Home | History | Annotate | Download | only in gc
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "heap.h"
     18 
     19 #include <limits>
     20 #include <memory>
     21 #include <vector>
     22 
     23 #include "android-base/stringprintf.h"
     24 
     25 #include "allocation_listener.h"
     26 #include "art_field-inl.h"
     27 #include "backtrace_helper.h"
     28 #include "base/allocator.h"
     29 #include "base/arena_allocator.h"
     30 #include "base/dumpable.h"
     31 #include "base/histogram-inl.h"
     32 #include "base/memory_tool.h"
     33 #include "base/stl_util.h"
     34 #include "base/systrace.h"
     35 #include "base/time_utils.h"
     36 #include "common_throws.h"
     37 #include "cutils/sched_policy.h"
     38 #include "debugger.h"
     39 #include "dex_file-inl.h"
     40 #include "gc/accounting/atomic_stack.h"
     41 #include "gc/accounting/card_table-inl.h"
     42 #include "gc/accounting/heap_bitmap-inl.h"
     43 #include "gc/accounting/mod_union_table-inl.h"
     44 #include "gc/accounting/remembered_set.h"
     45 #include "gc/accounting/space_bitmap-inl.h"
     46 #include "gc/collector/concurrent_copying.h"
     47 #include "gc/collector/mark_compact.h"
     48 #include "gc/collector/mark_sweep.h"
     49 #include "gc/collector/partial_mark_sweep.h"
     50 #include "gc/collector/semi_space.h"
     51 #include "gc/collector/sticky_mark_sweep.h"
     52 #include "gc/reference_processor.h"
     53 #include "gc/scoped_gc_critical_section.h"
     54 #include "gc/space/bump_pointer_space.h"
     55 #include "gc/space/dlmalloc_space-inl.h"
     56 #include "gc/space/image_space.h"
     57 #include "gc/space/large_object_space.h"
     58 #include "gc/space/region_space.h"
     59 #include "gc/space/rosalloc_space-inl.h"
     60 #include "gc/space/space-inl.h"
     61 #include "gc/space/zygote_space.h"
     62 #include "gc/task_processor.h"
     63 #include "gc/verification.h"
     64 #include "entrypoints/quick/quick_alloc_entrypoints.h"
     65 #include "gc_pause_listener.h"
     66 #include "heap-inl.h"
     67 #include "image.h"
     68 #include "intern_table.h"
     69 #include "java_vm_ext.h"
     70 #include "jit/jit.h"
     71 #include "jit/jit_code_cache.h"
     72 #include "obj_ptr-inl.h"
     73 #include "mirror/class-inl.h"
     74 #include "mirror/object-inl.h"
     75 #include "mirror/object-refvisitor-inl.h"
     76 #include "mirror/object_array-inl.h"
     77 #include "mirror/reference-inl.h"
     78 #include "os.h"
     79 #include "reflection.h"
     80 #include "runtime.h"
     81 #include "ScopedLocalRef.h"
     82 #include "scoped_thread_state_change-inl.h"
     83 #include "handle_scope-inl.h"
     84 #include "thread_list.h"
     85 #include "verify_object-inl.h"
     86 #include "well_known_classes.h"
     87 
     88 namespace art {
     89 
     90 namespace gc {
     91 
     92 using android::base::StringPrintf;
     93 
     94 static constexpr size_t kCollectorTransitionStressIterations = 0;
     95 static constexpr size_t kCollectorTransitionStressWait = 10 * 1000;  // Microseconds
     96 // Minimum amount of remaining bytes before a concurrent GC is triggered.
     97 static constexpr size_t kMinConcurrentRemainingBytes = 128 * KB;
     98 static constexpr size_t kMaxConcurrentRemainingBytes = 512 * KB;
     99 // Sticky GC throughput adjustment, divided by 4. Increasing this causes sticky GC to occur more
    100 // relative to partial/full GC. This may be desirable since sticky GCs interfere less with mutator
    101 // threads (lower pauses, use less memory bandwidth).
    102 static constexpr double kStickyGcThroughputAdjustment = 1.0;
    103 // Whether or not we compact the zygote in PreZygoteFork.
    104 static constexpr bool kCompactZygote = kMovingCollector;
    105 // How many reserve entries are at the end of the allocation stack, these are only needed if the
    106 // allocation stack overflows.
    107 static constexpr size_t kAllocationStackReserveSize = 1024;
    108 // Default mark stack size in bytes.
    109 static const size_t kDefaultMarkStackSize = 64 * KB;
    110 // Define space name.
    111 static const char* kDlMallocSpaceName[2] = {"main dlmalloc space", "main dlmalloc space 1"};
    112 static const char* kRosAllocSpaceName[2] = {"main rosalloc space", "main rosalloc space 1"};
    113 static const char* kMemMapSpaceName[2] = {"main space", "main space 1"};
    114 static const char* kNonMovingSpaceName = "non moving space";
    115 static const char* kZygoteSpaceName = "zygote space";
    116 static constexpr size_t kGSSBumpPointerSpaceCapacity = 32 * MB;
    117 static constexpr bool kGCALotMode = false;
    118 // GC alot mode uses a small allocation stack to stress test a lot of GC.
    119 static constexpr size_t kGcAlotAllocationStackSize = 4 * KB /
    120     sizeof(mirror::HeapReference<mirror::Object>);
    121 // Verify objet has a small allocation stack size since searching the allocation stack is slow.
    122 static constexpr size_t kVerifyObjectAllocationStackSize = 16 * KB /
    123     sizeof(mirror::HeapReference<mirror::Object>);
    124 static constexpr size_t kDefaultAllocationStackSize = 8 * MB /
    125     sizeof(mirror::HeapReference<mirror::Object>);
    126 // System.runFinalization can deadlock with native allocations, to deal with this, we have a
    127 // timeout on how long we wait for finalizers to run. b/21544853
    128 static constexpr uint64_t kNativeAllocationFinalizeTimeout = MsToNs(250u);
    129 
    130 // For deterministic compilation, we need the heap to be at a well-known address.
    131 static constexpr uint32_t kAllocSpaceBeginForDeterministicAoT = 0x40000000;
    132 // Dump the rosalloc stats on SIGQUIT.
    133 static constexpr bool kDumpRosAllocStatsOnSigQuit = false;
    134 
    135 // Extra added to the heap growth multiplier. Used to adjust the GC ergonomics for the read barrier
    136 // config.
    137 static constexpr double kExtraHeapGrowthMultiplier = kUseReadBarrier ? 1.0 : 0.0;
    138 
    139 static const char* kRegionSpaceName = "main space (region space)";
    140 
    141 // If true, we log all GCs in the both the foreground and background. Used for debugging.
    142 static constexpr bool kLogAllGCs = false;
    143 
    144 // How much we grow the TLAB if we can do it.
    145 static constexpr size_t kPartialTlabSize = 16 * KB;
    146 static constexpr bool kUsePartialTlabs = true;
    147 
    148 #if defined(__LP64__) || !defined(ADDRESS_SANITIZER)
    149 // 300 MB (0x12c00000) - (default non-moving space capacity).
    150 static uint8_t* const kPreferredAllocSpaceBegin =
    151     reinterpret_cast<uint8_t*>(300 * MB - Heap::kDefaultNonMovingSpaceCapacity);
    152 #else
    153 // For 32-bit, use 0x20000000 because asan reserves 0x04000000 - 0x20000000.
    154 static uint8_t* const kPreferredAllocSpaceBegin = reinterpret_cast<uint8_t*>(0x20000000);
    155 #endif
    156 
    157 static inline bool CareAboutPauseTimes() {
    158   return Runtime::Current()->InJankPerceptibleProcessState();
    159 }
    160 
    161 Heap::Heap(size_t initial_size,
    162            size_t growth_limit,
    163            size_t min_free,
    164            size_t max_free,
    165            double target_utilization,
    166            double foreground_heap_growth_multiplier,
    167            size_t capacity,
    168            size_t non_moving_space_capacity,
    169            const std::string& image_file_name,
    170            const InstructionSet image_instruction_set,
    171            CollectorType foreground_collector_type,
    172            CollectorType background_collector_type,
    173            space::LargeObjectSpaceType large_object_space_type,
    174            size_t large_object_threshold,
    175            size_t parallel_gc_threads,
    176            size_t conc_gc_threads,
    177            bool low_memory_mode,
    178            size_t long_pause_log_threshold,
    179            size_t long_gc_log_threshold,
    180            bool ignore_max_footprint,
    181            bool use_tlab,
    182            bool verify_pre_gc_heap,
    183            bool verify_pre_sweeping_heap,
    184            bool verify_post_gc_heap,
    185            bool verify_pre_gc_rosalloc,
    186            bool verify_pre_sweeping_rosalloc,
    187            bool verify_post_gc_rosalloc,
    188            bool gc_stress_mode,
    189            bool measure_gc_performance,
    190            bool use_homogeneous_space_compaction_for_oom,
    191            uint64_t min_interval_homogeneous_space_compaction_by_oom)
    192     : non_moving_space_(nullptr),
    193       rosalloc_space_(nullptr),
    194       dlmalloc_space_(nullptr),
    195       main_space_(nullptr),
    196       collector_type_(kCollectorTypeNone),
    197       foreground_collector_type_(foreground_collector_type),
    198       background_collector_type_(background_collector_type),
    199       desired_collector_type_(foreground_collector_type_),
    200       pending_task_lock_(nullptr),
    201       parallel_gc_threads_(parallel_gc_threads),
    202       conc_gc_threads_(conc_gc_threads),
    203       low_memory_mode_(low_memory_mode),
    204       long_pause_log_threshold_(long_pause_log_threshold),
    205       long_gc_log_threshold_(long_gc_log_threshold),
    206       ignore_max_footprint_(ignore_max_footprint),
    207       zygote_creation_lock_("zygote creation lock", kZygoteCreationLock),
    208       zygote_space_(nullptr),
    209       large_object_threshold_(large_object_threshold),
    210       disable_thread_flip_count_(0),
    211       thread_flip_running_(false),
    212       collector_type_running_(kCollectorTypeNone),
    213       thread_running_gc_(nullptr),
    214       last_gc_type_(collector::kGcTypeNone),
    215       next_gc_type_(collector::kGcTypePartial),
    216       capacity_(capacity),
    217       growth_limit_(growth_limit),
    218       max_allowed_footprint_(initial_size),
    219       concurrent_start_bytes_(std::numeric_limits<size_t>::max()),
    220       total_bytes_freed_ever_(0),
    221       total_objects_freed_ever_(0),
    222       num_bytes_allocated_(0),
    223       new_native_bytes_allocated_(0),
    224       old_native_bytes_allocated_(0),
    225       num_bytes_freed_revoke_(0),
    226       verify_missing_card_marks_(false),
    227       verify_system_weaks_(false),
    228       verify_pre_gc_heap_(verify_pre_gc_heap),
    229       verify_pre_sweeping_heap_(verify_pre_sweeping_heap),
    230       verify_post_gc_heap_(verify_post_gc_heap),
    231       verify_mod_union_table_(false),
    232       verify_pre_gc_rosalloc_(verify_pre_gc_rosalloc),
    233       verify_pre_sweeping_rosalloc_(verify_pre_sweeping_rosalloc),
    234       verify_post_gc_rosalloc_(verify_post_gc_rosalloc),
    235       gc_stress_mode_(gc_stress_mode),
    236       /* For GC a lot mode, we limit the allocations stacks to be kGcAlotInterval allocations. This
    237        * causes a lot of GC since we do a GC for alloc whenever the stack is full. When heap
    238        * verification is enabled, we limit the size of allocation stacks to speed up their
    239        * searching.
