1 //===--- llvm/ADT/SparseMultiSet.h - Sparse multiset ------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the SparseMultiSet class, which adds multiset behavior to 11 // the SparseSet. 12 // 13 // A sparse multiset holds a small number of objects identified by integer keys 14 // from a moderately sized universe. The sparse multiset uses more memory than 15 // other containers in order to provide faster operations. Any key can map to 16 // multiple values. A SparseMultiSetNode class is provided, which serves as a 17 // convenient base class for the contents of a SparseMultiSet. 18 // 19 //===----------------------------------------------------------------------===// 20 21 #ifndef LLVM_ADT_SPARSEMULTISET_H 22 #define LLVM_ADT_SPARSEMULTISET_H 23 24 #include "llvm/ADT/SparseSet.h" 25 26 namespace llvm { 27 28 /// Fast multiset implementation for objects that can be identified by small 29 /// unsigned keys. 30 /// 31 /// SparseMultiSet allocates memory proportional to the size of the key 32 /// universe, so it is not recommended for building composite data structures. 33 /// It is useful for algorithms that require a single set with fast operations. 34 /// 35 /// Compared to DenseSet and DenseMap, SparseMultiSet provides constant-time 36 /// fast clear() as fast as a vector. The find(), insert(), and erase() 37 /// operations are all constant time, and typically faster than a hash table. 38 /// The iteration order doesn't depend on numerical key values, it only depends 39 /// on the order of insert() and erase() operations. Iteration order is the 40 /// insertion order. Iteration is only provided over elements of equivalent 41 /// keys, but iterators are bidirectional. 42 /// 43 /// Compared to BitVector, SparseMultiSet<unsigned> uses 8x-40x more memory, but 44 /// offers constant-time clear() and size() operations as well as fast iteration 45 /// independent on the size of the universe. 46 /// 47 /// SparseMultiSet contains a dense vector holding all the objects and a sparse 48 /// array holding indexes into the dense vector. Most of the memory is used by 49 /// the sparse array which is the size of the key universe. The SparseT template 50 /// parameter provides a space/speed tradeoff for sets holding many elements. 51 /// 52 /// When SparseT is uint32_t, find() only touches up to 3 cache lines, but the 53 /// sparse array uses 4 x Universe bytes. 54 /// 55 /// When SparseT is uint8_t (the default), find() touches up to 3+[N/256] cache 56 /// lines, but the sparse array is 4x smaller. N is the number of elements in 57 /// the set. 58 /// 59 /// For sets that may grow to thousands of elements, SparseT should be set to 60 /// uint16_t or uint32_t. 61 /// 62 /// Multiset behavior is provided by providing doubly linked lists for values 63 /// that are inlined in the dense vector. SparseMultiSet is a good choice when 64 /// one desires a growable number of entries per key, as it will retain the 65 /// SparseSet algorithmic properties despite being growable. Thus, it is often a 66 /// better choice than a SparseSet of growable containers or a vector of 67 /// vectors. SparseMultiSet also keeps iterators valid after erasure (provided 68 /// the iterators don't point to the element erased), allowing for more 69 /// intuitive and fast removal. 70 /// 71 /// @tparam ValueT The type of objects in the set. 72 /// @tparam KeyFunctorT A functor that computes an unsigned index from KeyT. 73 /// @tparam SparseT An unsigned integer type. See above. 