T) == TEK_Aggregate;
   1585   }
   1586 
   1587   /// createBasicBlock - Create an LLVM basic block.
   1588   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
   1589                                      llvm::Function *parent = nullptr,
   1590                                      llvm::BasicBlock *before = nullptr) {
   1591 #ifdef NDEBUG
   1592     return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
   1593 #else
   1594     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
   1595 #endif
   1596   }
   1597 
   1598   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
   1599   /// label maps to.
   1600   JumpDest getJumpDestForLabel(const LabelDecl *S);
   1601 
   1602   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
   1603   /// another basic block, simplify it. This assumes that no other code could
   1604   /// potentially reference the basic block.
   1605   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
   1606 
   1607   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
   1608   /// adding a fall-through branch from the current insert block if
   1609   /// necessary. It is legal to call this function even if there is no current
   1610   /// insertion point.
   1611   ///
   1612   /// IsFinished - If true, indicates that the caller has finished emitting
   1613   /// branches to the given block and does not expect to emit code into it. This
   1614   /// means the block can be ignored if it is unreachable.
   1615   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
   1616 
   1617   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
   1618   /// near its uses, and leave the insertion point in it.
   1619   void EmitBlockAfterUses(llvm::BasicBlock *BB);
   1620 
   1621   /// EmitBranch - Emit a branch to the specified basic block from the current
   1622   /// insert block, taking care to avoid creation of branches from dummy
   1623   /// blocks. It is legal to call this function even if there is no current
   1624   /// insertion point.
   1625   ///
   1626   /// This function clears the current insertion point. The caller should follow
   1627   /// calls to this function with calls to Emit*Block prior to generation new
   1628   /// code.
   1629   void EmitBranch(llvm::BasicBlock *Block);
   1630 
   1631   /// HaveInsertPoint - True if an insertion point is defined. If not, this
   1632   /// indicates that the current code being emitted is unreachable.
   1633   bool HaveInsertPoint() const {
   1634     return Builder.GetInsertBlock() != nullptr;
   1635   }
   1636 
   1637   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
   1638   /// emitted IR has a place to go. Note that by definition, if this function
   1639   /// creates a block then that block is unreachable; callers may do better to
   1640   /// detect when no insertion point is defined and simply skip IR generation.
   1641   void EnsureInsertPoint() {
   1642     if (!HaveInsertPoint())
   1643       EmitBlock(createBasicBlock());
   1644   }
   1645 
   1646   /// ErrorUnsupported - Print out an error that codegen doesn't support the
   1647   /// specified stmt yet.
   1648   void ErrorUnsupported(const Stmt *S, const char *Type);
   1649 
   1650   //===--------------------------------------------------------------------===//
   1651   //                                  Helpers
   1652   //===--------------------------------------------------------------------===//
   1653 
   1654   LValue MakeAddrLValue(Address Addr, QualType T,
   1655                         AlignmentSource AlignSource = AlignmentSource::Type) {
   1656     return LValue::MakeAddr(Addr, T, getContext(), AlignSource,
   1657                             CGM.getTBAAInfo(T));
   1658   }
   1659 
   1660   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
   1661                         AlignmentSource AlignSource = AlignmentSource::Type) {
   1662     return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
   1663                             AlignSource, CGM.getTBAAInfo(T));
   1664   }
   1665 
   1666   LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
   1667   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
   1668   CharUnits getNaturalTypeAlignment(QualType T,
   1669                                     AlignmentSource *Source = nullptr,
   1670                                     bool forPointeeType = false);
   1671   CharUnits getNaturalPointeeTypeAlignment(QualType T,
   1672                                            AlignmentSource *Source = nullptr);
   1673 
   1674   Address EmitLoadOfReference(Address Ref, const ReferenceType *RefTy,
   1675                               AlignmentSource *Source = nullptr);
   1676   LValue EmitLoadOfReferenceLValue(Address Ref, const ReferenceType *RefTy);
   1677 
   1678   Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
   1679                             AlignmentSource *Source = nullptr);
   1680   LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
   1681 
   1682   /// CreateTempAlloca - This creates a alloca and inserts it into the entry
   1683   /// block. The caller is responsible for setting an appropriate alignment on
   1684   /// the alloca.
   1685   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
   1686                                      const Twine &Name = "tmp");
   1687   Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
   1688                            const Twine &Name = "tmp");
   1689 
   1690   /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
   1691   /// default ABI alignment of the given LLVM type.
   1692   ///
   1693   /// IMPORTANT NOTE: This is *not* generally the right alignment for
   1694   /// any given AST type that happens to have been lowered to the
   1695   /// given IR type.  This should only ever be used for function-local,
   1696   /// IR-driven manipulations like saving and restoring a value.  Do
   1697   /// not hand this address off to arbitrary IRGen routines, and especially
   1698   /// do not pass it as an argument to a function that might expect a
   1699   /// properly ABI-aligned value.
   1700   Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
   1701                                        const Twine &Name = "tmp");
   1702 
   1703   /// InitTempAlloca - Provide an initial value for the given alloca which
   1704   /// will be observable at all locations in the function.
   1705   ///
   1706   /// The address should be something that was returned from one of
   1707   /// the CreateTempAlloca or CreateMemTemp routines, and the
   1708   /// initializer must be valid in the entry block (i.e. it must
   1709   /// either be a constant or an argument value).
   1710   void InitTempAlloca(Address Alloca, llvm::Value *Value);
   1711 
   1712   /// CreateIRTemp - Create a temporary IR object of the given type, with
   1713   /// appropriate alignment. This routine should only be used when an temporary
   1714   /// value needs to be stored into an alloca (for example, to avoid explicit
   1715   /// PHI construction), but the type is the IR type, not the type appropriate
   1716   /// for storing in memory.
   1717   ///
   1718   /// That is, this is exactly equivalent to CreateMemTemp, but calling
   1719   /// ConvertType instead of ConvertTypeForMem.
   1720   Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
   1721 
   1722   /// CreateMemTemp - Create a temporary memory object of the given type, with
   1723   /// appropriate alignment.
   1724   Address CreateMemTemp(QualType T, const Twine &Name = "tmp");
   1725   Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp");
   1726 
   1727   /// CreateAggTemp - Create a temporary memory object for the given
   1728   /// aggregate type.
   1729   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
   1730     return AggValueSlot::forAddr(CreateMemTemp(T, Name),
   1731                                  T.getQualifiers(),
   1732                                  AggValueSlot::IsNotDestructed,
   1733                                  AggValueSlot::DoesNotNeedGCBarriers,
   1734                                  AggValueSlot::IsNotAliased);
   1735   }
   1736 
   1737   /// Emit a cast to void* in the appropriate address space.
   1738   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
   1739 
   1740   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
   1741   /// expression and compare the result against zero, returning an Int1Ty value.
   1742   llvm::Value *EvaluateExprAsBool(const Expr *E);
   1743 
   1744   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
   1745   void EmitIgnoredExpr(const Expr *E);
   1746 
   1747   /// EmitAnyExpr - Emit code to compute the specified expression which can have
   1748   /// any type.  The result is returned as an RValue struct.  If this is an
   1749   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
   1750   /// the result should be returned.
   1751   ///
   1752   /// \param ignoreResult True if the resulting value isn't used.
   1753   RValue EmitAnyExpr(const Expr *E,
   1754                      AggValueSlot aggSlot = AggValueSlot::ignored(),
   1755                      bool ignoreResult = false);
   1756 
   1757   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
   1758   // or the value of the expression, depending on how va_list is defined.
   1759   Address EmitVAListRef(const Expr *E);
   1760 
   1761   /// Emit a "reference" to a __builtin_ms_va_list; this is
   1762   /// always the value of the expression, because a __builtin_ms_va_list is a
   1763   /// pointer to a char.
   1764   Address EmitMSVAListRef(const Expr *E);
   1765 
   1766   /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
   1767   /// always be accessible even if no aggregate location is provided.
   1768   RValue EmitAnyExprToTemp(const Expr *E);
   1769 
   1770   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
   1771   /// arbitrary expression into the given memory location.
   1772   void EmitAnyExprToMem(const Expr *E, Address Location,
   1773                         Qualifiers Quals, bool IsInitializer);
   1774 
   1775   void EmitAnyExprToExn(const Expr *E, Address Addr);
   1776 
   1777   /// EmitExprAsInit - Emits the code necessary to initialize a
   1778   /// location in memory with the given initializer.
   1779   void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
   1780                       bool capturedByInit);
   1781 
   1782   /// hasVolatileMember - returns true if aggregate type has a volatile
   1783   /// member.
   1784   bool hasVolatileMember(QualType T) {
   1785     if (const RecordType *RT = T->getAs<RecordType>()) {
   1786       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
   1787       return RD->hasVolatileMember();
   1788     }
   1789     return false;
   1790   }
   1791   /// EmitAggregateCopy - Emit an aggregate assignment.
   1792   ///
   1793   /// The difference to EmitAggregateCopy is that tail padding is not copied.
   1794   /// This is required for correctness when assigning non-POD structures in C++.
   1795   void EmitAggregateAssign(Address DestPtr, Address SrcPtr,
   1796                            QualType EltTy) {
   1797     bool IsVolatile = hasVolatileMember(EltTy);
   1798     EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, true);
   1799   }
   1800 
   1801   void EmitAggregateCopyCtor(Address DestPtr, Address SrcPtr,
   1802                              QualType DestTy, QualType SrcTy) {
   1803     EmitAggregateCopy(DestPtr, SrcPtr, SrcTy, /*IsVolatile=*/false,
   1804                       /*IsAssignment=*/false);
   1805   }
   1806 
   1807   /// EmitAggregateCopy - Emit an aggregate copy.