    240        */
    241       max_allocation_stack_size_(kGCALotMode ? kGcAlotAllocationStackSize
    242           : (kVerifyObjectSupport > kVerifyObjectModeFast) ? kVerifyObjectAllocationStackSize :
    243           kDefaultAllocationStackSize),
    244       current_allocator_(kAllocatorTypeDlMalloc),
    245       current_non_moving_allocator_(kAllocatorTypeNonMoving),
    246       bump_pointer_space_(nullptr),
    247       temp_space_(nullptr),
    248       region_space_(nullptr),
    249       min_free_(min_free),
    250       max_free_(max_free),
    251       target_utilization_(target_utilization),
    252       foreground_heap_growth_multiplier_(
    253           foreground_heap_growth_multiplier + kExtraHeapGrowthMultiplier),
    254       total_wait_time_(0),
    255       verify_object_mode_(kVerifyObjectModeDisabled),
    256       disable_moving_gc_count_(0),
    257       semi_space_collector_(nullptr),
    258       mark_compact_collector_(nullptr),
    259       concurrent_copying_collector_(nullptr),
    260       is_running_on_memory_tool_(Runtime::Current()->IsRunningOnMemoryTool()),
    261       use_tlab_(use_tlab),
    262       main_space_backup_(nullptr),
    263       min_interval_homogeneous_space_compaction_by_oom_(
    264           min_interval_homogeneous_space_compaction_by_oom),
    265       last_time_homogeneous_space_compaction_by_oom_(NanoTime()),
    266       pending_collector_transition_(nullptr),
    267       pending_heap_trim_(nullptr),
    268       use_homogeneous_space_compaction_for_oom_(use_homogeneous_space_compaction_for_oom),
    269       running_collection_is_blocking_(false),
    270       blocking_gc_count_(0U),
    271       blocking_gc_time_(0U),
    272       last_update_time_gc_count_rate_histograms_(  // Round down by the window duration.
    273           (NanoTime() / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration),
    274       gc_count_last_window_(0U),
    275       blocking_gc_count_last_window_(0U),
    276       gc_count_rate_histogram_("gc count rate histogram", 1U, kGcCountRateMaxBucketCount),
    277       blocking_gc_count_rate_histogram_("blocking gc count rate histogram", 1U,
    278                                         kGcCountRateMaxBucketCount),
    279       alloc_tracking_enabled_(false),
    280       backtrace_lock_(nullptr),
    281       seen_backtrace_count_(0u),
    282       unique_backtrace_count_(0u),
    283       gc_disabled_for_shutdown_(false) {
    284   if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
    285     LOG(INFO) << "Heap() entering";
    286   }
    287   if (kUseReadBarrier) {
    288     CHECK_EQ(foreground_collector_type_, kCollectorTypeCC);
    289     CHECK_EQ(background_collector_type_, kCollectorTypeCCBackground);
    290   }
    291   verification_.reset(new Verification(this));
    292   CHECK_GE(large_object_threshold, kMinLargeObjectThreshold);
    293   ScopedTrace trace(__FUNCTION__);
    294   Runtime* const runtime = Runtime::Current();
    295   // If we aren't the zygote, switch to the default non zygote allocator. This may update the
    296   // entrypoints.
    297   const bool is_zygote = runtime->IsZygote();
    298   if (!is_zygote) {
    299     // Background compaction is currently not supported for command line runs.
    300     if (background_collector_type_ != foreground_collector_type_) {
    301       VLOG(heap) << "Disabling background compaction for non zygote";
    302       background_collector_type_ = foreground_collector_type_;
    303     }
    304   }
    305   ChangeCollector(desired_collector_type_);
    306   live_bitmap_.reset(new accounting::HeapBitmap(this));
    307   mark_bitmap_.reset(new accounting::HeapBitmap(this));
    308   // Requested begin for the alloc space, to follow the mapped image and oat files
    309   uint8_t* requested_alloc_space_begin = nullptr;
    310   if (foreground_collector_type_ == kCollectorTypeCC) {
    311     // Need to use a low address so that we can allocate a contiguous 2 * Xmx space when there's no
    312     // image (dex2oat for target).
    313     requested_alloc_space_begin = kPreferredAllocSpaceBegin;
    314   }
    315 
    316   // Load image space(s).
    317   if (space::ImageSpace::LoadBootImage(image_file_name,
    318                                        image_instruction_set,
    319                                        &boot_image_spaces_,
    320                                        &requested_alloc_space_begin)) {
    321     for (auto space : boot_image_spaces_) {
    322       AddSpace(space);
    323     }
    324   }
    325 
    326   /*
    327   requested_alloc_space_begin ->     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
    328                                      +-  nonmoving space (non_moving_space_capacity)+-
    329                                      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
    330                                      +-????????????????????????????????????????????+-
    331                                      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
    332                                      +-main alloc space / bump space 1 (capacity_) +-
    333                                      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
    334                                      +-????????????????????????????????????????????+-
    335                                      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
    336                                      +-main alloc space2 / bump space 2 (capacity_)+-
    337                                      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
    338   */
    339   // We don't have hspace compaction enabled with GSS or CC.
    340   if (foreground_collector_type_ == kCollectorTypeGSS ||
    341       foreground_collector_type_ == kCollectorTypeCC) {
    342     use_homogeneous_space_compaction_for_oom_ = false;
    343   }
    344   bool support_homogeneous_space_compaction =
    345       background_collector_type_ == gc::kCollectorTypeHomogeneousSpaceCompact ||
    346       use_homogeneous_space_compaction_for_oom_;
    347   // We may use the same space the main space for the non moving space if we don't need to compact
    348   // from the main space.
    349   // This is not the case if we support homogeneous compaction or have a moving background
    350   // collector type.
    351   bool separate_non_moving_space = is_zygote ||
    352       support_homogeneous_space_compaction || IsMovingGc(foreground_collector_type_) ||
    353       IsMovingGc(background_collector_type_);
    354   if (foreground_collector_type_ == kCollectorTypeGSS) {
    355     separate_non_moving_space = false;
    356   }
    357   std::unique_ptr<MemMap> main_mem_map_1;
    358   std::unique_ptr<MemMap> main_mem_map_2;
    359 
    360   // Gross hack to make dex2oat deterministic.
    361   if (foreground_collector_type_ == kCollectorTypeMS &&
    362       requested_alloc_space_begin == nullptr &&
    363       Runtime::Current()->IsAotCompiler()) {
    364     // Currently only enabled for MS collector since that is what the deterministic dex2oat uses.
    365     // b/26849108
    366     requested_alloc_space_begin = reinterpret_cast<uint8_t*>(kAllocSpaceBeginForDeterministicAoT);
    367   }
    368   uint8_t* request_begin = requested_alloc_space_begin;
    369   if (request_begin != nullptr && separate_non_moving_space) {
    370     request_begin += non_moving_space_capacity;
    371   }
    372   std::string error_str;
    373   std::unique_ptr<MemMap> non_moving_space_mem_map;
    374   if (separate_non_moving_space) {
    375     ScopedTrace trace2("Create separate non moving space");
    376     // If we are the zygote, the non moving space becomes the zygote space when we run
    377     // PreZygoteFork the first time. In this case, call the map "zygote space" since we can't
    378     // rename the mem map later.
    379     const char* space_name = is_zygote ? kZygoteSpaceName : kNonMovingSpaceName;
    380     // Reserve the non moving mem map before the other two since it needs to be at a specific
    381     // address.
    382     non_moving_space_mem_map.reset(
    383         MemMap::MapAnonymous(space_name, requested_alloc_space_begin,
    384                              non_moving_space_capacity, PROT_READ | PROT_WRITE, true, false,
    385                              &error_str));
    386     CHECK(non_moving_space_mem_map != nullptr) << error_str;
    387     // Try to reserve virtual memory at a lower address if we have a separate non moving space.
    388     request_begin = kPreferredAllocSpaceBegin + non_moving_space_capacity;
    389   }
    390   // Attempt to create 2 mem maps at or after the requested begin.
    391   if (foreground_collector_type_ != kCollectorTypeCC) {
    392     ScopedTrace trace2("Create main mem map");
    393     if (separate_non_moving_space || !is_zygote) {
    394       main_mem_map_1.reset(MapAnonymousPreferredAddress(kMemMapSpaceName[0],
    395                                                         request_begin,
    396                                                         capacity_,
    397                                                         &error_str));
    398     } else {
    399       // If no separate non-moving space and we are the zygote, the main space must come right
    400       // after the image space to avoid a gap. This is required since we want the zygote space to
    401       // be adjacent to the image space.
    402       main_mem_map_1.reset(MemMap::MapAnonymous(kMemMapSpaceName[0], request_begin, capacity_,
    403                                                 PROT_READ | PROT_WRITE, true, false,
    404                                                 &error_str));
    405     }
    406     CHECK(main_mem_map_1.get() != nullptr) << error_str;
    407   }
    408   if (support_homogeneous_space_compaction ||
    409       background_collector_type_ == kCollectorTypeSS ||
    410       foreground_collector_type_ == kCollectorTypeSS) {
    411     ScopedTrace trace2("Create main mem map 2");
    412     main_mem_map_2.reset(MapAnonymousPreferredAddress(kMemMapSpaceName[1], main_mem_map_1->End(),
    413                                                       capacity_, &error_str));
    414     CHECK(main_mem_map_2.get() != nullptr) << error_str;
    415   }
    416 
    417   // Create the non moving space first so that bitmaps don't take up the address range.
    418   if (separate_non_moving_space) {
    419     ScopedTrace trace2("Add non moving space");
    420     // Non moving space is always dlmalloc since we currently don't have support for multiple
    421     // active rosalloc spaces.
    422     const size_t size = non_moving_space_mem_map->Size();
    423     non_moving_space_ = space::DlMallocSpace::CreateFromMemMap(
    424         non_moving_space_mem_map.release(), "zygote / non moving space", kDefaultStartingSize,
    425         initial_size, size, size, false);
    426     non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
    427     CHECK(non_moving_space_ != nullptr) << "Failed creating non moving space "
    428         << requested_alloc_space_begin;
    429     AddSpace(non_moving_space_);
    430   }
    431   // Create other spaces based on whether or not we have a moving GC.
    432   if (foreground_collector_type_ == kCollectorTypeCC) {
    433     CHECK(separate_non_moving_space);
    434     MemMap* region_space_mem_map = space::RegionSpace::CreateMemMap(kRegionSpaceName,
    435                                                                     capacity_ * 2,
    436                                                                     request_begin);
    437     CHECK(region_space_mem_map != nullptr) << "No region space mem map";
    438     region_space_ = space::RegionSpace::Create(kRegionSpaceName, region_space_mem_map);
    439     AddSpace(region_space_);
    440   } else if (IsMovingGc(foreground_collector_type_) &&
    441       foreground_collector_type_ != kCollectorTypeGSS) {
    442     // Create bump pointer spaces.
    443     // We only to create the bump pointer if the foreground collector is a compacting GC.
    444     // TODO: Place bump-pointer spaces somewhere to minimize size of card table.
    445     bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 1",
    446                                                                     main_mem_map_1.release());
    447     CHECK(bump_pointer_space_ != nullptr) << "Failed to create bump pointer space";
    448     AddSpace(bump_pointer_space_);
    449     temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2",
    450                                                             main_mem_map_2.release());
    451     CHECK(temp_space_ != nullptr) << "Failed to create bump pointer space";
    452     AddSpace(temp_space_);
    453     CHECK(separate_non_moving_space);
    454   } else {
    455     CreateMainMallocSpace(main_mem_map_1.release(), initial_size, growth_limit_, capacity_);
    456     CHECK(main_space_ != nullptr);
    457     AddSpace(main_space_);
    458     if (!separate_non_moving_space) {
    459       non_moving_space_ = main_space_;
    460       CHECK(!non_moving_space_->CanMoveObjects());
    461     }
    462     if (foreground_collector_type_ == kCollectorTypeGSS) {
    463       CHECK_EQ(foreground_collector_type_, background_collector_type_);
    464       // Create bump pointer spaces instead of a backup space.
    465       main_mem_map_2.release();
    466       bump_pointer_space_ = space::BumpPointerSpace::Create("Bump pointer space 1",
    467                                                             kGSSBumpPointerSpaceCapacity, nullptr);
    468       CHECK(bump_pointer_space_ != nullptr);
    469       AddSpace(bump_pointer_space_);
    470       temp_space_ = space::BumpPointerSpace::Create("Bump pointer space 2",
    471                                                     kGSSBumpPointerSpaceCapacity, nullptr);
    472       CHECK(temp_space_ != nullptr);
    473       AddSpace(temp_space_);
    474     } else if (main_mem_map_2.get() != nullptr) {
    475       const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
    476       main_space_backup_.reset(CreateMallocSpaceFromMemMap(main_mem_map_2.release(), initial_size,
    477                                                            growth_limit_, capacity_, name, true));
    478       CHECK(main_space_backup_.get() != nullptr);
    479       // Add the space so its accounted for in the heap_begin and heap_end.
    480       AddSpace(main_space_backup_.get());
    481     }
    482   }
    483   CHECK(non_moving_space_ != nullptr);
    484   CHECK(!non_moving_space_->CanMoveObjects());
    485   // Allocate the large object space.