74 /// 75 template<typename ValueT, 76 typename KeyFunctorT = llvm::identity<unsigned>, 77 typename SparseT = uint8_t> 78 class SparseMultiSet { 79 static_assert(std::numeric_limits<SparseT>::is_integer && 80 !std::numeric_limits<SparseT>::is_signed, 81 "SparseT must be an unsigned integer type"); 82 83 /// The actual data that's stored, as a doubly-linked list implemented via 84 /// indices into the DenseVector. The doubly linked list is implemented 85 /// circular in Prev indices, and INVALID-terminated in Next indices. This 86 /// provides efficient access to list tails. These nodes can also be 87 /// tombstones, in which case they are actually nodes in a single-linked 88 /// freelist of recyclable slots. 89 struct SMSNode { 90 static const unsigned INVALID = ~0U; 91 92 ValueT Data; 93 unsigned Prev; 94 unsigned Next; 95 96 SMSNode(ValueT D, unsigned P, unsigned N) : Data(D), Prev(P), Next(N) { } 97 98 /// List tails have invalid Nexts. 99 bool isTail() const { 100 return Next == INVALID; 101 } 102 103 /// Whether this node is a tombstone node, and thus is in our freelist. 104 bool isTombstone() const { 105 return Prev == INVALID; 106 } 107 108 /// Since the list is circular in Prev, all non-tombstone nodes have a valid 109 /// Prev. 110 bool isValid() const { return Prev != INVALID; } 111 }; 112 113 typedef typename KeyFunctorT::argument_type KeyT; 114 typedef SmallVector<SMSNode, 8> DenseT; 115 DenseT Dense; 116 SparseT *Sparse; 117 unsigned Universe; 118 KeyFunctorT KeyIndexOf; 119 SparseSetValFunctor<KeyT, ValueT, KeyFunctorT> ValIndexOf; 120 121 /// We have a built-in recycler for reusing tombstone slots. This recycler 122 /// puts a singly-linked free list into tombstone slots, allowing us quick 123 /// erasure, iterator preservation, and dense size. 124 unsigned FreelistIdx; 125 unsigned NumFree; 126 127 unsigned sparseIndex(const ValueT &Val) const { 128 assert(ValIndexOf(Val) < Universe && 129 "Invalid key in set. Did object mutate?"); 130 return ValIndexOf(Val); 131 } 132 unsigned sparseIndex(const SMSNode &N) const { return sparseIndex(N.Data); } 133 134 // Disable copy construction and assignment. 135 // This data structure is not meant to be used that way. 136 SparseMultiSet(const SparseMultiSet&) = delete; 137 SparseMultiSet &operator=(const SparseMultiSet&) = delete; 138 139 /// Whether the given entry is the head of the list. List heads's previous 140 /// pointers are to the tail of the list, allowing for efficient access to the 141 /// list tail. D must be a valid entry node. 142 bool isHead(const SMSNode &D) const { 143 assert(D.isValid() && "Invalid node for head"); 144 return Dense[D.Prev].isTail(); 145 } 146 147 /// Whether the given entry is a singleton entry, i.e. the only entry with 148 /// that key. 149 bool isSingleton(const SMSNode &N) const { 150 assert(N.isValid() && "Invalid node for singleton"); 151 // Is N its own predecessor? 152 return &Dense[N.Prev] == &N; 153 } 154 155 /// Add in the given SMSNode. Uses a free entry in our freelist if 156 /// available. Returns the index of the added node. 157 unsigned addValue(const ValueT& V, unsigned Prev, unsigned Next) { 158 if (NumFree == 0) { 159 Dense.push_back(SMSNode(V, Prev, Next)); 160 return Dense.size() - 1; 161 } 162 163 // Peel off a free slot 164 unsigned Idx = FreelistIdx; 165 unsigned NextFree = Dense[Idx].Next; 166 assert(Dense[Idx].isTombstone() && "Non-tombstone free?"); 167 168 Dense[Idx] = SMSNode(V, Prev, Next); 169 FreelistIdx = NextFree; 170 --NumFree; 171 return Idx; 172 } 173 174 /// Make the current index a new tombstone. Pushes it onto the freelist. 