1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the internal per-function state used for llvm translation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 16 17 #include "CGBuilder.h" 18 #include "CGDebugInfo.h" 19 #include "CGLoopInfo.h" 20 #include "CGValue.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "EHScopeStack.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/ExprCXX.h" 26 #include "clang/AST/ExprObjC.h" 27 #include "clang/AST/ExprOpenMP.h" 28 #include "clang/AST/Type.h" 29 #include "clang/Basic/ABI.h" 30 #include "clang/Basic/CapturedStmt.h" 31 #include "clang/Basic/OpenMPKinds.h" 32 #include "clang/Basic/TargetInfo.h" 33 #include "clang/Frontend/CodeGenOptions.h" 34 #include "llvm/ADT/ArrayRef.h" 35 #include "llvm/ADT/DenseMap.h" 36 #include "llvm/ADT/SmallVector.h" 37 #include "llvm/IR/ValueHandle.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Transforms/Utils/SanitizerStats.h" 40 41 namespace llvm { 42 class BasicBlock; 43 class LLVMContext; 44 class MDNode; 45 class Module; 46 class SwitchInst; 47 class Twine; 48 class Value; 49 class CallSite; 50 } 51 52 namespace clang { 53 class ASTContext; 54 class BlockDecl; 55 class CXXDestructorDecl; 56 class CXXForRangeStmt; 57 class CXXTryStmt; 58 class Decl; 59 class LabelDecl; 60 class EnumConstantDecl; 61 class FunctionDecl; 62 class FunctionProtoType; 63 class LabelStmt; 64 class ObjCContainerDecl; 65 class ObjCInterfaceDecl; 66 class ObjCIvarDecl; 67 class ObjCMethodDecl; 68 class ObjCImplementationDecl; 69 class ObjCPropertyImplDecl; 70 class TargetInfo; 71 class VarDecl; 72 class ObjCForCollectionStmt; 73 class ObjCAtTryStmt; 74 class ObjCAtThrowStmt; 75 class ObjCAtSynchronizedStmt; 76 class ObjCAutoreleasePoolStmt; 77 78 namespace CodeGen { 79 class CodeGenTypes; 80 class CGFunctionInfo; 81 class CGRecordLayout; 82 class CGBlockInfo; 83 class CGCXXABI; 84 class BlockByrefHelpers; 85 class BlockByrefInfo; 86 class BlockFlags; 87 class BlockFieldFlags; 88 class RegionCodeGenTy; 89 class TargetCodeGenInfo; 90 struct OMPTaskDataTy; 91 92 /// The kind of evaluation to perform on values of a particular 93 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 94 /// CGExprAgg? 95 /// 96 /// TODO: should vectors maybe be split out into their own thing? 97 enum TypeEvaluationKind { 98 TEK_Scalar, 99 TEK_Complex, 100 TEK_Aggregate 101 }; 102 103 /// CodeGenFunction - This class organizes the per-function state that is used 104 /// while generating LLVM code. 105 class CodeGenFunction : public CodeGenTypeCache { 106 CodeGenFunction(const CodeGenFunction &) = delete; 107 void operator=(const CodeGenFunction &) = delete; 108 109 friend class CGCXXABI; 110 public: 111 /// A jump destination is an abstract label, branching to which may 112 /// require a jump out through normal cleanups. 113 struct JumpDest { 114 JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {} 115 JumpDest(llvm::BasicBlock *Block, 116 EHScopeStack::stable_iterator Depth, 117 unsigned Index) 118 : Block(Block), ScopeDepth(Depth), Index(Index) {} 119 120 bool isValid() const { return Block != nullptr; } 121 llvm::BasicBlock *getBlock() const { return Block; } 122 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 123 unsigned getDestIndex() const { return Index; } 124 125 // This should be used cautiously. 126 void setScopeDepth(EHScopeStack::stable_iterator depth) { 127 ScopeDepth = depth; 128 } 129 130 private: 131 llvm::BasicBlock *Block; 132 EHScopeStack::stable_iterator ScopeDepth; 133 unsigned Index; 134 }; 135 136 CodeGenModule &CGM; // Per-module state. 137 const TargetInfo &Target; 138 139 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 140 LoopInfoStack LoopStack; 141 CGBuilderTy Builder; 142 143 /// \brief CGBuilder insert helper. This function is called after an 144 /// instruction is created using Builder. 145 void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, 146 llvm::BasicBlock *BB, 147 llvm::BasicBlock::iterator InsertPt) const; 148 149 /// CurFuncDecl - Holds the Decl for the current outermost 150 /// non-closure context. 151 const Decl *CurFuncDecl; 152 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 153 const Decl *CurCodeDecl; 154 const CGFunctionInfo *CurFnInfo; 155 QualType FnRetTy; 156 llvm::Function *CurFn; 157 158 /// CurGD - The GlobalDecl for the current function being compiled. 159 GlobalDecl CurGD; 160 161 /// PrologueCleanupDepth - The cleanup depth enclosing all the 162 /// cleanups associated with the parameters. 163 EHScopeStack::stable_iterator PrologueCleanupDepth; 164 165 /// ReturnBlock - Unified return block. 166 JumpDest ReturnBlock; 167 168 /// ReturnValue - The temporary alloca to hold the return 169 /// value. This is invalid iff the function has no return value. 170 Address ReturnValue; 171 172 /// AllocaInsertPoint - This is an instruction in the entry block before which 173 /// we prefer to insert allocas. 174 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 175 176 /// \brief API for captured statement code generation. 177 class CGCapturedStmtInfo { 178 public: 179 explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) 180 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} 181 explicit CGCapturedStmtInfo(const CapturedStmt &S, 182 CapturedRegionKind K = CR_Default) 183 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { 184 185 RecordDecl::field_iterator Field = 186 S.getCapturedRecordDecl()->field_begin(); 187 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 188 E = S.capture_end(); 189 I != E; ++I, ++Field) { 190 if (I->capturesThis()) 191 CXXThisFieldDecl = *Field; 192 else if (I->capturesVariable()) 193 CaptureFields[I->getCapturedVar()] = *Field; 194 else if (I->capturesVariableByCopy()) 195 CaptureFields[I->getCapturedVar()] = *Field; 196 } 197 } 198 199 virtual ~CGCapturedStmtInfo(); 200 201 CapturedRegionKind getKind() const { return Kind; } 202 203 virtual void setContextValue(llvm::Value *V) { ThisValue = V; } 204 // \brief Retrieve the value of the context parameter. 205 virtual llvm::Value *getContextValue() const { return ThisValue; } 206 207 /// \brief Lookup the captured field decl for a variable. 208 virtual const FieldDecl *lookup(const VarDecl *VD) const { 209 return CaptureFields.lookup(VD); 210 } 211 212 bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } 213 virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 214 215 static bool classof(const CGCapturedStmtInfo *) { 216 return true; 217 } 218 219 /// \brief Emit the captured statement body. 220 virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { 221 CGF.incrementProfileCounter(S); 222 CGF.EmitStmt(S); 223 } 224 225 /// \brief Get the name of the capture helper. 226 virtual StringRef getHelperName() const { return "__captured_stmt"; } 227 228 private: 229 /// \brief The kind of captured statement being generated. 230 CapturedRegionKind Kind; 231 232 /// \brief Keep the map between VarDecl and FieldDecl. 233 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 234 235 /// \brief The base address of the captured record, passed in as the first 236 /// argument of the parallel region function. 237 llvm::Value *ThisValue; 238 239 /// \brief Captured 'this' type. 240 FieldDecl *CXXThisFieldDecl; 241 }; 242 CGCapturedStmtInfo *CapturedStmtInfo; 243 244 /// \brief RAII for correct setting/restoring of CapturedStmtInfo. 245 class CGCapturedStmtRAII { 246 private: 247 CodeGenFunction &CGF; 248 CGCapturedStmtInfo *PrevCapturedStmtInfo; 249 public: 250 CGCapturedStmtRAII(CodeGenFunction &CGF, 251 CGCapturedStmtInfo *NewCapturedStmtInfo) 252 : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { 253 CGF.CapturedStmtInfo = NewCapturedStmtInfo; 254 } 255 ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } 256 }; 257 258 /// \brief Sanitizers enabled for this function. 259 SanitizerSet SanOpts; 260 261 /// \brief True if CodeGen currently emits code implementing sanitizer checks. 262 bool IsSanitizerScope; 263 264 /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope. 265 class SanitizerScope { 266 CodeGenFunction *CGF; 267 public: 268 SanitizerScope(CodeGenFunction *CGF); 269 ~SanitizerScope(); 270 }; 271 272 /// In C++, whether we are code generating a thunk. This controls whether we 273 /// should emit cleanups. 274 bool CurFuncIsThunk; 275 276 /// In ARC, whether we should autorelease the return value. 277 bool AutoreleaseResult; 278 279 /// Whether we processed a Microsoft-style asm block during CodeGen. These can 280 /// potentially set the return value. 281 bool SawAsmBlock; 282 283 const FunctionDecl *CurSEHParent = nullptr; 284 285 /// True if the current function is an outlined SEH helper. This can be a 286 /// finally block or filter expression. 287 bool IsOutlinedSEHHelper; 288 289 const CodeGen::CGBlockInfo *BlockInfo; 290 llvm::Value *BlockPointer; 291 292 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 293 FieldDecl *LambdaThisCaptureField; 294 295 /// \brief A mapping from NRVO variables to the flags used to indicate 296 /// when the NRVO has been applied to this variable. 297 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 298 299 EHScopeStack EHStack; 300 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 301 llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; 302 303 llvm::Instruction *CurrentFuncletPad = nullptr; 304 305 class CallLifetimeEnd final : public EHScopeStack::Cleanup { 306 llvm::Value *Addr; 307 llvm::Value *Size; 308 309 public: 310 CallLifetimeEnd(Address addr, llvm::Value *size) 311 : Addr(addr.getPointer()), Size(size) {} 312 313 void Emit(CodeGenFunction &CGF, Flags flags) override { 314 CGF.EmitLifetimeEnd(Size, Addr); 315 } 316 }; 317 318 /// Header for data within LifetimeExtendedCleanupStack. 319 struct LifetimeExtendedCleanupHeader { 320 /// The size of the following cleanup object. 321 unsigned Size; 322 /// The kind of cleanup to push: a value from the CleanupKind enumeration. 323 CleanupKind Kind; 324 325 size_t getSize() const { return Size; } 326 CleanupKind getKind() const { return Kind; } 327 }; 328 329 /// i32s containing the indexes of the cleanup destinations. 330 llvm::AllocaInst *NormalCleanupDest; 331 332 unsigned NextCleanupDestIndex; 333 334 /// FirstBlockInfo - The head of a singly-linked-list of block layouts. 335 CGBlockInfo *FirstBlockInfo; 336 337 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 338 llvm::BasicBlock *EHResumeBlock; 339 340 /// The exception slot. All landing pads write the current exception pointer 341 /// into this alloca. 342 llvm::Value *ExceptionSlot; 343 344 /// The selector slot. Under the MandatoryCleanup model, all landing pads 345 /// write the current selector value into this alloca. 346 llvm::AllocaInst *EHSelectorSlot; 347 348 /// A stack of exception code slots. Entering an __except block pushes a slot 349 /// on the stack and leaving pops one. The __exception_code() intrinsic loads 350 /// a value from the top of the stack. 351 SmallVector<Address, 1> SEHCodeSlotStack; 352 353 /// Value returned by __exception_info intrinsic. 354 llvm::Value *SEHInfo = nullptr; 355 356 /// Emits a landing pad for the current EH stack. 357 llvm::BasicBlock *EmitLandingPad(); 358 359 llvm::BasicBlock *getInvokeDestImpl(); 360 361 template <class T> 362 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 363 return DominatingValue<T>::save(*this, value); 364 } 365 366 public: 367 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 368 /// rethrows. 369 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 370 371 /// A class controlling the emission of a finally block. 372 class FinallyInfo { 373 /// Where the catchall's edge through the cleanup should go. 374 JumpDest RethrowDest; 375 376 /// A function to call to enter the catch. 377 llvm::Constant *BeginCatchFn; 378 379 /// An i1 variable indicating whether or not the @finally is 380 /// running for an exception. 381 llvm::AllocaInst *ForEHVar; 382 383 /// An i8* variable into which the exception pointer to rethrow 384 /// has been saved. 385 llvm::AllocaInst *SavedExnVar; 386 387 public: 388 void enter(CodeGenFunction &CGF, const Stmt *Finally, 389 llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, 390 llvm::Constant *rethrowFn); 391 void exit(CodeGenFunction &CGF); 392 }; 393 394 /// Returns true inside SEH __try blocks. 395 bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } 396 397 /// Returns true while emitting a cleanuppad. 398 bool isCleanupPadScope() const { 399 return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad); 400 } 401 402 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 403 /// current full-expression. Safe against the possibility that 404 /// we're currently inside a conditionally-evaluated expression. 405 template <class T, class... As> 406 void pushFullExprCleanup(CleanupKind kind, As... A) { 407 // If we're not in a conditional branch, or if none of the 408 // arguments requires saving, then use the unconditional cleanup. 409 if (!isInConditionalBranch()) 410 return EHStack.pushCleanup<T>(kind, A...); 411 412 // Stash values in a tuple so we can guarantee the order of saves. 413 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 414 SavedTuple Saved{saveValueInCond(A)...}; 415 416 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 417 EHStack.pushCleanupTuple<CleanupType>(kind, Saved); 418 initFullExprCleanup(); 419 } 420 421 /// \brief Queue a cleanup to be pushed after finishing the current 422 /// full-expression. 423 template <class T, class... As> 424 void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { 425 assert(!isInConditionalBranch() && "can't defer conditional cleanup"); 426 427 LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind }; 428 429 size_t OldSize = LifetimeExtendedCleanupStack.size(); 430 LifetimeExtendedCleanupStack.resize( 431 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size); 432 433 static_assert(sizeof(Header) % llvm::AlignOf<T>::Alignment == 0, 434 "Cleanup will be allocated on misaligned address"); 435 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 436 new (Buffer) LifetimeExtendedCleanupHeader(Header); 437 new (Buffer + sizeof(Header)) T(A...); 438 } 439 440 /// Set up the last cleaup that was pushed as a conditional 441 /// full-expression cleanup. 442 void initFullExprCleanup(); 443 444 /// PushDestructorCleanup - Push a cleanup to call the 445 /// complete-object destructor of an object of the given type at the 446 /// given address. Does nothing if T is not a C++ class type with a 447 /// non-trivial destructor. 448 void PushDestructorCleanup(QualType T, Address Addr); 449 450 /// PushDestructorCleanup - Push a cleanup to call the 451 /// complete-object variant of the given destructor on the object at 452 /// the given address. 453 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr); 454 455 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 456 /// process all branch fixups. 457 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 458 459 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 460 /// The block cannot be reactivated. Pops it if it's the top of the 461 /// stack. 462 /// 463 /// \param DominatingIP - An instruction which is known to 464 /// dominate the current IP (if set) and which lies along 465 /// all paths of execution between the current IP and the 466 /// the point at which the cleanup comes into scope. 467 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 468 llvm::Instruction *DominatingIP); 469 470 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 471 /// Cannot be used to resurrect a deactivated cleanup. 472 /// 473 /// \param DominatingIP - An instruction which is known to 474 /// dominate the current IP (if set) and which lies along 475 /// all paths of execution between the current IP and the 476 /// the point at which the cleanup comes into scope. 477 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 478 llvm::Instruction *DominatingIP); 479 480 /// \brief Enters a new scope for capturing cleanups, all of which 481 /// will be executed once the scope is exited. 482 class RunCleanupsScope { 483 EHScopeStack::stable_iterator CleanupStackDepth; 484 size_t LifetimeExtendedCleanupStackSize; 485 bool OldDidCallStackSave; 486 protected: 487 bool PerformCleanup; 488 private: 489 490 RunCleanupsScope(const RunCleanupsScope &) = delete; 491 void operator=(const RunCleanupsScope &) = delete; 492 493 protected: 494 CodeGenFunction& CGF; 495 496 public: 497 /// \brief Enter a new cleanup scope. 498 explicit RunCleanupsScope(CodeGenFunction &CGF) 499 : PerformCleanup(true), CGF(CGF) 500 { 501 CleanupStackDepth = CGF.EHStack.stable_begin(); 502 LifetimeExtendedCleanupStackSize = 503 CGF.LifetimeExtendedCleanupStack.size(); 504 OldDidCallStackSave = CGF.DidCallStackSave; 505 CGF.DidCallStackSave = false; 506 } 507 508 /// \brief Exit this cleanup scope, emitting any accumulated 509 /// cleanups. 510 ~RunCleanupsScope() { 511 if (PerformCleanup) { 512 CGF.DidCallStackSave = OldDidCallStackSave; 513 CGF.PopCleanupBlocks(CleanupStackDepth, 514 LifetimeExtendedCleanupStackSize); 515 } 516 } 517 518 /// \brief Determine whether this scope requires any cleanups. 519 bool requiresCleanups() const { 520 return CGF.EHStack.stable_begin() != CleanupStackDepth; 521 } 522 523 /// \brief Force the emission of cleanups now, instead of waiting 524 /// until this object is destroyed. 