   1808   ///
   1809   /// \param isVolatile - True iff either the source or the destination is
   1810   /// volatile.
   1811   /// \param isAssignment - If false, allow padding to be copied.  This often
   1812   /// yields more efficient.
   1813   void EmitAggregateCopy(Address DestPtr, Address SrcPtr,
   1814                          QualType EltTy, bool isVolatile=false,
   1815                          bool isAssignment = false);
   1816 
   1817   /// GetAddrOfLocalVar - Return the address of a local variable.
   1818   Address GetAddrOfLocalVar(const VarDecl *VD) {
   1819     auto it = LocalDeclMap.find(VD);
   1820     assert(it != LocalDeclMap.end() &&
   1821            "Invalid argument to GetAddrOfLocalVar(), no decl!");
   1822     return it->second;
   1823   }
   1824 
   1825   /// getOpaqueLValueMapping - Given an opaque value expression (which
   1826   /// must be mapped to an l-value), return its mapping.
   1827   const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
   1828     assert(OpaqueValueMapping::shouldBindAsLValue(e));
   1829 
   1830     llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
   1831       it = OpaqueLValues.find(e);
   1832     assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
   1833     return it->second;
   1834   }
   1835 
   1836   /// getOpaqueRValueMapping - Given an opaque value expression (which
   1837   /// must be mapped to an r-value), return its mapping.
   1838   const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
   1839     assert(!OpaqueValueMapping::shouldBindAsLValue(e));
   1840 
   1841     llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
   1842       it = OpaqueRValues.find(e);
   1843     assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
   1844     return it->second;
   1845   }
   1846 
   1847   /// getAccessedFieldNo - Given an encoded value and a result number, return
   1848   /// the input field number being accessed.
   1849   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
   1850 
   1851   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
   1852   llvm::BasicBlock *GetIndirectGotoBlock();
   1853 
   1854   /// EmitNullInitialization - Generate code to set a value of the given type to
   1855   /// null, If the type contains data member pointers, they will be initialized
   1856   /// to -1 in accordance with the Itanium C++ ABI.
   1857   void EmitNullInitialization(Address DestPtr, QualType Ty);
   1858 
   1859   /// Emits a call to an LLVM variable-argument intrinsic, either
   1860   /// \c llvm.va_start or \c llvm.va_end.
   1861   /// \param ArgValue A reference to the \c va_list as emitted by either
   1862   /// \c EmitVAListRef or \c EmitMSVAListRef.
   1863   /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
   1864   /// calls \c llvm.va_end.
   1865   llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
   1866 
   1867   /// Generate code to get an argument from the passed in pointer
   1868   /// and update it accordingly.
   1869   /// \param VE The \c VAArgExpr for which to generate code.
   1870   /// \param VAListAddr Receives a reference to the \c va_list as emitted by
   1871   /// either \c EmitVAListRef or \c EmitMSVAListRef.
   1872   /// \returns A pointer to the argument.
   1873   // FIXME: We should be able to get rid of this method and use the va_arg
   1874   // instruction in LLVM instead once it works well enough.
   1875   Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
   1876 
   1877   /// emitArrayLength - Compute the length of an array, even if it's a
   1878   /// VLA, and drill down to the base element type.
   1879   llvm::Value *emitArrayLength(const ArrayType *arrayType,
   1880                                QualType &baseType,
   1881                                Address &addr);
   1882 
   1883   /// EmitVLASize - Capture all the sizes for the VLA expressions in
   1884   /// the given variably-modified type and store them in the VLASizeMap.
   1885   ///
   1886   /// This function can be called with a null (unreachable) insert point.
   1887   void EmitVariablyModifiedType(QualType Ty);
   1888 
   1889   /// getVLASize - Returns an LLVM value that corresponds to the size,
   1890   /// in non-variably-sized elements, of a variable length array type,
   1891   /// plus that largest non-variably-sized element type.  Assumes that
   1892   /// the type has already been emitted with EmitVariablyModifiedType.
   1893   std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
   1894   std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
   1895 
   1896   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
   1897   /// generating code for an C++ member function.
   1898   llvm::Value *LoadCXXThis() {
   1899     assert(CXXThisValue && "no 'this' value for this function");
   1900     return CXXThisValue;
   1901   }
   1902   Address LoadCXXThisAddress();
   1903 
   1904   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
   1905   /// virtual bases.
   1906   // FIXME: Every place that calls LoadCXXVTT is something
   1907   // that needs to be abstracted properly.
   1908   llvm::Value *LoadCXXVTT() {
   1909     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
   1910     return CXXStructorImplicitParamValue;
   1911   }
   1912 
   1913   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
   1914   /// complete class to the given direct base.
   1915   Address
   1916   GetAddressOfDirectBaseInCompleteClass(Address Value,
   1917                                         const CXXRecordDecl *Derived,
   1918                                         const CXXRecordDecl *Base,
   1919                                         bool BaseIsVirtual);
   1920 
   1921   static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
   1922 
   1923   /// GetAddressOfBaseClass - This function will add the necessary delta to the
   1924   /// load of 'this' and returns address of the base class.
   1925   Address GetAddressOfBaseClass(Address Value,
   1926                                 const CXXRecordDecl *Derived,
   1927                                 CastExpr::path_const_iterator PathBegin,
   1928                                 CastExpr::path_const_iterator PathEnd,
   1929                                 bool NullCheckValue, SourceLocation Loc);
   1930 
   1931   Address GetAddressOfDerivedClass(Address Value,
   1932                                    const CXXRecordDecl *Derived,
   1933                                    CastExpr::path_const_iterator PathBegin,
   1934                                    CastExpr::path_const_iterator PathEnd,
   1935                                    bool NullCheckValue);
   1936 
   1937   /// GetVTTParameter - Return the VTT parameter that should be passed to a
   1938   /// base constructor/destructor with virtual bases.
   1939   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
   1940   /// to ItaniumCXXABI.cpp together with all the references to VTT.
   1941   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
   1942                                bool Delegating);
   1943 
   1944   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
   1945                                       CXXCtorType CtorType,
   1946                                       const FunctionArgList &Args,
   1947                                       SourceLocation Loc);
   1948   // It's important not to confuse this and the previous function. Delegating
   1949   // constructors are the C++0x feature. The constructor delegate optimization
   1950   // is used to reduce duplication in the base and complete consturctors where
   1951   // they are substantially the same.
   1952   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
   1953                                         const FunctionArgList &Args);
   1954 
   1955   /// Emit a call to an inheriting constructor (that is, one that invokes a
   1956   /// constructor inherited from a base class) by inlining its definition. This
   1957   /// is necessary if the ABI does not support forwarding the arguments to the
   1958   /// base class constructor (because they're variadic or similar).
   1959   void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
   1960                                                CXXCtorType CtorType,
   1961                                                bool ForVirtualBase,
   1962                                                bool Delegating,
   1963                                                CallArgList &Args);
   1964 
   1965   /// Emit a call to a constructor inherited from a base class, passing the
   1966   /// current constructor's arguments along unmodified (without even making
   1967   /// a copy).
   1968   void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
   1969                                        bool ForVirtualBase, Address This,
   1970                                        bool InheritedFromVBase,
   1971                                        const CXXInheritedCtorInitExpr *E);
   1972 
   1973   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
   1974                               bool ForVirtualBase, bool Delegating,
   1975                               Address This, const CXXConstructExpr *E);
   1976 
   1977   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
   1978                               bool ForVirtualBase, bool Delegating,
   1979                               Address This, CallArgList &Args);
   1980 
   1981   /// Emit assumption load for all bases. Requires to be be called only on
   1982   /// most-derived class and not under construction of the object.
   1983   void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
   1984 
   1985   /// Emit assumption that vptr load == global vtable.
   1986   void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
   1987 
   1988   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
   1989                                       Address This, Address Src,
   1990                                       const CXXConstructExpr *E);
   1991 
   1992   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
   1993                                   const ArrayType *ArrayTy,
   1994                                   Address ArrayPtr,
   1995                                   const CXXConstructExpr *E,
   1996                                   bool ZeroInitialization = false);
   1997 
   1998   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
   1999                                   llvm::Value *NumElements,
   2000                                   Address ArrayPtr,
   2001                                   const CXXConstructExpr *E,
   2002                                   bool ZeroInitialization = false);
   2003 
   2004   static Destroyer destroyCXXObject;
   2005 
   2006   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
   2007                              bool ForVirtualBase, bool Delegating,
   2008                              Address This);
   2009 
   2010   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
   2011                                llvm::Type *ElementTy, Address NewPtr,
   2012                                llvm::Value *NumElements,
   2013                                llvm::Value *AllocSizeWithoutCookie);
   2014 
   2015   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
   2016                         Address Ptr);
   2017 
   2018   llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr);
   2019   void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
   2020 
   2021   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
   2022   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
   2023 
   2024   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
   2025                       QualType DeleteTy);
   2026 
   2027   RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
   2028                                   const Expr *Arg, bool IsDelete);
   2029 
   2030   llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
   2031   llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
   2032   Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
   2033 
   2034   /// \brief Situations in which we might emit a check for the suitability of a
   2035   ///        pointer or glvalue.
   2036   enum TypeCheckKind {
   2037     /// Checking the operand of a load. Must be suitably sized and aligned.
   2038     TCK_Load,
   2039     /// Checking the destination of a store. Must be suitably sized and aligned.
   2040     TCK_Store,
   2041     /// Checking the bound value in a reference binding. Must be suitably sized
   2042     /// and aligned, but is not required to refer to an object (until the
   2043     /// reference is used), per core issue 453.