175 void makeTombstone(unsigned Idx) { 176 Dense[Idx].Prev = SMSNode::INVALID; 177 Dense[Idx].Next = FreelistIdx; 178 FreelistIdx = Idx; 179 ++NumFree; 180 } 181 182 public: 183 typedef ValueT value_type; 184 typedef ValueT &reference; 185 typedef const ValueT &const_reference; 186 typedef ValueT *pointer; 187 typedef const ValueT *const_pointer; 188 typedef unsigned size_type; 189 190 SparseMultiSet() 191 : Sparse(nullptr), Universe(0), FreelistIdx(SMSNode::INVALID), NumFree(0) {} 192 193 ~SparseMultiSet() { free(Sparse); } 194 195 /// Set the universe size which determines the largest key the set can hold. 196 /// The universe must be sized before any elements can be added. 197 /// 198 /// @param U Universe size. All object keys must be less than U. 199 /// 200 void setUniverse(unsigned U) { 201 // It's not hard to resize the universe on a non-empty set, but it doesn't 202 // seem like a likely use case, so we can add that code when we need it. 203 assert(empty() && "Can only resize universe on an empty map"); 204 // Hysteresis prevents needless reallocations. 205 if (U >= Universe/4 && U <= Universe) 206 return; 207 free(Sparse); 208 // The Sparse array doesn't actually need to be initialized, so malloc 209 // would be enough here, but that will cause tools like valgrind to 210 // complain about branching on uninitialized data. 211 Sparse = reinterpret_cast<SparseT*>(calloc(U, sizeof(SparseT))); 212 Universe = U; 213 } 214 215 /// Our iterators are iterators over the collection of objects that share a 216 /// key. 217 template<typename SMSPtrTy> 218 class iterator_base : public std::iterator<std::bidirectional_iterator_tag, 219 ValueT> { 220 friend class SparseMultiSet; 221 SMSPtrTy SMS; 222 unsigned Idx; 223 unsigned SparseIdx; 224 225 iterator_base(SMSPtrTy P, unsigned I, unsigned SI) 226 : SMS(P), Idx(I), SparseIdx(SI) { } 227 228 /// Whether our iterator has fallen outside our dense vector. 229 bool isEnd() const { 230 if (Idx == SMSNode::INVALID) 231 return true; 232 233 assert(Idx < SMS->Dense.size() && "Out of range, non-INVALID Idx?"); 234 return false; 235 } 236 237 /// Whether our iterator is properly keyed, i.e. the SparseIdx is valid 238 bool isKeyed() const { return SparseIdx < SMS->Universe; } 239 240 unsigned Prev() const { return SMS->Dense[Idx].Prev; } 241 unsigned Next() const { return SMS->Dense[Idx].Next; } 242 243 void setPrev(unsigned P) { SMS->Dense[Idx].Prev = P; } 244 void setNext(unsigned N) { SMS->Dense[Idx].Next = N; } 245 246 public: 247 typedef std::iterator<std::bidirectional_iterator_tag, ValueT> super; 248 typedef typename super::value_type value_type; 249 typedef typename super::difference_type difference_type; 250 typedef typename super::pointer pointer; 251 typedef typename super::reference reference; 252 253 reference operator*() const { 254 assert(isKeyed() && SMS->sparseIndex(SMS->Dense[Idx].Data) == SparseIdx && 255 "Dereferencing iterator of invalid key or index"); 256 257 return SMS->Dense[Idx].Data; 258 } 259 pointer operator->() const { return &operator*(); } 260 261 /// Comparison operators 262 bool operator==(const iterator_base &RHS) const { 263 // end compares equal 264 if (SMS == RHS.SMS && Idx == RHS.Idx) { 265 assert((isEnd() || SparseIdx == RHS.SparseIdx) && 266 "Same dense entry, but different keys?"); 267 return true; 268 } 269 270 return false; 271 } 272 273 bool operator!