525 void ForceCleanup() { 526 assert(PerformCleanup && "Already forced cleanup"); 527 CGF.DidCallStackSave = OldDidCallStackSave; 528 CGF.PopCleanupBlocks(CleanupStackDepth, 529 LifetimeExtendedCleanupStackSize); 530 PerformCleanup = false; 531 } 532 }; 533 534 class LexicalScope : public RunCleanupsScope { 535 SourceRange Range; 536 SmallVector<const LabelDecl*, 4> Labels; 537 LexicalScope *ParentScope; 538 539 LexicalScope(const LexicalScope &) = delete; 540 void operator=(const LexicalScope &) = delete; 541 542 public: 543 /// \brief Enter a new cleanup scope. 544 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 545 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 546 CGF.CurLexicalScope = this; 547 if (CGDebugInfo *DI = CGF.getDebugInfo()) 548 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 549 } 550 551 void addLabel(const LabelDecl *label) { 552 assert(PerformCleanup && "adding label to dead scope?"); 553 Labels.push_back(label); 554 } 555 556 /// \brief Exit this cleanup scope, emitting any accumulated 557 /// cleanups. 558 ~LexicalScope() { 559 if (CGDebugInfo *DI = CGF.getDebugInfo()) 560 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 561 562 // If we should perform a cleanup, force them now. Note that 563 // this ends the cleanup scope before rescoping any labels. 564 if (PerformCleanup) { 565 ApplyDebugLocation DL(CGF, Range.getEnd()); 566 ForceCleanup(); 567 } 568 } 569 570 /// \brief Force the emission of cleanups now, instead of waiting 571 /// until this object is destroyed. 572 void ForceCleanup() { 573 CGF.CurLexicalScope = ParentScope; 574 RunCleanupsScope::ForceCleanup(); 575 576 if (!Labels.empty()) 577 rescopeLabels(); 578 } 579 580 void rescopeLabels(); 581 }; 582 583 typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; 584 585 /// \brief The scope used to remap some variables as private in the OpenMP 586 /// loop body (or other captured region emitted without outlining), and to 587 /// restore old vars back on exit. 588 class OMPPrivateScope : public RunCleanupsScope { 589 DeclMapTy SavedLocals; 590 DeclMapTy SavedPrivates; 591 592 private: 593 OMPPrivateScope(const OMPPrivateScope &) = delete; 594 void operator=(const OMPPrivateScope &) = delete; 595 596 public: 597 /// \brief Enter a new OpenMP private scope. 598 explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} 599 600 /// \brief Registers \a LocalVD variable as a private and apply \a 601 /// PrivateGen function for it to generate corresponding private variable. 602 /// \a PrivateGen returns an address of the generated private variable. 603 /// \return true if the variable is registered as private, false if it has 604 /// been privatized already. 605 bool 606 addPrivate(const VarDecl *LocalVD, 607 llvm::function_ref<Address()> PrivateGen) { 608 assert(PerformCleanup && "adding private to dead scope"); 609 610 // Only save it once. 611 if (SavedLocals.count(LocalVD)) return false; 612 613 // Copy the existing local entry to SavedLocals. 614 auto it = CGF.LocalDeclMap.find(LocalVD); 615 if (it != CGF.LocalDeclMap.end()) { 616 SavedLocals.insert({LocalVD, it->second}); 617 } else { 618 SavedLocals.insert({LocalVD, Address::invalid()}); 619 } 620 621 // Generate the private entry. 622 Address Addr = PrivateGen(); 623 QualType VarTy = LocalVD->getType(); 624 if (VarTy->isReferenceType()) { 625 Address Temp = CGF.CreateMemTemp(VarTy); 626 CGF.Builder.CreateStore(Addr.getPointer(), Temp); 627 Addr = Temp; 628 } 629 SavedPrivates.insert({LocalVD, Addr}); 630 631 return true; 632 } 633 634 /// \brief Privatizes local variables previously registered as private. 635 /// Registration is separate from the actual privatization to allow 636 /// initializers use values of the original variables, not the private one. 637 /// This is important, for example, if the private variable is a class 638 /// variable initialized by a constructor that references other private 639 /// variables. But at initialization original variables must be used, not 640 /// private copies. 641 /// \return true if at least one variable was privatized, false otherwise. 642 bool Privatize() { 643 copyInto(SavedPrivates, CGF.LocalDeclMap); 644 SavedPrivates.clear(); 645 return !SavedLocals.empty(); 646 } 647 648 void ForceCleanup() { 649 RunCleanupsScope::ForceCleanup(); 650 copyInto(SavedLocals, CGF.LocalDeclMap); 651 SavedLocals.clear(); 652 } 653 654 /// \brief Exit scope - all the mapped variables are restored. 655 ~OMPPrivateScope() { 656 if (PerformCleanup) 657 ForceCleanup(); 658 } 659 660 /// Checks if the global variable is captured in current function. 661 bool isGlobalVarCaptured(const VarDecl *VD) const { 662 return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0; 663 } 664 665 private: 666 /// Copy all the entries in the source map over the corresponding 667 /// entries in the destination, which must exist. 668 static void copyInto(const DeclMapTy &src, DeclMapTy &dest) { 669 for (auto &pair : src) { 670 if (!pair.second.isValid()) { 671 dest.erase(pair.first); 672 continue; 673 } 674 675 auto it = dest.find(pair.first); 676 if (it != dest.end()) { 677 it->second = pair.second; 678 } else { 679 dest.insert(pair); 680 } 681 } 682 } 683 }; 684 685 /// \brief Takes the old cleanup stack size and emits the cleanup blocks 686 /// that have been added. 687 void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize); 688 689 /// \brief Takes the old cleanup stack size and emits the cleanup blocks 690 /// that have been added, then adds all lifetime-extended cleanups from 691 /// the given position to the stack. 692 void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 693 size_t OldLifetimeExtendedStackSize); 694 695 void ResolveBranchFixups(llvm::BasicBlock *Target); 696 697 /// The given basic block lies in the current EH scope, but may be a 698 /// target of a potentially scope-crossing jump; get a stable handle 699 /// to which we can perform this jump later. 700 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 701 return JumpDest(Target, 702 EHStack.getInnermostNormalCleanup(), 703 NextCleanupDestIndex++); 704 } 705 706 /// The given basic block lies in the current EH scope, but may be a 707 /// target of a potentially scope-crossing jump; get a stable handle 708 /// to which we can perform this jump later. 709 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 710 return getJumpDestInCurrentScope(createBasicBlock(Name)); 711 } 712 713 /// EmitBranchThroughCleanup - Emit a branch from the current insert 714 /// block through the normal cleanup handling code (if any) and then 715 /// on to \arg Dest. 716 void EmitBranchThroughCleanup(JumpDest Dest); 717 718 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 719 /// specified destination obviously has no cleanups to run. 'false' is always 720 /// a conservatively correct answer for this method. 721 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 722 723 /// popCatchScope - Pops the catch scope at the top of the EHScope 724 /// stack, emitting any required code (other than the catch handlers 725 /// themselves). 726 void popCatchScope(); 727 728 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 729 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 730 llvm::BasicBlock *getMSVCDispatchBlock(EHScopeStack::stable_iterator scope); 731 732 /// An object to manage conditionally-evaluated expressions. 733 class ConditionalEvaluation { 734 llvm::BasicBlock *StartBB; 735 736 public: 737 ConditionalEvaluation(CodeGenFunction &CGF) 738 : StartBB(CGF.Builder.GetInsertBlock()) {} 739 740 void begin(CodeGenFunction &CGF) { 741 assert(CGF.OutermostConditional != this); 742 if (!CGF.OutermostConditional) 743 CGF.OutermostConditional = this; 744 } 745 746 void end(CodeGenFunction &CGF) { 747 assert(CGF.OutermostConditional != nullptr); 748 if (CGF.OutermostConditional == this) 749 CGF.OutermostConditional = nullptr; 750 } 751 752 /// Returns a block which will be executed prior to each 753 /// evaluation of the conditional code. 754 llvm::BasicBlock *getStartingBlock() const { 755 return StartBB; 756 } 757 }; 758 759 /// isInConditionalBranch - Return true if we're currently emitting 760 /// one branch or the other of a conditional expression. 761 bool isInConditionalBranch() const { return OutermostConditional != nullptr; } 762 763 void setBeforeOutermostConditional(llvm::Value *value, Address addr) { 764 assert(isInConditionalBranch()); 765 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 766 auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back()); 767 store->setAlignment(addr.getAlignment().getQuantity()); 768 } 769 770 /// An RAII object to record that we're evaluating a statement 771 /// expression. 772 class StmtExprEvaluation { 773 CodeGenFunction &CGF; 774 775 /// We have to save the outermost conditional: cleanups in a 776 /// statement expression aren't conditional just because the 777 /// StmtExpr is. 778 ConditionalEvaluation *SavedOutermostConditional; 779 780 public: 781 StmtExprEvaluation(CodeGenFunction &CGF) 782 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 783 CGF.OutermostConditional = nullptr; 784 } 785 786 ~StmtExprEvaluation() { 787 CGF.OutermostConditional = SavedOutermostConditional; 788 CGF.EnsureInsertPoint(); 789 } 790 }; 791 792 /// An object which temporarily prevents a value from being 793 /// destroyed by aggressive peephole optimizations that assume that 794 /// all uses of a value have been realized in the IR. 795 class PeepholeProtection { 796 llvm::Instruction *Inst; 797 friend class CodeGenFunction; 798 799 public: 800 PeepholeProtection() : Inst(nullptr) {} 801 }; 802 803 /// A non-RAII class containing all the information about a bound 804 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 805 /// this which makes individual mappings very simple; using this 806 /// class directly is useful when you have a variable number of 807 /// opaque values or don't want the RAII functionality for some 808 /// reason. 809 class OpaqueValueMappingData { 810 const OpaqueValueExpr *OpaqueValue; 811 bool BoundLValue; 812 CodeGenFunction::PeepholeProtection Protection; 813 814 OpaqueValueMappingData(const OpaqueValueExpr *ov, 815 bool boundLValue) 816 : OpaqueValue(ov), BoundLValue(boundLValue) {} 817 public: 818 OpaqueValueMappingData() : OpaqueValue(nullptr) {} 819 820 static bool shouldBindAsLValue(const Expr *expr) { 821 // gl-values should be bound as l-values for obvious reasons. 822 // Records should be bound as l-values because IR generation 823 // always keeps them in memory. Expressions of function type 824 // act exactly like l-values but are formally required to be 825 // r-values in C. 826 return expr->isGLValue() || 827 expr->getType()->isFunctionType() || 828 hasAggregateEvaluationKind(expr->getType()); 829 } 830 831 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 832 const OpaqueValueExpr *ov, 833 const Expr *e) { 834 if (shouldBindAsLValue(ov)) 835 return bind(CGF, ov, CGF.EmitLValue(e)); 836 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 837 } 838 839 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 840 const OpaqueValueExpr *ov, 841 const LValue &lv) { 842 assert(shouldBindAsLValue(ov)); 843 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 844 return OpaqueValueMappingData(ov, true); 845 } 846 847 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 848 const OpaqueValueExpr *ov, 849 const RValue &rv) { 850 assert(!shouldBindAsLValue(ov)); 851 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 852 853 OpaqueValueMappingData data(ov, false); 854 855 // Work around an extremely aggressive peephole optimization in 856 // EmitScalarConversion which assumes that all other uses of a 857 // value are extant. 858 data.Protection = CGF.protectFromPeepholes(rv); 859 860 return data; 861 } 862 863 bool isValid() const { return OpaqueValue != nullptr; } 864 void clear() { OpaqueValue = nullptr; } 865 866 void unbind(CodeGenFunction &CGF) { 867 assert(OpaqueValue && "no data to unbind!"); 868 869 if (BoundLValue) { 870 CGF.OpaqueLValues.erase(OpaqueValue); 871 } else { 872 CGF.OpaqueRValues.erase(OpaqueValue); 873 CGF.unprotectFromPeepholes(Protection); 874 } 875 } 876 }; 877 878 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 879 class OpaqueValueMapping { 880 CodeGenFunction &CGF; 881 OpaqueValueMappingData Data; 882 883 public: 884 static bool shouldBindAsLValue(const Expr *expr) { 885 return OpaqueValueMappingData::shouldBindAsLValue(expr); 886 } 887 888 /// Build the opaque value mapping for the given conditional 889 /// operator if it's the GNU ?: extension. This is a common 890 /// enough pattern that the convenience operator is really 891 /// helpful. 892 /// 893 OpaqueValueMapping(CodeGenFunction &CGF, 894 const AbstractConditionalOperator *op) : CGF(CGF) { 895 if (isa<ConditionalOperator>(op)) 896 // Leave Data empty. 897 return; 898 899 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 900 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 901 e->getCommon()); 902 } 903 904 OpaqueValueMapping(CodeGenFunction &CGF, 905 const OpaqueValueExpr *opaqueValue, 906 LValue lvalue) 907 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 908 } 909 910 OpaqueValueMapping(CodeGenFunction &CGF, 911 const OpaqueValueExpr *opaqueValue, 912 RValue rvalue) 913 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 914 } 915 916 void pop() { 917 Data.unbind(CGF); 918 Data.clear(); 919 } 920 921 ~OpaqueValueMapping() { 922 if (Data.isValid()) Data.unbind(CGF); 923 } 924 }; 925 926 private: 927 CGDebugInfo *DebugInfo; 928 bool DisableDebugInfo; 929 930 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 931 /// calling llvm.stacksave for multiple VLAs in the same scope. 932 bool DidCallStackSave; 933 934 /// IndirectBranch - The first time an indirect goto is seen we create a block 935 /// with an indirect branch. Every time we see the address of a label taken, 936 /// we add the label to the indirect goto. Every subsequent indirect goto is 937 /// codegen'd as a jump to the IndirectBranch's basic block. 938 llvm::IndirectBrInst *IndirectBranch; 939 940 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 941 /// decls. 942 DeclMapTy LocalDeclMap; 943 944 /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this 945 /// will contain a mapping from said ParmVarDecl to its implicit "object_size" 946 /// parameter. 947 llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> 948 SizeArguments; 949 950 /// Track escaped local variables with auto storage. Used during SEH 951 /// outlining to produce a call to llvm.localescape. 952 llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; 953 954 /// LabelMap - This keeps track of the LLVM basic block for each C label. 955 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 956 957 // BreakContinueStack - This keeps track of where break and continue 958 // statements should jump to. 959 struct BreakContinue { 960 BreakContinue(JumpDest Break, JumpDest Continue) 961 : BreakBlock(Break), ContinueBlock(Continue) {} 962 963 JumpDest BreakBlock; 964 JumpDest ContinueBlock; 965 }; 966 SmallVector<BreakContinue, 8> BreakContinueStack; 967 968 CodeGenPGO PGO; 969 970 /// Calculate branch weights appropriate for PGO data 971 llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount); 972 llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights); 973 llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, 974 uint64_t LoopCount); 975 976 public: 977 /// Increment the profiler's counter for the given statement. 978 void incrementProfileCounter(const Stmt *S) { 979 if (CGM.getCodeGenOpts().hasProfileClangInstr()) 980 PGO.emitCounterIncrement(Builder, S); 981 PGO.setCurrentStmt(S); 982 } 983 984 /// Get the profiler's count for the given statement. 985 uint64_t getProfileCount(const Stmt *S) { 986 Optional<uint64_t> Count = PGO.getStmtCount(S); 987 if (!Count.hasValue()) 988 return 0; 989 return *Count; 990 } 991 992 /// Set the profiler's current count. 993 void setCurrentProfileCount(uint64_t Count) { 994 PGO.setCurrentRegionCount(Count); 995 } 996 997 /// Get the profiler's current count. This is generally the count for the most 998 /// recently incremented counter. 999 uint64_t getCurrentProfileCount() { 1000 return PGO.getCurrentRegionCount(); 1001 } 1002 1003 private: 1004 1005 /// SwitchInsn - This is nearest current switch instruction. It is null if 1006 /// current context is not in a switch. 1007 llvm::SwitchInst *SwitchInsn; 1008 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 1009 SmallVector<uint64_t, 16> *SwitchWeights; 1010 1011 /// CaseRangeBlock - This block holds if condition check for last case 1012 /// statement range in current switch instruction. 1013 llvm::BasicBlock *CaseRangeBlock; 1014 1015 /// OpaqueLValues - Keeps track of the current set of opaque value 1016 /// expressions. 1017 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1018 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1019 1020 // VLASizeMap - This keeps track of the associated size for each VLA type. 1021 // We track this by the size expression rather than the type itself because 1022 // in certain situations, like a const qualifier applied to an VLA typedef, 1023 // multiple VLA types can share the same size expression. 1024 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1025 // enter/leave scopes. 1026 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1027 1028 /// A block containing a single 'unreachable' instruction. Created 1029 /// lazily by getUnreachableBlock(). 1030 llvm::BasicBlock *UnreachableBlock; 1031 1032 /// Counts of the number return expressions in the function. 