   2044     TCK_ReferenceBinding,
   2045     /// Checking the object expression in a non-static data member access. Must
   2046     /// be an object within its lifetime.
   2047     TCK_MemberAccess,
   2048     /// Checking the 'this' pointer for a call to a non-static member function.
   2049     /// Must be an object within its lifetime.
   2050     TCK_MemberCall,
   2051     /// Checking the 'this' pointer for a constructor call.
   2052     TCK_ConstructorCall,
   2053     /// Checking the operand of a static_cast to a derived pointer type. Must be
   2054     /// null or an object within its lifetime.
   2055     TCK_DowncastPointer,
   2056     /// Checking the operand of a static_cast to a derived reference type. Must
   2057     /// be an object within its lifetime.
   2058     TCK_DowncastReference,
   2059     /// Checking the operand of a cast to a base object. Must be suitably sized
   2060     /// and aligned.
   2061     TCK_Upcast,
   2062     /// Checking the operand of a cast to a virtual base object. Must be an
   2063     /// object within its lifetime.
   2064     TCK_UpcastToVirtualBase
   2065   };
   2066 
   2067   /// \brief Whether any type-checking sanitizers are enabled. If \c false,
   2068   /// calls to EmitTypeCheck can be skipped.
   2069   bool sanitizePerformTypeCheck() const;
   2070 
   2071   /// \brief Emit a check that \p V is the address of storage of the
   2072   /// appropriate size and alignment for an object of type \p Type.
   2073   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
   2074                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
   2075                      bool SkipNullCheck = false);
   2076 
   2077   /// \brief Emit a check that \p Base points into an array object, which
   2078   /// we can access at index \p Index. \p Accessed should be \c false if we
   2079   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
   2080   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
   2081                        QualType IndexType, bool Accessed);
   2082 
   2083   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
   2084                                        bool isInc, bool isPre);
   2085   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
   2086                                          bool isInc, bool isPre);
   2087 
   2088   void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment,
   2089                                llvm::Value *OffsetValue = nullptr) {
   2090     Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
   2091                                       OffsetValue);
   2092   }
   2093 
   2094   //===--------------------------------------------------------------------===//
   2095   //                            Declaration Emission
   2096   //===--------------------------------------------------------------------===//
   2097 
   2098   /// EmitDecl - Emit a declaration.
   2099   ///
   2100   /// This function can be called with a null (unreachable) insert point.
   2101   void EmitDecl(const Decl &D);
   2102 
   2103   /// EmitVarDecl - Emit a local variable declaration.
   2104   ///
   2105   /// This function can be called with a null (unreachable) insert point.
   2106   void EmitVarDecl(const VarDecl &D);
   2107 
   2108   void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
   2109                       bool capturedByInit);
   2110   void EmitScalarInit(llvm::Value *init, LValue lvalue);
   2111 
   2112   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
   2113                              llvm::Value *Address);
   2114 
   2115   /// \brief Determine whether the given initializer is trivial in the sense
   2116   /// that it requires no code to be generated.
   2117   bool isTrivialInitializer(const Expr *Init);
   2118 
   2119   /// EmitAutoVarDecl - Emit an auto variable declaration.
   2120   ///
   2121   /// This function can be called with a null (unreachable) insert point.
   2122   void EmitAutoVarDecl(const VarDecl &D);
   2123 
   2124   class AutoVarEmission {
   2125     friend class CodeGenFunction;
   2126 
   2127     const VarDecl *Variable;
   2128 
   2129     /// The address of the alloca.  Invalid if the variable was emitted
   2130     /// as a global constant.
   2131     Address Addr;
   2132 
   2133     llvm::Value *NRVOFlag;
   2134 
   2135     /// True if the variable is a __block variable.
   2136     bool IsByRef;
   2137 
   2138     /// True if the variable is of aggregate type and has a constant
   2139     /// initializer.
   2140     bool IsConstantAggregate;
   2141 
   2142     /// Non-null if we should use lifetime annotations.
   2143     llvm::Value *SizeForLifetimeMarkers;
   2144 
   2145     struct Invalid {};
   2146     AutoVarEmission(Invalid) : Variable(nullptr), Addr(Address::invalid()) {}
   2147 
   2148     AutoVarEmission(const VarDecl &variable)
   2149       : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
   2150         IsByRef(false), IsConstantAggregate(false),
   2151         SizeForLifetimeMarkers(nullptr) {}
   2152 
   2153     bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
   2154 
   2155   public:
   2156     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
   2157 
   2158     bool useLifetimeMarkers() const {
   2159       return SizeForLifetimeMarkers != nullptr;
   2160     }
   2161     llvm::Value *getSizeForLifetimeMarkers() const {
   2162       assert(useLifetimeMarkers());
   2163       return SizeForLifetimeMarkers;
   2164     }
   2165 
   2166     /// Returns the raw, allocated address, which is not necessarily
   2167     /// the address of the object itself.
   2168     Address getAllocatedAddress() const {
   2169       return Addr;
   2170     }
   2171 
   2172     /// Returns the address of the object within this declaration.
   2173     /// Note that this does not chase the forwarding pointer for
   2174     /// __block decls.
   2175     Address getObjectAddress(CodeGenFunction &CGF) const {
   2176       if (!IsByRef) return Addr;
   2177 
   2178       return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
   2179     }
   2180   };
   2181   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
   2182   void EmitAutoVarInit(const AutoVarEmission &emission);
   2183   void EmitAutoVarCleanups(const AutoVarEmission &emission);
   2184   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
   2185                               QualType::DestructionKind dtorKind);
   2186 
   2187   void EmitStaticVarDecl(const VarDecl &D,
   2188                          llvm::GlobalValue::LinkageTypes Linkage);
   2189 
   2190   class ParamValue {
   2191     llvm::Value *Value;
   2192     unsigned Alignment;
   2193     ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {}
   2194   public:
   2195     static ParamValue forDirect(llvm::Value *value) {
   2196       return ParamValue(value, 0);
   2197     }
   2198     static ParamValue forIndirect(Address addr) {
   2199       assert(!addr.getAlignment().isZero());
   2200       return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity());
   2201     }
   2202 
   2203     bool isIndirect() const { return Alignment != 0; }
   2204     llvm::Value *getAnyValue() const { return Value; }
   2205 
   2206     llvm::Value *getDirectValue() const {
   2207       assert(!isIndirect());
   2208       return Value;
   2209     }
   2210 
   2211     Address getIndirectAddress() const {
   2212       assert(isIndirect());
   2213       return Address(Value, CharUnits::fromQuantity(Alignment));
   2214     }
   2215   };
   2216 
   2217   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
   2218   void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
   2219 
   2220   /// protectFromPeepholes - Protect a value that we're intending to
   2221   /// store to the side, but which will probably be used later, from
   2222   /// aggressive peepholing optimizations that might delete it.
   2223   ///
   2224   /// Pass the result to unprotectFromPeepholes to declare that
   2225   /// protection is no longer required.
   2226   ///
   2227   /// There's no particular reason why this shouldn't apply to
   2228   /// l-values, it's just that no existing peepholes work on pointers.
   2229   PeepholeProtection protectFromPeepholes(RValue rvalue);
   2230   void unprotectFromPeepholes(PeepholeProtection protection);
   2231 
   2232   //===--------------------------------------------------------------------===//
   2233   //                             Statement Emission
   2234   //===--------------------------------------------------------------------===//
   2235 
   2236   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
   2237   void EmitStopPoint(const Stmt *S);
   2238 
   2239   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
   2240   /// this function even if there is no current insertion point.
   2241   ///
   2242   /// This function may clear the current insertion point; callers should use
   2243   /// EnsureInsertPoint if they wish to subsequently generate code without first
   2244   /// calling EmitBlock, EmitBranch, or EmitStmt.
   2245   void EmitStmt(const Stmt *S);
   2246 
   2247   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
   2248   /// necessarily require an insertion point or debug information; typically
   2249   /// because the statement amounts to a jump or a container of other
   2250   /// statements.
   2251   ///
   2252   /// \return True if the statement was handled.
   2253   bool EmitSimpleStmt(const Stmt *S);
   2254 
   2255   Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
   2256                            AggValueSlot AVS = AggValueSlot::ignored());
   2257   Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
   2258                                        bool GetLast = false,
   2259                                        AggValueSlot AVS =
   2260                                                 AggValueSlot::ignored());
   2261 
   2262   /// EmitLabel - Emit the block for the given label. It is legal to call this
   2263   /// function even if there is no current insertion point.