=(const iterator_base &RHS) const { 274 return !operator==(RHS); 275 } 276 277 /// Increment and decrement operators 278 iterator_base &operator--() { // predecrement - Back up 279 assert(isKeyed() && "Decrementing an invalid iterator"); 280 assert((isEnd() || !SMS->isHead(SMS->Dense[Idx])) && 281 "Decrementing head of list"); 282 283 // If we're at the end, then issue a new find() 284 if (isEnd()) 285 Idx = SMS->findIndex(SparseIdx).Prev(); 286 else 287 Idx = Prev(); 288 289 return *this; 290 } 291 iterator_base &operator++() { // preincrement - Advance 292 assert(!isEnd() && isKeyed() && "Incrementing an invalid/end iterator"); 293 Idx = Next(); 294 return *this; 295 } 296 iterator_base operator--(int) { // postdecrement 297 iterator_base I(*this); 298 --*this; 299 return I; 300 } 301 iterator_base operator++(int) { // postincrement 302 iterator_base I(*this); 303 ++*this; 304 return I; 305 } 306 }; 307 typedef iterator_base<SparseMultiSet *> iterator; 308 typedef iterator_base<const SparseMultiSet *> const_iterator; 309 310 // Convenience types 311 typedef std::pair<iterator, iterator> RangePair; 312 313 /// Returns an iterator past this container. Note that such an iterator cannot 314 /// be decremented, but will compare equal to other end iterators. 315 iterator end() { return iterator(this, SMSNode::INVALID, SMSNode::INVALID); } 316 const_iterator end() const { 317 return const_iterator(this, SMSNode::INVALID, SMSNode::INVALID); 318 } 319 320 /// Returns true if the set is empty. 321 /// 322 /// This is not the same as BitVector::empty(). 323 /// 324 bool empty() const { return size() == 0; } 325 326 /// Returns the number of elements in the set. 327 /// 328 /// This is not the same as BitVector::size() which returns the size of the 329 /// universe. 330 /// 331 size_type size() const { 332 assert(NumFree <= Dense.size() && "Out-of-bounds free entries"); 333 return Dense.size() - NumFree; 334 } 335 336 /// Clears the set. This is a very fast constant time operation. 337 /// 338 void clear() { 339 // Sparse does not need to be cleared, see find(). 340 Dense.clear(); 341 NumFree = 0; 342 FreelistIdx = SMSNode::INVALID; 343 } 344 345 /// Find an element by its index. 346 /// 347 /// @param Idx A valid index to find. 348 /// @returns An iterator to the element identified by key, or end(). 349 /// 350 iterator findIndex(unsigned Idx) { 351 assert(Idx < Universe && "Key out of range"); 352 const unsigned Stride = std::numeric_limits<SparseT>::max() + 1u; 353 for (unsigned i = Sparse[Idx], e = Dense.size(); i < e; i += Stride) { 354 const unsigned FoundIdx = sparseIndex(Dense[i]); 355 // Check that we're pointing at the correct entry and that it is the head 356 // of a valid list. 357 if (Idx == FoundIdx && Dense[i].isValid() && isHead(Dense[i])) 358 return iterator(this, i, Idx); 359 // Stride is 0 when SparseT >= unsigned. We don't need to loop. 360 if (!Stride) 361 break; 362 } 363 return end(); 364 } 365 366 /// Find an element by its key. 367 /// 368 /// @param Key A valid key to find. 369 /// @returns An iterator to the element identified by key, or end(). 370 /// 371 iterator find(const KeyT &Key) { 372 return findIndex(KeyIndexOf(Key)); 373 } 374 375 const_iterator find(const KeyT &Key) const { 376 iterator I = const_cast<SparseMultiSet*>(this)->findIndex(KeyIndexOf(Key)); 377 return const_iterator(I.SMS, I.Idx, KeyIndexOf(Key)); 378 } 379 380 /// Returns the number of elements identified by Key. This will be linear in 381 /// the number of elements of that key. 382 size_type count(const KeyT &Key) const { 383 unsigned Ret = 0; 384 for (const_iterator It = find(Key); It != end(); ++It) 385 ++Ret; 386 387 return Ret; 388 } 389 390 /// Returns true if this set contains an element identified by Key. 391 bool contains(const KeyT &Key) const { 392 return find(Key) != end(); 393 } 394 395 /// Return the head and tail of the subset's list, otherwise returns end(). 