    486   if (large_object_space_type == space::LargeObjectSpaceType::kFreeList) {
    487     large_object_space_ = space::FreeListSpace::Create("free list large object space", nullptr,
    488                                                        capacity_);
    489     CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
    490   } else if (large_object_space_type == space::LargeObjectSpaceType::kMap) {
    491     large_object_space_ = space::LargeObjectMapSpace::Create("mem map large object space");
    492     CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
    493   } else {
    494     // Disable the large object space by making the cutoff excessively large.
    495     large_object_threshold_ = std::numeric_limits<size_t>::max();
    496     large_object_space_ = nullptr;
    497   }
    498   if (large_object_space_ != nullptr) {
    499     AddSpace(large_object_space_);
    500   }
    501   // Compute heap capacity. Continuous spaces are sorted in order of Begin().
    502   CHECK(!continuous_spaces_.empty());
    503   // Relies on the spaces being sorted.
    504   uint8_t* heap_begin = continuous_spaces_.front()->Begin();
    505   uint8_t* heap_end = continuous_spaces_.back()->Limit();
    506   size_t heap_capacity = heap_end - heap_begin;
    507   // Remove the main backup space since it slows down the GC to have unused extra spaces.
    508   // TODO: Avoid needing to do this.
    509   if (main_space_backup_.get() != nullptr) {
    510     RemoveSpace(main_space_backup_.get());
    511   }
    512   // Allocate the card table.
    513   // We currently don't support dynamically resizing the card table.
    514   // Since we don't know where in the low_4gb the app image will be located, make the card table
    515   // cover the whole low_4gb. TODO: Extend the card table in AddSpace.
    516   UNUSED(heap_capacity);
    517   // Start at 64 KB, we can be sure there are no spaces mapped this low since the address range is
    518   // reserved by the kernel.
    519   static constexpr size_t kMinHeapAddress = 4 * KB;
    520   card_table_.reset(accounting::CardTable::Create(reinterpret_cast<uint8_t*>(kMinHeapAddress),
    521                                                   4 * GB - kMinHeapAddress));
    522   CHECK(card_table_.get() != nullptr) << "Failed to create card table";
    523   if (foreground_collector_type_ == kCollectorTypeCC && kUseTableLookupReadBarrier) {
    524     rb_table_.reset(new accounting::ReadBarrierTable());
    525     DCHECK(rb_table_->IsAllCleared());
    526   }
    527   if (HasBootImageSpace()) {
    528     // Don't add the image mod union table if we are running without an image, this can crash if
    529     // we use the CardCache implementation.
    530     for (space::ImageSpace* image_space : GetBootImageSpaces()) {
    531       accounting::ModUnionTable* mod_union_table = new accounting::ModUnionTableToZygoteAllocspace(
    532           "Image mod-union table", this, image_space);
    533       CHECK(mod_union_table != nullptr) << "Failed to create image mod-union table";
    534       AddModUnionTable(mod_union_table);
    535     }
    536   }
    537   if (collector::SemiSpace::kUseRememberedSet && non_moving_space_ != main_space_) {
    538     accounting::RememberedSet* non_moving_space_rem_set =
    539         new accounting::RememberedSet("Non-moving space remembered set", this, non_moving_space_);
    540     CHECK(non_moving_space_rem_set != nullptr) << "Failed to create non-moving space remembered set";
    541     AddRememberedSet(non_moving_space_rem_set);
    542   }
    543   // TODO: Count objects in the image space here?
    544   num_bytes_allocated_.StoreRelaxed(0);
    545   mark_stack_.reset(accounting::ObjectStack::Create("mark stack", kDefaultMarkStackSize,
    546                                                     kDefaultMarkStackSize));
    547   const size_t alloc_stack_capacity = max_allocation_stack_size_ + kAllocationStackReserveSize;
    548   allocation_stack_.reset(accounting::ObjectStack::Create(
    549       "allocation stack", max_allocation_stack_size_, alloc_stack_capacity));
    550   live_stack_.reset(accounting::ObjectStack::Create(
    551       "live stack", max_allocation_stack_size_, alloc_stack_capacity));
    552   // It's still too early to take a lock because there are no threads yet, but we can create locks
    553   // now. We don't create it earlier to make it clear that you can't use locks during heap
    554   // initialization.
    555   gc_complete_lock_ = new Mutex("GC complete lock");
    556   gc_complete_cond_.reset(new ConditionVariable("GC complete condition variable",
    557                                                 *gc_complete_lock_));
    558   native_blocking_gc_lock_ = new Mutex("Native blocking GC lock");
    559   native_blocking_gc_cond_.reset(new ConditionVariable("Native blocking GC condition variable",
    560                                                        *native_blocking_gc_lock_));
    561   native_blocking_gc_in_progress_ = false;
    562   native_blocking_gcs_finished_ = 0;
    563 
    564   thread_flip_lock_ = new Mutex("GC thread flip lock");
    565   thread_flip_cond_.reset(new ConditionVariable("GC thread flip condition variable",
    566                                                 *thread_flip_lock_));
    567   task_processor_.reset(new TaskProcessor());
    568   reference_processor_.reset(new ReferenceProcessor());
    569   pending_task_lock_ = new Mutex("Pending task lock");
    570   if (ignore_max_footprint_) {
    571     SetIdealFootprint(std::numeric_limits<size_t>::max());
    572     concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
    573   }
    574   CHECK_NE(max_allowed_footprint_, 0U);
    575   // Create our garbage collectors.
    576   for (size_t i = 0; i < 2; ++i) {
    577     const bool concurrent = i != 0;
    578     if ((MayUseCollector(kCollectorTypeCMS) && concurrent) ||
    579         (MayUseCollector(kCollectorTypeMS) && !concurrent)) {
    580       garbage_collectors_.push_back(new collector::MarkSweep(this, concurrent));
    581       garbage_collectors_.push_back(new collector::PartialMarkSweep(this, concurrent));
    582       garbage_collectors_.push_back(new collector::StickyMarkSweep(this, concurrent));
    583     }
    584   }
    585   if (kMovingCollector) {
    586     if (MayUseCollector(kCollectorTypeSS) || MayUseCollector(kCollectorTypeGSS) ||
    587         MayUseCollector(kCollectorTypeHomogeneousSpaceCompact) ||
    588         use_homogeneous_space_compaction_for_oom_) {
    589       // TODO: Clean this up.
    590       const bool generational = foreground_collector_type_ == kCollectorTypeGSS;
    591       semi_space_collector_ = new collector::SemiSpace(this, generational,
    592                                                        generational ? "generational" : "");
    593       garbage_collectors_.push_back(semi_space_collector_);
    594     }
    595     if (MayUseCollector(kCollectorTypeCC)) {
    596       concurrent_copying_collector_ = new collector::ConcurrentCopying(this,
    597                                                                        "",
    598                                                                        measure_gc_performance);
    599       DCHECK(region_space_ != nullptr);
    600       concurrent_copying_collector_->SetRegionSpace(region_space_);
    601       garbage_collectors_.push_back(concurrent_copying_collector_);
    602     }
    603     if (MayUseCollector(kCollectorTypeMC)) {
    604       mark_compact_collector_ = new collector::MarkCompact(this);
    605       garbage_collectors_.push_back(mark_compact_collector_);
    606     }
    607   }
    608   if (!GetBootImageSpaces().empty() && non_moving_space_ != nullptr &&
    609       (is_zygote || separate_non_moving_space || foreground_collector_type_ == kCollectorTypeGSS)) {
    610     // Check that there's no gap between the image space and the non moving space so that the
    611     // immune region won't break (eg. due to a large object allocated in the gap). This is only
    612     // required when we're the zygote or using GSS.
    613     // Space with smallest Begin().
    614     space::ImageSpace* first_space = nullptr;
    615     for (space::ImageSpace* space : boot_image_spaces_) {
    616       if (first_space == nullptr || space->Begin() < first_space->Begin()) {
    617         first_space = space;
    618       }
    619     }
    620     bool no_gap = MemMap::CheckNoGaps(first_space->GetMemMap(), non_moving_space_->GetMemMap());
    621     if (!no_gap) {
    622       PrintFileToLog("/proc/self/maps", LogSeverity::ERROR);
    623       MemMap::DumpMaps(LOG_STREAM(ERROR), true);
    624       LOG(FATAL) << "There's a gap between the image space and the non-moving space";
    625     }
    626   }
    627   instrumentation::Instrumentation* const instrumentation = runtime->GetInstrumentation();
    628   if (gc_stress_mode_) {
    629     backtrace_lock_ = new Mutex("GC complete lock");
    630   }
    631   if (is_running_on_memory_tool_ || gc_stress_mode_) {
    632     instrumentation->InstrumentQuickAllocEntryPoints();
    633   }
    634   if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
    635     LOG(INFO) << "Heap() exiting";
    636   }
    637 }
    638 
    639 MemMap* Heap::MapAnonymousPreferredAddress(const char* name,
    640                                            uint8_t* request_begin,
    641                                            size_t capacity,
    642                                            std::string* out_error_str) {
    643   while (true) {
    644     MemMap* map = MemMap::MapAnonymous(name, request_begin, capacity,
    645                                        PROT_READ | PROT_WRITE, true, false, out_error_str);
    646     if (map != nullptr || request_begin == nullptr) {
    647       return map;
    648     }
    649     // Retry a  second time with no specified request begin.
    650     request_begin = nullptr;
    651   }
    652 }
    653 
    654 bool Heap::MayUseCollector(CollectorType type) const {
    655   return foreground_collector_type_ == type || background_collector_type_ == type;
    656 }
    657 
    658 space::MallocSpace* Heap::CreateMallocSpaceFromMemMap(MemMap* mem_map,
    659                                                       size_t initial_size,
    660                                                       size_t growth_limit,
    661                                                       size_t capacity,
    662                                                       const char* name,
    663                                                       bool can_move_objects) {
    664   space::MallocSpace* malloc_space = nullptr;
    665   if (kUseRosAlloc) {
    666     // Create rosalloc space.
    667     malloc_space = space::RosAllocSpace::CreateFromMemMap(mem_map, name, kDefaultStartingSize,
    668                                                           initial_size, growth_limit, capacity,
    669                                                           low_memory_mode_, can_move_objects);
    670   } else {
    671     malloc_space = space::DlMallocSpace::CreateFromMemMap(mem_map, name, kDefaultStartingSize,
    672                                                           initial_size, growth_limit, capacity,
    673                                                           can_move_objects);
    674   }
    675   if (collector::SemiSpace::kUseRememberedSet) {
    676     accounting::RememberedSet* rem_set  =
    677         new accounting::RememberedSet(std::string(name) + " remembered set", this, malloc_space);
    678     CHECK(rem_set != nullptr) << "Failed to create main space remembered set";
    679     AddRememberedSet(rem_set);
    680   }
    681   CHECK(malloc_space != nullptr) << "Failed to create " << name;
    682   malloc_space->SetFootprintLimit(malloc_space->Capacity());
    683   return malloc_space;
    684 }
    685 
    686 void Heap::CreateMainMallocSpace(MemMap* mem_map, size_t initial_size, size_t growth_limit,
    687                                  size_t capacity) {
    688   // Is background compaction is enabled?
    689   bool can_move_objects = IsMovingGc(background_collector_type_) !=
    690       IsMovingGc(foreground_collector_type_) || use_homogeneous_space_compaction_for_oom_;
    691   // If we are the zygote and don't yet have a zygote space, it means that the zygote fork will
    692   // happen in the future. If this happens and we have kCompactZygote enabled we wish to compact
    693   // from the main space to the zygote space. If background compaction is enabled, always pass in
    694   // that we can move objets.
    695   if (kCompactZygote && Runtime::Current()->IsZygote() && !can_move_objects) {
    696     // After the zygote we want this to be false if we don't have background compaction enabled so
    697     // that getting primitive array elements is faster.
    698     // We never have homogeneous compaction with GSS and don't need a space with movable objects.
    699     can_move_objects = !HasZygoteSpace() && foreground_collector_type_ != kCollectorTypeGSS;
    700   }
    701   if (collector::SemiSpace::kUseRememberedSet && main_space_ != nullptr) {
    702     RemoveRememberedSet(main_space_);
    703   }
    704   const char* name = kUseRosAlloc ? kRosAllocSpaceName[0] : kDlMallocSpaceName[0];
    705   main_space_ = CreateMallocSpaceFromMemMap(mem_map, initial_size, growth_limit, capacity, name,
    706                                             can_move_objects);
    707   SetSpaceAsDefault(main_space_);
    708   VLOG(heap) << "Created main space " << main_space_;
    709 }
    710 
    711 void Heap::ChangeAllocator(AllocatorType allocator) {
    712   if (current_allocator_ != allocator) {
    713     // These two allocators are only used internally and don't have any entrypoints.