   2264   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
   2265 
   2266   void EmitLabelStmt(const LabelStmt &S);
   2267   void EmitAttributedStmt(const AttributedStmt &S);
   2268   void EmitGotoStmt(const GotoStmt &S);
   2269   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
   2270   void EmitIfStmt(const IfStmt &S);
   2271 
   2272   void EmitWhileStmt(const WhileStmt &S,
   2273                      ArrayRef<const Attr *> Attrs = None);
   2274   void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
   2275   void EmitForStmt(const ForStmt &S,
   2276                    ArrayRef<const Attr *> Attrs = None);
   2277   void EmitReturnStmt(const ReturnStmt &S);
   2278   void EmitDeclStmt(const DeclStmt &S);
   2279   void EmitBreakStmt(const BreakStmt &S);
   2280   void EmitContinueStmt(const ContinueStmt &S);
   2281   void EmitSwitchStmt(const SwitchStmt &S);
   2282   void EmitDefaultStmt(const DefaultStmt &S);
   2283   void EmitCaseStmt(const CaseStmt &S);
   2284   void EmitCaseStmtRange(const CaseStmt &S);
   2285   void EmitAsmStmt(const AsmStmt &S);
   2286 
   2287   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
   2288   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
   2289   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
   2290   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
   2291   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
   2292 
   2293   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
   2294   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
   2295 
   2296   void EmitCXXTryStmt(const CXXTryStmt &S);
   2297   void EmitSEHTryStmt(const SEHTryStmt &S);
   2298   void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
   2299   void EnterSEHTryStmt(const SEHTryStmt &S);
   2300   void ExitSEHTryStmt(const SEHTryStmt &S);
   2301 
   2302   void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
   2303                               const Stmt *OutlinedStmt);
   2304 
   2305   llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
   2306                                             const SEHExceptStmt &Except);
   2307 
   2308   llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
   2309                                              const SEHFinallyStmt &Finally);
   2310 
   2311   void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
   2312                                 llvm::Value *ParentFP,
   2313                                 llvm::Value *EntryEBP);
   2314   llvm::Value *EmitSEHExceptionCode();
   2315   llvm::Value *EmitSEHExceptionInfo();
   2316   llvm::Value *EmitSEHAbnormalTermination();
   2317 
   2318   /// Scan the outlined statement for captures from the parent function. For
   2319   /// each capture, mark the capture as escaped and emit a call to
   2320   /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
   2321   void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
   2322                           bool IsFilter);
   2323 
   2324   /// Recovers the address of a local in a parent function. ParentVar is the
   2325   /// address of the variable used in the immediate parent function. It can
   2326   /// either be an alloca or a call to llvm.localrecover if there are nested
   2327   /// outlined functions. ParentFP is the frame pointer of the outermost parent
   2328   /// frame.
   2329   Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
   2330                                     Address ParentVar,
   2331                                     llvm::Value *ParentFP);
   2332 
   2333   void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
   2334                            ArrayRef<const Attr *> Attrs = None);
   2335 
   2336   /// Returns calculated size of the specified type.
   2337   llvm::Value *getTypeSize(QualType Ty);
   2338   LValue InitCapturedStruct(const CapturedStmt &S);
   2339   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
   2340   llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
   2341   Address GenerateCapturedStmtArgument(const CapturedStmt &S);
   2342   llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S);
   2343   void GenerateOpenMPCapturedVars(const CapturedStmt &S,
   2344                                   SmallVectorImpl<llvm::Value *> &CapturedVars);
   2345   void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
   2346                           SourceLocation Loc);
   2347   /// \brief Perform element by element copying of arrays with type \a
   2348   /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
   2349   /// generated by \a CopyGen.
   2350   ///
   2351   /// \param DestAddr Address of the destination array.
   2352   /// \param SrcAddr Address of the source array.
   2353   /// \param OriginalType Type of destination and source arrays.
   2354   /// \param CopyGen Copying procedure that copies value of single array element
   2355   /// to another single array element.
   2356   void EmitOMPAggregateAssign(
   2357       Address DestAddr, Address SrcAddr, QualType OriginalType,
   2358       const llvm::function_ref<void(Address, Address)> &CopyGen);
   2359   /// \brief Emit proper copying of data from one variable to another.
   2360   ///
   2361   /// \param OriginalType Original type of the copied variables.
   2362   /// \param DestAddr Destination address.
   2363   /// \param SrcAddr Source address.
   2364   /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
   2365   /// type of the base array element).
   2366   /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
   2367   /// the base array element).
   2368   /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
   2369   /// DestVD.
   2370   void EmitOMPCopy(QualType OriginalType,
   2371                    Address DestAddr, Address SrcAddr,
   2372                    const VarDecl *DestVD, const VarDecl *SrcVD,
   2373                    const Expr *Copy);
   2374   /// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or
   2375   /// \a X = \a E \a BO \a E.
   2376   ///
   2377   /// \param X Value to be updated.
   2378   /// \param E Update value.
   2379   /// \param BO Binary operation for update operation.
   2380   /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
   2381   /// expression, false otherwise.
   2382   /// \param AO Atomic ordering of the generated atomic instructions.
   2383   /// \param CommonGen Code generator for complex expressions that cannot be
   2384   /// expressed through atomicrmw instruction.
   2385   /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
   2386   /// generated, <false, RValue::get(nullptr)> otherwise.
   2387   std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
   2388       LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
   2389       llvm::AtomicOrdering AO, SourceLocation Loc,
   2390       const llvm::function_ref<RValue(RValue)> &CommonGen);
   2391   bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
   2392                                  OMPPrivateScope &PrivateScope);
   2393   void EmitOMPPrivateClause(const OMPExecutableDirective &D,
   2394                             OMPPrivateScope &PrivateScope);
   2395   /// \brief Emit code for copyin clause in \a D directive. The next code is
   2396   /// generated at the start of outlined functions for directives:
   2397   /// \code
   2398   /// threadprivate_var1 = master_threadprivate_var1;
   2399   /// operator=(threadprivate_var2, master_threadprivate_var2);
   2400   /// ...
   2401   /// __kmpc_barrier(&loc, global_tid);
   2402   /// \endcode
   2403   ///
   2404   /// \param D OpenMP directive possibly with 'copyin' clause(s).
   2405   /// \returns true if at least one copyin variable is found, false otherwise.
   2406   bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
   2407   /// \brief Emit initial code for lastprivate variables. If some variable is
   2408   /// not also firstprivate, then the default initialization is used. Otherwise
   2409   /// initialization of this variable is performed by EmitOMPFirstprivateClause
   2410   /// method.
   2411   ///
   2412   /// \param D Directive that may have 'lastprivate' directives.
   2413   /// \param PrivateScope Private scope for capturing lastprivate variables for
   2414   /// proper codegen in internal captured statement.
   2415   ///
   2416   /// \returns true if there is at least one lastprivate variable, false
   2417   /// otherwise.
   2418   bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
   2419                                     OMPPrivateScope &PrivateScope);
   2420   /// \brief Emit final copying of lastprivate values to original variables at
   2421   /// the end of the worksharing or simd directive.
   2422   ///
   2423   /// \param D Directive that has at least one 'lastprivate' directives.
   2424   /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
   2425   /// it is the last iteration of the loop code in associated directive, or to
   2426   /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
   2427   void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
   2428                                      bool NoFinals,
   2429                                      llvm::Value *IsLastIterCond = nullptr);
   2430   /// Emit initial code for linear clauses.
   2431   void EmitOMPLinearClause(const OMPLoopDirective &D,
   2432                            CodeGenFunction::OMPPrivateScope &PrivateScope);
   2433   /// Emit final code for linear clauses.
   2434   /// \param CondGen Optional conditional code for final part of codegen for
   2435   /// linear clause.
   2436   void EmitOMPLinearClauseFinal(
   2437       const OMPLoopDirective &D,
   2438       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen);
   2439   /// \brief Emit initial code for reduction variables. Creates reduction copies
   2440   /// and initializes them with the values according to OpenMP standard.
   2441   ///
   2442   /// \param D Directive (possibly) with the 'reduction' clause.
   2443   /// \param PrivateScope Private scope for capturing reduction variables for
   2444   /// proper codegen in internal captured statement.
   2445   ///
   2446   void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
   2447                                   OMPPrivateScope &PrivateScope);
   2448   /// \brief Emit final update of reduction values to original variables at
   2449   /// the end of the directive.
   2450   ///
   2451   /// \param D Directive that has at least one 'reduction' directives.
   2452   void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D);
   2453   /// \brief Emit initial code for linear variables. Creates private copies
   2454   /// and initializes them with the values according to OpenMP standard.
   2455   ///
   2456   /// \param D Directive (possibly) with the 'linear' clause.
   2457   void EmitOMPLinearClauseInit(const OMPLoopDirective &D);
   2458 
   2459   typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
   2460                                         llvm::Value * /*OutlinedFn*/,
   2461                                         const OMPTaskDataTy & /*Data*/)>
   2462       TaskGenTy;
   2463   void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
   2464                                  const RegionCodeGenTy &BodyGen,
   2465                                  const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
   2466 
   2467   void EmitOMPParallelDirective(const OMPParallelDirective &S);
   2468   void EmitOMPSimdDirective(const OMPSimdDirective &S);
   2469   void EmitOMPForDirective(const OMPForDirective &S);
   2470   void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
   2471   void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
   2472   void EmitOMPSectionDirective(const OMPSectionDirective &S);
   2473   void EmitOMPSingleDirective(const OMPSingleDirective &S);
   2474   void EmitOMPMasterDirective(const OMPMasterDirective &S);
   2475   void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
   2476   void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
   2477   void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
   2478   void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
   2479   void EmitOMPTaskDirective(const OMPTaskDirective &S);
   2480   void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
   2481   void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
   2482   void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
   2483   void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
   2484   void EmitOMPFlushDirective(const OMPFlushDirective &S);
   2485   void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
   2486   void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
   2487   void EmitOMPTargetDirective(const OMPTargetDirective &S);
   2488   void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
   2489   void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
   2490   void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
   2491   void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
   2492   void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
   2493   void
   2494   EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
   2495   void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
   2496   void
   2497   EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
   2498   void EmitOMPCancelDirective(const OMPCancelDirective &S);
   2499   void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
   2500   void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
   2501   void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
   2502   void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
   2503   void EmitOMPDistributeLoop(const OMPDistributeDirective &S);
   2504   void EmitOMPDistributeParallelForDirective(
   2505       const OMPDistributeParallelForDirective &S);
   2506   void EmitOMPDistributeParallelForSimdDirective(
   2507       const OMPDistributeParallelForSimdDirective &S);
   2508   void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
   2509   void EmitOMPTargetParallelForSimdDirective(
   2510       const OMPTargetParallelForSimdDirective &S);
   2511 
   2512   /// Emit outlined function for the target directive.