396 iterator getHead(const KeyT &Key) { return find(Key); } 397 iterator getTail(const KeyT &Key) { 398 iterator I = find(Key); 399 if (I != end()) 400 I = iterator(this, I.Prev(), KeyIndexOf(Key)); 401 return I; 402 } 403 404 /// The bounds of the range of items sharing Key K. First member is the head 405 /// of the list, and the second member is a decrementable end iterator for 406 /// that key. 407 RangePair equal_range(const KeyT &K) { 408 iterator B = find(K); 409 iterator E = iterator(this, SMSNode::INVALID, B.SparseIdx); 410 return make_pair(B, E); 411 } 412 413 /// Insert a new element at the tail of the subset list. Returns an iterator 414 /// to the newly added entry. 415 iterator insert(const ValueT &Val) { 416 unsigned Idx = sparseIndex(Val); 417 iterator I = findIndex(Idx); 418 419 unsigned NodeIdx = addValue(Val, SMSNode::INVALID, SMSNode::INVALID); 420 421 if (I == end()) { 422 // Make a singleton list 423 Sparse[Idx] = NodeIdx; 424 Dense[NodeIdx].Prev = NodeIdx; 425 return iterator(this, NodeIdx, Idx); 426 } 427 428 // Stick it at the end. 429 unsigned HeadIdx = I.Idx; 430 unsigned TailIdx = I.Prev(); 431 Dense[TailIdx].Next = NodeIdx; 432 Dense[HeadIdx].Prev = NodeIdx; 433 Dense[NodeIdx].Prev = TailIdx; 434 435 return iterator(this, NodeIdx, Idx); 436 } 437 438 /// Erases an existing element identified by a valid iterator. 439 /// 440 /// This invalidates iterators pointing at the same entry, but erase() returns 441 /// an iterator pointing to the next element in the subset's list. This makes 442 /// it possible to erase selected elements while iterating over the subset: 443 /// 444 /// tie(I, E) = Set.equal_range(Key); 445 /// while (I != E) 446 /// if (test(*I)) 447 /// I = Set.erase(I); 448 /// else 449 /// ++I; 450 /// 451 /// Note that if the last element in the subset list is erased, this will 452 /// return an end iterator which can be decremented to get the new tail (if it 453 /// exists): 454 /// 455 /// tie(B, I) = Set.equal_range(Key); 456 /// for (bool isBegin = B == I; !isBegin; /* empty */) { 457 /// isBegin = (--I) == B; 458 /// if (test(I)) 459 /// break; 460 /// I = erase(I); 461 /// } 462 iterator erase(iterator I) { 463 assert(I.isKeyed() && !I.isEnd() && !Dense[I.Idx].isTombstone() && 464 "erasing invalid/end/tombstone iterator"); 465 466 // First, unlink the node from its list. Then swap the node out with the 467 // dense vector's last entry 468 iterator NextI = unlink(Dense[I.Idx]); 469 470 // Put in a tombstone. 471 makeTombstone(I.Idx); 472 473 return NextI; 474 } 475 476 /// Erase all elements with the given key. This invalidates all 477 /// iterators of that key. 478 void eraseAll(const KeyT &K) { 479 for (iterator I = find(K); I != end(); /* empty */) 480 I = erase(I); 481 } 482 483 private: 484 /// Unlink the node from its list. Returns the next node in the list. 485 iterator unlink(const SMSNode &N) { 486 if (isSingleton(N)) { 487 // Singleton is already unlinked 488 assert(N.Next == SMSNode::INVALID && "Singleton has next?"); 489 return iterator(this, SMSNode::INVALID, ValIndexOf(N.Data)); 490 } 491 492 if (isHead(N)) { 493 // If we're the head, then update the sparse array and our next. 494 Sparse[sparseIndex(N)] = N.Next; 495 Dense[N.Next].Prev = N.Prev; 496 return iterator(this, N.Next, ValIndexOf(N.Data)); 497 } 498 499 if (N.isTail()) { 500 // If we're the tail, then update our head and our previous. 501 findIndex(sparseIndex(N)).setPrev(N.Prev); 502 Dense[N.Prev].Next = N.Next; 503 504 // Give back an end iterator that can be decremented 505 iterator I(this, N.Prev, ValIndexOf(N.Data)); 506 return ++I; 507 } 508 509 // Otherwise, just drop us 510 Dense[N.Next].Prev = N.Prev; 511 Dense[N.Prev].Next = N.Next; 512 return iterator(this, N.Next, ValIndexOf(N.Data)); 513 } 514 }; 515 516 } // end namespace llvm 517 518 #endif 519