    714     CHECK_NE(allocator, kAllocatorTypeLOS);
    715     CHECK_NE(allocator, kAllocatorTypeNonMoving);
    716     current_allocator_ = allocator;
    717     MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
    718     SetQuickAllocEntryPointsAllocator(current_allocator_);
    719     Runtime::Current()->GetInstrumentation()->ResetQuickAllocEntryPoints();
    720   }
    721 }
    722 
    723 void Heap::DisableMovingGc() {
    724   CHECK(!kUseReadBarrier);
    725   if (IsMovingGc(foreground_collector_type_)) {
    726     foreground_collector_type_ = kCollectorTypeCMS;
    727   }
    728   if (IsMovingGc(background_collector_type_)) {
    729     background_collector_type_ = foreground_collector_type_;
    730   }
    731   TransitionCollector(foreground_collector_type_);
    732   Thread* const self = Thread::Current();
    733   ScopedThreadStateChange tsc(self, kSuspended);
    734   ScopedSuspendAll ssa(__FUNCTION__);
    735   // Something may have caused the transition to fail.
    736   if (!IsMovingGc(collector_type_) && non_moving_space_ != main_space_) {
    737     CHECK(main_space_ != nullptr);
    738     // The allocation stack may have non movable objects in it. We need to flush it since the GC
    739     // can't only handle marking allocation stack objects of one non moving space and one main
    740     // space.
    741     {
    742       WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
    743       FlushAllocStack();
    744     }
    745     main_space_->DisableMovingObjects();
    746     non_moving_space_ = main_space_;
    747     CHECK(!non_moving_space_->CanMoveObjects());
    748   }
    749 }
    750 
    751 bool Heap::IsCompilingBoot() const {
    752   if (!Runtime::Current()->IsAotCompiler()) {
    753     return false;
    754   }
    755   ScopedObjectAccess soa(Thread::Current());
    756   for (const auto& space : continuous_spaces_) {
    757     if (space->IsImageSpace() || space->IsZygoteSpace()) {
    758       return false;
    759     }
    760   }
    761   return true;
    762 }
    763 
    764 void Heap::IncrementDisableMovingGC(Thread* self) {
    765   // Need to do this holding the lock to prevent races where the GC is about to run / running when
    766   // we attempt to disable it.
    767   ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
    768   MutexLock mu(self, *gc_complete_lock_);
    769   ++disable_moving_gc_count_;
    770   if (IsMovingGc(collector_type_running_)) {
    771     WaitForGcToCompleteLocked(kGcCauseDisableMovingGc, self);
    772   }
    773 }
    774 
    775 void Heap::DecrementDisableMovingGC(Thread* self) {
    776   MutexLock mu(self, *gc_complete_lock_);
    777   CHECK_GT(disable_moving_gc_count_, 0U);
    778   --disable_moving_gc_count_;
    779 }
    780 
    781 void Heap::IncrementDisableThreadFlip(Thread* self) {
    782   // Supposed to be called by mutators. If thread_flip_running_ is true, block. Otherwise, go ahead.
    783   CHECK(kUseReadBarrier);
    784   bool is_nested = self->GetDisableThreadFlipCount() > 0;
    785   self->IncrementDisableThreadFlipCount();
    786   if (is_nested) {
    787     // If this is a nested JNI critical section enter, we don't need to wait or increment the global
    788     // counter. The global counter is incremented only once for a thread for the outermost enter.
    789     return;
    790   }
    791   ScopedThreadStateChange tsc(self, kWaitingForGcThreadFlip);
    792   MutexLock mu(self, *thread_flip_lock_);
    793   bool has_waited = false;
    794   uint64_t wait_start = NanoTime();
    795   if (thread_flip_running_) {
    796     ATRACE_BEGIN("IncrementDisableThreadFlip");
    797     while (thread_flip_running_) {
    798       has_waited = true;
    799       thread_flip_cond_->Wait(self);
    800     }
    801     ATRACE_END();
    802   }
    803   ++disable_thread_flip_count_;
    804   if (has_waited) {
    805     uint64_t wait_time = NanoTime() - wait_start;
    806     total_wait_time_ += wait_time;
    807     if (wait_time > long_pause_log_threshold_) {
    808       LOG(INFO) << __FUNCTION__ << " blocked for " << PrettyDuration(wait_time);
    809     }
    810   }
    811 }
    812 
    813 void Heap::DecrementDisableThreadFlip(Thread* self) {
    814   // Supposed to be called by mutators. Decrement disable_thread_flip_count_ and potentially wake up
    815   // the GC waiting before doing a thread flip.
    816   CHECK(kUseReadBarrier);
    817   self->DecrementDisableThreadFlipCount();
    818   bool is_outermost = self->GetDisableThreadFlipCount() == 0;
    819   if (!is_outermost) {
    820     // If this is not an outermost JNI critical exit, we don't need to decrement the global counter.
    821     // The global counter is decremented only once for a thread for the outermost exit.
    822     return;
    823   }
    824   MutexLock mu(self, *thread_flip_lock_);
    825   CHECK_GT(disable_thread_flip_count_, 0U);
    826   --disable_thread_flip_count_;
    827   if (disable_thread_flip_count_ == 0) {
    828     // Potentially notify the GC thread blocking to begin a thread flip.
    829     thread_flip_cond_->Broadcast(self);
    830   }
    831 }
    832 
    833 void Heap::ThreadFlipBegin(Thread* self) {
    834   // Supposed to be called by GC. Set thread_flip_running_ to be true. If disable_thread_flip_count_
    835   // > 0, block. Otherwise, go ahead.
    836   CHECK(kUseReadBarrier);
    837   ScopedThreadStateChange tsc(self, kWaitingForGcThreadFlip);
    838   MutexLock mu(self, *thread_flip_lock_);
    839   bool has_waited = false;
    840   uint64_t wait_start = NanoTime();
    841   CHECK(!thread_flip_running_);
    842   // Set this to true before waiting so that frequent JNI critical enter/exits won't starve
    843   // GC. This like a writer preference of a reader-writer lock.
    844   thread_flip_running_ = true;
    845   while (disable_thread_flip_count_ > 0) {
    846     has_waited = true;
    847     thread_flip_cond_->Wait(self);
    848   }
    849   if (has_waited) {
    850     uint64_t wait_time = NanoTime() - wait_start;
    851     total_wait_time_ += wait_time;
    852     if (wait_time > long_pause_log_threshold_) {
    853       LOG(INFO) << __FUNCTION__ << " blocked for " << PrettyDuration(wait_time);
    854     }
    855   }
    856 }
    857 
    858 void Heap::ThreadFlipEnd(Thread* self) {
    859   // Supposed to be called by GC. Set thread_flip_running_ to false and potentially wake up mutators
    860   // waiting before doing a JNI critical.
    861   CHECK(kUseReadBarrier);
    862   MutexLock mu(self, *thread_flip_lock_);
    863   CHECK(thread_flip_running_);
    864   thread_flip_running_ = false;
    865   // Potentially notify mutator threads blocking to enter a JNI critical section.
    866   thread_flip_cond_->Broadcast(self);
    867 }
    868 
    869 void Heap::UpdateProcessState(ProcessState old_process_state, ProcessState new_process_state) {
    870   if (old_process_state != new_process_state) {
    871     const bool jank_perceptible = new_process_state == kProcessStateJankPerceptible;
    872     for (size_t i = 1; i <= kCollectorTransitionStressIterations; ++i) {
    873       // Start at index 1 to avoid "is always false" warning.
    874       // Have iteration 1 always transition the collector.
    875       TransitionCollector((((i & 1) == 1) == jank_perceptible)
    876           ? foreground_collector_type_
    877           : background_collector_type_);
    878       usleep(kCollectorTransitionStressWait);
    879     }
    880     if (jank_perceptible) {
    881       // Transition back to foreground right away to prevent jank.
    882       RequestCollectorTransition(foreground_collector_type_, 0);
    883     } else {
    884       // Don't delay for debug builds since we may want to stress test the GC.
    885       // If background_collector_type_ is kCollectorTypeHomogeneousSpaceCompact then we have
    886       // special handling which does a homogenous space compaction once but then doesn't transition
    887       // the collector. Similarly, we invoke a full compaction for kCollectorTypeCC but don't
    888       // transition the collector.
    889       RequestCollectorTransition(background_collector_type_,
    890                                  kIsDebugBuild ? 0 : kCollectorTransitionWait);
    891     }
    892   }
    893 }
    894 
    895 void Heap::CreateThreadPool() {
    896   const size_t num_threads = std::max(parallel_gc_threads_, conc_gc_threads_);
    897   if (num_threads != 0) {
    898     thread_pool_.reset(new ThreadPool("Heap thread pool", num_threads));
    899   }
    900 }
    901 
    902 // Visit objects when threads aren't suspended. If concurrent moving
    903 // GC, disable moving GC and suspend threads and then visit objects.
    904 void Heap::VisitObjects(ObjectCallback callback, void* arg) {
    905   Thread* self = Thread::Current();
    906   Locks::mutator_lock_->AssertSharedHeld(self);
    907   DCHECK(!Locks::mutator_lock_->IsExclusiveHeld(self)) << "Call VisitObjectsPaused() instead";
    908   if (IsGcConcurrentAndMoving()) {
    909     // Concurrent moving GC. Just suspending threads isn't sufficient
    910     // because a collection isn't one big pause and we could suspend
    911     // threads in the middle (between phases) of a concurrent moving
    912     // collection where it's not easily known which objects are alive
    913     // (both the region space and the non-moving space) or which
    914     // copies of objects to visit, and the to-space invariant could be
    915     // easily broken. Visit objects while GC isn't running by using
    916     // IncrementDisableMovingGC() and threads are suspended.
    917     IncrementDisableMovingGC(self);
    918     {
    919       ScopedThreadSuspension sts(self, kWaitingForVisitObjects);
    920       ScopedSuspendAll ssa(__FUNCTION__);
    921       VisitObjectsInternalRegionSpace(callback, arg);
    922       VisitObjectsInternal(callback, arg);
    923     }
    924     DecrementDisableMovingGC(self);
    925   } else {
    926     // Since concurrent moving GC has thread suspension, also poison ObjPtr the normal case to
    927     // catch bugs.
    928     self->PoisonObjectPointers();
    929     // GCs can move objects, so don't allow this.
    930     ScopedAssertNoThreadSuspension ants("Visiting objects");
    931     DCHECK(region_space_ == nullptr);
    932     VisitObjectsInternal(callback, arg);
    933     self->PoisonObjectPointers();
    934   }
    935 }
    936 
    937 // Visit objects when threads are already suspended.
    938 void Heap::VisitObjectsPaused(ObjectCallback callback, void* arg) {
    939   Thread* self = Thread::Current();
    940   Locks::mutator_lock_->AssertExclusiveHeld(self);
    941   VisitObjectsInternalRegionSpace(callback, arg);
    942   VisitObjectsInternal(callback, arg);
    943 }
    944 
    945 // Visit objects in the region spaces.
    946 void Heap::VisitObjectsInternalRegionSpace(ObjectCallback callback, void* arg) {
    947   Thread* self = Thread::Current();
    948   Locks::mutator_lock_->AssertExclusiveHeld(self);
    949   if (region_space_ != nullptr) {
    950     DCHECK(IsGcConcurrentAndMoving());
    951     if (!zygote_creation_lock_.IsExclusiveHeld(self)) {
    952       // Exclude the pre-zygote fork time where the semi-space collector
    953       // calls VerifyHeapReferences() as part of the zygote compaction
    954       // which then would call here without the moving GC disabled,
    955       // which is fine.
    956       bool is_thread_running_gc = false;
    957       if (kIsDebugBuild) {
    958         MutexLock mu(self, *gc_complete_lock_);
    959         is_thread_running_gc = self == thread_running_gc_;
    960       }
    961       // If we are not the thread running the GC on in a GC exclusive region, then moving GC
    962       // must be disabled.
    963       DCHECK(is_thread_running_gc || IsMovingGCDisabled(self));
    964     }
    965     region_space_->Walk(callback, arg);
    966   }
    967 }
    968 
    969 // Visit objects in the other spaces.
    970 void Heap::VisitObjectsInternal(ObjectCallback callback, void* arg) {
    971   if (bump_pointer_space_ != nullptr) {
    972     // Visit objects in bump pointer space.