   2513   static std::pair<llvm::Function * /*OutlinedFn*/,
   2514                    llvm::Constant * /*OutlinedFnID*/>
   2515   EmitOMPTargetDirectiveOutlinedFunction(CodeGenModule &CGM,
   2516                                          const OMPTargetDirective &S,
   2517                                          StringRef ParentName,
   2518                                          bool IsOffloadEntry);
   2519   /// \brief Emit inner loop of the worksharing/simd construct.
   2520   ///
   2521   /// \param S Directive, for which the inner loop must be emitted.
   2522   /// \param RequiresCleanup true, if directive has some associated private
   2523   /// variables.
   2524   /// \param LoopCond Bollean condition for loop continuation.
   2525   /// \param IncExpr Increment expression for loop control variable.
   2526   /// \param BodyGen Generator for the inner body of the inner loop.
   2527   /// \param PostIncGen Genrator for post-increment code (required for ordered
   2528   /// loop directvies).
   2529   void EmitOMPInnerLoop(
   2530       const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
   2531       const Expr *IncExpr,
   2532       const llvm::function_ref<void(CodeGenFunction &)> &BodyGen,
   2533       const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen);
   2534 
   2535   JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
   2536   /// Emit initial code for loop counters of loop-based directives.
   2537   void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
   2538                                   OMPPrivateScope &LoopScope);
   2539 
   2540 private:
   2541   /// Helpers for the OpenMP loop directives.
   2542   void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
   2543   void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false);
   2544   void EmitOMPSimdFinal(
   2545       const OMPLoopDirective &D,
   2546       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen);
   2547   /// \brief Emit code for the worksharing loop-based directive.
   2548   /// \return true, if this construct has any lastprivate clause, false -
   2549   /// otherwise.
   2550   bool EmitOMPWorksharingLoop(const OMPLoopDirective &S);
   2551   void EmitOMPOuterLoop(bool IsMonotonic, bool DynamicOrOrdered,
   2552       const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered,
   2553       Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk);
   2554   void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
   2555                            bool IsMonotonic, const OMPLoopDirective &S,
   2556                            OMPPrivateScope &LoopScope, bool Ordered, Address LB,
   2557                            Address UB, Address ST, Address IL,
   2558                            llvm::Value *Chunk);
   2559   void EmitOMPDistributeOuterLoop(
   2560       OpenMPDistScheduleClauseKind ScheduleKind,
   2561       const OMPDistributeDirective &S, OMPPrivateScope &LoopScope,
   2562       Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk);
   2563   /// \brief Emit code for sections directive.
   2564   void EmitSections(const OMPExecutableDirective &S);
   2565 
   2566 public:
   2567 
   2568   //===--------------------------------------------------------------------===//
   2569   //                         LValue Expression Emission
   2570   //===--------------------------------------------------------------------===//
   2571 
   2572   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
   2573   RValue GetUndefRValue(QualType Ty);
   2574 
   2575   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
   2576   /// and issue an ErrorUnsupported style diagnostic (using the
   2577   /// provided Name).
   2578   RValue EmitUnsupportedRValue(const Expr *E,
   2579                                const char *Name);
   2580 
   2581   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
   2582   /// an ErrorUnsupported style diagnostic (using the provided Name).
   2583   LValue EmitUnsupportedLValue(const Expr *E,
   2584                                const char *Name);
   2585 
   2586   /// EmitLValue - Emit code to compute a designator that specifies the location
   2587   /// of the expression.
   2588   ///
   2589   /// This can return one of two things: a simple address or a bitfield
   2590   /// reference.  In either case, the LLVM Value* in the LValue structure is
   2591   /// guaranteed to be an LLVM pointer type.
   2592   ///
   2593   /// If this returns a bitfield reference, nothing about the pointee type of
   2594   /// the LLVM value is known: For example, it may not be a pointer to an
   2595   /// integer.
   2596   ///
   2597   /// If this returns a normal address, and if the lvalue's C type is fixed
   2598   /// size, this method guarantees that the returned pointer type will point to
   2599   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
   2600   /// variable length type, this is not possible.
   2601   ///
   2602   LValue EmitLValue(const Expr *E);
   2603 
   2604   /// \brief Same as EmitLValue but additionally we generate checking code to
   2605   /// guard against undefined behavior.  This is only suitable when we know
   2606   /// that the address will be used to access the object.
   2607   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
   2608 
   2609   RValue convertTempToRValue(Address addr, QualType type,
   2610                              SourceLocation Loc);
   2611 
   2612   void EmitAtomicInit(Expr *E, LValue lvalue);
   2613 
   2614   bool LValueIsSuitableForInlineAtomic(LValue Src);
   2615 
   2616   RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
   2617                         AggValueSlot Slot = AggValueSlot::ignored());
   2618 
   2619   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
   2620                         llvm::AtomicOrdering AO, bool IsVolatile = false,
   2621                         AggValueSlot slot = AggValueSlot::ignored());
   2622 
   2623   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
   2624 
   2625   void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
   2626                        bool IsVolatile, bool isInit);
   2627 
   2628   std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
   2629       LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
   2630       llvm::AtomicOrdering Success =
   2631           llvm::AtomicOrdering::SequentiallyConsistent,
   2632       llvm::AtomicOrdering Failure =
   2633           llvm::AtomicOrdering::SequentiallyConsistent,
   2634       bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
   2635 
   2636   void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
   2637                         const llvm::function_ref<RValue(RValue)> &UpdateOp,
   2638                         bool IsVolatile);
   2639 
   2640   /// EmitToMemory - Change a scalar value from its value
   2641   /// representation to its in-memory representation.
   2642   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
   2643 
   2644   /// EmitFromMemory - Change a scalar value from its memory
   2645   /// representation to its value representation.
   2646   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
   2647 
   2648   /// EmitLoadOfScalar - Load a scalar value from an address, taking
   2649   /// care to appropriately convert from the memory representation to
   2650   /// the LLVM value representation.
   2651   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
   2652                                 SourceLocation Loc,
   2653                                 AlignmentSource AlignSource =
   2654                                   AlignmentSource::Type,
   2655                                 llvm::MDNode *TBAAInfo = nullptr,
   2656                                 QualType TBAABaseTy = QualType(),
   2657                                 uint64_t TBAAOffset = 0,
   2658                                 bool isNontemporal = false);
   2659 
   2660   /// EmitLoadOfScalar - Load a scalar value from an address, taking
   2661   /// care to appropriately convert from the memory representation to
   2662   /// the LLVM value representation.  The l-value must be a simple
   2663   /// l-value.
   2664   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
   2665 
   2666   /// EmitStoreOfScalar - Store a scalar value to an address, taking
   2667   /// care to appropriately convert from the memory representation to
   2668   /// the LLVM value representation.
   2669   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
   2670                          bool Volatile, QualType Ty,
   2671                          AlignmentSource AlignSource = AlignmentSource::Type,
   2672                          llvm::MDNode *TBAAInfo = nullptr, bool isInit = false,
   2673                          QualType TBAABaseTy = QualType(),
   2674                          uint64_t TBAAOffset = 0, bool isNontemporal = false);
   2675 
   2676   /// EmitStoreOfScalar - Store a scalar value to an address, taking
   2677   /// care to appropriately convert from the memory representation to
   2678   /// the LLVM value representation.  The l-value must be a simple
   2679   /// l-value.  The isInit flag indicates whether this is an initialization.
   2680   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
   2681   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
   2682 
   2683   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
   2684   /// this method emits the address of the lvalue, then loads the result as an
   2685   /// rvalue, returning the rvalue.
   2686   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
   2687   RValue EmitLoadOfExtVectorElementLValue(LValue V);
   2688   RValue EmitLoadOfBitfieldLValue(LValue LV);
   2689   RValue EmitLoadOfGlobalRegLValue(LValue LV);
   2690 
   2691   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
   2692   /// lvalue, where both are guaranteed to the have the same type, and that type
   2693   /// is 'Ty'.
   2694   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
   2695   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
   2696   void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
   2697 
   2698   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
   2699   /// as EmitStoreThroughLValue.
   2700   ///
   2701   /// \param Result [out] - If non-null, this will be set to a Value* for the
   2702   /// bit-field contents after the store, appropriate for use as the result of
   2703   /// an assignment to the bit-field.
   2704   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
   2705                                       llvm::Value **Result=nullptr);
   2706 
   2707   /// Emit an l-value for an assignment (simple or compound) of complex type.