1033 unsigned NumReturnExprs; 1034 1035 /// Count the number of simple (constant) return expressions in the function. 1036 unsigned NumSimpleReturnExprs; 1037 1038 /// The last regular (non-return) debug location (breakpoint) in the function. 1039 SourceLocation LastStopPoint; 1040 1041 public: 1042 /// A scope within which we are constructing the fields of an object which 1043 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 1044 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 1045 class FieldConstructionScope { 1046 public: 1047 FieldConstructionScope(CodeGenFunction &CGF, Address This) 1048 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 1049 CGF.CXXDefaultInitExprThis = This; 1050 } 1051 ~FieldConstructionScope() { 1052 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 1053 } 1054 1055 private: 1056 CodeGenFunction &CGF; 1057 Address OldCXXDefaultInitExprThis; 1058 }; 1059 1060 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 1061 /// is overridden to be the object under construction. 1062 class CXXDefaultInitExprScope { 1063 public: 1064 CXXDefaultInitExprScope(CodeGenFunction &CGF) 1065 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), 1066 OldCXXThisAlignment(CGF.CXXThisAlignment) { 1067 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer(); 1068 CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); 1069 } 1070 ~CXXDefaultInitExprScope() { 1071 CGF.CXXThisValue = OldCXXThisValue; 1072 CGF.CXXThisAlignment = OldCXXThisAlignment; 1073 } 1074 1075 public: 1076 CodeGenFunction &CGF; 1077 llvm::Value *OldCXXThisValue; 1078 CharUnits OldCXXThisAlignment; 1079 }; 1080 1081 class InlinedInheritingConstructorScope { 1082 public: 1083 InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD) 1084 : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl), 1085 OldCurCodeDecl(CGF.CurCodeDecl), 1086 OldCXXABIThisDecl(CGF.CXXABIThisDecl), 1087 OldCXXABIThisValue(CGF.CXXABIThisValue), 1088 OldCXXThisValue(CGF.CXXThisValue), 1089 OldCXXABIThisAlignment(CGF.CXXABIThisAlignment), 1090 OldCXXThisAlignment(CGF.CXXThisAlignment), 1091 OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy), 1092 OldCXXInheritedCtorInitExprArgs( 1093 std::move(CGF.CXXInheritedCtorInitExprArgs)) { 1094 CGF.CurGD = GD; 1095 CGF.CurFuncDecl = CGF.CurCodeDecl = 1096 cast<CXXConstructorDecl>(GD.getDecl()); 1097 CGF.CXXABIThisDecl = nullptr; 1098 CGF.CXXABIThisValue = nullptr; 1099 CGF.CXXThisValue = nullptr; 1100 CGF.CXXABIThisAlignment = CharUnits(); 1101 CGF.CXXThisAlignment = CharUnits(); 1102 CGF.ReturnValue = Address::invalid(); 1103 CGF.FnRetTy = QualType(); 1104 CGF.CXXInheritedCtorInitExprArgs.clear(); 1105 } 1106 ~InlinedInheritingConstructorScope() { 1107 CGF.CurGD = OldCurGD; 1108 CGF.CurFuncDecl = OldCurFuncDecl; 1109 CGF.CurCodeDecl = OldCurCodeDecl; 1110 CGF.CXXABIThisDecl = OldCXXABIThisDecl; 1111 CGF.CXXABIThisValue = OldCXXABIThisValue; 1112 CGF.CXXThisValue = OldCXXThisValue; 1113 CGF.CXXABIThisAlignment = OldCXXABIThisAlignment; 1114 CGF.CXXThisAlignment = OldCXXThisAlignment; 1115 CGF.ReturnValue = OldReturnValue; 1116 CGF.FnRetTy = OldFnRetTy; 1117 CGF.CXXInheritedCtorInitExprArgs = 1118 std::move(OldCXXInheritedCtorInitExprArgs); 1119 } 1120 1121 private: 1122 CodeGenFunction &CGF; 1123 GlobalDecl OldCurGD; 1124 const Decl *OldCurFuncDecl; 1125 const Decl *OldCurCodeDecl; 1126 ImplicitParamDecl *OldCXXABIThisDecl; 1127 llvm::Value *OldCXXABIThisValue; 1128 llvm::Value *OldCXXThisValue; 1129 CharUnits OldCXXABIThisAlignment; 1130 CharUnits OldCXXThisAlignment; 1131 Address OldReturnValue; 1132 QualType OldFnRetTy; 1133 CallArgList OldCXXInheritedCtorInitExprArgs; 1134 }; 1135 1136 private: 1137 /// CXXThisDecl - When generating code for a C++ member function, 1138 /// this will hold the implicit 'this' declaration. 1139 ImplicitParamDecl *CXXABIThisDecl; 1140 llvm::Value *CXXABIThisValue; 1141 llvm::Value *CXXThisValue; 1142 CharUnits CXXABIThisAlignment; 1143 CharUnits CXXThisAlignment; 1144 1145 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 1146 /// this expression. 1147 Address CXXDefaultInitExprThis = Address::invalid(); 1148 1149 /// The values of function arguments to use when evaluating 1150 /// CXXInheritedCtorInitExprs within this context. 1151 CallArgList CXXInheritedCtorInitExprArgs; 1152 1153 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 1154 /// destructor, this will hold the implicit argument (e.g. VTT). 1155 ImplicitParamDecl *CXXStructorImplicitParamDecl; 1156 llvm::Value *CXXStructorImplicitParamValue; 1157 1158 /// OutermostConditional - Points to the outermost active 1159 /// conditional control. This is used so that we know if a 1160 /// temporary should be destroyed conditionally. 1161 ConditionalEvaluation *OutermostConditional; 1162 1163 /// The current lexical scope. 1164 LexicalScope *CurLexicalScope; 1165 1166 /// The current source location that should be used for exception 1167 /// handling code. 1168 SourceLocation CurEHLocation; 1169 1170 /// BlockByrefInfos - For each __block variable, contains 1171 /// information about the layout of the variable. 1172 llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; 1173 1174 llvm::BasicBlock *TerminateLandingPad; 1175 llvm::BasicBlock *TerminateHandler; 1176 llvm::BasicBlock *TrapBB; 1177 1178 /// Add a kernel metadata node to the named metadata node 'opencl.kernels'. 1179 /// In the kernel metadata node, reference the kernel function and metadata 1180 /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2): 1181 /// - A node for the vec_type_hint(<type>) qualifier contains string 1182 /// "vec_type_hint", an undefined value of the <type> data type, 1183 /// and a Boolean that is true if the <type> is integer and signed. 1184 /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string 1185 /// "work_group_size_hint", and three 32-bit integers X, Y and Z. 1186 /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string 1187 /// "reqd_work_group_size", and three 32-bit integers X, Y and Z. 1188 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 1189 llvm::Function *Fn); 1190 1191 public: 1192 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1193 ~CodeGenFunction(); 1194 1195 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1196 ASTContext &getContext() const { return CGM.getContext(); } 1197 CGDebugInfo *getDebugInfo() { 1198 if (DisableDebugInfo) 1199 return nullptr; 1200 return DebugInfo; 1201 } 1202 void disableDebugInfo() { DisableDebugInfo = true; } 1203 void enableDebugInfo() { DisableDebugInfo = false; } 1204 1205 bool shouldUseFusedARCCalls() { 1206 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1207 } 1208 1209 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1210 1211 /// Returns a pointer to the function's exception object and selector slot, 1212 /// which is assigned in every landing pad. 1213 Address getExceptionSlot(); 1214 Address getEHSelectorSlot(); 1215 1216 /// Returns the contents of the function's exception object and selector 1217 /// slots. 1218 llvm::Value *getExceptionFromSlot(); 1219 llvm::Value *getSelectorFromSlot(); 1220 1221 Address getNormalCleanupDestSlot(); 1222 1223 llvm::BasicBlock *getUnreachableBlock() { 1224 if (!UnreachableBlock) { 1225 UnreachableBlock = createBasicBlock("unreachable"); 1226 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1227 } 1228 return UnreachableBlock; 1229 } 1230 1231 llvm::BasicBlock *getInvokeDest() { 1232 if (!EHStack.requiresLandingPad()) return nullptr; 1233 return getInvokeDestImpl(); 1234 } 1235 1236 bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; } 1237 1238 const TargetInfo &getTarget() const { return Target; } 1239 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1240 1241 //===--------------------------------------------------------------------===// 1242 // Cleanups 1243 //===--------------------------------------------------------------------===// 1244 1245 typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); 1246 1247 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1248 Address arrayEndPointer, 1249 QualType elementType, 1250 CharUnits elementAlignment, 1251 Destroyer *destroyer); 1252 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1253 llvm::Value *arrayEnd, 1254 QualType elementType, 1255 CharUnits elementAlignment, 1256 Destroyer *destroyer); 1257 1258 void pushDestroy(QualType::DestructionKind dtorKind, 1259 Address addr, QualType type); 1260 void pushEHDestroy(QualType::DestructionKind dtorKind, 1261 Address addr, QualType type); 1262 void pushDestroy(CleanupKind kind, Address addr, QualType type, 1263 Destroyer *destroyer, bool useEHCleanupForArray); 1264 void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, 1265 QualType type, Destroyer *destroyer, 1266 bool useEHCleanupForArray); 1267 void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1268 llvm::Value *CompletePtr, 1269 QualType ElementType); 1270 void pushStackRestore(CleanupKind kind, Address SPMem); 1271 void emitDestroy(Address addr, QualType type, Destroyer *destroyer, 1272 bool useEHCleanupForArray); 1273 llvm::Function *generateDestroyHelper(Address addr, QualType type, 1274 Destroyer *destroyer, 1275 bool useEHCleanupForArray, 1276 const VarDecl *VD); 1277 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1278 QualType elementType, CharUnits elementAlign, 1279 Destroyer *destroyer, 1280 bool checkZeroLength, bool useEHCleanup); 1281 1282 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 1283 1284 /// Determines whether an EH cleanup is required to destroy a type 1285 /// with the given destruction kind. 1286 bool needsEHCleanup(QualType::DestructionKind kind) { 1287 switch (kind) { 1288 case QualType::DK_none: 1289 return false; 1290 case QualType::DK_cxx_destructor: 1291 case QualType::DK_objc_weak_lifetime: 1292 return getLangOpts().Exceptions; 1293 case QualType::DK_objc_strong_lifetime: 1294 return getLangOpts().Exceptions && 1295 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1296 } 1297 llvm_unreachable("bad destruction kind"); 1298 } 1299 1300 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1301 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1302 } 1303 1304 //===--------------------------------------------------------------------===// 1305 // Objective-C 1306 //===--------------------------------------------------------------------===// 1307 1308 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1309 1310 void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); 1311 1312 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1313 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1314 const ObjCPropertyImplDecl *PID); 1315 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1316 const ObjCPropertyImplDecl *propImpl, 1317 const ObjCMethodDecl *GetterMothodDecl, 1318 llvm::Constant *AtomicHelperFn); 1319 1320 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1321 ObjCMethodDecl *MD, bool ctor); 1322 1323 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1324 /// for the given property. 1325 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1326 const ObjCPropertyImplDecl *PID); 1327 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1328 const ObjCPropertyImplDecl *propImpl, 1329 llvm::Constant *AtomicHelperFn); 1330 1331 //===--------------------------------------------------------------------===// 1332 // Block Bits 1333 //===--------------------------------------------------------------------===// 1334 1335 llvm::Value *EmitBlockLiteral(const BlockExpr *); 1336 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 1337 static void destroyBlockInfos(CGBlockInfo *info); 1338 1339 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1340 const CGBlockInfo &Info, 1341 const DeclMapTy &ldm, 1342 bool IsLambdaConversionToBlock); 1343 1344 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1345 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1346 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 1347 const ObjCPropertyImplDecl *PID); 1348 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 1349 const ObjCPropertyImplDecl *PID); 1350 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 1351 1352 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags); 1353 1354 class AutoVarEmission; 1355 1356 void emitByrefStructureInit(const AutoVarEmission &emission); 1357 void enterByrefCleanup(const AutoVarEmission &emission); 1358 1359 void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, 1360 llvm::Value *ptr); 1361 1362 Address LoadBlockStruct(); 1363 Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef); 1364 1365 /// BuildBlockByrefAddress - Computes the location of the 1366 /// data in a variable which is declared as __block. 1367 Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, 1368 bool followForward = true); 1369 Address emitBlockByrefAddress(Address baseAddr, 1370 const BlockByrefInfo &info, 1371 bool followForward, 1372 const llvm::Twine &name); 1373 1374 const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); 1375 1376 QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args); 1377 1378 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1379 const CGFunctionInfo &FnInfo); 1380 /// \brief Emit code for the start of a function. 1381 /// \param Loc The location to be associated with the function. 1382 /// \param StartLoc The location of the function body. 1383 void StartFunction(GlobalDecl GD, 1384 QualType RetTy, 1385 llvm::Function *Fn, 1386 const CGFunctionInfo &FnInfo, 1387 const FunctionArgList &Args, 1388 SourceLocation Loc = SourceLocation(), 1389 SourceLocation StartLoc = SourceLocation()); 1390 1391 void EmitConstructorBody(FunctionArgList &Args); 1392 void EmitDestructorBody(FunctionArgList &Args); 1393 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 1394 void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body); 1395 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); 1396 1397 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 1398 CallArgList &CallArgs); 1399 void EmitLambdaToBlockPointerBody(FunctionArgList &Args); 1400 void EmitLambdaBlockInvokeBody(); 1401 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 1402 void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD); 1403 void EmitAsanPrologueOrEpilogue(bool Prologue); 1404 1405 /// \brief Emit the unified return block, trying to avoid its emission when 1406 /// possible. 1407 /// \return The debug location of the user written return statement if the 1408 /// return block is is avoided. 1409 llvm::DebugLoc EmitReturnBlock(); 1410 1411 /// FinishFunction - Complete IR generation of the current function. It is 1412 /// legal to call this function even if there is no current insertion point. 1413 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 1414 1415 void StartThunk(llvm::Function *Fn, GlobalDecl GD, 1416 const CGFunctionInfo &FnInfo); 1417 1418 void EmitCallAndReturnForThunk(llvm::Value *Callee, const ThunkInfo *Thunk); 1419 1420 void FinishThunk(); 1421 1422 /// Emit a musttail call for a thunk with a potentially adjusted this pointer. 1423 void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr, 1424 llvm::Value *Callee); 1425 1426 /// Generate a thunk for the given method. 1427 void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1428 GlobalDecl GD, const ThunkInfo &Thunk); 1429 1430 llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, 1431 const CGFunctionInfo &FnInfo, 1432 GlobalDecl GD, const ThunkInfo &Thunk); 1433 1434 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 1435 FunctionArgList &Args); 1436 1437 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init, 1438 ArrayRef<VarDecl *> ArrayIndexes); 1439 1440 /// Struct with all informations about dynamic [sub]class needed to set vptr. 1441 struct VPtr { 1442 BaseSubobject Base; 1443 const CXXRecordDecl *NearestVBase; 1444 CharUnits OffsetFromNearestVBase; 1445 const CXXRecordDecl *VTableClass; 1446 }; 1447 1448 /// Initialize the vtable pointer of the given subobject. 1449 void InitializeVTablePointer(const VPtr &vptr); 1450 1451 typedef llvm::SmallVector<VPtr, 4> VPtrsVector; 1452 1453 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 1454 VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); 1455 1456 void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, 1457 CharUnits OffsetFromNearestVBase, 1458 bool BaseIsNonVirtualPrimaryBase, 1459 const CXXRecordDecl *VTableClass, 1460 VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); 1461 1462 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 1463 1464 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 1465 /// to by This. 1466 llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy, 1467 const CXXRecordDecl *VTableClass); 1468 1469 enum CFITypeCheckKind { 1470 CFITCK_VCall, 1471 CFITCK_NVCall, 1472 CFITCK_DerivedCast, 1473 CFITCK_UnrelatedCast, 1474 CFITCK_ICall, 1475 }; 1476 1477 /// \brief Derived is the presumed address of an object of type T after a 1478 /// cast. If T is a polymorphic class type, emit a check that the virtual 1479 /// table for Derived belongs to a class derived from T. 1480 void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived, 1481 bool MayBeNull, CFITypeCheckKind TCK, 1482 SourceLocation Loc); 1483 1484 /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. 1485 /// If vptr CFI is enabled, emit a check that VTable is valid. 