    973     bump_pointer_space_->Walk(callback, arg);
    974   }
    975   // TODO: Switch to standard begin and end to use ranged a based loop.
    976   for (auto* it = allocation_stack_->Begin(), *end = allocation_stack_->End(); it < end; ++it) {
    977     mirror::Object* const obj = it->AsMirrorPtr();
    978     if (obj != nullptr && obj->GetClass() != nullptr) {
    979       // Avoid the race condition caused by the object not yet being written into the allocation
    980       // stack or the class not yet being written in the object. Or, if
    981       // kUseThreadLocalAllocationStack, there can be nulls on the allocation stack.
    982       callback(obj, arg);
    983     }
    984   }
    985   {
    986     ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
    987     GetLiveBitmap()->Walk(callback, arg);
    988   }
    989 }
    990 
    991 void Heap::MarkAllocStackAsLive(accounting::ObjectStack* stack) {
    992   space::ContinuousSpace* space1 = main_space_ != nullptr ? main_space_ : non_moving_space_;
    993   space::ContinuousSpace* space2 = non_moving_space_;
    994   // TODO: Generalize this to n bitmaps?
    995   CHECK(space1 != nullptr);
    996   CHECK(space2 != nullptr);
    997   MarkAllocStack(space1->GetLiveBitmap(), space2->GetLiveBitmap(),
    998                  (large_object_space_ != nullptr ? large_object_space_->GetLiveBitmap() : nullptr),
    999                  stack);
   1000 }
   1001 
   1002 void Heap::DeleteThreadPool() {
   1003   thread_pool_.reset(nullptr);
   1004 }
   1005 
   1006 void Heap::AddSpace(space::Space* space) {
   1007   CHECK(space != nullptr);
   1008   WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
   1009   if (space->IsContinuousSpace()) {
   1010     DCHECK(!space->IsDiscontinuousSpace());
   1011     space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
   1012     // Continuous spaces don't necessarily have bitmaps.
   1013     accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
   1014     accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
   1015     // The region space bitmap is not added since VisitObjects visits the region space objects with
   1016     // special handling.
   1017     if (live_bitmap != nullptr && !space->IsRegionSpace()) {
   1018       CHECK(mark_bitmap != nullptr);
   1019       live_bitmap_->AddContinuousSpaceBitmap(live_bitmap);
   1020       mark_bitmap_->AddContinuousSpaceBitmap(mark_bitmap);
   1021     }
   1022     continuous_spaces_.push_back(continuous_space);
   1023     // Ensure that spaces remain sorted in increasing order of start address.
   1024     std::sort(continuous_spaces_.begin(), continuous_spaces_.end(),
   1025               [](const space::ContinuousSpace* a, const space::ContinuousSpace* b) {
   1026       return a->Begin() < b->Begin();
   1027     });
   1028   } else {
   1029     CHECK(space->IsDiscontinuousSpace());
   1030     space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
   1031     live_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
   1032     mark_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
   1033     discontinuous_spaces_.push_back(discontinuous_space);
   1034   }
   1035   if (space->IsAllocSpace()) {
   1036     alloc_spaces_.push_back(space->AsAllocSpace());
   1037   }
   1038 }
   1039 
   1040 void Heap::SetSpaceAsDefault(space::ContinuousSpace* continuous_space) {
   1041   WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
   1042   if (continuous_space->IsDlMallocSpace()) {
   1043     dlmalloc_space_ = continuous_space->AsDlMallocSpace();
   1044   } else if (continuous_space->IsRosAllocSpace()) {
   1045     rosalloc_space_ = continuous_space->AsRosAllocSpace();
   1046   }
   1047 }
   1048 
   1049 void Heap::RemoveSpace(space::Space* space) {
   1050   DCHECK(space != nullptr);
   1051   WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
   1052   if (space->IsContinuousSpace()) {
   1053     DCHECK(!space->IsDiscontinuousSpace());
   1054     space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
   1055     // Continuous spaces don't necessarily have bitmaps.
   1056     accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
   1057     accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
   1058     if (live_bitmap != nullptr && !space->IsRegionSpace()) {
   1059       DCHECK(mark_bitmap != nullptr);
   1060       live_bitmap_->RemoveContinuousSpaceBitmap(live_bitmap);
   1061       mark_bitmap_->RemoveContinuousSpaceBitmap(mark_bitmap);
   1062     }
   1063     auto it = std::find(continuous_spaces_.begin(), continuous_spaces_.end(), continuous_space);
   1064     DCHECK(it != continuous_spaces_.end());
   1065     continuous_spaces_.erase(it);
   1066   } else {
   1067     DCHECK(space->IsDiscontinuousSpace());
   1068     space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
   1069     live_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
   1070     mark_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
   1071     auto it = std::find(discontinuous_spaces_.begin(), discontinuous_spaces_.end(),
   1072                         discontinuous_space);
   1073     DCHECK(it != discontinuous_spaces_.end());
   1074     discontinuous_spaces_.erase(it);
   1075   }
   1076   if (space->IsAllocSpace()) {
   1077     auto it = std::find(alloc_spaces_.begin(), alloc_spaces_.end(), space->AsAllocSpace());
   1078     DCHECK(it != alloc_spaces_.end());
   1079     alloc_spaces_.erase(it);
   1080   }
   1081 }
   1082 
   1083 void Heap::DumpGcPerformanceInfo(std::ostream& os) {
   1084   // Dump cumulative timings.
   1085   os << "Dumping cumulative Gc timings\n";
   1086   uint64_t total_duration = 0;
   1087   // Dump cumulative loggers for each GC type.
   1088   uint64_t total_paused_time = 0;
   1089   for (auto& collector : garbage_collectors_) {
   1090     total_duration += collector->GetCumulativeTimings().GetTotalNs();
   1091     total_paused_time += collector->GetTotalPausedTimeNs();
   1092     collector->DumpPerformanceInfo(os);
   1093   }
   1094   if (total_duration != 0) {
   1095     const double total_seconds = static_cast<double>(total_duration / 1000) / 1000000.0;
   1096     os << "Total time spent in GC: " << PrettyDuration(total_duration) << "\n";
   1097     os << "Mean GC size throughput: "
   1098        << PrettySize(GetBytesFreedEver() / total_seconds) << "/s\n";
   1099     os << "Mean GC object throughput: "
   1100        << (GetObjectsFreedEver() / total_seconds) << " objects/s\n";
   1101   }
   1102   uint64_t total_objects_allocated = GetObjectsAllocatedEver();
   1103   os << "Total number of allocations " << total_objects_allocated << "\n";
   1104   os << "Total bytes allocated " << PrettySize(GetBytesAllocatedEver()) << "\n";
   1105   os << "Total bytes freed " << PrettySize(GetBytesFreedEver()) << "\n";
   1106   os << "Free memory " << PrettySize(GetFreeMemory()) << "\n";
   1107   os << "Free memory until GC " << PrettySize(GetFreeMemoryUntilGC()) << "\n";
   1108   os << "Free memory until OOME " << PrettySize(GetFreeMemoryUntilOOME()) << "\n";
   1109   os << "Total memory " << PrettySize(GetTotalMemory()) << "\n";
   1110   os << "Max memory " << PrettySize(GetMaxMemory()) << "\n";
   1111   if (HasZygoteSpace()) {
   1112     os << "Zygote space size " << PrettySize(zygote_space_->Size()) << "\n";
   1113   }
   1114   os << "Total mutator paused time: " << PrettyDuration(total_paused_time) << "\n";
   1115   os << "Total time waiting for GC to complete: " << PrettyDuration(total_wait_time_) << "\n";
   1116   os << "Total GC count: " << GetGcCount() << "\n";
   1117   os << "Total GC time: " << PrettyDuration(GetGcTime()) << "\n";
   1118   os << "Total blocking GC count: " << GetBlockingGcCount() << "\n";
   1119   os << "Total blocking GC time: " << PrettyDuration(GetBlockingGcTime()) << "\n";
   1120 
   1121   {
   1122     MutexLock mu(Thread::Current(), *gc_complete_lock_);
   1123     if (gc_count_rate_histogram_.SampleSize() > 0U) {
   1124       os << "Histogram of GC count per " << NsToMs(kGcCountRateHistogramWindowDuration) << " ms: ";
   1125       gc_count_rate_histogram_.DumpBins(os);
   1126       os << "\n";
   1127     }
   1128     if (blocking_gc_count_rate_histogram_.SampleSize() > 0U) {
   1129       os << "Histogram of blocking GC count per "
   1130          << NsToMs(kGcCountRateHistogramWindowDuration) << " ms: ";
   1131       blocking_gc_count_rate_histogram_.DumpBins(os);
   1132       os << "\n";
   1133     }
   1134   }
   1135 
   1136   if (kDumpRosAllocStatsOnSigQuit && rosalloc_space_ != nullptr) {
   1137     rosalloc_space_->DumpStats(os);
   1138   }
   1139 
   1140   os << "Registered native bytes allocated: "
   1141      << old_native_bytes_allocated_.LoadRelaxed() + new_native_bytes_allocated_.LoadRelaxed()
   1142      << "\n";
   1143 
   1144   BaseMutex::DumpAll(os);
   1145 }
   1146 
   1147 void Heap::ResetGcPerformanceInfo() {
   1148   for (auto& collector : garbage_collectors_) {
   1149     collector->ResetMeasurements();
   1150   }
   1151   total_bytes_freed_ever_ = 0;
   1152   total_objects_freed_ever_ = 0;
   1153   total_wait_time_ = 0;
   1154   blocking_gc_count_ = 0;
   1155   blocking_gc_time_ = 0;
   1156   gc_count_last_window_ = 0;
   1157   blocking_gc_count_last_window_ = 0;
   1158   last_update_time_gc_count_rate_histograms_ =  // Round down by the window duration.
   1159       (NanoTime() / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration;
   1160   {
   1161     MutexLock mu(Thread::Current(), *gc_complete_lock_);
   1162     gc_count_rate_histogram_.Reset();
   1163     blocking_gc_count_rate_histogram_.Reset();
   1164   }
   1165 }
   1166 
   1167 uint64_t Heap::GetGcCount() const {
   1168   uint64_t gc_count = 0U;
   1169   for (auto& collector : garbage_collectors_) {
   1170     gc_count += collector->GetCumulativeTimings().GetIterations();
   1171   }
   1172   return gc_count;
   1173 }
   1174 
   1175 uint64_t Heap::GetGcTime() const {
   1176   uint64_t gc_time = 0U;
   1177   for (auto& collector : garbage_collectors_) {
   1178     gc_time += collector->GetCumulativeTimings().GetTotalNs();
   1179   }
   1180   return gc_time;
   1181 }
   1182 
   1183 uint64_t Heap::GetBlockingGcCount() const {
   1184   return blocking_gc_count_;
   1185 }
   1186 
   1187 uint64_t Heap::GetBlockingGcTime() const {
   1188   return blocking_gc_time_;
   1189 }
   1190 
   1191 void Heap::DumpGcCountRateHistogram(std::ostream& os) const {
   1192   MutexLock mu(Thread::Current(), *gc_complete_lock_);
   1193   if (gc_count_rate_histogram_.SampleSize() > 0U) {
   1194     gc_count_rate_histogram_.DumpBins(os);
   1195   }
   1196 }
   1197 
   1198 void Heap::DumpBlockingGcCountRateHistogram(std::ostream& os) const {
   1199   MutexLock mu(Thread::Current(), *gc_complete_lock_);
   1200   if (blocking_gc_count_rate_histogram_.SampleSize() > 0U) {
   1201     blocking_gc_count_rate_histogram_.DumpBins(os);
   1202   }
   1203 }
   1204 
   1205 ALWAYS_INLINE
   1206 static inline AllocationListener* GetAndOverwriteAllocationListener(
   1207     Atomic<AllocationListener*>* storage, AllocationListener* new_value) {
   1208   AllocationListener* old;
   1209   do {
   1210     old = storage->LoadSequentiallyConsistent();
   1211   } while (!storage->CompareExchangeStrongSequentiallyConsistent(old, new_value));
   1212   return old;
   1213 }
   1214 
   1215 Heap::~Heap() {
   1216   VLOG(heap) << "Starting ~Heap()";
   1217   STLDeleteElements(&garbage_collectors_);
   1218   // If we don't reset then the mark stack complains in its destructor.