   2708   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
   2709   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
   2710   LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
   2711                                              llvm::Value *&Result);
   2712 
   2713   // Note: only available for agg return types
   2714   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
   2715   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
   2716   // Note: only available for agg return types
   2717   LValue EmitCallExprLValue(const CallExpr *E);
   2718   // Note: only available for agg return types
   2719   LValue EmitVAArgExprLValue(const VAArgExpr *E);
   2720   LValue EmitDeclRefLValue(const DeclRefExpr *E);
   2721   LValue EmitStringLiteralLValue(const StringLiteral *E);
   2722   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
   2723   LValue EmitPredefinedLValue(const PredefinedExpr *E);
   2724   LValue EmitUnaryOpLValue(const UnaryOperator *E);
   2725   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
   2726                                 bool Accessed = false);
   2727   LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
   2728                                  bool IsLowerBound = true);
   2729   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
   2730   LValue EmitMemberExpr(const MemberExpr *E);
   2731   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
   2732   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
   2733   LValue EmitInitListLValue(const InitListExpr *E);
   2734   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
   2735   LValue EmitCastLValue(const CastExpr *E);
   2736   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
   2737   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
   2738 
   2739   Address EmitExtVectorElementLValue(LValue V);
   2740 
   2741   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
   2742 
   2743   Address EmitArrayToPointerDecay(const Expr *Array,
   2744                                   AlignmentSource *AlignSource = nullptr);
   2745 
   2746   class ConstantEmission {
   2747     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
   2748     ConstantEmission(llvm::Constant *C, bool isReference)
   2749       : ValueAndIsReference(C, isReference) {}
   2750   public:
   2751     ConstantEmission() {}
   2752     static ConstantEmission forReference(llvm::Constant *C) {
   2753       return ConstantEmission(C, true);
   2754     }
   2755     static ConstantEmission forValue(llvm::Constant *C) {
   2756       return ConstantEmission(C, false);
   2757     }
   2758 
   2759     explicit operator bool() const {
   2760       return ValueAndIsReference.getOpaqueValue() != nullptr;
   2761     }
   2762 
   2763     bool isReference() const { return ValueAndIsReference.getInt(); }
   2764     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
   2765       assert(isReference());
   2766       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
   2767                                             refExpr->getType());
   2768     }
   2769 
   2770     llvm::Constant *getValue() const {
   2771       assert(!isReference());
   2772       return ValueAndIsReference.getPointer();
   2773     }
   2774   };
   2775 
   2776   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
   2777 
   2778   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
   2779                                 AggValueSlot slot = AggValueSlot::ignored());
   2780   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
   2781 
   2782   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
   2783                               const ObjCIvarDecl *Ivar);
   2784   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
   2785   LValue EmitLValueForLambdaField(const FieldDecl *Field);
   2786 
   2787   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
   2788   /// if the Field is a reference, this will return the address of the reference
   2789   /// and not the address of the value stored in the reference.
   2790   LValue EmitLValueForFieldInitialization(LValue Base,
   2791                                           const FieldDecl* Field);
   2792 
   2793   LValue EmitLValueForIvar(QualType ObjectTy,
   2794                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
   2795                            unsigned CVRQualifiers);
   2796 
   2797   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
   2798   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
   2799   LValue EmitLambdaLValue(const LambdaExpr *E);
   2800   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
   2801   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
   2802 
   2803   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
   2804   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
   2805   LValue EmitStmtExprLValue(const StmtExpr *E);
   2806   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
   2807   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
   2808   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
   2809 
   2810   //===--------------------------------------------------------------------===//
   2811   //                         Scalar Expression Emission
   2812   //===--------------------------------------------------------------------===//
   2813 
   2814   /// EmitCall - Generate a call of the given function, expecting the given
   2815   /// result type, and using the given argument list which specifies both the
   2816   /// LLVM arguments and the types they were derived from.
   2817   RValue EmitCall(const CGFunctionInfo &FnInfo, llvm::Value *Callee,
   2818                   ReturnValueSlot ReturnValue, const CallArgList &Args,
   2819                   CGCalleeInfo CalleeInfo = CGCalleeInfo(),
   2820                   llvm::Instruction **callOrInvoke = nullptr);
   2821 
   2822   RValue EmitCall(QualType FnType, llvm::Value *Callee, const CallExpr *E,
   2823                   ReturnValueSlot ReturnValue,
   2824                   CGCalleeInfo CalleeInfo = CGCalleeInfo(),
   2825                   llvm::Value *Chain = nullptr);
   2826   RValue EmitCallExpr(const CallExpr *E,
   2827                       ReturnValueSlot ReturnValue = ReturnValueSlot());
   2828 
   2829   void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
   2830 
   2831   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
   2832                                   const Twine &name = "");
   2833   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
   2834                                   ArrayRef<llvm::Value*> args,
   2835                                   const Twine &name = "");
   2836   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
   2837                                           const Twine &name = "");
   2838   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
   2839                                           ArrayRef<llvm::Value*> args,
   2840                                           const Twine &name = "");
   2841 
   2842   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
   2843                                   ArrayRef<llvm::Value *> Args,
   2844                                   const Twine &Name = "");
   2845   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
   2846                                          ArrayRef<llvm::Value*> args,
   2847                                          const Twine &name = "");
   2848   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
   2849                                          const Twine &name = "");
   2850   void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
   2851                                        ArrayRef<llvm::Value*> args);
   2852 
   2853   llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
   2854                                          NestedNameSpecifier *Qual,
   2855                                          llvm::Type *Ty);
   2856 
   2857   llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
   2858                                                    CXXDtorType Type,
   2859                                                    const CXXRecordDecl *RD);
   2860 
   2861   RValue
   2862   EmitCXXMemberOrOperatorCall(const CXXMethodDecl *MD, llvm::Value *Callee,
   2863                               ReturnValueSlot ReturnValue, llvm::Value *This,
   2864                               llvm::Value *ImplicitParam,
   2865                               QualType ImplicitParamTy, const CallExpr *E);
   2866   RValue EmitCXXDestructorCall(const CXXDestructorDecl *DD, llvm::Value *Callee,
   2867                                llvm::Value *This, llvm::Value *ImplicitParam,
   2868                                QualType ImplicitParamTy, const CallExpr *E,
   2869                                StructorType Type);
   2870   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
   2871                                ReturnValueSlot ReturnValue);
   2872   RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
   2873                                                const CXXMethodDecl *MD,
   2874                                                ReturnValueSlot ReturnValue,
   2875                                                bool HasQualifier,
   2876                                                NestedNameSpecifier *Qualifier,
   2877                                                bool IsArrow, const Expr *Base);
   2878   // Compute the object pointer.
   2879   Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
   2880                                           llvm::Value *memberPtr,
   2881                                           const MemberPointerType *memberPtrType,
   2882                                           AlignmentSource *AlignSource = nullptr);
   2883   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
   2884                                       ReturnValueSlot ReturnValue);
   2885 
   2886   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
   2887                                        const CXXMethodDecl *MD,
   2888                                        ReturnValueSlot ReturnValue);
   2889 
   2890   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
   2891                                 ReturnValueSlot ReturnValue);
   2892 
   2893   RValue EmitCUDADevicePrintfCallExpr(const CallExpr *E,
   2894                                       ReturnValueSlot ReturnValue);
   2895 
   2896   RValue EmitBuiltinExpr(const FunctionDecl *FD,
   2897                          unsigned BuiltinID, const CallExpr *E,
   2898                          ReturnValueSlot ReturnValue);
   2899 
   2900   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
   2901 
   2902   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
   2903   /// is unhandled by the current target.
   2904   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
   2905 
   2906   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
   2907                                              const llvm::CmpInst::Predicate Fp,
   2908                                              const llvm::CmpInst::Predicate Ip,
   2909                                              const llvm::Twine &Name = "");
   2910   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
   2911 
   2912   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
   2913                                          unsigned LLVMIntrinsic,
   2914                                          unsigned AltLLVMIntrinsic,
   2915                                          const char *NameHint,
   2916                                          unsigned Modifier,
   2917                                          const CallExpr *E,
   2918                                          SmallVectorImpl<llvm::Value *> &Ops,
   2919                                          Address PtrOp0, Address PtrOp1);
   2920   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
   2921                                           unsigned Modifier, llvm::Type *ArgTy,
   2922                                           const CallExpr *E);
   2923   llvm::Value *EmitNeonCall(llvm::Function *F,
   2924                             SmallVectorImpl<llvm::Value*> &O,
   2925                             const char *name,
   2926                             unsigned shift = 0, bool rightshift = false);
   2927   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
   2928   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
   2929                                    bool negateForRightShift);
   2930   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
   2931                                  llvm::Type *Ty, bool usgn, const char *name);
   2932   llvm::Value *vectorWrapScalar16(llvm::Value *Op);
   2933   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
   2934 
   2935   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
   2936   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
   2937   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
   2938   llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
   2939   llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
   2940   llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
   2941   llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
   2942                                           const CallExpr *E);
   2943 
   2944   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
   2945   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
   2946   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
   2947   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
   2948   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
   2949   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
   2950                                 const ObjCMethodDecl *MethodWithObjects);
   2951   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
   2952   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
   2953                              ReturnValueSlot Return = ReturnValueSlot());
   2954 
   2955   /// Retrieves the default cleanup kind for an ARC cleanup.
   2956   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
   2957   CleanupKind getARCCleanupKind() {
   2958     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
   2959              ? NormalAndEHCleanup : NormalCleanup;
   2960   }
   2961 
   2962   // ARC primitives.
   2963   void EmitARCInitWeak(Address addr, llvm::Value *value);
   2964   void EmitARCDestroyWeak(Address addr);
   2965   llvm::Value *EmitARCLoadWeak(Address addr);
   2966   llvm::Value *EmitARCLoadWeakRetained(Address addr);
   2967   llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
   2968   void EmitARCCopyWeak(Address dst, Address src);
   2969   void EmitARCMoveWeak(Address dst, Address src);
   2970   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
   2971   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
   2972   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
   2973                                   bool resultIgnored);
   2974   llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
   2975                                       bool resultIgnored);
   2976   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
   2977   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
   2978   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
   2979   void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
   2980   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
   2981   llvm::Value *EmitARCAutorelease(llvm::Value *value);
   2982   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
   2983   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
   2984   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
   2985   llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
   2986 
   2987   std::pair<LValue,llvm::Value*>
   2988   EmitARCStoreAutoreleasing(const BinaryOperator *e);
   2989   std::pair<LValue,llvm::Value*>
   2990   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
   2991   std::pair<LValue,llvm::Value*>
   2992   EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
   2993 
   2994   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
   2995   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
   2996   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
   2997 
   2998   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
   2999   llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
   3000                                             bool allowUnsafeClaim);
   3001   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
   3002   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
   3003   llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
   3004 
   3005   void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
   3006 
   3007   static Destroyer destroyARCStrongImprecise;
   3008   static Destroyer destroyARCStrongPrecise;
   3009   static Destroyer destroyARCWeak;
   3010 
   3011   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
   3012   llvm::Value *EmitObjCAutoreleasePoolPush();
   3013   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
   3014   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
   3015   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
   3016 
   3017   /// \brief Emits a reference binding to the passed in expression.