1486 void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, 1487 CFITypeCheckKind TCK, SourceLocation Loc); 1488 1489 /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for 1490 /// RD using llvm.type.test. 1491 void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, 1492 CFITypeCheckKind TCK, SourceLocation Loc); 1493 1494 /// If whole-program virtual table optimization is enabled, emit an assumption 1495 /// that VTable is a member of RD's type identifier. Or, if vptr CFI is 1496 /// enabled, emit a check that VTable is a member of RD's type identifier. 1497 void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 1498 llvm::Value *VTable, SourceLocation Loc); 1499 1500 /// Returns whether we should perform a type checked load when loading a 1501 /// virtual function for virtual calls to members of RD. This is generally 1502 /// true when both vcall CFI and whole-program-vtables are enabled. 1503 bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD); 1504 1505 /// Emit a type checked load from the given vtable. 1506 llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable, 1507 uint64_t VTableByteOffset); 1508 1509 /// CanDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given 1510 /// expr can be devirtualized. 1511 bool CanDevirtualizeMemberFunctionCall(const Expr *Base, 1512 const CXXMethodDecl *MD); 1513 1514 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 1515 /// given phase of destruction for a destructor. The end result 1516 /// should call destructors on members and base classes in reverse 1517 /// order of their construction. 1518 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 1519 1520 /// ShouldInstrumentFunction - Return true if the current function should be 1521 /// instrumented with __cyg_profile_func_* calls 1522 bool ShouldInstrumentFunction(); 1523 1524 /// ShouldXRayInstrument - Return true if the current function should be 1525 /// instrumented with XRay nop sleds. 1526 bool ShouldXRayInstrumentFunction() const; 1527 1528 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 1529 /// instrumentation function with the current function and the call site, if 1530 /// function instrumentation is enabled. 1531 void EmitFunctionInstrumentation(const char *Fn); 1532 1533 /// EmitMCountInstrumentation - Emit call to .mcount. 1534 void EmitMCountInstrumentation(); 1535 1536 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 1537 /// arguments for the given function. This is also responsible for naming the 1538 /// LLVM function arguments. 1539 void EmitFunctionProlog(const CGFunctionInfo &FI, 1540 llvm::Function *Fn, 1541 const FunctionArgList &Args); 1542 1543 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 1544 /// given temporary. 1545 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 1546 SourceLocation EndLoc); 1547 1548 /// EmitStartEHSpec - Emit the start of the exception spec. 1549 void EmitStartEHSpec(const Decl *D); 1550 1551 /// EmitEndEHSpec - Emit the end of the exception spec. 1552 void EmitEndEHSpec(const Decl *D); 1553 1554 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 1555 llvm::BasicBlock *getTerminateLandingPad(); 1556 1557 /// getTerminateHandler - Return a handler (not a landing pad, just 1558 /// a catch handler) that just calls terminate. This is used when 1559 /// a terminate scope encloses a try. 1560 llvm::BasicBlock *getTerminateHandler(); 1561 1562 llvm::Type *ConvertTypeForMem(QualType T); 1563 llvm::Type *ConvertType(QualType T); 1564 llvm::Type *ConvertType(const TypeDecl *T) { 1565 return ConvertType(getContext().getTypeDeclType(T)); 1566 } 1567 1568 /// LoadObjCSelf - Load the value of self. This function is only valid while 1569 /// generating code for an Objective-C method. 1570 llvm::Value *LoadObjCSelf(); 1571 1572 /// TypeOfSelfObject - Return type of object that this self represents. 1573 QualType TypeOfSelfObject(); 1574 1575 /// hasAggregateLLVMType - Return true if the specified AST type will map into 1576 /// an aggregate LLVM type or is void. 1577 static TypeEvaluationKind getEvaluationKind(QualType T); 1578 1579 static bool hasScalarEvaluationKind(QualType T) { 1580 return getEvaluationKind(T) == TEK_Scalar; 1581 } 1582 1583 static bool hasAggregateEvaluationKind(QualType T) { 1584 return getEvaluationKind(T) == TEK_Aggregate; 1585 } 1586 1587 /// createBasicBlock - Create an LLVM basic block. 1588 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 1589 llvm::Function *parent = nullptr, 1590 llvm::BasicBlock *before = nullptr) { 1591 #ifdef NDEBUG 1592 return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before); 1593 #else 1594 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 1595 #endif 1596 } 1597 1598 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 1599 /// label maps to. 1600 JumpDest getJumpDestForLabel(const LabelDecl *S); 1601 1602 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 1603 /// another basic block, simplify it. This assumes that no other code could 1604 /// potentially reference the basic block. 1605 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 1606 1607 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 1608 /// adding a fall-through branch from the current insert block if 1609 /// necessary. It is legal to call this function even if there is no current 1610 /// insertion point. 1611 /// 1612 /// IsFinished - If true, indicates that the caller has finished emitting 1613 /// branches to the given block and does not expect to emit code into it. This 1614 /// means the block can be ignored if it is unreachable. 1615 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 1616 1617 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 1618 /// near its uses, and leave the insertion point in it. 1619 void EmitBlockAfterUses(llvm::BasicBlock *BB); 1620 1621 /// EmitBranch - Emit a branch to the specified basic block from the current 1622 /// insert block, taking care to avoid creation of branches from dummy 1623 /// blocks. It is legal to call this function even if there is no current 1624 /// insertion point. 1625 /// 1626 /// This function clears the current insertion point. The caller should follow 1627 /// calls to this function with calls to Emit*Block prior to generation new 1628 /// code. 1629 void EmitBranch(llvm::BasicBlock *Block); 1630 1631 /// HaveInsertPoint - True if an insertion point is defined. If not, this 1632 /// indicates that the current code being emitted is unreachable. 1633 bool HaveInsertPoint() const { 1634 return Builder.GetInsertBlock() != nullptr; 1635 } 1636 1637 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 1638 /// emitted IR has a place to go. Note that by definition, if this function 1639 /// creates a block then that block is unreachable; callers may do better to 1640 /// detect when no insertion point is defined and simply skip IR generation. 1641 void EnsureInsertPoint() { 1642 if (!HaveInsertPoint()) 1643 EmitBlock(createBasicBlock()); 1644 } 1645 1646 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1647 /// specified stmt yet. 1648 void ErrorUnsupported(const Stmt *S, const char *Type); 1649 1650 //===--------------------------------------------------------------------===// 1651 // Helpers 1652 //===--------------------------------------------------------------------===// 1653 1654 LValue MakeAddrLValue(Address Addr, QualType T, 1655 AlignmentSource AlignSource = AlignmentSource::Type) { 1656 return LValue::MakeAddr(Addr, T, getContext(), AlignSource, 1657 CGM.getTBAAInfo(T)); 1658 } 1659 1660 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 1661 AlignmentSource AlignSource = AlignmentSource::Type) { 1662 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 1663 AlignSource, CGM.getTBAAInfo(T)); 1664 } 1665 1666 LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); 1667 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T); 1668 CharUnits getNaturalTypeAlignment(QualType T, 1669 AlignmentSource *Source = nullptr, 1670 bool forPointeeType = false); 1671 CharUnits getNaturalPointeeTypeAlignment(QualType T, 1672 AlignmentSource *Source = nullptr); 1673 1674 Address EmitLoadOfReference(Address Ref, const ReferenceType *RefTy, 1675 AlignmentSource *Source = nullptr); 1676 LValue EmitLoadOfReferenceLValue(Address Ref, const ReferenceType *RefTy); 1677 1678 Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, 1679 AlignmentSource *Source = nullptr); 1680 LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy); 1681 1682 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 1683 /// block. The caller is responsible for setting an appropriate alignment on 1684 /// the alloca. 1685 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, 1686 const Twine &Name = "tmp"); 1687 Address CreateTempAlloca(llvm::Type *Ty, CharUnits align, 1688 const Twine &Name = "tmp"); 1689 1690 /// CreateDefaultAlignedTempAlloca - This creates an alloca with the 1691 /// default ABI alignment of the given LLVM type. 1692 /// 1693 /// IMPORTANT NOTE: This is *not* generally the right alignment for 1694 /// any given AST type that happens to have been lowered to the 1695 /// given IR type. This should only ever be used for function-local, 1696 /// IR-driven manipulations like saving and restoring a value. Do 1697 /// not hand this address off to arbitrary IRGen routines, and especially 1698 /// do not pass it as an argument to a function that might expect a 1699 /// properly ABI-aligned value. 1700 Address CreateDefaultAlignTempAlloca(llvm::Type *Ty, 1701 const Twine &Name = "tmp"); 1702 1703 /// InitTempAlloca - Provide an initial value for the given alloca which 1704 /// will be observable at all locations in the function. 1705 /// 1706 /// The address should be something that was returned from one of 1707 /// the CreateTempAlloca or CreateMemTemp routines, and the 1708 /// initializer must be valid in the entry block (i.e. it must 1709 /// either be a constant or an argument value). 1710 void InitTempAlloca(Address Alloca, llvm::Value *Value); 1711 1712 /// CreateIRTemp - Create a temporary IR object of the given type, with 1713 /// appropriate alignment. This routine should only be used when an temporary 1714 /// value needs to be stored into an alloca (for example, to avoid explicit 1715 /// PHI construction), but the type is the IR type, not the type appropriate 1716 /// for storing in memory. 1717 /// 1718 /// That is, this is exactly equivalent to CreateMemTemp, but calling 1719 /// ConvertType instead of ConvertTypeForMem. 1720 Address CreateIRTemp(QualType T, const Twine &Name = "tmp"); 1721 1722 /// CreateMemTemp - Create a temporary memory object of the given type, with 1723 /// appropriate alignment. 1724 Address CreateMemTemp(QualType T, const Twine &Name = "tmp"); 1725 Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp"); 1726 1727 /// CreateAggTemp - Create a temporary memory object for the given 1728 /// aggregate type. 1729 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { 1730 return AggValueSlot::forAddr(CreateMemTemp(T, Name), 1731 T.getQualifiers(), 1732 AggValueSlot::IsNotDestructed, 1733 AggValueSlot::DoesNotNeedGCBarriers, 1734 AggValueSlot::IsNotAliased); 1735 } 1736 1737 /// Emit a cast to void* in the appropriate address space. 1738 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 1739 1740 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 1741 /// expression and compare the result against zero, returning an Int1Ty value. 1742 llvm::Value *EvaluateExprAsBool(const Expr *E); 1743 1744 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 1745 void EmitIgnoredExpr(const Expr *E); 1746 1747 /// EmitAnyExpr - Emit code to compute the specified expression which can have 1748 /// any type. The result is returned as an RValue struct. If this is an 1749 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 1750 /// the result should be returned. 1751 /// 1752 /// \param ignoreResult True if the resulting value isn't used. 1753 RValue EmitAnyExpr(const Expr *E, 1754 AggValueSlot aggSlot = AggValueSlot::ignored(), 1755 bool ignoreResult = false); 1756 1757 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 1758 // or the value of the expression, depending on how va_list is defined. 1759 Address EmitVAListRef(const Expr *E); 1760 1761 /// Emit a "reference" to a __builtin_ms_va_list; this is 1762 /// always the value of the expression, because a __builtin_ms_va_list is a 1763 /// pointer to a char. 1764 Address EmitMSVAListRef(const Expr *E); 1765 1766 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 1767 /// always be accessible even if no aggregate location is provided. 1768 RValue EmitAnyExprToTemp(const Expr *E); 1769 1770 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 1771 /// arbitrary expression into the given memory location. 1772 void EmitAnyExprToMem(const Expr *E, Address Location, 1773 Qualifiers Quals, bool IsInitializer); 1774 1775 void EmitAnyExprToExn(const Expr *E, Address Addr); 1776 1777 /// EmitExprAsInit - Emits the code necessary to initialize a 1778 /// location in memory with the given initializer. 1779 void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, 1780 bool capturedByInit); 1781 1782 /// hasVolatileMember - returns true if aggregate type has a volatile 1783 /// member. 1784 bool hasVolatileMember(QualType T) { 1785 if (const RecordType *RT = T->getAs<RecordType>()) { 1786 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 1787 return RD->hasVolatileMember(); 1788 } 1789 return false; 1790 } 1791 /// EmitAggregateCopy - Emit an aggregate assignment. 1792 /// 1793 /// The difference to EmitAggregateCopy is that tail padding is not copied. 1794 /// This is required for correctness when assigning non-POD structures in C++. 1795 void EmitAggregateAssign(Address DestPtr, Address SrcPtr, 1796 QualType EltTy) { 1797 bool IsVolatile = hasVolatileMember(EltTy); 1798 EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, true); 1799 } 1800 1801 void EmitAggregateCopyCtor(Address DestPtr, Address SrcPtr, 1802 QualType DestTy, QualType SrcTy) { 1803 EmitAggregateCopy(DestPtr, SrcPtr, SrcTy, /*IsVolatile=*/false, 1804 /*IsAssignment=*/false); 1805 } 1806 1807 /// EmitAggregateCopy - Emit an aggregate copy. 1808 /// 1809 /// \param isVolatile - True iff either the source or the destination is 1810 /// volatile. 1811 /// \param isAssignment - If false, allow padding to be copied. This often 1812 /// yields more efficient. 1813 void EmitAggregateCopy(Address DestPtr, Address SrcPtr, 1814 QualType EltTy, bool isVolatile=false, 1815 bool isAssignment = false); 1816 1817 /// GetAddrOfLocalVar - Return the address of a local variable. 1818 Address GetAddrOfLocalVar(const VarDecl *VD) { 1819 auto it = LocalDeclMap.find(VD); 1820 assert(it != LocalDeclMap.end() && 1821 "Invalid argument to GetAddrOfLocalVar(), no decl!"); 1822 return it->second; 1823 } 1824 1825 /// getOpaqueLValueMapping - Given an opaque value expression (which 1826 /// must be mapped to an l-value), return its mapping. 1827 const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) { 1828 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 1829 1830 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 1831 it = OpaqueLValues.find(e); 1832 assert(it != OpaqueLValues.end() && "no mapping for opaque value!"); 1833 return it->second; 1834 } 1835 1836 /// getOpaqueRValueMapping - Given an opaque value expression (which 1837 /// must be mapped to an r-value), return its mapping. 1838 const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) { 1839 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 1840 1841 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 1842 it = OpaqueRValues.find(e); 1843 assert(it != OpaqueRValues.end() && "no mapping for opaque value!"); 1844 return it->second; 1845 } 1846 1847 /// getAccessedFieldNo - Given an encoded value and a result number, return 1848 /// the input field number being accessed. 1849 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 1850 1851 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 1852 llvm::BasicBlock *GetIndirectGotoBlock(); 1853 1854 /// EmitNullInitialization - Generate code to set a value of the given type to 1855 /// null, If the type contains data member pointers, they will be initialized 1856 /// to -1 in accordance with the Itanium C++ ABI. 1857 void EmitNullInitialization(Address DestPtr, QualType Ty); 1858 1859 /// Emits a call to an LLVM variable-argument intrinsic, either 1860 /// \c llvm.va_start or \c llvm.va_end. 1861 /// \param ArgValue A reference to the \c va_list as emitted by either 1862 /// \c EmitVAListRef or \c EmitMSVAListRef. 1863 /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, 1864 /// calls \c llvm.va_end. 1865 llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); 1866 1867 /// Generate code to get an argument from the passed in pointer 1868 /// and update it accordingly. 1869 /// \param VE The \c VAArgExpr for which to generate code. 1870 /// \param VAListAddr Receives a reference to the \c va_list as emitted by 1871 /// either \c EmitVAListRef or \c EmitMSVAListRef. 1872 /// \returns A pointer to the argument. 1873 // FIXME: We should be able to get rid of this method and use the va_arg 1874 // instruction in LLVM instead once it works well enough. 1875 Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr); 1876 1877 /// emitArrayLength - Compute the length of an array, even if it's a 1878 /// VLA, and drill down to the base element type. 1879 llvm::Value *emitArrayLength(const ArrayType *arrayType, 1880 QualType &baseType, 1881 Address &addr); 1882 1883 /// EmitVLASize - Capture all the sizes for the VLA expressions in 1884 /// the given variably-modified type and store them in the VLASizeMap. 