   1219   allocation_stack_->Reset();
   1220   allocation_records_.reset();
   1221   live_stack_->Reset();
   1222   STLDeleteValues(&mod_union_tables_);
   1223   STLDeleteValues(&remembered_sets_);
   1224   STLDeleteElements(&continuous_spaces_);
   1225   STLDeleteElements(&discontinuous_spaces_);
   1226   delete gc_complete_lock_;
   1227   delete native_blocking_gc_lock_;
   1228   delete thread_flip_lock_;
   1229   delete pending_task_lock_;
   1230   delete backtrace_lock_;
   1231   if (unique_backtrace_count_.LoadRelaxed() != 0 || seen_backtrace_count_.LoadRelaxed() != 0) {
   1232     LOG(INFO) << "gc stress unique=" << unique_backtrace_count_.LoadRelaxed()
   1233         << " total=" << seen_backtrace_count_.LoadRelaxed() +
   1234             unique_backtrace_count_.LoadRelaxed();
   1235   }
   1236 
   1237   VLOG(heap) << "Finished ~Heap()";
   1238 }
   1239 
   1240 
   1241 space::ContinuousSpace* Heap::FindContinuousSpaceFromAddress(const mirror::Object* addr) const {
   1242   for (const auto& space : continuous_spaces_) {
   1243     if (space->Contains(addr)) {
   1244       return space;
   1245     }
   1246   }
   1247   return nullptr;
   1248 }
   1249 
   1250 space::ContinuousSpace* Heap::FindContinuousSpaceFromObject(ObjPtr<mirror::Object> obj,
   1251                                                             bool fail_ok) const {
   1252   space::ContinuousSpace* space = FindContinuousSpaceFromAddress(obj.Ptr());
   1253   if (space != nullptr) {
   1254     return space;
   1255   }
   1256   if (!fail_ok) {
   1257     LOG(FATAL) << "object " << obj << " not inside any spaces!";
   1258   }
   1259   return nullptr;
   1260 }
   1261 
   1262 space::DiscontinuousSpace* Heap::FindDiscontinuousSpaceFromObject(ObjPtr<mirror::Object> obj,
   1263                                                                   bool fail_ok) const {
   1264   for (const auto& space : discontinuous_spaces_) {
   1265     if (space->Contains(obj.Ptr())) {
   1266       return space;
   1267     }
   1268   }
   1269   if (!fail_ok) {
   1270     LOG(FATAL) << "object " << obj << " not inside any spaces!";
   1271   }
   1272   return nullptr;
   1273 }
   1274 
   1275 space::Space* Heap::FindSpaceFromObject(ObjPtr<mirror::Object> obj, bool fail_ok) const {
   1276   space::Space* result = FindContinuousSpaceFromObject(obj, true);
   1277   if (result != nullptr) {
   1278     return result;
   1279   }
   1280   return FindDiscontinuousSpaceFromObject(obj, fail_ok);
   1281 }
   1282 
   1283 space::Space* Heap::FindSpaceFromAddress(const void* addr) const {
   1284   for (const auto& space : continuous_spaces_) {
   1285     if (space->Contains(reinterpret_cast<const mirror::Object*>(addr))) {
   1286       return space;
   1287     }
   1288   }
   1289   for (const auto& space : discontinuous_spaces_) {
   1290     if (space->Contains(reinterpret_cast<const mirror::Object*>(addr))) {
   1291       return space;
   1292     }
   1293   }
   1294   return nullptr;
   1295 }
   1296 
   1297 
   1298 void Heap::ThrowOutOfMemoryError(Thread* self, size_t byte_count, AllocatorType allocator_type) {
   1299   // If we're in a stack overflow, do not create a new exception. It would require running the
   1300   // constructor, which will of course still be in a stack overflow.
   1301   if (self->IsHandlingStackOverflow()) {
   1302     self->SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryError());
   1303     return;
   1304   }
   1305 
   1306   std::ostringstream oss;
   1307   size_t total_bytes_free = GetFreeMemory();
   1308   oss << "Failed to allocate a " << byte_count << " byte allocation with " << total_bytes_free
   1309       << " free bytes and " << PrettySize(GetFreeMemoryUntilOOME()) << " until OOM,"
   1310       << " max allowed footprint " << max_allowed_footprint_ << ", growth limit "
   1311       << growth_limit_;
   1312   // If the allocation failed due to fragmentation, print out the largest continuous allocation.
   1313   if (total_bytes_free >= byte_count) {
   1314     space::AllocSpace* space = nullptr;
   1315     if (allocator_type == kAllocatorTypeNonMoving) {
   1316       space = non_moving_space_;
   1317     } else if (allocator_type == kAllocatorTypeRosAlloc ||
   1318                allocator_type == kAllocatorTypeDlMalloc) {
   1319       space = main_space_;
   1320     } else if (allocator_type == kAllocatorTypeBumpPointer ||
   1321                allocator_type == kAllocatorTypeTLAB) {
   1322       space = bump_pointer_space_;
   1323     } else if (allocator_type == kAllocatorTypeRegion ||
   1324                allocator_type == kAllocatorTypeRegionTLAB) {
   1325       space = region_space_;
   1326     }
   1327     if (space != nullptr) {
   1328       space->LogFragmentationAllocFailure(oss, byte_count);
   1329     }
   1330   }
   1331   self->ThrowOutOfMemoryError(oss.str().c_str());
   1332 }
   1333 
   1334 void Heap::DoPendingCollectorTransition() {
   1335   CollectorType desired_collector_type = desired_collector_type_;
   1336   // Launch homogeneous space compaction if it is desired.
   1337   if (desired_collector_type == kCollectorTypeHomogeneousSpaceCompact) {
   1338     if (!CareAboutPauseTimes()) {
   1339       PerformHomogeneousSpaceCompact();
   1340     } else {
   1341       VLOG(gc) << "Homogeneous compaction ignored due to jank perceptible process state";
   1342     }
   1343   } else if (desired_collector_type == kCollectorTypeCCBackground) {
   1344     DCHECK(kUseReadBarrier);
   1345     if (!CareAboutPauseTimes()) {
   1346       // Invoke CC full compaction.
   1347       CollectGarbageInternal(collector::kGcTypeFull,
   1348                              kGcCauseCollectorTransition,
   1349                              /*clear_soft_references*/false);
   1350     } else {
   1351       VLOG(gc) << "CC background compaction ignored due to jank perceptible process state";
   1352     }
   1353   } else {
   1354     TransitionCollector(desired_collector_type);
   1355   }
   1356 }
   1357 
   1358 void Heap::Trim(Thread* self) {
   1359   Runtime* const runtime = Runtime::Current();
   1360   if (!CareAboutPauseTimes()) {
   1361     // Deflate the monitors, this can cause a pause but shouldn't matter since we don't care
   1362     // about pauses.
   1363     ScopedTrace trace("Deflating monitors");
   1364     // Avoid race conditions on the lock word for CC.
   1365     ScopedGCCriticalSection gcs(self, kGcCauseTrim, kCollectorTypeHeapTrim);
   1366     ScopedSuspendAll ssa(__FUNCTION__);
   1367     uint64_t start_time = NanoTime();
   1368     size_t count = runtime->GetMonitorList()->DeflateMonitors();
   1369     VLOG(heap) << "Deflating " << count << " monitors took "
   1370         << PrettyDuration(NanoTime() - start_time);
   1371   }
   1372   TrimIndirectReferenceTables(self);
   1373   TrimSpaces(self);
   1374   // Trim arenas that may have been used by JIT or verifier.
   1375   runtime->GetArenaPool()->TrimMaps();
   1376 }
   1377 
   1378 class TrimIndirectReferenceTableClosure : public Closure {
   1379  public:
   1380   explicit TrimIndirectReferenceTableClosure(Barrier* barrier) : barrier_(barrier) {
   1381   }
   1382   virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
   1383     thread->GetJniEnv()->locals.Trim();
   1384     // If thread is a running mutator, then act on behalf of the trim thread.
   1385     // See the code in ThreadList::RunCheckpoint.
   1386     barrier_->Pass(Thread::Current());
   1387   }
   1388 
   1389  private:
   1390   Barrier* const barrier_;
   1391 };
   1392 
   1393 void Heap::TrimIndirectReferenceTables(Thread* self) {
   1394   ScopedObjectAccess soa(self);
   1395   ScopedTrace trace(__PRETTY_FUNCTION__);
   1396   JavaVMExt* vm = soa.Vm();
   1397   // Trim globals indirect reference table.
   1398   vm->TrimGlobals();
   1399   // Trim locals indirect reference tables.
   1400   Barrier barrier(0);
   1401   TrimIndirectReferenceTableClosure closure(&barrier);
   1402   ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
   1403   size_t barrier_count = Runtime::Current()->GetThreadList()->RunCheckpoint(&closure);
   1404   if (barrier_count != 0) {
   1405     barrier.Increment(self, barrier_count);
   1406   }
   1407 }
   1408 
   1409 void Heap::StartGC(Thread* self, GcCause cause, CollectorType collector_type) {
   1410   // Need to do this before acquiring the locks since we don't want to get suspended while
   1411   // holding any locks.
   1412   ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
   1413   MutexLock mu(self, *gc_complete_lock_);
   1414   // Ensure there is only one GC at a time.
   1415   WaitForGcToCompleteLocked(cause, self);
   1416   collector_type_running_ = collector_type;
   1417   thread_running_gc_ = self;
   1418 }
   1419 
   1420 void Heap::TrimSpaces(Thread* self) {
   1421   // Pretend we are doing a GC to prevent background compaction from deleting the space we are
   1422   // trimming.
   1423   StartGC(self, kGcCauseTrim, kCollectorTypeHeapTrim);
   1424   ScopedTrace trace(__PRETTY_FUNCTION__);
   1425   const uint64_t start_ns = NanoTime();
   1426   // Trim the managed spaces.
   1427   uint64_t total_alloc_space_allocated = 0;
   1428   uint64_t total_alloc_space_size = 0;
   1429   uint64_t managed_reclaimed = 0;
   1430   {
   1431     ScopedObjectAccess soa(self);
   1432     for (const auto& space : continuous_spaces_) {
   1433       if (space->IsMallocSpace()) {
   1434         gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
   1435         if (malloc_space->IsRosAllocSpace() || !CareAboutPauseTimes()) {
   1436           // Don't trim dlmalloc spaces if we care about pauses since this can hold the space lock
   1437           // for a long period of time.
   1438           managed_reclaimed += malloc_space->Trim();
   1439         }
   1440         total_alloc_space_size += malloc_space->Size();
   1441       }
   1442     }
   1443   }
   1444   total_alloc_space_allocated = GetBytesAllocated();
   1445   if (large_object_space_ != nullptr) {
   1446     total_alloc_space_allocated -= large_object_space_->GetBytesAllocated();
   1447   }
   1448   if (bump_pointer_space_ != nullptr) {
   1449     total_alloc_space_allocated -= bump_pointer_space_->Size();
   1450   }
   1451   if (region_space_ != nullptr) {
   1452     total_alloc_space_allocated -= region_space_->GetBytesAllocated();
   1453   }
   1454   const float managed_utilization = static_cast<float>(total_alloc_space_allocated) /
   1455       static_cast<float>(total_alloc_space_size);
   1456   uint64_t gc_heap_end_ns = NanoTime();
   1457   // We never move things in the native heap, so we can finish the GC at this point.
   1458   FinishGC(self, collector::kGcTypeNone);
   1459 
   1460   VLOG(heap) << "Heap trim of managed (duration=" << PrettyDuration(gc_heap_end_ns - start_ns)
   1461       << ", advised=" << PrettySize(managed_reclaimed) << ") heap. Managed heap utilization of "
   1462       << static_cast<int>(100 * managed_utilization) << "%.";
   1463 }
   1464 
   1465 bool Heap::IsValidObjectAddress(const void* addr) const {
   1466   if (addr == nullptr) {
   1467     return true;
   1468   }
   1469   return IsAligned<kObjectAlignment>(addr) && FindSpaceFromAddress(addr) != nullptr;
   1470 }
   1471 
   1472 bool Heap::IsNonDiscontinuousSpaceHeapAddress(const void* addr) const {
   1473   return FindContinuousSpaceFromAddress(reinterpret_cast<const mirror::Object*>(addr)) != nullptr;
   1474 }
   1475 
   1476 bool Heap::IsLiveObjectLocked(ObjPtr<mirror::Object> obj,
   1477                               bool search_allocation_stack,
   1478                               bool search_live_stack,
   1479                               bool sorted) {
   1480   if (UNLIKELY(!IsAligned<kObjectAlignment>(obj.Ptr()))) {
   1481     return false;
   1482   }
   1483   if (bump_pointer_space_ != nullptr && bump_pointer_space_->HasAddress(obj.Ptr())) {
   1484     mirror::Class* klass = obj->GetClass<kVerifyNone>();
   1485     if (obj == klass) {
   1486       // This case happens for java.lang.Class.
