Home | History | Annotate | Download | only in ADT
      1 //===--- llvm/ADT/SparseMultiSet.h - Sparse multiset ------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the SparseMultiSet class, which adds multiset behavior to
     11 // the SparseSet.
     12 //
     13 // A sparse multiset holds a small number of objects identified by integer keys
     14 // from a moderately sized universe. The sparse multiset uses more memory than
     15 // other containers in order to provide faster operations. Any key can map to
     16 // multiple values. A SparseMultiSetNode class is provided, which serves as a
     17 // convenient base class for the contents of a SparseMultiSet.
     18 //
     19 //===----------------------------------------------------------------------===//
     20 
     21 #ifndef LLVM_ADT_SPARSEMULTISET_H
     22 #define LLVM_ADT_SPARSEMULTISET_H
     23 
     24 #include "llvm/ADT/SparseSet.h"
     25 
     26 namespace llvm {
     27 
     28 /// Fast multiset implementation for objects that can be identified by small
     29 /// unsigned keys.
     30 ///
     31 /// SparseMultiSet allocates memory proportional to the size of the key
     32 /// universe, so it is not recommended for building composite data structures.
     33 /// It is useful for algorithms that require a single set with fast operations.
     34 ///
     35 /// Compared to DenseSet and DenseMap, SparseMultiSet provides constant-time
     36 /// fast clear() as fast as a vector.  The find(), insert(), and erase()
     37 /// operations are all constant time, and typically faster than a hash table.
     38 /// The iteration order doesn't depend on numerical key values, it only depends
     39 /// on the order of insert() and erase() operations.  Iteration order is the
     40 /// insertion order. Iteration is only provided over elements of equivalent
     41 /// keys, but iterators are bidirectional.
     42 ///
     43 /// Compared to BitVector, SparseMultiSet<unsigned> uses 8x-40x more memory, but
     44 /// offers constant-time clear() and size() operations as well as fast iteration
     45 /// independent on the size of the universe.
     46 ///
     47 /// SparseMultiSet contains a dense vector holding all the objects and a sparse
     48 /// array holding indexes into the dense vector.  Most of the memory is used by
     49 /// the sparse array which is the size of the key universe. The SparseT template
     50 /// parameter provides a space/speed tradeoff for sets holding many elements.
     51 ///
     52 /// When SparseT is uint32_t, find() only touches up to 3 cache lines, but the
     53 /// sparse array uses 4 x Universe bytes.
     54 ///
     55 /// When SparseT is uint8_t (the default), find() touches up to 3+[N/256] cache
     56 /// lines, but the sparse array is 4x smaller.  N is the number of elements in
     57 /// the set.
     58 ///
     59 /// For sets that may grow to thousands of elements, SparseT should be set to
     60 /// uint16_t or uint32_t.
     61 ///
     62 /// Multiset behavior is provided by providing doubly linked lists for values
     63 /// that are inlined in the dense vector. SparseMultiSet is a good choice when
     64 /// one desires a growable number of entries per key, as it will retain the
     65 /// SparseSet algorithmic properties despite being growable. Thus, it is often a
     66 /// better choice than a SparseSet of growable containers or a vector of
     67 /// vectors. SparseMultiSet also keeps iterators valid after erasure (provided
     68 /// the iterators don't point to the element erased), allowing for more
     69 /// intuitive and fast removal.
     70 ///
     71 /// @tparam ValueT      The type of objects in the set.
     72 /// @tparam KeyFunctorT A functor that computes an unsigned index from KeyT.
     73 /// @tparam SparseT     An unsigned integer type. See above.
     74 ///
     75 template<typename ValueT,
     76          typename KeyFunctorT = llvm::identity<unsigned>,
     77          typename SparseT = uint8_t>
     78 class SparseMultiSet {
     79   static_assert(std::numeric_limits<SparseT>::is_integer &&
     80                 !std::numeric_limits<SparseT>::is_signed,
     81                 "SparseT must be an unsigned integer type");
     82 
     83   /// The actual data that's stored, as a doubly-linked list implemented via
     84   /// indices into the DenseVector.  The doubly linked list is implemented
     85   /// circular in Prev indices, and INVALID-terminated in Next indices. This
     86   /// provides efficient access to list tails. These nodes can also be
     87   /// tombstones, in which case they are actually nodes in a single-linked
     88   /// freelist of recyclable slots.