1885 /// 1886 /// This function can be called with a null (unreachable) insert point. 1887 void EmitVariablyModifiedType(QualType Ty); 1888 1889 /// getVLASize - Returns an LLVM value that corresponds to the size, 1890 /// in non-variably-sized elements, of a variable length array type, 1891 /// plus that largest non-variably-sized element type. Assumes that 1892 /// the type has already been emitted with EmitVariablyModifiedType. 1893 std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla); 1894 std::pair<llvm::Value*,QualType> getVLASize(QualType vla); 1895 1896 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 1897 /// generating code for an C++ member function. 1898 llvm::Value *LoadCXXThis() { 1899 assert(CXXThisValue && "no 'this' value for this function"); 1900 return CXXThisValue; 1901 } 1902 Address LoadCXXThisAddress(); 1903 1904 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 1905 /// virtual bases. 1906 // FIXME: Every place that calls LoadCXXVTT is something 1907 // that needs to be abstracted properly. 1908 llvm::Value *LoadCXXVTT() { 1909 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 1910 return CXXStructorImplicitParamValue; 1911 } 1912 1913 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 1914 /// complete class to the given direct base. 1915 Address 1916 GetAddressOfDirectBaseInCompleteClass(Address Value, 1917 const CXXRecordDecl *Derived, 1918 const CXXRecordDecl *Base, 1919 bool BaseIsVirtual); 1920 1921 static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); 1922 1923 /// GetAddressOfBaseClass - This function will add the necessary delta to the 1924 /// load of 'this' and returns address of the base class. 1925 Address GetAddressOfBaseClass(Address Value, 1926 const CXXRecordDecl *Derived, 1927 CastExpr::path_const_iterator PathBegin, 1928 CastExpr::path_const_iterator PathEnd, 1929 bool NullCheckValue, SourceLocation Loc); 1930 1931 Address GetAddressOfDerivedClass(Address Value, 1932 const CXXRecordDecl *Derived, 1933 CastExpr::path_const_iterator PathBegin, 1934 CastExpr::path_const_iterator PathEnd, 1935 bool NullCheckValue); 1936 1937 /// GetVTTParameter - Return the VTT parameter that should be passed to a 1938 /// base constructor/destructor with virtual bases. 1939 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 1940 /// to ItaniumCXXABI.cpp together with all the references to VTT. 1941 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 1942 bool Delegating); 1943 1944 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 1945 CXXCtorType CtorType, 1946 const FunctionArgList &Args, 1947 SourceLocation Loc); 1948 // It's important not to confuse this and the previous function. Delegating 1949 // constructors are the C++0x feature. The constructor delegate optimization 1950 // is used to reduce duplication in the base and complete consturctors where 1951 // they are substantially the same. 1952 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 1953 const FunctionArgList &Args); 1954 1955 /// Emit a call to an inheriting constructor (that is, one that invokes a 1956 /// constructor inherited from a base class) by inlining its definition. This 1957 /// is necessary if the ABI does not support forwarding the arguments to the 1958 /// base class constructor (because they're variadic or similar). 1959 void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor, 1960 CXXCtorType CtorType, 1961 bool ForVirtualBase, 1962 bool Delegating, 1963 CallArgList &Args); 1964 1965 /// Emit a call to a constructor inherited from a base class, passing the 1966 /// current constructor's arguments along unmodified (without even making 1967 /// a copy). 1968 void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, 1969 bool ForVirtualBase, Address This, 1970 bool InheritedFromVBase, 1971 const CXXInheritedCtorInitExpr *E); 1972 1973 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 1974 bool ForVirtualBase, bool Delegating, 1975 Address This, const CXXConstructExpr *E); 1976 1977 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 1978 bool ForVirtualBase, bool Delegating, 1979 Address This, CallArgList &Args); 1980 1981 /// Emit assumption load for all bases. Requires to be be called only on 1982 /// most-derived class and not under construction of the object. 1983 void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); 1984 1985 /// Emit assumption that vptr load == global vtable. 1986 void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); 1987 1988 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 1989 Address This, Address Src, 1990 const CXXConstructExpr *E); 1991 1992 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1993 const ArrayType *ArrayTy, 1994 Address ArrayPtr, 1995 const CXXConstructExpr *E, 1996 bool ZeroInitialization = false); 1997 1998 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1999 llvm::Value *NumElements, 2000 Address ArrayPtr, 2001 const CXXConstructExpr *E, 2002 bool ZeroInitialization = false); 2003 2004 static Destroyer destroyCXXObject; 2005 2006 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 2007 bool ForVirtualBase, bool Delegating, 2008 Address This); 2009 2010 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 2011 llvm::Type *ElementTy, Address NewPtr, 2012 llvm::Value *NumElements, 2013 llvm::Value *AllocSizeWithoutCookie); 2014 2015 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 2016 Address Ptr); 2017 2018 llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr); 2019 void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); 2020 2021 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 2022 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 2023 2024 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 2025 QualType DeleteTy); 2026 2027 RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 2028 const Expr *Arg, bool IsDelete); 2029 2030 llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); 2031 llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); 2032 Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); 2033 2034 /// \brief Situations in which we might emit a check for the suitability of a 2035 /// pointer or glvalue. 2036 enum TypeCheckKind { 2037 /// Checking the operand of a load. Must be suitably sized and aligned. 2038 TCK_Load, 2039 /// Checking the destination of a store. Must be suitably sized and aligned. 2040 TCK_Store, 2041 /// Checking the bound value in a reference binding. Must be suitably sized 2042 /// and aligned, but is not required to refer to an object (until the 2043 /// reference is used), per core issue 453. 2044 TCK_ReferenceBinding, 2045 /// Checking the object expression in a non-static data member access. Must 2046 /// be an object within its lifetime. 2047 TCK_MemberAccess, 2048 /// Checking the 'this' pointer for a call to a non-static member function. 2049 /// Must be an object within its lifetime. 2050 TCK_MemberCall, 2051 /// Checking the 'this' pointer for a constructor call. 2052 TCK_ConstructorCall, 2053 /// Checking the operand of a static_cast to a derived pointer type. Must be 2054 /// null or an object within its lifetime. 2055 TCK_DowncastPointer, 2056 /// Checking the operand of a static_cast to a derived reference type. Must 2057 /// be an object within its lifetime. 2058 TCK_DowncastReference, 2059 /// Checking the operand of a cast to a base object. Must be suitably sized 2060 /// and aligned. 2061 TCK_Upcast, 2062 /// Checking the operand of a cast to a virtual base object. Must be an 2063 /// object within its lifetime. 2064 TCK_UpcastToVirtualBase 2065 }; 2066 2067 /// \brief Whether any type-checking sanitizers are enabled. If \c false, 2068 /// calls to EmitTypeCheck can be skipped. 2069 bool sanitizePerformTypeCheck() const; 2070 2071 /// \brief Emit a check that \p V is the address of storage of the 2072 /// appropriate size and alignment for an object of type \p Type. 2073 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 2074 QualType Type, CharUnits Alignment = CharUnits::Zero(), 2075 bool SkipNullCheck = false); 2076 2077 /// \brief Emit a check that \p Base points into an array object, which 2078 /// we can access at index \p Index. \p Accessed should be \c false if we 2079 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 2080 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 2081 QualType IndexType, bool Accessed); 2082 2083 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2084 bool isInc, bool isPre); 2085 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 2086 bool isInc, bool isPre); 2087 2088 void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment, 2089 llvm::Value *OffsetValue = nullptr) { 2090 Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment, 2091 OffsetValue); 2092 } 2093 2094 //===--------------------------------------------------------------------===// 2095 // Declaration Emission 2096 //===--------------------------------------------------------------------===// 2097 2098 /// EmitDecl - Emit a declaration. 2099 /// 2100 /// This function can be called with a null (unreachable) insert point. 2101 void EmitDecl(const Decl &D); 2102 2103 /// EmitVarDecl - Emit a local variable declaration. 2104 /// 2105 /// This function can be called with a null (unreachable) insert point. 2106 void EmitVarDecl(const VarDecl &D); 2107 2108 void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2109 bool capturedByInit); 2110 void EmitScalarInit(llvm::Value *init, LValue lvalue); 2111 2112 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 2113 llvm::Value *Address); 2114 2115 /// \brief Determine whether the given initializer is trivial in the sense 2116 /// that it requires no code to be generated. 2117 bool isTrivialInitializer(const Expr *Init); 2118 2119 /// EmitAutoVarDecl - Emit an auto variable declaration. 2120 /// 2121 /// This function can be called with a null (unreachable) insert point. 2122 void EmitAutoVarDecl(const VarDecl &D); 2123 2124 class AutoVarEmission { 2125 friend class CodeGenFunction; 2126 2127 const VarDecl *Variable; 2128 2129 /// The address of the alloca. Invalid if the variable was emitted 2130 /// as a global constant. 2131 Address Addr; 2132 2133 llvm::Value *NRVOFlag; 2134 2135 /// True if the variable is a __block variable. 2136 bool IsByRef; 2137 2138 /// True if the variable is of aggregate type and has a constant 2139 /// initializer. 2140 bool IsConstantAggregate; 2141 2142 /// Non-null if we should use lifetime annotations. 2143 llvm::Value *SizeForLifetimeMarkers; 2144 2145 struct Invalid {}; 2146 AutoVarEmission(Invalid) : Variable(nullptr), Addr(Address::invalid()) {} 2147 2148 AutoVarEmission(const VarDecl &variable) 2149 : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), 2150 IsByRef(false), IsConstantAggregate(false), 2151 SizeForLifetimeMarkers(nullptr) {} 2152 2153 bool wasEmittedAsGlobal() const { return !Addr.isValid(); } 2154 2155 public: 2156 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 2157 2158 bool useLifetimeMarkers() const { 2159 return SizeForLifetimeMarkers != nullptr; 2160 } 2161 llvm::Value *getSizeForLifetimeMarkers() const { 2162 assert(useLifetimeMarkers()); 2163 return SizeForLifetimeMarkers; 2164 } 2165 2166 /// Returns the raw, allocated address, which is not necessarily 2167 /// the address of the object itself. 2168 Address getAllocatedAddress() const { 2169 return Addr; 2170 } 2171 2172 /// Returns the address of the object within this declaration. 2173 /// Note that this does not chase the forwarding pointer for 2174 /// __block decls. 2175 Address getObjectAddress(CodeGenFunction &CGF) const { 2176 if (!IsByRef) return Addr; 2177 2178 return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false); 2179 } 2180 }; 2181 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 2182 void EmitAutoVarInit(const AutoVarEmission &emission); 2183 void EmitAutoVarCleanups(const AutoVarEmission &emission); 2184 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 2185 QualType::DestructionKind dtorKind); 2186 2187 void EmitStaticVarDecl(const VarDecl &D, 2188 llvm::GlobalValue::LinkageTypes Linkage); 2189 2190 class ParamValue { 2191 llvm::Value *Value; 2192 unsigned Alignment; 2193 ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {} 2194 public: 2195 static ParamValue forDirect(llvm::Value *value) { 2196 return ParamValue(value, 0); 2197 } 2198 static ParamValue forIndirect(Address addr) { 2199 assert(!addr.getAlignment().isZero()); 2200 return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity()); 2201 } 2202 2203 bool isIndirect() const { return Alignment != 0; } 2204 llvm::Value *getAnyValue() const { return Value; } 2205 2206 llvm::Value *getDirectValue() const { 2207 assert(!isIndirect()); 2208 return Value; 2209 } 2210 2211 Address getIndirectAddress() const { 2212 assert(isIndirect()); 2213 return Address(Value, CharUnits::fromQuantity(Alignment)); 2214 } 2215 }; 2216 2217 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 2218 void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); 2219 2220 /// protectFromPeepholes - Protect a value that we're intending to 2221 /// store to the side, but which will probably be used later, from 2222 /// aggressive peepholing optimizations that might delete it. 2223 /// 2224 /// Pass the result to unprotectFromPeepholes to declare that 2225 /// protection is no longer required. 2226 /// 2227 /// There's no particular reason why this shouldn't apply to 2228 /// l-values, it's just that no existing peepholes work on pointers. 2229 PeepholeProtection protectFromPeepholes(RValue rvalue); 2230 void unprotectFromPeepholes(PeepholeProtection protection); 2231 2232 //===--------------------------------------------------------------------===// 2233 // Statement Emission 2234 //===--------------------------------------------------------------------===// 2235 2236 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 2237 void EmitStopPoint(const Stmt *S); 2238 2239 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 2240 /// this function even if there is no current insertion point. 2241 /// 2242 /// This function may clear the current insertion point; callers should use 2243 /// EnsureInsertPoint if they wish to subsequently generate code without first 2244 /// calling EmitBlock, EmitBranch, or EmitStmt. 2245 void EmitStmt(const Stmt *S); 2246 2247 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 2248 /// necessarily require an insertion point or debug information; typically 2249 /// because the statement amounts to a jump or a container of other 2250 /// statements. 2251 /// 2252 /// \return True if the statement was handled. 2253 bool EmitSimpleStmt(const Stmt *S); 2254 2255 Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 2256 AggValueSlot AVS = AggValueSlot::ignored()); 2257 Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, 2258 bool GetLast = false, 2259 AggValueSlot AVS = 2260 AggValueSlot::ignored()); 2261 2262 /// EmitLabel - Emit the block for the given label. It is legal to call this 2263 /// function even if there is no current insertion point. 2264 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 2265 2266 void EmitLabelStmt(const LabelStmt &S); 2267 void EmitAttributedStmt(const AttributedStmt &S); 2268 void EmitGotoStmt(const GotoStmt &S); 2269 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 2270 void EmitIfStmt(const IfStmt &S); 2271 2272 void EmitWhileStmt(const WhileStmt &S, 2273 ArrayRef<const Attr *> Attrs = None); 2274 void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None); 2275 void EmitForStmt(const ForStmt &S, 2276 ArrayRef<const Attr *> Attrs = None); 2277 void EmitReturnStmt(const ReturnStmt &S); 2278 void EmitDeclStmt(const DeclStmt &S); 2279 void EmitBreakStmt(const BreakStmt &S); 2280 void EmitContinueStmt(const ContinueStmt &S); 2281 void EmitSwitchStmt(const SwitchStmt &S); 2282 void EmitDefaultStmt(const DefaultStmt &S); 2283 void EmitCaseStmt(const CaseStmt &S); 2284 void EmitCaseStmtRange(const CaseStmt &S); 2285 void EmitAsmStmt(const AsmStmt &S); 2286 2287 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 2288 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 2289 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 2290 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 2291 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 2292 2293 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2294 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2295 2296 void EmitCXXTryStmt(const CXXTryStmt &S); 2297 void EmitSEHTryStmt(const SEHTryStmt &S); 2298 void EmitSEHLeaveStmt(const SEHLeaveStmt &S); 2299 void EnterSEHTryStmt(const SEHTryStmt &S); 2300 void ExitSEHTryStmt(const SEHTryStmt &S); 2301 2302 void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, 2303 const Stmt *OutlinedStmt); 2304 2305 llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, 2306 const SEHExceptStmt &Except); 2307 2308 llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, 2309 const SEHFinallyStmt &Finally); 2310 2311 void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, 2312 llvm::Value *ParentFP, 2313 llvm::Value *EntryEBP); 2314 llvm::Value *EmitSEHExceptionCode(); 2315 llvm::Value *EmitSEHExceptionInfo(); 2316 llvm::Value *EmitSEHAbnormalTermination(); 2317 2318 /// Scan the outlined statement for captures from the parent function. For 2319 /// each capture, mark the capture as escaped and emit a call to 2320 /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. 