   1487       return true;
   1488     }
   1489     return VerifyClassClass(klass) && IsLiveObjectLocked(klass);
   1490   } else if (temp_space_ != nullptr && temp_space_->HasAddress(obj.Ptr())) {
   1491     // If we are in the allocated region of the temp space, then we are probably live (e.g. during
   1492     // a GC). When a GC isn't running End() - Begin() is 0 which means no objects are contained.
   1493     return temp_space_->Contains(obj.Ptr());
   1494   }
   1495   if (region_space_ != nullptr && region_space_->HasAddress(obj.Ptr())) {
   1496     return true;
   1497   }
   1498   space::ContinuousSpace* c_space = FindContinuousSpaceFromObject(obj, true);
   1499   space::DiscontinuousSpace* d_space = nullptr;
   1500   if (c_space != nullptr) {
   1501     if (c_space->GetLiveBitmap()->Test(obj.Ptr())) {
   1502       return true;
   1503     }
   1504   } else {
   1505     d_space = FindDiscontinuousSpaceFromObject(obj, true);
   1506     if (d_space != nullptr) {
   1507       if (d_space->GetLiveBitmap()->Test(obj.Ptr())) {
   1508         return true;
   1509       }
   1510     }
   1511   }
   1512   // This is covering the allocation/live stack swapping that is done without mutators suspended.
   1513   for (size_t i = 0; i < (sorted ? 1 : 5); ++i) {
   1514     if (i > 0) {
   1515       NanoSleep(MsToNs(10));
   1516     }
   1517     if (search_allocation_stack) {
   1518       if (sorted) {
   1519         if (allocation_stack_->ContainsSorted(obj.Ptr())) {
   1520           return true;
   1521         }
   1522       } else if (allocation_stack_->Contains(obj.Ptr())) {
   1523         return true;
   1524       }
   1525     }
   1526 
   1527     if (search_live_stack) {
   1528       if (sorted) {
   1529         if (live_stack_->ContainsSorted(obj.Ptr())) {
   1530           return true;
   1531         }
   1532       } else if (live_stack_->Contains(obj.Ptr())) {
   1533         return true;
   1534       }
   1535     }
   1536   }
   1537   // We need to check the bitmaps again since there is a race where we mark something as live and
   1538   // then clear the stack containing it.
   1539   if (c_space != nullptr) {
   1540     if (c_space->GetLiveBitmap()->Test(obj.Ptr())) {
   1541       return true;
   1542     }
   1543   } else {
   1544     d_space = FindDiscontinuousSpaceFromObject(obj, true);
   1545     if (d_space != nullptr && d_space->GetLiveBitmap()->Test(obj.Ptr())) {
   1546       return true;
   1547     }
   1548   }
   1549   return false;
   1550 }
   1551 
   1552 std::string Heap::DumpSpaces() const {
   1553   std::ostringstream oss;
   1554   DumpSpaces(oss);
   1555   return oss.str();
   1556 }
   1557 
   1558 void Heap::DumpSpaces(std::ostream& stream) const {
   1559   for (const auto& space : continuous_spaces_) {
   1560     accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
   1561     accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
   1562     stream << space << " " << *space << "\n";
   1563     if (live_bitmap != nullptr) {
   1564       stream << live_bitmap << " " << *live_bitmap << "\n";
   1565     }
   1566     if (mark_bitmap != nullptr) {
   1567       stream << mark_bitmap << " " << *mark_bitmap << "\n";
   1568     }
   1569   }
   1570   for (const auto& space : discontinuous_spaces_) {
   1571     stream << space << " " << *space << "\n";
   1572   }
   1573 }
   1574 
   1575 void Heap::VerifyObjectBody(ObjPtr<mirror::Object> obj) {
   1576   if (verify_object_mode_ == kVerifyObjectModeDisabled) {
   1577     return;
   1578   }
   1579 
   1580   // Ignore early dawn of the universe verifications.
   1581   if (UNLIKELY(static_cast<size_t>(num_bytes_allocated_.LoadRelaxed()) < 10 * KB)) {
   1582     return;
   1583   }
   1584   CHECK_ALIGNED(obj.Ptr(), kObjectAlignment) << "Object isn't aligned";
   1585   mirror::Class* c = obj->GetFieldObject<mirror::Class, kVerifyNone>(mirror::Object::ClassOffset());
   1586   CHECK(c != nullptr) << "Null class in object " << obj;
   1587   CHECK_ALIGNED(c, kObjectAlignment) << "Class " << c << " not aligned in object " << obj;
   1588   CHECK(VerifyClassClass(c));
   1589 
   1590   if (verify_object_mode_ > kVerifyObjectModeFast) {
   1591     // Note: the bitmap tests below are racy since we don't hold the heap bitmap lock.
   1592     CHECK(IsLiveObjectLocked(obj)) << "Object is dead " << obj << "\n" << DumpSpaces();
   1593   }
   1594 }
   1595 
   1596 void Heap::VerificationCallback(mirror::Object* obj, void* arg) {
   1597   reinterpret_cast<Heap*>(arg)->VerifyObjectBody(obj);
   1598 }
   1599 
   1600 void Heap::VerifyHeap() {
   1601   ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
   1602   GetLiveBitmap()->Walk(Heap::VerificationCallback, this);
   1603 }
   1604 
   1605 void Heap::RecordFree(uint64_t freed_objects, int64_t freed_bytes) {
   1606   // Use signed comparison since freed bytes can be negative when background compaction foreground
   1607   // transitions occurs. This is caused by the moving objects from a bump pointer space to a
   1608   // free list backed space typically increasing memory footprint due to padding and binning.
   1609   DCHECK_LE(freed_bytes, static_cast<int64_t>(num_bytes_allocated_.LoadRelaxed()));
   1610   // Note: This relies on 2s complement for handling negative freed_bytes.
   1611   num_bytes_allocated_.FetchAndSubSequentiallyConsistent(static_cast<ssize_t>(freed_bytes));
   1612   if (Runtime::Current()->HasStatsEnabled()) {
   1613     RuntimeStats* thread_stats = Thread::Current()->GetStats();
   1614     thread_stats->freed_objects += freed_objects;
   1615     thread_stats->freed_bytes += freed_bytes;
   1616     // TODO: Do this concurrently.
   1617     RuntimeStats* global_stats = Runtime::Current()->GetStats();
   1618     global_stats->freed_objects += freed_objects;
   1619     global_stats->freed_bytes += freed_bytes;
   1620   }
   1621 }
   1622 
   1623 void Heap::RecordFreeRevoke() {
   1624   // Subtract num_bytes_freed_revoke_ from num_bytes_allocated_ to cancel out the
   1625   // the ahead-of-time, bulk counting of bytes allocated in rosalloc thread-local buffers.
   1626   // If there's a concurrent revoke, ok to not necessarily reset num_bytes_freed_revoke_
   1627   // all the way to zero exactly as the remainder will be subtracted at the next GC.
   1628   size_t bytes_freed = num_bytes_freed_revoke_.LoadSequentiallyConsistent();
   1629   CHECK_GE(num_bytes_freed_revoke_.FetchAndSubSequentiallyConsistent(bytes_freed),
   1630            bytes_freed) << "num_bytes_freed_revoke_ underflow";
   1631   CHECK_GE(num_bytes_allocated_.FetchAndSubSequentiallyConsistent(bytes_freed),
   1632            bytes_freed) << "num_bytes_allocated_ underflow";
   1633   GetCurrentGcIteration()->SetFreedRevoke(bytes_freed);
   1634 }
   1635 
   1636 space::RosAllocSpace* Heap::GetRosAllocSpace(gc::allocator::RosAlloc* rosalloc) const {
   1637   if (rosalloc_space_ != nullptr && rosalloc_space_->GetRosAlloc() == rosalloc) {
   1638     return rosalloc_space_;
   1639   }
   1640   for (const auto& space : continuous_spaces_) {
   1641     if (space->AsContinuousSpace()->IsRosAllocSpace()) {
   1642       if (space->AsContinuousSpace()->AsRosAllocSpace()->GetRosAlloc() == rosalloc) {
   1643         return space->AsContinuousSpace()->AsRosAllocSpace();
   1644       }
   1645     }
   1646   }
   1647   return nullptr;
   1648 }
   1649 
   1650 static inline bool EntrypointsInstrumented() REQUIRES_SHARED(Locks::mutator_lock_) {
   1651   instrumentation::Instrumentation* const instrumentation =
   1652       Runtime::Current()->GetInstrumentation();
   1653   return instrumentation != nullptr && instrumentation->AllocEntrypointsInstrumented();
   1654 }
   1655 
   1656 mirror::Object* Heap::AllocateInternalWithGc(Thread* self,
   1657                                              AllocatorType allocator,
   1658                                              bool instrumented,
   1659                                              size_t alloc_size,
   1660                                              size_t* bytes_allocated,
   1661                                              size_t* usable_size,
   1662                                              size_t* bytes_tl_bulk_allocated,
   1663                                              ObjPtr<mirror::Class>* klass) {
   1664   bool was_default_allocator = allocator == GetCurrentAllocator();
   1665   // Make sure there is no pending exception since we may need to throw an OOME.
   1666   self->AssertNoPendingException();
   1667   DCHECK(klass != nullptr);
   1668   StackHandleScope<1> hs(self);
   1669   HandleWrapperObjPtr<mirror::Class> h(hs.NewHandleWrapper(klass));
   1670   // The allocation failed. If the GC is running, block until it completes, and then retry the
   1671   // allocation.
   1672   collector::GcType last_gc = WaitForGcToComplete(kGcCauseForAlloc, self);
   1673   // If we were the default allocator but the allocator changed while we were suspended,
   1674   // abort the allocation.
   1675   if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
   1676       (!instrumented && EntrypointsInstrumented())) {
   1677     return nullptr;
   1678   }
   1679   if (last_gc != collector::kGcTypeNone) {
   1680     // A GC was in progress and we blocked, retry allocation now that memory has been freed.
   1681     mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
   1682                                                      usable_size, bytes_tl_bulk_allocated);
   1683     if (ptr != nullptr) {
   1684       return ptr;
   1685     }
   1686   }
   1687 
   1688   collector::GcType tried_type = next_gc_type_;
   1689   const bool gc_ran =
   1690       CollectGarbageInternal(tried_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
   1691   if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
   1692       (!instrumented && EntrypointsInstrumented())) {
   1693     return nullptr;
   1694   }
   1695   if (gc_ran) {
   1696     mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
   1697                                                      usable_size, bytes_tl_bulk_allocated);
   1698     if (ptr != nullptr) {
   1699       return ptr;
   1700     }
   1701   }
   1702 
   1703   // Loop through our different Gc types and try to Gc until we get enough free memory.
   1704   for (collector::GcType gc_type : gc_plan_) {
   1705     if (gc_type == tried_type) {
   1706       continue;
   1707     }
   1708     // Attempt to run the collector, if we succeed, re-try the allocation.
   1709     const bool plan_gc_ran =
   1710         CollectGarbageInternal(gc_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
   1711     if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
   1712         (!instrumented && EntrypointsInstrumented())) {
   1713       return nullptr;
   1714     }
   1715     if (plan_gc_ran) {
   1716       // Did we free sufficient memory for the allocation to succeed?
   1717       mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
   1718                                                        usable_size, bytes_tl_bulk_allocated);
   1719       if (ptr != nullptr) {
   1720         return ptr;
   1721       }
   1722     }
   1723   }
   1724   // Allocations have failed after GCs;  this is an exceptional state.
   1725   // Try harder, growing the heap if necessary.
   1726   mirror::Object* ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
   1727                                                   usable_size, bytes_tl_bulk_allocated);
   1728   if (ptr != nullptr) {
   1729     return ptr;
   1730   }
   1731   // Most allocations should have succeeded by now, so the heap is really full, really fragmented,
   1732   // or the requested size is really big. Do another GC, collecting SoftReferences this time. The
   1733   // VM spec requires that all SoftReferences have been collected and cleared before throwing
   1734   // OOME.
   1735   VLOG(gc) << "Forcing collection of SoftReferences for " << PrettySize(alloc_size)
   1736            << " allocation";
   1737   // TODO: Run finalization, but this may cause more allocations to occur.
   1738   // We don't need a WaitForGcToComplete here either.