   3018   RValue EmitReferenceBindingToExpr(const Expr *E);
   3019 
   3020   //===--------------------------------------------------------------------===//
   3021   //                           Expression Emission
   3022   //===--------------------------------------------------------------------===//
   3023 
   3024   // Expressions are broken into three classes: scalar, complex, aggregate.
   3025 
   3026   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
   3027   /// scalar type, returning the result.
   3028   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
   3029 
   3030   /// Emit a conversion from the specified type to the specified destination
   3031   /// type, both of which are LLVM scalar types.
   3032   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
   3033                                     QualType DstTy, SourceLocation Loc);
   3034 
   3035   /// Emit a conversion from the specified complex type to the specified
   3036   /// destination type, where the destination type is an LLVM scalar type.
   3037   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
   3038                                              QualType DstTy,
   3039                                              SourceLocation Loc);
   3040 
   3041   /// EmitAggExpr - Emit the computation of the specified expression
   3042   /// of aggregate type.  The result is computed into the given slot,
   3043   /// which may be null to indicate that the value is not needed.
   3044   void EmitAggExpr(const Expr *E, AggValueSlot AS);
   3045 
   3046   /// EmitAggExprToLValue - Emit the computation of the specified expression of
   3047   /// aggregate type into a temporary LValue.
   3048   LValue EmitAggExprToLValue(const Expr *E);
   3049 
   3050   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
   3051   /// make sure it survives garbage collection until this point.
   3052   void EmitExtendGCLifetime(llvm::Value *object);
   3053 
   3054   /// EmitComplexExpr - Emit the computation of the specified expression of
   3055   /// complex type, returning the result.
   3056   ComplexPairTy EmitComplexExpr(const Expr *E,
   3057                                 bool IgnoreReal = false,
   3058                                 bool IgnoreImag = false);
   3059 
   3060   /// EmitComplexExprIntoLValue - Emit the given expression of complex
   3061   /// type and place its result into the specified l-value.
   3062   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
   3063 
   3064   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
   3065   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
   3066 
   3067   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
   3068   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
   3069 
   3070   Address emitAddrOfRealComponent(Address complex, QualType complexType);
   3071   Address emitAddrOfImagComponent(Address complex, QualType complexType);
   3072 
   3073   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
   3074   /// global variable that has already been created for it.  If the initializer
   3075   /// has a different type than GV does, this may free GV and return a different
   3076   /// one.  Otherwise it just returns GV.
   3077   llvm::GlobalVariable *
   3078   AddInitializerToStaticVarDecl(const VarDecl &D,
   3079                                 llvm::GlobalVariable *GV);
   3080 
   3081 
   3082   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
   3083   /// variable with global storage.
   3084   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
   3085                                 bool PerformInit);
   3086 
   3087   llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor,
   3088                                    llvm::Constant *Addr);
   3089 
   3090   /// Call atexit() with a function that passes the given argument to
   3091   /// the given function.
   3092   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn,
   3093                                     llvm::Constant *addr);
   3094 
   3095   /// Emit code in this function to perform a guarded variable
   3096   /// initialization.  Guarded initializations are used when it's not
   3097   /// possible to prove that an initialization will be done exactly
   3098   /// once, e.g. with a static local variable or a static data member
   3099   /// of a class template.
   3100   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
   3101                           bool PerformInit);
   3102 
   3103   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
   3104   /// variables.
   3105   void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
   3106                                  ArrayRef<llvm::Function *> CXXThreadLocals,
   3107                                  Address Guard = Address::invalid());
   3108 
   3109   /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
   3110   /// variables.
   3111   void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn,
   3112                                   const std::vector<std::pair<llvm::WeakVH,
   3113                                   llvm::Constant*> > &DtorsAndObjects);
   3114 
   3115   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
   3116                                         const VarDecl *D,
   3117                                         llvm::GlobalVariable *Addr,
   3118                                         bool PerformInit);
   3119 
   3120   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
   3121 
   3122   void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
   3123 
   3124   void enterFullExpression(const ExprWithCleanups *E) {
   3125     if (E->getNumObjects() == 0) return;
   3126     enterNonTrivialFullExpression(E);
   3127   }
   3128   void enterNonTrivialFullExpression(const ExprWithCleanups *E);
   3129 
   3130   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
   3131 
   3132   void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
   3133 
   3134   RValue EmitAtomicExpr(AtomicExpr *E);
   3135 
   3136   //===--------------------------------------------------------------------===//
   3137   //                         Annotations Emission
   3138   //===--------------------------------------------------------------------===//
   3139 
   3140   /// Emit an annotation call (intrinsic or builtin).
   3141   llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
   3142                                   llvm::Value *AnnotatedVal,
   3143                                   StringRef AnnotationStr,
   3144                                   SourceLocation Location);
   3145 
   3146   /// Emit local annotations for the local variable V, declared by D.
   3147   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
   3148 
   3149   /// Emit field annotations for the given field & value. Returns the
   3150   /// annotation result.
   3151   Address EmitFieldAnnotations(const FieldDecl *D, Address V);
   3152 
   3153   //===--------------------------------------------------------------------===//
   3154   //                             Internal Helpers
   3155   //===--------------------------------------------------------------------===//
   3156 
   3157   /// ContainsLabel - Return true if the statement contains a label in it.  If
   3158   /// this statement is not executed normally, it not containing a label means
   3159   /// that we can just remove the code.
   3160   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
   3161 
   3162   /// containsBreak - Return true if the statement contains a break out of it.
   3163   /// If the statement (recursively) contains a switch or loop with a break
   3164   /// inside of it, this is fine.
   3165   static bool containsBreak(const Stmt *S);
   3166 
   3167   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
   3168   /// to a constant, or if it does but contains a label, return false.  If it
   3169   /// constant folds return true and set the boolean result in Result.
   3170   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
   3171                                     bool AllowLabels = false);
   3172 
   3173   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
   3174   /// to a constant, or if it does but contains a label, return false.  If it
   3175   /// constant folds return true and set the folded value.
   3176   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
   3177                                     bool AllowLabels = false);
   3178 
   3179   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
   3180   /// if statement) to the specified blocks.  Based on the condition, this might
   3181   /// try to simplify the codegen of the conditional based on the branch.
   3182   /// TrueCount should be the number of times we expect the condition to
   3183   /// evaluate to true based on PGO data.
   3184   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
   3185                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
   3186 
   3187   /// \brief Emit a description of a type in a format suitable for passing to
   3188   /// a runtime sanitizer handler.
   3189   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
   3190 
   3191   /// \brief Convert a value into a format suitable for passing to a runtime
   3192   /// sanitizer handler.
   3193   llvm::Value *EmitCheckValue(llvm::Value *V);
   3194 
   3195   /// \brief Emit a description of a source location in a format suitable for
   3196   /// passing to a runtime sanitizer handler.
   3197   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
   3198 
   3199   /// \brief Create a basic block that will call a handler function in a
   3200   /// sanitizer runtime with the provided arguments, and create a conditional
   3201   /// branch to it.
   3202   void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
   3203                  StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs,
   3204                  ArrayRef<llvm::Value *> DynamicArgs);
   3205 
   3206   /// \brief Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
   3207   /// if Cond if false.
   3208   void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
   3209                             llvm::ConstantInt *TypeId, llvm::Value *Ptr,
   3210                             ArrayRef<llvm::Constant *> StaticArgs);
   3211 
   3212   /// \brief Create a basic block that will call the trap intrinsic, and emit a
   3213   /// conditional branch to it, for the -ftrapv checks.
   3214   void EmitTrapCheck(llvm::Value *Checked);
   3215 
   3216   /// \brief Emit a call to trap or debugtrap and attach function attribute
   3217   /// "trap-func-name" if specified.
   3218   llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
   3219 
   3220   /// \brief Emit a cross-DSO CFI failure handling function.
   3221   void EmitCfiCheckFail();
   3222 
   3223   /// \brief Create a check for a function parameter that may potentially be
   3224   /// declared as non-null.
   3225   void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
   3226                            const FunctionDecl *FD, unsigned ParmNum);
   3227 
   3228   /// EmitCallArg - Emit a single call argument.
   3229   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
   3230 
   3231   /// EmitDelegateCallArg - We are performing a delegate call; that
   3232   /// is, the current function is delegating to another one.  Produce
   3233   /// a r-value suitable for passing the given parameter.
   3234   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
   3235                            SourceLocation loc);
   3236 
   3237   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
   3238   /// point operation, expressed as the maximum relative error in ulp.
   3239   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
   3240 
   3241 private:
   3242   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
   3243   void EmitReturnOfRValue(RValue RV, QualType Ty);
   3244 
   3245   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
   3246 
   3247   llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4>
   3248   DeferredReplacements;
   3249 
   3250   /// Set the address of a local variable.
   3251   void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
   3252     assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
   3253     LocalDeclMap.insert({VD, Addr});
   3254   }
   3255 
   3256   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
   3257   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
   3258   ///
   3259   /// \param AI - The first function argument of the expansion.