2321 void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, 2322 bool IsFilter); 2323 2324 /// Recovers the address of a local in a parent function. ParentVar is the 2325 /// address of the variable used in the immediate parent function. It can 2326 /// either be an alloca or a call to llvm.localrecover if there are nested 2327 /// outlined functions. ParentFP is the frame pointer of the outermost parent 2328 /// frame. 2329 Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, 2330 Address ParentVar, 2331 llvm::Value *ParentFP); 2332 2333 void EmitCXXForRangeStmt(const CXXForRangeStmt &S, 2334 ArrayRef<const Attr *> Attrs = None); 2335 2336 /// Returns calculated size of the specified type. 2337 llvm::Value *getTypeSize(QualType Ty); 2338 LValue InitCapturedStruct(const CapturedStmt &S); 2339 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 2340 llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); 2341 Address GenerateCapturedStmtArgument(const CapturedStmt &S); 2342 llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S); 2343 void GenerateOpenMPCapturedVars(const CapturedStmt &S, 2344 SmallVectorImpl<llvm::Value *> &CapturedVars); 2345 void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy, 2346 SourceLocation Loc); 2347 /// \brief Perform element by element copying of arrays with type \a 2348 /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure 2349 /// generated by \a CopyGen. 2350 /// 2351 /// \param DestAddr Address of the destination array. 2352 /// \param SrcAddr Address of the source array. 2353 /// \param OriginalType Type of destination and source arrays. 2354 /// \param CopyGen Copying procedure that copies value of single array element 2355 /// to another single array element. 2356 void EmitOMPAggregateAssign( 2357 Address DestAddr, Address SrcAddr, QualType OriginalType, 2358 const llvm::function_ref<void(Address, Address)> &CopyGen); 2359 /// \brief Emit proper copying of data from one variable to another. 2360 /// 2361 /// \param OriginalType Original type of the copied variables. 2362 /// \param DestAddr Destination address. 2363 /// \param SrcAddr Source address. 2364 /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has 2365 /// type of the base array element). 2366 /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of 2367 /// the base array element). 2368 /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a 2369 /// DestVD. 2370 void EmitOMPCopy(QualType OriginalType, 2371 Address DestAddr, Address SrcAddr, 2372 const VarDecl *DestVD, const VarDecl *SrcVD, 2373 const Expr *Copy); 2374 /// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or 2375 /// \a X = \a E \a BO \a E. 2376 /// 2377 /// \param X Value to be updated. 2378 /// \param E Update value. 2379 /// \param BO Binary operation for update operation. 2380 /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update 2381 /// expression, false otherwise. 2382 /// \param AO Atomic ordering of the generated atomic instructions. 2383 /// \param CommonGen Code generator for complex expressions that cannot be 2384 /// expressed through atomicrmw instruction. 2385 /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was 2386 /// generated, <false, RValue::get(nullptr)> otherwise. 2387 std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( 2388 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 2389 llvm::AtomicOrdering AO, SourceLocation Loc, 2390 const llvm::function_ref<RValue(RValue)> &CommonGen); 2391 bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 2392 OMPPrivateScope &PrivateScope); 2393 void EmitOMPPrivateClause(const OMPExecutableDirective &D, 2394 OMPPrivateScope &PrivateScope); 2395 /// \brief Emit code for copyin clause in \a D directive. The next code is 2396 /// generated at the start of outlined functions for directives: 2397 /// \code 2398 /// threadprivate_var1 = master_threadprivate_var1; 2399 /// operator=(threadprivate_var2, master_threadprivate_var2); 2400 /// ... 2401 /// __kmpc_barrier(&loc, global_tid); 2402 /// \endcode 2403 /// 2404 /// \param D OpenMP directive possibly with 'copyin' clause(s). 2405 /// \returns true if at least one copyin variable is found, false otherwise. 2406 bool EmitOMPCopyinClause(const OMPExecutableDirective &D); 2407 /// \brief Emit initial code for lastprivate variables. If some variable is 2408 /// not also firstprivate, then the default initialization is used. Otherwise 2409 /// initialization of this variable is performed by EmitOMPFirstprivateClause 2410 /// method. 2411 /// 2412 /// \param D Directive that may have 'lastprivate' directives. 2413 /// \param PrivateScope Private scope for capturing lastprivate variables for 2414 /// proper codegen in internal captured statement. 2415 /// 2416 /// \returns true if there is at least one lastprivate variable, false 2417 /// otherwise. 2418 bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, 2419 OMPPrivateScope &PrivateScope); 2420 /// \brief Emit final copying of lastprivate values to original variables at 2421 /// the end of the worksharing or simd directive. 2422 /// 2423 /// \param D Directive that has at least one 'lastprivate' directives. 2424 /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if 2425 /// it is the last iteration of the loop code in associated directive, or to 2426 /// 'i1 false' otherwise. If this item is nullptr, no final check is required. 2427 void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, 2428 bool NoFinals, 2429 llvm::Value *IsLastIterCond = nullptr); 2430 /// Emit initial code for linear clauses. 2431 void EmitOMPLinearClause(const OMPLoopDirective &D, 2432 CodeGenFunction::OMPPrivateScope &PrivateScope); 2433 /// Emit final code for linear clauses. 2434 /// \param CondGen Optional conditional code for final part of codegen for 2435 /// linear clause. 2436 void EmitOMPLinearClauseFinal( 2437 const OMPLoopDirective &D, 2438 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen); 2439 /// \brief Emit initial code for reduction variables. Creates reduction copies 2440 /// and initializes them with the values according to OpenMP standard. 2441 /// 2442 /// \param D Directive (possibly) with the 'reduction' clause. 2443 /// \param PrivateScope Private scope for capturing reduction variables for 2444 /// proper codegen in internal captured statement. 2445 /// 2446 void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, 2447 OMPPrivateScope &PrivateScope); 2448 /// \brief Emit final update of reduction values to original variables at 2449 /// the end of the directive. 2450 /// 2451 /// \param D Directive that has at least one 'reduction' directives. 2452 void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D); 2453 /// \brief Emit initial code for linear variables. Creates private copies 2454 /// and initializes them with the values according to OpenMP standard. 2455 /// 2456 /// \param D Directive (possibly) with the 'linear' clause. 2457 void EmitOMPLinearClauseInit(const OMPLoopDirective &D); 2458 2459 typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/, 2460 llvm::Value * /*OutlinedFn*/, 2461 const OMPTaskDataTy & /*Data*/)> 2462 TaskGenTy; 2463 void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 2464 const RegionCodeGenTy &BodyGen, 2465 const TaskGenTy &TaskGen, OMPTaskDataTy &Data); 2466 2467 void EmitOMPParallelDirective(const OMPParallelDirective &S); 2468 void EmitOMPSimdDirective(const OMPSimdDirective &S); 2469 void EmitOMPForDirective(const OMPForDirective &S); 2470 void EmitOMPForSimdDirective(const OMPForSimdDirective &S); 2471 void EmitOMPSectionsDirective(const OMPSectionsDirective &S); 2472 void EmitOMPSectionDirective(const OMPSectionDirective &S); 2473 void EmitOMPSingleDirective(const OMPSingleDirective &S); 2474 void EmitOMPMasterDirective(const OMPMasterDirective &S); 2475 void EmitOMPCriticalDirective(const OMPCriticalDirective &S); 2476 void EmitOMPParallelForDirective(const OMPParallelForDirective &S); 2477 void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); 2478 void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); 2479 void EmitOMPTaskDirective(const OMPTaskDirective &S); 2480 void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); 2481 void EmitOMPBarrierDirective(const OMPBarrierDirective &S); 2482 void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); 2483 void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); 2484 void EmitOMPFlushDirective(const OMPFlushDirective &S); 2485 void EmitOMPOrderedDirective(const OMPOrderedDirective &S); 2486 void EmitOMPAtomicDirective(const OMPAtomicDirective &S); 2487 void EmitOMPTargetDirective(const OMPTargetDirective &S); 2488 void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); 2489 void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S); 2490 void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S); 2491 void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S); 2492 void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S); 2493 void 2494 EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S); 2495 void EmitOMPTeamsDirective(const OMPTeamsDirective &S); 2496 void 2497 EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); 2498 void EmitOMPCancelDirective(const OMPCancelDirective &S); 2499 void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S); 2500 void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); 2501 void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); 2502 void EmitOMPDistributeDirective(const OMPDistributeDirective &S); 2503 void EmitOMPDistributeLoop(const OMPDistributeDirective &S); 2504 void EmitOMPDistributeParallelForDirective( 2505 const OMPDistributeParallelForDirective &S); 2506 void EmitOMPDistributeParallelForSimdDirective( 2507 const OMPDistributeParallelForSimdDirective &S); 2508 void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S); 2509 void EmitOMPTargetParallelForSimdDirective( 2510 const OMPTargetParallelForSimdDirective &S); 2511 2512 /// Emit outlined function for the target directive. 2513 static std::pair<llvm::Function * /*OutlinedFn*/, 2514 llvm::Constant * /*OutlinedFnID*/> 2515 EmitOMPTargetDirectiveOutlinedFunction(CodeGenModule &CGM, 2516 const OMPTargetDirective &S, 2517 StringRef ParentName, 2518 bool IsOffloadEntry); 2519 /// \brief Emit inner loop of the worksharing/simd construct. 2520 /// 2521 /// \param S Directive, for which the inner loop must be emitted. 2522 /// \param RequiresCleanup true, if directive has some associated private 2523 /// variables. 2524 /// \param LoopCond Bollean condition for loop continuation. 2525 /// \param IncExpr Increment expression for loop control variable. 2526 /// \param BodyGen Generator for the inner body of the inner loop. 2527 /// \param PostIncGen Genrator for post-increment code (required for ordered 2528 /// loop directvies). 2529 void EmitOMPInnerLoop( 2530 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 2531 const Expr *IncExpr, 2532 const llvm::function_ref<void(CodeGenFunction &)> &BodyGen, 2533 const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen); 2534 2535 JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); 2536 /// Emit initial code for loop counters of loop-based directives. 2537 void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S, 2538 OMPPrivateScope &LoopScope); 2539 2540 private: 2541 /// Helpers for the OpenMP loop directives. 2542 void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); 2543 void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false); 2544 void EmitOMPSimdFinal( 2545 const OMPLoopDirective &D, 2546 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen); 2547 /// \brief Emit code for the worksharing loop-based directive. 2548 /// \return true, if this construct has any lastprivate clause, false - 2549 /// otherwise. 2550 bool EmitOMPWorksharingLoop(const OMPLoopDirective &S); 2551 void EmitOMPOuterLoop(bool IsMonotonic, bool DynamicOrOrdered, 2552 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 2553 Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk); 2554 void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind, 2555 bool IsMonotonic, const OMPLoopDirective &S, 2556 OMPPrivateScope &LoopScope, bool Ordered, Address LB, 2557 Address UB, Address ST, Address IL, 2558 llvm::Value *Chunk); 2559 void EmitOMPDistributeOuterLoop( 2560 OpenMPDistScheduleClauseKind ScheduleKind, 2561 const OMPDistributeDirective &S, OMPPrivateScope &LoopScope, 2562 Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk); 2563 /// \brief Emit code for sections directive. 2564 void EmitSections(const OMPExecutableDirective &S); 2565 2566 public: 2567 2568 //===--------------------------------------------------------------------===// 2569 // LValue Expression Emission 2570 //===--------------------------------------------------------------------===// 2571 2572 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 2573 RValue GetUndefRValue(QualType Ty); 2574 2575 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 2576 /// and issue an ErrorUnsupported style diagnostic (using the 2577 /// provided Name). 2578 RValue EmitUnsupportedRValue(const Expr *E, 2579 const char *Name); 2580 2581 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 2582 /// an ErrorUnsupported style diagnostic (using the provided Name). 2583 LValue EmitUnsupportedLValue(const Expr *E, 2584 const char *Name); 2585 2586 /// EmitLValue - Emit code to compute a designator that specifies the location 2587 /// of the expression. 2588 /// 2589 /// This can return one of two things: a simple address or a bitfield 2590 /// reference. In either case, the LLVM Value* in the LValue structure is 2591 /// guaranteed to be an LLVM pointer type. 2592 /// 2593 /// If this returns a bitfield reference, nothing about the pointee type of 2594 /// the LLVM value is known: For example, it may not be a pointer to an 2595 /// integer. 2596 /// 2597 /// If this returns a normal address, and if the lvalue's C type is fixed 2598 /// size, this method guarantees that the returned pointer type will point to 2599 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 2600 /// variable length type, this is not possible. 2601 /// 2602 LValue EmitLValue(const Expr *E); 2603 2604 /// \brief Same as EmitLValue but additionally we generate checking code to 2605 /// guard against undefined behavior. This is only suitable when we know 2606 /// that the address will be used to access the object. 2607 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 2608 2609 RValue convertTempToRValue(Address addr, QualType type, 2610 SourceLocation Loc); 2611 2612 void EmitAtomicInit(Expr *E, LValue lvalue); 2613 2614 bool LValueIsSuitableForInlineAtomic(LValue Src); 2615 2616 RValue EmitAtomicLoad(LValue LV, SourceLocation SL, 2617 AggValueSlot Slot = AggValueSlot::ignored()); 2618 2619 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 2620 llvm::AtomicOrdering AO, bool IsVolatile = false, 2621 AggValueSlot slot = AggValueSlot::ignored()); 2622 2623 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 2624 2625 void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, 2626 bool IsVolatile, bool isInit); 2627 2628 std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( 2629 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 2630 llvm::AtomicOrdering Success = 2631 llvm::AtomicOrdering::SequentiallyConsistent, 2632 llvm::AtomicOrdering Failure = 2633 llvm::AtomicOrdering::SequentiallyConsistent, 2634 bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); 2635 2636 void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, 2637 const llvm::function_ref<RValue(RValue)> &UpdateOp, 2638 bool IsVolatile); 2639 2640 /// EmitToMemory - Change a scalar value from its value 2641 /// representation to its in-memory representation. 2642 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 2643 2644 /// EmitFromMemory - Change a scalar value from its memory 2645 /// representation to its value representation. 2646 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 2647 2648 /// EmitLoadOfScalar - Load a scalar value from an address, taking 2649 /// care to appropriately convert from the memory representation to 2650 /// the LLVM value representation. 2651 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 2652 SourceLocation Loc, 2653 AlignmentSource AlignSource = 2654 AlignmentSource::Type, 2655 llvm::MDNode *TBAAInfo = nullptr, 2656 QualType TBAABaseTy = QualType(), 2657 uint64_t TBAAOffset = 0, 2658 bool isNontemporal = false); 2659 2660 /// EmitLoadOfScalar - Load a scalar value from an address, taking 2661 /// care to appropriately convert from the memory representation to 2662 /// the LLVM value representation. The l-value must be a simple 2663 /// l-value. 2664 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 2665 2666 /// EmitStoreOfScalar - Store a scalar value to an address, taking 2667 /// care to appropriately convert from the memory representation to 2668 /// the LLVM value representation. 2669 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 2670 bool Volatile, QualType Ty, 2671 AlignmentSource AlignSource = AlignmentSource::Type, 2672 llvm::MDNode *TBAAInfo = nullptr, bool isInit = false, 2673 QualType TBAABaseTy = QualType(), 2674 uint64_t TBAAOffset = 0, bool isNontemporal = false); 2675 2676 /// EmitStoreOfScalar - Store a scalar value to an address, taking 2677 /// care to appropriately convert from the memory representation to 2678 /// the LLVM value representation. The l-value must be a simple 2679 /// l-value. The isInit flag indicates whether this is an initialization. 