     89   struct SMSNode {
     90     static const unsigned INVALID = ~0U;
     91 
     92     ValueT Data;
     93     unsigned Prev;
     94     unsigned Next;
     95 
     96     SMSNode(ValueT D, unsigned P, unsigned N) : Data(D), Prev(P), Next(N) { }
     97 
     98     /// List tails have invalid Nexts.
     99     bool isTail() const {
    100       return Next == INVALID;
    101     }
    102 
    103     /// Whether this node is a tombstone node, and thus is in our freelist.
    104     bool isTombstone() const {
    105       return Prev == INVALID;
    106     }
    107 
    108     /// Since the list is circular in Prev, all non-tombstone nodes have a valid
    109     /// Prev.
    110     bool isValid() const { return Prev != INVALID; }
    111   };
    112 
    113   typedef typename KeyFunctorT::argument_type KeyT;
    114   typedef SmallVector<SMSNode, 8> DenseT;
    115   DenseT Dense;
    116   SparseT *Sparse;
    117   unsigned Universe;
    118   KeyFunctorT KeyIndexOf;
    119   SparseSetValFunctor<KeyT, ValueT, KeyFunctorT> ValIndexOf;
    120 
    121   /// We have a built-in recycler for reusing tombstone slots. This recycler
    122   /// puts a singly-linked free list into tombstone slots, allowing us quick
    123   /// erasure, iterator preservation, and dense size.
    124   unsigned FreelistIdx;
    125   unsigned NumFree;
    126 
    127   unsigned sparseIndex(const ValueT &Val) const {
    128     assert(ValIndexOf(Val) < Universe &&
    129            "Invalid key in set. Did object mutate?");
    130     return ValIndexOf(Val);
    131   }
    132   unsigned sparseIndex(const SMSNode &N) const { return sparseIndex(N.Data); }
    133 
    134   // Disable copy construction and assignment.
    135   // This data structure is not meant to be used that way.
    136   SparseMultiSet(const SparseMultiSet&) = delete;
    137   SparseMultiSet &operator=(const SparseMultiSet&) = delete;
    138 
    139   /// Whether the given entry is the head of the list. List heads's previous
    140   /// pointers are to the tail of the list, allowing for efficient access to the
    141   /// list tail. D must be a valid entry node.
    142   bool isHead(const SMSNode &D) const {
    143     assert(D.isValid() && "Invalid node for head");
    144     return Dense[D.Prev].isTail();
    145   }
    146 
    147   /// Whether the given entry is a singleton entry, i.e. the only entry with
    148   /// that key.
    149   bool isSingleton(const SMSNode &N) const {
    150     assert(N.isValid() && "Invalid node for singleton");
    151     // Is N its own predecessor?
    152     return &Dense[N.Prev] == &N;
    153   }
    154 
    155   /// Add in the given SMSNode. Uses a free entry in our freelist if
    156   /// available. Returns the index of the added node.
    157   unsigned addValue(const ValueT& V, unsigned Prev, unsigned Next) {
    158     if (NumFree == 0) {
    159       Dense.push_back(SMSNode(V, Prev, Next));
    160       return Dense.size() - 1;
    161     }
    162 
    163     // Peel off a free slot
    164     unsigned Idx = FreelistIdx;
    165     unsigned NextFree = Dense[Idx].Next;
    166     assert(Dense[Idx].isTombstone() && "Non-tombstone free?");
    167 
    168     Dense[Idx] = SMSNode(V, Prev, Next);
    169     FreelistIdx = NextFree;
    170     --NumFree;
    171     return Idx;
    172   }
    173 
    174   /// Make the current index a new tombstone. Pushes it onto the freelist.
    175   void makeTombstone(unsigned Idx) {
    176     Dense[Idx].Prev = SMSNode::INVALID;
    177     Dense[Idx].Next = FreelistIdx;
    178     FreelistIdx = Idx;
    179     ++NumFree;
    180   }
    181 
    182 public:
    183   typedef ValueT value_type;
    184   typedef ValueT &reference;
    185   typedef const ValueT &const_reference;
    186   typedef ValueT *pointer;
    187   typedef const ValueT *const_pointer;
    188   typedef unsigned size_type;
    189 
    190   SparseMultiSet()
    191     : Sparse(nullptr), Universe(0), FreelistIdx(SMSNode::INVALID), NumFree(0) {}
    192 
    193   ~SparseMultiSet() { free(Sparse); }
    194 
    195   /// Set the universe size which determines the largest key the set can hold.