   3260   void ExpandTypeFromArgs(QualType Ty, LValue Dst,
   3261                           SmallVectorImpl<llvm::Value *>::iterator &AI);
   3262 
   3263   /// ExpandTypeToArgs - Expand an RValue \arg RV, with the LLVM type for \arg
   3264   /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
   3265   /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
   3266   void ExpandTypeToArgs(QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
   3267                         SmallVectorImpl<llvm::Value *> &IRCallArgs,
   3268                         unsigned &IRCallArgPos);
   3269 
   3270   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
   3271                             const Expr *InputExpr, std::string &ConstraintStr);
   3272 
   3273   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
   3274                                   LValue InputValue, QualType InputType,
   3275                                   std::string &ConstraintStr,
   3276                                   SourceLocation Loc);
   3277 
   3278   /// \brief Attempts to statically evaluate the object size of E. If that
   3279   /// fails, emits code to figure the size of E out for us. This is
   3280   /// pass_object_size aware.
   3281   llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
   3282                                                llvm::IntegerType *ResType);
   3283 
   3284   /// \brief Emits the size of E, as required by __builtin_object_size. This
   3285   /// function is aware of pass_object_size parameters, and will act accordingly
   3286   /// if E is a parameter with the pass_object_size attribute.
   3287   llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
   3288                                      llvm::IntegerType *ResType);
   3289 
   3290 public:
   3291 #ifndef NDEBUG
   3292   // Determine whether the given argument is an Objective-C method
   3293   // that may have type parameters in its signature.
   3294   static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
   3295     const DeclContext *dc = method->getDeclContext();
   3296     if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) {
   3297       return classDecl->getTypeParamListAsWritten();
   3298     }
   3299 
   3300     if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
   3301       return catDecl->getTypeParamList();
   3302     }
   3303 
   3304     return false;
   3305   }
   3306 
   3307   template<typename T>
   3308   static bool isObjCMethodWithTypeParams(const T *) { return false; }
   3309 #endif
   3310 
   3311   /// EmitCallArgs - Emit call arguments for a function.
   3312   template <typename T>
   3313   void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
   3314                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
   3315                     const FunctionDecl *CalleeDecl = nullptr,
   3316                     unsigned ParamsToSkip = 0) {
   3317     SmallVector<QualType, 16> ArgTypes;
   3318     CallExpr::const_arg_iterator Arg = ArgRange.begin();
   3319 
   3320     assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
   3321            "Can't skip parameters if type info is not provided");
   3322     if (CallArgTypeInfo) {
   3323 #ifndef NDEBUG
   3324       bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo);
   3325 #endif
   3326 
   3327       // First, use the argument types that the type info knows about
   3328       for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
   3329                 E = CallArgTypeInfo->param_type_end();
   3330            I != E; ++I, ++Arg) {
   3331         assert(Arg != ArgRange.end() && "Running over edge of argument list!");
   3332         assert((isGenericMethod ||
   3333                 ((*I)->isVariablyModifiedType() ||
   3334                  (*I).getNonReferenceType()->isObjCRetainableType() ||
   3335                  getContext()
   3336                          .getCanonicalType((*I).getNonReferenceType())
   3337                          .getTypePtr() ==
   3338                      getContext()
   3339                          .getCanonicalType((*Arg)->getType())
   3340                          .getTypePtr())) &&
   3341                "type mismatch in call argument!");
   3342         ArgTypes.push_back(*I);
   3343       }
   3344     }
   3345 
   3346     // Either we've emitted all the call args, or we have a call to variadic
   3347     // function.
   3348     assert((Arg == ArgRange.end() || !CallArgTypeInfo ||
   3349             CallArgTypeInfo->isVariadic()) &&
   3350            "Extra arguments in non-variadic function!");
   3351 
   3352     // If we still have any arguments, emit them using the type of the argument.
   3353     for (auto *A : llvm::make_range(Arg, ArgRange.end()))
   3354       ArgTypes.push_back(getVarArgType(A));
   3355 
   3356     EmitCallArgs(Args, ArgTypes, ArgRange, CalleeDecl, ParamsToSkip);
   3357   }
   3358 
   3359   void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
   3360                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
   3361                     const FunctionDecl *CalleeDecl = nullptr,
   3362                     unsigned ParamsToSkip = 0);
   3363 
   3364   /// EmitPointerWithAlignment - Given an expression with a pointer
   3365   /// type, emit the value and compute our best estimate of the
   3366   /// alignment of the pointee.
   3367   ///
   3368   /// Note that this function will conservatively fall back on the type
   3369   /// when it doesn't
   3370   ///
   3371   /// \param Source - If non-null, this will be initialized with
   3372   ///   information about the source of the alignment.  Note that this
   3373   ///   function will conservatively fall back on the type when it
   3374   ///   doesn't recognize the expression, which means that sometimes
   3375   ///
   3376   ///   a worst-case One
   3377   ///   reasonable way to use this information is when there's a
   3378   ///   language guarantee that the pointer must be aligned to some
   3379   ///   stricter value, and we're simply trying to ensure that
   3380   ///   sufficiently obvious uses of under-aligned objects don't get
   3381   ///   miscompiled; for example, a placement new into the address of
   3382   ///   a local variable.  In such a case, it's quite reasonable to
   3383   ///   just ignore the returned alignment when it isn't from an
   3384   ///   explicit source.
   3385   Address EmitPointerWithAlignment(const Expr *Addr,
   3386                                    AlignmentSource *Source = nullptr);
   3387 
   3388   void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
   3389 
   3390 private:
   3391   QualType getVarArgType(const Expr *Arg);
   3392 
   3393   const TargetCodeGenInfo &getTargetHooks() const {
   3394     return CGM.getTargetCodeGenInfo();
   3395   }
   3396 
   3397   void EmitDeclMetadata();
   3398 
   3399   BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
   3400                                   const AutoVarEmission &emission);
   3401 
   3402   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
   3403 
   3404   llvm::Value *GetValueForARMHint(unsigned BuiltinID);
   3405 };
   3406 
   3407 /// Helper class with most of the code for saving a value for a
   3408 /// conditional expression cleanup.
   3409 struct DominatingLLVMValue {
   3410   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
   3411 
   3412   /// Answer whether the given value needs extra work to be saved.
   3413   static bool needsSaving(llvm::Value *value) {
   3414     // If it's not an instruction, we don't need to save.
   3415     if (!isa<llvm::Instruction>(value)) return false;
   3416 
   3417     // If it's an instruction in the entry block, we don't need to save.
   3418     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
   3419     return (block != &block->getParent()->getEntryBlock());
   3420   }
   3421 
   3422   /// Try to save the given value.
   3423   static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
   3424     if (!needsSaving(value)) return saved_type(value, false);
   3425 
   3426     // Otherwise, we need an alloca.
   3427     auto align = CharUnits::fromQuantity(
   3428               CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
   3429     Address alloca =
   3430       CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
   3431     CGF.Builder.CreateStore(value, alloca);
   3432 
   3433     return saved_type(alloca.getPointer(), true);
   3434   }
   3435 
   3436   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
   3437     // If the value says it wasn't saved, trust that it's still dominating.
   3438     if (!value.getInt()) return value.getPointer();
   3439 
   3440     // Otherwise, it should be an alloca instruction, as set up in save().
   3441     auto alloca = cast<llvm::AllocaInst>(value.getPointer());
   3442     return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment());
   3443   }
   3444 };
   3445 
   3446 /// A partial specialization of DominatingValue for llvm::Values that
   3447 /// might be llvm::Instructions.
   3448 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
   3449   typedef T *type;
   3450   static type restore(CodeGenFunction &CGF, saved_type value) {
   3451     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
   3452   }
   3453 };
   3454 
   3455 /// A specialization of DominatingValue for Address.
   3456 template <> struct DominatingValue<Address> {
   3457   typedef Address type;
   3458 
   3459   struct saved_type {
   3460     DominatingLLVMValue::saved_type SavedValue;
   3461     CharUnits Alignment;
   3462   };
   3463 
   3464   static bool needsSaving(type value) {
   3465     return DominatingLLVMValue::needsSaving(value.getPointer());
   3466   }
   3467   static saved_type save(CodeGenFunction &CGF, type value) {
   3468     return { DominatingLLVMValue::save(CGF, value.getPointer()),
   3469              value.getAlignment() };
   3470   }
   3471   static type restore(CodeGenFunction &CGF, saved_type value) {
   3472     return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
   3473                    value.Alignment);
   3474   }
   3475 };
   3476 
   3477 /// A specialization of DominatingValue for RValue.
   3478 template <> struct DominatingValue<RValue> {
   3479   typedef RValue type;
   3480   class saved_type {
   3481     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
   3482                 AggregateAddress, ComplexAddress };
   3483 
   3484     llvm::Value *Value;
   3485     unsigned K : 3;
   3486     unsigned Align : 29;
   3487     saved_type(llvm::Value *v, Kind k, unsigned a = 0)
   3488       : Value(v), K(k), Align(a) {}
   3489 
   3490   public:
   3491     static bool needsSaving(RValue value);
   3492     static saved_type save(CodeGenFunction &CGF, RValue value);
   3493     RValue restore(CodeGenFunction &CGF);
   3494 
   3495     // implementations in CGCleanup.cpp
   3496   };
   3497 
   3498   static bool needsSaving(type value) {
   3499     return saved_type::needsSaving(value);
   3500   }
   3501   static saved_type save(CodeGenFunction &CGF, type value) {
   3502     return saved_type::save(CGF, value);
   3503   }
   3504   static type restore(CodeGenFunction &CGF, saved_type value) {
   3505     return value.restore(CGF);
   3506   }
   3507 };
   3508 
   3509 }  // end namespace CodeGen
   3510 }  // end namespace clang
   3511 
   3512 #endif
   3513