2680 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 2681 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 2682 2683 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 2684 /// this method emits the address of the lvalue, then loads the result as an 2685 /// rvalue, returning the rvalue. 2686 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 2687 RValue EmitLoadOfExtVectorElementLValue(LValue V); 2688 RValue EmitLoadOfBitfieldLValue(LValue LV); 2689 RValue EmitLoadOfGlobalRegLValue(LValue LV); 2690 2691 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 2692 /// lvalue, where both are guaranteed to the have the same type, and that type 2693 /// is 'Ty'. 2694 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); 2695 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 2696 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 2697 2698 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 2699 /// as EmitStoreThroughLValue. 2700 /// 2701 /// \param Result [out] - If non-null, this will be set to a Value* for the 2702 /// bit-field contents after the store, appropriate for use as the result of 2703 /// an assignment to the bit-field. 2704 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 2705 llvm::Value **Result=nullptr); 2706 2707 /// Emit an l-value for an assignment (simple or compound) of complex type. 2708 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 2709 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 2710 LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 2711 llvm::Value *&Result); 2712 2713 // Note: only available for agg return types 2714 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 2715 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 2716 // Note: only available for agg return types 2717 LValue EmitCallExprLValue(const CallExpr *E); 2718 // Note: only available for agg return types 2719 LValue EmitVAArgExprLValue(const VAArgExpr *E); 2720 LValue EmitDeclRefLValue(const DeclRefExpr *E); 2721 LValue EmitStringLiteralLValue(const StringLiteral *E); 2722 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 2723 LValue EmitPredefinedLValue(const PredefinedExpr *E); 2724 LValue EmitUnaryOpLValue(const UnaryOperator *E); 2725 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 2726 bool Accessed = false); 2727 LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 2728 bool IsLowerBound = true); 2729 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 2730 LValue EmitMemberExpr(const MemberExpr *E); 2731 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 2732 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 2733 LValue EmitInitListLValue(const InitListExpr *E); 2734 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 2735 LValue EmitCastLValue(const CastExpr *E); 2736 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 2737 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 2738 2739 Address EmitExtVectorElementLValue(LValue V); 2740 2741 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 2742 2743 Address EmitArrayToPointerDecay(const Expr *Array, 2744 AlignmentSource *AlignSource = nullptr); 2745 2746 class ConstantEmission { 2747 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 2748 ConstantEmission(llvm::Constant *C, bool isReference) 2749 : ValueAndIsReference(C, isReference) {} 2750 public: 2751 ConstantEmission() {} 2752 static ConstantEmission forReference(llvm::Constant *C) { 2753 return ConstantEmission(C, true); 2754 } 2755 static ConstantEmission forValue(llvm::Constant *C) { 2756 return ConstantEmission(C, false); 2757 } 2758 2759 explicit operator bool() const { 2760 return ValueAndIsReference.getOpaqueValue() != nullptr; 2761 } 2762 2763 bool isReference() const { return ValueAndIsReference.getInt(); } 2764 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 2765 assert(isReference()); 2766 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 2767 refExpr->getType()); 2768 } 2769 2770 llvm::Constant *getValue() const { 2771 assert(!isReference()); 2772 return ValueAndIsReference.getPointer(); 2773 } 2774 }; 2775 2776 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 2777 2778 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 2779 AggValueSlot slot = AggValueSlot::ignored()); 2780 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 2781 2782 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 2783 const ObjCIvarDecl *Ivar); 2784 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 2785 LValue EmitLValueForLambdaField(const FieldDecl *Field); 2786 2787 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 2788 /// if the Field is a reference, this will return the address of the reference 2789 /// and not the address of the value stored in the reference. 2790 LValue EmitLValueForFieldInitialization(LValue Base, 2791 const FieldDecl* Field); 2792 2793 LValue EmitLValueForIvar(QualType ObjectTy, 2794 llvm::Value* Base, const ObjCIvarDecl *Ivar, 2795 unsigned CVRQualifiers); 2796 2797 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 2798 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 2799 LValue EmitLambdaLValue(const LambdaExpr *E); 2800 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 2801 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 2802 2803 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 2804 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 2805 LValue EmitStmtExprLValue(const StmtExpr *E); 2806 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 2807 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 2808 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init); 2809 2810 //===--------------------------------------------------------------------===// 2811 // Scalar Expression Emission 2812 //===--------------------------------------------------------------------===// 2813 2814 /// EmitCall - Generate a call of the given function, expecting the given 2815 /// result type, and using the given argument list which specifies both the 2816 /// LLVM arguments and the types they were derived from. 2817 RValue EmitCall(const CGFunctionInfo &FnInfo, llvm::Value *Callee, 2818 ReturnValueSlot ReturnValue, const CallArgList &Args, 2819 CGCalleeInfo CalleeInfo = CGCalleeInfo(), 2820 llvm::Instruction **callOrInvoke = nullptr); 2821 2822 RValue EmitCall(QualType FnType, llvm::Value *Callee, const CallExpr *E, 2823 ReturnValueSlot ReturnValue, 2824 CGCalleeInfo CalleeInfo = CGCalleeInfo(), 2825 llvm::Value *Chain = nullptr); 2826 RValue EmitCallExpr(const CallExpr *E, 2827 ReturnValueSlot ReturnValue = ReturnValueSlot()); 2828 2829 void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); 2830 2831 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 2832 const Twine &name = ""); 2833 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 2834 ArrayRef<llvm::Value*> args, 2835 const Twine &name = ""); 2836 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 2837 const Twine &name = ""); 2838 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 2839 ArrayRef<llvm::Value*> args, 2840 const Twine &name = ""); 2841 2842 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 2843 ArrayRef<llvm::Value *> Args, 2844 const Twine &Name = ""); 2845 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 2846 ArrayRef<llvm::Value*> args, 2847 const Twine &name = ""); 2848 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 2849 const Twine &name = ""); 2850 void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 2851 ArrayRef<llvm::Value*> args); 2852 2853 llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 2854 NestedNameSpecifier *Qual, 2855 llvm::Type *Ty); 2856 2857 llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 2858 CXXDtorType Type, 2859 const CXXRecordDecl *RD); 2860 2861 RValue 2862 EmitCXXMemberOrOperatorCall(const CXXMethodDecl *MD, llvm::Value *Callee, 2863 ReturnValueSlot ReturnValue, llvm::Value *This, 2864 llvm::Value *ImplicitParam, 2865 QualType ImplicitParamTy, const CallExpr *E); 2866 RValue EmitCXXDestructorCall(const CXXDestructorDecl *DD, llvm::Value *Callee, 2867 llvm::Value *This, llvm::Value *ImplicitParam, 2868 QualType ImplicitParamTy, const CallExpr *E, 2869 StructorType Type); 2870 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 2871 ReturnValueSlot ReturnValue); 2872 RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, 2873 const CXXMethodDecl *MD, 2874 ReturnValueSlot ReturnValue, 2875 bool HasQualifier, 2876 NestedNameSpecifier *Qualifier, 2877 bool IsArrow, const Expr *Base); 2878 // Compute the object pointer. 2879 Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 2880 llvm::Value *memberPtr, 2881 const MemberPointerType *memberPtrType, 2882 AlignmentSource *AlignSource = nullptr); 2883 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 2884 ReturnValueSlot ReturnValue); 2885 2886 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 2887 const CXXMethodDecl *MD, 2888 ReturnValueSlot ReturnValue); 2889 2890 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 2891 ReturnValueSlot ReturnValue); 2892 2893 RValue EmitCUDADevicePrintfCallExpr(const CallExpr *E, 2894 ReturnValueSlot ReturnValue); 2895 2896 RValue EmitBuiltinExpr(const FunctionDecl *FD, 2897 unsigned BuiltinID, const CallExpr *E, 2898 ReturnValueSlot ReturnValue); 2899 2900 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 2901 2902 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 2903 /// is unhandled by the current target. 2904 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2905 2906 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 2907 const llvm::CmpInst::Predicate Fp, 2908 const llvm::CmpInst::Predicate Ip, 2909 const llvm::Twine &Name = ""); 2910 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2911 2912 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 2913 unsigned LLVMIntrinsic, 2914 unsigned AltLLVMIntrinsic, 2915 const char *NameHint, 2916 unsigned Modifier, 2917 const CallExpr *E, 2918 SmallVectorImpl<llvm::Value *> &Ops, 2919 Address PtrOp0, Address PtrOp1); 2920 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 2921 unsigned Modifier, llvm::Type *ArgTy, 2922 const CallExpr *E); 2923 llvm::Value *EmitNeonCall(llvm::Function *F, 2924 SmallVectorImpl<llvm::Value*> &O, 2925 const char *name, 2926 unsigned shift = 0, bool rightshift = false); 2927 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 2928 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 2929 bool negateForRightShift); 2930 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 2931 llvm::Type *Ty, bool usgn, const char *name); 2932 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 2933 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2934 2935 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 2936 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2937 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2938 llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2939 llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2940 llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2941 llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, 2942 const CallExpr *E); 2943 2944 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 2945 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 2946 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 2947 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 2948 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 2949 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 2950 const ObjCMethodDecl *MethodWithObjects); 2951 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 2952 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 2953 ReturnValueSlot Return = ReturnValueSlot()); 2954 2955 /// Retrieves the default cleanup kind for an ARC cleanup. 2956 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 2957 CleanupKind getARCCleanupKind() { 2958 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 2959 ? NormalAndEHCleanup : NormalCleanup; 2960 } 2961 2962 // ARC primitives. 2963 void EmitARCInitWeak(Address addr, llvm::Value *value); 2964 void EmitARCDestroyWeak(Address addr); 2965 llvm::Value *EmitARCLoadWeak(Address addr); 2966 llvm::Value *EmitARCLoadWeakRetained(Address addr); 2967 llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); 2968 void EmitARCCopyWeak(Address dst, Address src); 2969 void EmitARCMoveWeak(Address dst, Address src); 2970 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 2971 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 2972 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 2973 bool resultIgnored); 2974 llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, 2975 bool resultIgnored); 2976 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 2977 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 2978 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 2979 void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); 2980 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 2981 llvm::Value *EmitARCAutorelease(llvm::Value *value); 2982 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 2983 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 2984 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 2985 llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value); 2986 2987 std::pair<LValue,llvm::Value*> 2988 EmitARCStoreAutoreleasing(const BinaryOperator *e); 2989 std::pair<LValue,llvm::Value*> 2990 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 2991 std::pair<LValue,llvm::Value*> 2992 EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored); 2993 2994 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 2995 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 2996 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 2997 2998 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 2999 llvm::Value *EmitARCReclaimReturnedObject(const Expr *e, 3000 bool allowUnsafeClaim); 3001 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 3002 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 3003 llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr); 3004 3005 void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); 3006 3007 static Destroyer destroyARCStrongImprecise; 3008 static Destroyer destroyARCStrongPrecise; 3009 static Destroyer destroyARCWeak; 3010 3011 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 3012 llvm::Value *EmitObjCAutoreleasePoolPush(); 3013 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 3014 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 3015 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 3016 3017 /// \brief Emits a reference binding to the passed in expression. 3018 RValue EmitReferenceBindingToExpr(const Expr *E); 3019 3020 //===--------------------------------------------------------------------===// 3021 // Expression Emission 3022 //===--------------------------------------------------------------------===// 3023 3024 // Expressions are broken into three classes: scalar, complex, aggregate. 3025 3026 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 3027 /// scalar type, returning the result. 3028 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 3029 3030 /// Emit a conversion from the specified type to the specified destination 3031 /// type, both of which are LLVM scalar types. 3032 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 3033 QualType DstTy, SourceLocation Loc); 3034 3035 /// Emit a conversion from the specified complex type to the specified 3036 /// destination type, where the destination type is an LLVM scalar type. 3037 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 3038 QualType DstTy, 3039 SourceLocation Loc); 3040 3041 /// EmitAggExpr - Emit the computation of the specified expression 3042 /// of aggregate type. The result is computed into the given slot, 3043 /// which may be null to indicate that the value is not needed. 3044 void EmitAggExpr(const Expr *E, AggValueSlot AS); 3045 3046 /// EmitAggExprToLValue - Emit the computation of the specified expression of 3047 /// aggregate type into a temporary LValue. 3048 LValue EmitAggExprToLValue(const Expr *E); 3049 3050 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 3051 /// make sure it survives garbage collection until this point. 3052 void EmitExtendGCLifetime(llvm::Value *object); 3053 3054 /// EmitComplexExpr - Emit the computation of the specified expression of 3055 /// complex type, returning the result. 3056 ComplexPairTy EmitComplexExpr(const Expr *E, 3057 bool IgnoreReal = false, 3058 bool IgnoreImag = false); 3059 3060 /// EmitComplexExprIntoLValue - Emit the given expression of complex 3061 /// type and place its result into the specified l-value. 3062 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 3063 3064 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 3065 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 3066 3067 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 3068 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 3069 3070 Address emitAddrOfRealComponent(Address complex, QualType complexType); 3071 Address emitAddrOfImagComponent(Address complex, QualType complexType); 3072 3073 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 3074 /// global variable that has already been created for it. If the initializer 3075 /// has a different type than GV does, this may free GV and return a different 3076 /// one. Otherwise it just returns GV. 3077 llvm::GlobalVariable * 3078 AddInitializerToStaticVarDecl(const VarDecl &D, 3079 llvm::GlobalVariable *GV); 3080 3081 3082 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 3083 /// variable with global storage. 