    196   /// The universe must be sized before any elements can be added.
    197   ///
    198   /// @param U Universe size. All object keys must be less than U.
    199   ///
    200   void setUniverse(unsigned U) {
    201     // It's not hard to resize the universe on a non-empty set, but it doesn't
    202     // seem like a likely use case, so we can add that code when we need it.
    203     assert(empty() && "Can only resize universe on an empty map");
    204     // Hysteresis prevents needless reallocations.
    205     if (U >= Universe/4 && U <= Universe)
    206       return;
    207     free(Sparse);
    208     // The Sparse array doesn't actually need to be initialized, so malloc
    209     // would be enough here, but that will cause tools like valgrind to
    210     // complain about branching on uninitialized data.
    211     Sparse = reinterpret_cast<SparseT*>(calloc(U, sizeof(SparseT)));
    212     Universe = U;
    213   }
    214 
    215   /// Our iterators are iterators over the collection of objects that share a
    216   /// key.
    217   template<typename SMSPtrTy>
    218   class iterator_base : public std::iterator<std::bidirectional_iterator_tag,
    219                                              ValueT> {
    220     friend class SparseMultiSet;
    221     SMSPtrTy SMS;
    222     unsigned Idx;
    223     unsigned SparseIdx;
    224 
    225     iterator_base(SMSPtrTy P, unsigned I, unsigned SI)
    226       : SMS(P), Idx(I), SparseIdx(SI) { }
    227 
    228     /// Whether our iterator has fallen outside our dense vector.
    229     bool isEnd() const {
    230       if (Idx == SMSNode::INVALID)
    231         return true;
    232 
    233       assert(Idx < SMS->Dense.size() && "Out of range, non-INVALID Idx?");
    234       return false;
    235     }
    236 
    237     /// Whether our iterator is properly keyed, i.e. the SparseIdx is valid
    238     bool isKeyed() const { return SparseIdx < SMS->Universe; }
    239 
    240     unsigned Prev() const { return SMS->Dense[Idx].Prev; }
    241     unsigned Next() const { return SMS->Dense[Idx].Next; }
    242 
    243     void setPrev(unsigned P) { SMS->Dense[Idx].Prev = P; }
    244     void setNext(unsigned N) { SMS->Dense[Idx].Next = N; }
    245 
    246   public:
    247     typedef std::iterator<std::bidirectional_iterator_tag, ValueT> super;
    248     typedef typename super::value_type value_type;
    249     typedef typename super::difference_type difference_type;
    250     typedef typename super::pointer pointer;
    251     typedef typename super::reference reference;
    252 
    253     reference operator*() const {
    254       assert(isKeyed() && SMS->sparseIndex(SMS->Dense[Idx].Data) == SparseIdx &&
    255              "Dereferencing iterator of invalid key or index");
    256 
    257       return SMS->Dense[Idx].Data;
    258     }
    259     pointer operator->() const { return &operator*(); }
    260 
    261     /// Comparison operators
    262     bool operator==(const iterator_base &RHS) const {
    263       // end compares equal
    264       if (SMS == RHS.SMS && Idx == RHS.Idx) {
    265         assert((isEnd() || SparseIdx == RHS.SparseIdx) &&
    266                "Same dense entry, but different keys?");
    267         return true;
    268       }
    269 
    270       return false;
    271     }
    272 
    273     bool operator!=(const iterator_base &RHS) const {
    274       return !operator==(RHS);
    275     }
    276 
    277     /// Increment and decrement operators
    278     iterator_base &operator--() { // predecrement - Back up
    279       assert(isKeyed() && "Decrementing an invalid iterator");
    280       assert((isEnd() || !SMS->isHead(SMS->Dense[Idx])) &&
    281              "Decrementing head of list");
    282 
    283       // If we're at the end, then issue a new find()
    284       if (isEnd())
    285         Idx = SMS->findIndex(SparseIdx).Prev();
    286       else
    287         Idx = Prev();
    288 
    289       return *this;
    290     }
    291     iterator_base &operator++() { // preincrement - Advance
    292       assert(!isEnd() && isKeyed() && "Incrementing an invalid/end iterator");
    293       Idx = Next();
    294       return *this;
    295     }
    296     iterator_base operator--(int) { // postdecrement
    297       iterator_base I(*this);
    298       --*this;
    299       return I;
    300     }
    301     iterator_base operator++(int) { // postincrement
    302       iterator_base I(*this);
    303       ++*this;
    304       return I;
    305     }
    306   };
    307   typedef iterator_base<SparseMultiSet *> iterator;
    308   typedef iterator_base<const SparseMultiSet *> const_iterator;
    309 
    310   // Convenience types
    311   typedef std::pair<iterator, iterator> RangePair;
    312 
    313   /// Returns an iterator past this container. Note that such an iterator cannot
    314   /// be decremented, but will compare equal to other end iterators.
    315   iterator end() { return iterator(this, SMSNode::INVALID, SMSNode::INVALID); }
    316   const_iterator end() const {
    317     return const_iterator(this, SMSNode::INVALID, SMSNode::INVALID);
    318   }
    319 
    320   /// Returns true if the set is empty.
    321   ///
    322   /// This is not the same as BitVector::empty().
    323   ///
    324   bool empty() const { return size() == 0; }
    325 
    326   /// Returns the number of elements in the set.
    327   ///
    328   /// This is not the same as BitVector::size() which returns the size of the
    329   /// universe.
    330   ///
    331   size_type size() const {
    332     assert(NumFree <= Dense.size() && "Out-of-bounds free entries");
    333     return Dense.size() - NumFree;
    334   }
    335 
    336   /// Clears the set.  This is a very fast constant time operation.
    337   ///
    338   void clear() {
    339     // Sparse does not need to be cleared, see find().
    340     Dense.clear();
    341     NumFree = 0;
    342     FreelistIdx = SMSNode::INVALID;
    343   }
    344 
    345   /// Find an element by its index.
    346   ///
    347   /// @param   Idx A valid index to find.
    348   /// @returns An iterator to the element identified by key, or end().
    349   ///
    350   iterator findIndex(unsigned Idx) {
    351     assert(Idx < Universe && "Key out of range");
    352     const unsigned Stride = std::numeric_limits<SparseT>::max() + 1u;
    353     for (unsigned i = Sparse[Idx], e = Dense.size(); i < e; i += Stride) {
    354       const unsigned FoundIdx = sparseIndex(Dense[i]);
    355       // Check that we're pointing at the correct entry and that it is the head
    356       // of a valid list.
    357       if (Idx == FoundIdx && Dense[i].isValid() && isHead(Dense[i]))
    358         return iterator(this, i, Idx);
    359       // Stride is 0 when SparseT >= unsigned.  We don't need to loop.
    360       if (!Stride)
    361         break;
    362     }
    363     return end();
    364   }
    365 
    366   /// Find an element by its key.
    367   ///
    368   /// @param   Key A valid key to find.
    369   /// @returns An iterator to the element identified by key, or end().
    370   ///
    371   iterator find(const KeyT &Key) {
    372     return findIndex(KeyIndexOf(Key));
    373   }
    374 
    375   const_iterator find(const KeyT &Key) const {
    376     iterator I = const_cast<SparseMultiSet*>(this)->findIndex(KeyIndexOf(Key));
    377     return const_iterator(I.SMS, I.Idx, KeyIndexOf(Key));
    378   }
    379 
    380   /// Returns the number of elements identified by Key. This will be linear in
    381   /// the number of elements of that key.
    382   size_type count(const KeyT &Key) const {
    383     unsigned Ret = 0;
    384     for (const_iterator It = find(Key); It != end(); ++It)
    385       ++Ret;
    386 
    387     return Ret;
    388   }
    389 
    390   /// Returns true if this set contains an element identified by Key.
    391   bool contains(const KeyT &Key) const {
    392     return find(Key) != end();
    393   }
    394 
    395   /// Return the head and tail of the subset's list, otherwise returns end().
    396   iterator getHead(const KeyT &Key) { return find(Key); }
    397   iterator getTail(const KeyT &Key) {
    398     iterator I = find(Key);
    399     if (I != end())
    400       I = iterator(this, I.Prev(), KeyIndexOf(Key));
    401     return I;
    402   }
    403 
    404   /// The bounds of the range of items sharing Key K. First member is the head
    405   /// of the list, and the second member is a decrementable end iterator for
    406   /// that key.