3084 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 3085 bool PerformInit); 3086 3087 llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor, 3088 llvm::Constant *Addr); 3089 3090 /// Call atexit() with a function that passes the given argument to 3091 /// the given function. 3092 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn, 3093 llvm::Constant *addr); 3094 3095 /// Emit code in this function to perform a guarded variable 3096 /// initialization. Guarded initializations are used when it's not 3097 /// possible to prove that an initialization will be done exactly 3098 /// once, e.g. with a static local variable or a static data member 3099 /// of a class template. 3100 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 3101 bool PerformInit); 3102 3103 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 3104 /// variables. 3105 void GenerateCXXGlobalInitFunc(llvm::Function *Fn, 3106 ArrayRef<llvm::Function *> CXXThreadLocals, 3107 Address Guard = Address::invalid()); 3108 3109 /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global 3110 /// variables. 3111 void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn, 3112 const std::vector<std::pair<llvm::WeakVH, 3113 llvm::Constant*> > &DtorsAndObjects); 3114 3115 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 3116 const VarDecl *D, 3117 llvm::GlobalVariable *Addr, 3118 bool PerformInit); 3119 3120 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 3121 3122 void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); 3123 3124 void enterFullExpression(const ExprWithCleanups *E) { 3125 if (E->getNumObjects() == 0) return; 3126 enterNonTrivialFullExpression(E); 3127 } 3128 void enterNonTrivialFullExpression(const ExprWithCleanups *E); 3129 3130 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 3131 3132 void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest); 3133 3134 RValue EmitAtomicExpr(AtomicExpr *E); 3135 3136 //===--------------------------------------------------------------------===// 3137 // Annotations Emission 3138 //===--------------------------------------------------------------------===// 3139 3140 /// Emit an annotation call (intrinsic or builtin). 3141 llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn, 3142 llvm::Value *AnnotatedVal, 3143 StringRef AnnotationStr, 3144 SourceLocation Location); 3145 3146 /// Emit local annotations for the local variable V, declared by D. 3147 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 3148 3149 /// Emit field annotations for the given field & value. Returns the 3150 /// annotation result. 3151 Address EmitFieldAnnotations(const FieldDecl *D, Address V); 3152 3153 //===--------------------------------------------------------------------===// 3154 // Internal Helpers 3155 //===--------------------------------------------------------------------===// 3156 3157 /// ContainsLabel - Return true if the statement contains a label in it. If 3158 /// this statement is not executed normally, it not containing a label means 3159 /// that we can just remove the code. 3160 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 3161 3162 /// containsBreak - Return true if the statement contains a break out of it. 3163 /// If the statement (recursively) contains a switch or loop with a break 3164 /// inside of it, this is fine. 3165 static bool containsBreak(const Stmt *S); 3166 3167 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 3168 /// to a constant, or if it does but contains a label, return false. If it 3169 /// constant folds return true and set the boolean result in Result. 3170 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, 3171 bool AllowLabels = false); 3172 3173 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 3174 /// to a constant, or if it does but contains a label, return false. If it 3175 /// constant folds return true and set the folded value. 3176 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result, 3177 bool AllowLabels = false); 3178 3179 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 3180 /// if statement) to the specified blocks. Based on the condition, this might 3181 /// try to simplify the codegen of the conditional based on the branch. 3182 /// TrueCount should be the number of times we expect the condition to 3183 /// evaluate to true based on PGO data. 3184 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 3185 llvm::BasicBlock *FalseBlock, uint64_t TrueCount); 3186 3187 /// \brief Emit a description of a type in a format suitable for passing to 3188 /// a runtime sanitizer handler. 3189 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 3190 3191 /// \brief Convert a value into a format suitable for passing to a runtime 3192 /// sanitizer handler. 3193 llvm::Value *EmitCheckValue(llvm::Value *V); 3194 3195 /// \brief Emit a description of a source location in a format suitable for 3196 /// passing to a runtime sanitizer handler. 3197 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 3198 3199 /// \brief Create a basic block that will call a handler function in a 3200 /// sanitizer runtime with the provided arguments, and create a conditional 3201 /// branch to it. 3202 void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 3203 StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs, 3204 ArrayRef<llvm::Value *> DynamicArgs); 3205 3206 /// \brief Emit a slow path cross-DSO CFI check which calls __cfi_slowpath 3207 /// if Cond if false. 3208 void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond, 3209 llvm::ConstantInt *TypeId, llvm::Value *Ptr, 3210 ArrayRef<llvm::Constant *> StaticArgs); 3211 3212 /// \brief Create a basic block that will call the trap intrinsic, and emit a 3213 /// conditional branch to it, for the -ftrapv checks. 3214 void EmitTrapCheck(llvm::Value *Checked); 3215 3216 /// \brief Emit a call to trap or debugtrap and attach function attribute 3217 /// "trap-func-name" if specified. 3218 llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); 3219 3220 /// \brief Emit a cross-DSO CFI failure handling function. 3221 void EmitCfiCheckFail(); 3222 3223 /// \brief Create a check for a function parameter that may potentially be 3224 /// declared as non-null. 3225 void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, 3226 const FunctionDecl *FD, unsigned ParmNum); 3227 3228 /// EmitCallArg - Emit a single call argument. 3229 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 3230 3231 /// EmitDelegateCallArg - We are performing a delegate call; that 3232 /// is, the current function is delegating to another one. Produce 3233 /// a r-value suitable for passing the given parameter. 3234 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 3235 SourceLocation loc); 3236 3237 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 3238 /// point operation, expressed as the maximum relative error in ulp. 3239 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 3240 3241 private: 3242 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 3243 void EmitReturnOfRValue(RValue RV, QualType Ty); 3244 3245 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 3246 3247 llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4> 3248 DeferredReplacements; 3249 3250 /// Set the address of a local variable. 3251 void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { 3252 assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!"); 3253 LocalDeclMap.insert({VD, Addr}); 3254 } 3255 3256 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 3257 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 3258 /// 3259 /// \param AI - The first function argument of the expansion. 3260 void ExpandTypeFromArgs(QualType Ty, LValue Dst, 3261 SmallVectorImpl<llvm::Value *>::iterator &AI); 3262 3263 /// ExpandTypeToArgs - Expand an RValue \arg RV, with the LLVM type for \arg 3264 /// Ty, into individual arguments on the provided vector \arg IRCallArgs, 3265 /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. 3266 void ExpandTypeToArgs(QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy, 3267 SmallVectorImpl<llvm::Value *> &IRCallArgs, 3268 unsigned &IRCallArgPos); 3269 3270 llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 3271 const Expr *InputExpr, std::string &ConstraintStr); 3272 3273 llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 3274 LValue InputValue, QualType InputType, 3275 std::string &ConstraintStr, 3276 SourceLocation Loc); 3277 3278 /// \brief Attempts to statically evaluate the object size of E. If that 3279 /// fails, emits code to figure the size of E out for us. This is 3280 /// pass_object_size aware. 3281 llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, 3282 llvm::IntegerType *ResType); 3283 3284 /// \brief Emits the size of E, as required by __builtin_object_size. This 3285 /// function is aware of pass_object_size parameters, and will act accordingly 3286 /// if E is a parameter with the pass_object_size attribute. 3287 llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, 3288 llvm::IntegerType *ResType); 3289 3290 public: 3291 #ifndef NDEBUG 3292 // Determine whether the given argument is an Objective-C method 3293 // that may have type parameters in its signature. 3294 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { 3295 const DeclContext *dc = method->getDeclContext(); 3296 if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) { 3297 return classDecl->getTypeParamListAsWritten(); 3298 } 3299 3300 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) { 3301 return catDecl->getTypeParamList(); 3302 } 3303 3304 return false; 3305 } 3306 3307 template<typename T> 3308 static bool isObjCMethodWithTypeParams(const T *) { return false; } 3309 #endif 3310 3311 /// EmitCallArgs - Emit call arguments for a function. 3312 template <typename T> 3313 void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, 3314 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3315 const FunctionDecl *CalleeDecl = nullptr, 3316 unsigned ParamsToSkip = 0) { 3317 SmallVector<QualType, 16> ArgTypes; 3318 CallExpr::const_arg_iterator Arg = ArgRange.begin(); 3319 3320 assert((ParamsToSkip == 0 || CallArgTypeInfo) && 3321 "Can't skip parameters if type info is not provided"); 3322 if (CallArgTypeInfo) { 3323 #ifndef NDEBUG 3324 bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo); 3325 #endif 3326 3327 // First, use the argument types that the type info knows about 3328 for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip, 3329 E = CallArgTypeInfo->param_type_end(); 3330 I != E; ++I, ++Arg) { 3331 assert(Arg != ArgRange.end() && "Running over edge of argument list!"); 3332 assert((isGenericMethod || 3333 ((*I)->isVariablyModifiedType() || 3334 (*I).getNonReferenceType()->isObjCRetainableType() || 3335 getContext() 3336 .getCanonicalType((*I).getNonReferenceType()) 3337 .getTypePtr() == 3338 getContext() 3339 .getCanonicalType((*Arg)->getType()) 3340 .getTypePtr())) && 3341 "type mismatch in call argument!"); 3342 ArgTypes.push_back(*I); 3343 } 3344 } 3345 3346 // Either we've emitted all the call args, or we have a call to variadic 3347 // function. 3348 assert((Arg == ArgRange.end() || !CallArgTypeInfo || 3349 CallArgTypeInfo->isVariadic()) && 3350 "Extra arguments in non-variadic function!"); 3351 3352 // If we still have any arguments, emit them using the type of the argument. 3353 for (auto *A : llvm::make_range(Arg, ArgRange.end())) 3354 ArgTypes.push_back(getVarArgType(A)); 3355 3356 EmitCallArgs(Args, ArgTypes, ArgRange, CalleeDecl, ParamsToSkip); 3357 } 3358 3359 void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes, 3360 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3361 const FunctionDecl *CalleeDecl = nullptr, 3362 unsigned ParamsToSkip = 0); 3363 3364 /// EmitPointerWithAlignment - Given an expression with a pointer 3365 /// type, emit the value and compute our best estimate of the 3366 /// alignment of the pointee. 3367 /// 3368 /// Note that this function will conservatively fall back on the type 3369 /// when it doesn't 3370 /// 3371 /// \param Source - If non-null, this will be initialized with 3372 /// information about the source of the alignment. Note that this 3373 /// function will conservatively fall back on the type when it 3374 /// doesn't recognize the expression, which means that sometimes 3375 /// 3376 /// a worst-case One 3377 /// reasonable way to use this information is when there's a 3378 /// language guarantee that the pointer must be aligned to some 3379 /// stricter value, and we're simply trying to ensure that 3380 /// sufficiently obvious uses of under-aligned objects don't get 3381 /// miscompiled; for example, a placement new into the address of 3382 /// a local variable. In such a case, it's quite reasonable to 3383 /// just ignore the returned alignment when it isn't from an 3384 /// explicit source. 3385 Address EmitPointerWithAlignment(const Expr *Addr, 3386 AlignmentSource *Source = nullptr); 3387 3388 void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK); 3389 3390 private: 3391 QualType getVarArgType(const Expr *Arg); 3392 3393 const TargetCodeGenInfo &getTargetHooks() const { 3394 return CGM.getTargetCodeGenInfo(); 3395 } 3396 3397 void EmitDeclMetadata(); 3398 3399 BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, 3400 const AutoVarEmission &emission); 3401 3402 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 3403 3404 llvm::Value *GetValueForARMHint(unsigned BuiltinID); 3405 }; 3406 3407 /// Helper class with most of the code for saving a value for a 3408 /// conditional expression cleanup. 3409 struct DominatingLLVMValue { 3410 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 3411 3412 /// Answer whether the given value needs extra work to be saved. 3413 static bool needsSaving(llvm::Value *value) { 3414 // If it's not an instruction, we don't need to save. 3415 if (!isa<llvm::Instruction>(value)) return false; 3416 3417 // If it's an instruction in the entry block, we don't need to save. 3418 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 3419 return (block != &block->getParent()->getEntryBlock()); 3420 } 3421 3422 /// Try to save the given value. 3423 static saved_type save(CodeGenFunction &CGF, llvm::Value *value) { 3424 if (!needsSaving(value)) return saved_type(value, false); 3425 3426 // Otherwise, we need an alloca. 3427 auto align = CharUnits::fromQuantity( 3428 CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType())); 3429 Address alloca = 3430 CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save"); 3431 CGF.Builder.CreateStore(value, alloca); 3432 3433 return saved_type(alloca.getPointer(), true); 3434 } 3435 3436 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) { 3437 // If the value says it wasn't saved, trust that it's still dominating. 3438 if (!value.getInt()) return value.getPointer(); 3439 3440 // Otherwise, it should be an alloca instruction, as set up in save(). 3441 auto alloca = cast<llvm::AllocaInst>(value.getPointer()); 3442 return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment()); 3443 } 3444 }; 3445 3446 /// A partial specialization of DominatingValue for llvm::Values that 3447 /// might be llvm::Instructions. 3448 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 3449 typedef T *type; 3450 static type restore(CodeGenFunction &CGF, saved_type value) { 3451 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 3452 } 3453 }; 3454 3455 /// A specialization of DominatingValue for Address. 3456 template <> struct DominatingValue<Address> { 3457 typedef Address type; 3458 3459 struct saved_type { 3460 DominatingLLVMValue::saved_type SavedValue; 3461 CharUnits Alignment; 3462 }; 3463 3464 static bool needsSaving(type value) { 3465 return DominatingLLVMValue::needsSaving(value.getPointer()); 3466 } 3467 static saved_type save(CodeGenFunction &CGF, type value) { 3468 return { DominatingLLVMValue::save(CGF, value.getPointer()), 3469 value.getAlignment() }; 3470 } 3471 static type restore(CodeGenFunction &CGF, saved_type value) { 3472 return Address(DominatingLLVMValue::restore(CGF, value.SavedValue), 3473 value.Alignment); 3474 } 3475 }; 3476 3477 /// A specialization of DominatingValue for RValue. 3478 template <> struct DominatingValue<RValue> { 3479 typedef RValue type; 3480 class saved_type { 3481 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 3482 AggregateAddress, ComplexAddress }; 3483 3484 llvm::Value *Value; 3485 unsigned K : 3; 3486 unsigned Align : 29; 3487 saved_type(llvm::Value *v, Kind k, unsigned a = 0) 3488 : Value(v), K(k), Align(a) {} 3489 3490 public: 3491 static bool needsSaving(RValue value); 3492 static saved_type save(CodeGenFunction &CGF, RValue value); 3493 RValue restore(CodeGenFunction &CGF); 3494 3495 // implementations in CGCleanup.cpp 3496 }; 3497 3498 static bool needsSaving(type value) { 3499 return saved_type::needsSaving(value); 3500 } 3501 static saved_type save(CodeGenFunction &CGF, type value) { 3502 return saved_type::save(CGF, value); 3503 } 3504 static type restore(CodeGenFunction &CGF, saved_type value) { 3505 return value.restore(CGF); 3506 } 3507 }; 3508 3509 } // end namespace CodeGen 3510 } // end namespace clang 3511 3512 #endif 3513