    407   RangePair equal_range(const KeyT &K) {
    408     iterator B = find(K);
    409     iterator E = iterator(this, SMSNode::INVALID, B.SparseIdx);
    410     return make_pair(B, E);
    411   }
    412 
    413   /// Insert a new element at the tail of the subset list. Returns an iterator
    414   /// to the newly added entry.
    415   iterator insert(const ValueT &Val) {
    416     unsigned Idx = sparseIndex(Val);
    417     iterator I = findIndex(Idx);
    418 
    419     unsigned NodeIdx = addValue(Val, SMSNode::INVALID, SMSNode::INVALID);
    420 
    421     if (I == end()) {
    422       // Make a singleton list
    423       Sparse[Idx] = NodeIdx;
    424       Dense[NodeIdx].Prev = NodeIdx;
    425       return iterator(this, NodeIdx, Idx);
    426     }
    427 
    428     // Stick it at the end.
    429     unsigned HeadIdx = I.Idx;
    430     unsigned TailIdx = I.Prev();
    431     Dense[TailIdx].Next = NodeIdx;
    432     Dense[HeadIdx].Prev = NodeIdx;
    433     Dense[NodeIdx].Prev = TailIdx;
    434 
    435     return iterator(this, NodeIdx, Idx);
    436   }
    437 
    438   /// Erases an existing element identified by a valid iterator.
    439   ///
    440   /// This invalidates iterators pointing at the same entry, but erase() returns
    441   /// an iterator pointing to the next element in the subset's list. This makes
    442   /// it possible to erase selected elements while iterating over the subset:
    443   ///
    444   ///   tie(I, E) = Set.equal_range(Key);
    445   ///   while (I != E)
    446   ///     if (test(*I))
    447   ///       I = Set.erase(I);
    448   ///     else
    449   ///       ++I;
    450   ///
    451   /// Note that if the last element in the subset list is erased, this will
    452   /// return an end iterator which can be decremented to get the new tail (if it
    453   /// exists):
    454   ///
    455   ///  tie(B, I) = Set.equal_range(Key);
    456   ///  for (bool isBegin = B == I; !isBegin; /* empty */) {
    457   ///    isBegin = (--I) == B;
    458   ///    if (test(I))
    459   ///      break;
    460   ///    I = erase(I);
    461   ///  }
    462   iterator erase(iterator I) {
    463     assert(I.isKeyed() && !I.isEnd() && !Dense[I.Idx].isTombstone() &&
    464            "erasing invalid/end/tombstone iterator");
    465 
    466     // First, unlink the node from its list. Then swap the node out with the
    467     // dense vector's last entry
    468     iterator NextI = unlink(Dense[I.Idx]);
    469 
    470     // Put in a tombstone.
    471     makeTombstone(I.Idx);
    472 
    473     return NextI;
    474   }
    475 
    476   /// Erase all elements with the given key. This invalidates all
    477   /// iterators of that key.
    478   void eraseAll(const KeyT &K) {
    479     for (iterator I = find(K); I != end(); /* empty */)
    480       I = erase(I);
    481   }
    482 
    483 private:
    484   /// Unlink the node from its list. Returns the next node in the list.
    485   iterator unlink(const SMSNode &N) {
    486     if (isSingleton(N)) {
    487       // Singleton is already unlinked
    488       assert(N.Next == SMSNode::INVALID && "Singleton has next?");
    489       return iterator(this, SMSNode::INVALID, ValIndexOf(N.Data));
    490     }
    491 
    492     if (isHead(N)) {
    493       // If we're the head, then update the sparse array and our next.
    494       Sparse[sparseIndex(N)] = N.Next;
    495       Dense[N.Next].Prev = N.Prev;
    496       return iterator(this, N.Next, ValIndexOf(N.Data));
    497     }
    498 
    499     if (N.isTail()) {
    500       // If we're the tail, then update our head and our previous.
    501       findIndex(sparseIndex(N)).setPrev(N.Prev);
    502       Dense[N.Prev].Next = N.Next;
    503 
    504       // Give back an end iterator that can be decremented
    505       iterator I(this, N.Prev, ValIndexOf(N.Data));
    506       return ++I;
    507     }
    508 
    509     // Otherwise, just drop us
    510     Dense[N.Next].Prev = N.Prev;
    511     Dense[N.Prev].Next = N.Next;
    512     return iterator(this, N.Next, ValIndexOf(N.Data));
    513   }
    514 };
    515 
    516 } // end namespace llvm
    517 
    518 #endif
    519