   1739   DCHECK(!gc_plan_.empty());
   1740   CollectGarbageInternal(gc_plan_.back(), kGcCauseForAlloc, true);
   1741   if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
   1742       (!instrumented && EntrypointsInstrumented())) {
   1743     return nullptr;
   1744   }
   1745   ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated, usable_size,
   1746                                   bytes_tl_bulk_allocated);
   1747   if (ptr == nullptr) {
   1748     const uint64_t current_time = NanoTime();
   1749     switch (allocator) {
   1750       case kAllocatorTypeRosAlloc:
   1751         // Fall-through.
   1752       case kAllocatorTypeDlMalloc: {
   1753         if (use_homogeneous_space_compaction_for_oom_ &&
   1754             current_time - last_time_homogeneous_space_compaction_by_oom_ >
   1755             min_interval_homogeneous_space_compaction_by_oom_) {
   1756           last_time_homogeneous_space_compaction_by_oom_ = current_time;
   1757           HomogeneousSpaceCompactResult result = PerformHomogeneousSpaceCompact();
   1758           // Thread suspension could have occurred.
   1759           if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
   1760               (!instrumented && EntrypointsInstrumented())) {
   1761             return nullptr;
   1762           }
   1763           switch (result) {
   1764             case HomogeneousSpaceCompactResult::kSuccess:
   1765               // If the allocation succeeded, we delayed an oom.
   1766               ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
   1767                                               usable_size, bytes_tl_bulk_allocated);
   1768               if (ptr != nullptr) {
   1769                 count_delayed_oom_++;
   1770               }
   1771               break;
   1772             case HomogeneousSpaceCompactResult::kErrorReject:
   1773               // Reject due to disabled moving GC.
   1774               break;
   1775             case HomogeneousSpaceCompactResult::kErrorVMShuttingDown:
   1776               // Throw OOM by default.
   1777               break;
   1778             default: {
   1779               UNIMPLEMENTED(FATAL) << "homogeneous space compaction result: "
   1780                   << static_cast<size_t>(result);
   1781               UNREACHABLE();
   1782             }
   1783           }
   1784           // Always print that we ran homogeneous space compation since this can cause jank.
   1785           VLOG(heap) << "Ran heap homogeneous space compaction, "
   1786                     << " requested defragmentation "
   1787                     << count_requested_homogeneous_space_compaction_.LoadSequentiallyConsistent()
   1788                     << " performed defragmentation "
   1789                     << count_performed_homogeneous_space_compaction_.LoadSequentiallyConsistent()
   1790                     << " ignored homogeneous space compaction "
   1791                     << count_ignored_homogeneous_space_compaction_.LoadSequentiallyConsistent()
   1792                     << " delayed count = "
   1793                     << count_delayed_oom_.LoadSequentiallyConsistent();
   1794         }
   1795         break;
   1796       }
   1797       case kAllocatorTypeNonMoving: {
   1798         if (kUseReadBarrier) {
   1799           // DisableMovingGc() isn't compatible with CC.
   1800           break;
   1801         }
   1802         // Try to transition the heap if the allocation failure was due to the space being full.
   1803         if (!IsOutOfMemoryOnAllocation(allocator, alloc_size, /*grow*/ false)) {
   1804           // If we aren't out of memory then the OOM was probably from the non moving space being
   1805           // full. Attempt to disable compaction and turn the main space into a non moving space.
   1806           DisableMovingGc();
   1807           // Thread suspension could have occurred.
   1808           if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
   1809               (!instrumented && EntrypointsInstrumented())) {
   1810             return nullptr;
   1811           }
   1812           // If we are still a moving GC then something must have caused the transition to fail.
   1813           if (IsMovingGc(collector_type_)) {
   1814             MutexLock mu(self, *gc_complete_lock_);
   1815             // If we couldn't disable moving GC, just throw OOME and return null.
   1816             LOG(WARNING) << "Couldn't disable moving GC with disable GC count "
   1817                          << disable_moving_gc_count_;
   1818           } else {
   1819             LOG(WARNING) << "Disabled moving GC due to the non moving space being full";
   1820             ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
   1821                                             usable_size, bytes_tl_bulk_allocated);
   1822           }
   1823         }
   1824         break;
   1825       }
   1826       default: {
   1827         // Do nothing for others allocators.
   1828       }
   1829     }
   1830   }
   1831   // If the allocation hasn't succeeded by this point, throw an OOM error.
   1832   if (ptr == nullptr) {
   1833     ThrowOutOfMemoryError(self, alloc_size, allocator);
   1834   }
   1835   return ptr;
   1836 }
   1837 
   1838 void Heap::SetTargetHeapUtilization(float target) {
   1839   DCHECK_GT(target, 0.0f);  // asserted in Java code
   1840   DCHECK_LT(target, 1.0f);
   1841   target_utilization_ = target;
   1842 }
   1843 
   1844 size_t Heap::GetObjectsAllocated() const {
   1845   Thread* const self = Thread::Current();
   1846   ScopedThreadStateChange tsc(self, kWaitingForGetObjectsAllocated);
   1847   // Prevent GC running during GetObjectsALlocated since we may get a checkpoint request that tells
   1848   // us to suspend while we are doing SuspendAll. b/35232978
   1849   gc::ScopedGCCriticalSection gcs(Thread::Current(),
   1850                                   gc::kGcCauseGetObjectsAllocated,
   1851                                   gc::kCollectorTypeGetObjectsAllocated);
   1852   // Need SuspendAll here to prevent lock violation if RosAlloc does it during InspectAll.
   1853   ScopedSuspendAll ssa(__FUNCTION__);
   1854   ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
   1855   size_t total = 0;
   1856   for (space::AllocSpace* space : alloc_spaces_) {
   1857     total += space->GetObjectsAllocated();
   1858   }
   1859   return total;
   1860 }
   1861 
   1862 uint64_t Heap::GetObjectsAllocatedEver() const {
   1863   uint64_t total = GetObjectsFreedEver();
   1864   // If we are detached, we can't use GetObjectsAllocated since we can't change thread states.
   1865   if (Thread::Current() != nullptr) {
   1866     total += GetObjectsAllocated();
   1867   }
   1868   return total;
   1869 }
   1870 
   1871 uint64_t Heap::GetBytesAllocatedEver() const {
   1872   return GetBytesFreedEver() + GetBytesAllocated();
   1873 }
   1874 
   1875 class InstanceCounter {
   1876  public:
   1877   InstanceCounter(const std::vector<Handle<mirror::Class>>& classes,
   1878                   bool use_is_assignable_from,
   1879                   uint64_t* counts)
   1880       REQUIRES_SHARED(Locks::mutator_lock_)
   1881       : classes_(classes), use_is_assignable_from_(use_is_assignable_from), counts_(counts) {}
   1882 
   1883   static void Callback(mirror::Object* obj, void* arg)
   1884       REQUIRES_SHARED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
   1885     InstanceCounter* instance_counter = reinterpret_cast<InstanceCounter*>(arg);
   1886     mirror::Class* instance_class = obj->GetClass();
   1887     CHECK(instance_class != nullptr);
   1888     for (size_t i = 0; i < instance_counter->classes_.size(); ++i) {
   1889       ObjPtr<mirror::Class> klass = instance_counter->classes_[i].Get();
   1890       if (instance_counter->use_is_assignable_from_) {
   1891         if (klass != nullptr && klass->IsAssignableFrom(instance_class)) {
   1892           ++instance_counter->counts_[i];
   1893         }
   1894       } else if (instance_class == klass) {
   1895         ++instance_counter->counts_[i];
   1896       }
   1897     }
   1898   }
   1899 
   1900  private:
   1901   const std::vector<Handle<mirror::Class>>& classes_;
   1902   bool use_is_assignable_from_;
   1903   uint64_t* const counts_;
   1904   DISALLOW_COPY_AND_ASSIGN(InstanceCounter);
   1905 };
   1906 
   1907 void Heap::CountInstances(const std::vector<Handle<mirror::Class>>& classes,
   1908                           bool use_is_assignable_from,
   1909                           uint64_t* counts) {
   1910   InstanceCounter counter(classes, use_is_assignable_from, counts);
   1911   VisitObjects(InstanceCounter::Callback, &counter);
   1912 }
   1913 
   1914 class InstanceCollector {
   1915  public:
   1916   InstanceCollector(VariableSizedHandleScope& scope,
   1917                     Handle<mirror::Class> c,
   1918                     int32_t max_count,
   1919                     std::vector<Handle<mirror::Object>>& instances)
   1920       REQUIRES_SHARED(Locks::mutator_lock_)
   1921       : scope_(scope),
   1922         class_(c),
   1923         max_count_(max_count),
   1924         instances_(instances) {}
   1925 
   1926   static void Callback(mirror::Object* obj, void* arg)
   1927       REQUIRES_SHARED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
   1928     DCHECK(arg != nullptr);
   1929     InstanceCollector* instance_collector = reinterpret_cast<InstanceCollector*>(arg);
   1930     if (obj->GetClass() == instance_collector->class_.Get()) {
   1931       if (instance_collector->max_count_ == 0 ||
   1932           instance_collector->instances_.size() < instance_collector->max_count_) {
   1933         instance_collector->instances_.push_back(instance_collector->scope_.NewHandle(obj));
   1934       }
   1935     }
   1936   }
   1937 
   1938  private:
   1939   VariableSizedHandleScope& scope_;
   1940   Handle<mirror::Class> const class_;
   1941   const uint32_t max_count_;
   1942   std::vector<Handle<mirror::Object>>& instances_;
   1943   DISALLOW_COPY_AND_ASSIGN(InstanceCollector);
   1944 };
   1945 
   1946 void Heap::GetInstances(VariableSizedHandleScope& scope,
   1947                         Handle<mirror::Class> c,
   1948                         int32_t max_count,
   1949                         std::vector<Handle<mirror::Object>>& instances) {
   1950   InstanceCollector collector(scope, c, max_count, instances);
   1951   VisitObjects(&InstanceCollector::Callback, &collector);
   1952 }
   1953 
   1954 class ReferringObjectsFinder {
   1955  public:
   1956   ReferringObjectsFinder(VariableSizedHandleScope& scope,
   1957                          Handle<mirror::Object> object,
   1958                          int32_t max_count,
   1959                          std::vector<Handle<mirror::Object>>& referring_objects)
   1960       REQUIRES_SHARED(Locks::mutator_lock_)
   1961       : scope_(scope),
   1962         object_(object),
   1963         max_count_(max_count),
   1964         referring_objects_(referring_objects) {}
   1965 
   1966   static void Callback(mirror::Object* obj, void* arg)
   1967       REQUIRES_SHARED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
   1968     reinterpret_cast<ReferringObjectsFinder*>(arg)->operator()(obj);
   1969   }
   1970 
   1971   // For bitmap Visit.
   1972   // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
   1973   // annotalysis on visitors.
   1974   void operator()(ObjPtr<mirror::Object> o) const NO_THREAD_SAFETY_ANALYSIS {
   1975     o->VisitReferences(*this, VoidFunctor());
   1976   }
   1977 
   1978   // For Object::VisitReferences.
   1979   void operator()(ObjPtr<mirror::Object> obj,
   1980                   MemberOffset offset,
   1981                   bool is_static ATTRIBUTE_UNUSED) const
   1982       REQUIRES_SHARED(Locks::mutator_lock_) {
   1983     mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
   1984     if (ref == object_.Get() && (max_count_ == 0 || referring_objects_.size() < max_count_)) {
   1985       referring_objects_.push_back(scope_.NewHandle(obj));
   1986     }
   1987   }
   1988 
   1989   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
   1990       const {}
   1991   void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
   1992 
   1993  private:
   1994   VariableSizedHandleScope& scope_;
   1995   Handle<mirror::Object> const object_;
   1996   const uint32_t max_count_;
   1997   std::vector<Handle<mirror::Object>>& referring_objects_;
   1998   DISALLOW_COPY_AND_ASSIGN(ReferringObjectsFinder);
   1999 };
   2000 
   2001 void Heap::GetReferringObjects(VariableSizedHandleScope& scope,
   2002                                Handle<mirror::Object> o,
   2003                                int32_t max_count,
   2004                                std::vector<Handle<mirror::Object>>& referring_objects) {
   2005   ReferringObjectsFinder finder(scope, o, max_count, referring_objects);
   2006   VisitObjects(&ReferringObjectsFinder::Callback, &finder);
   2007 }
   2008 
   2009 void Heap::CollectGarbage(bool clear_soft_references) {
   2010   // Even if we waited for a GC we still need to do another GC since weaks allocated during the
   2011   // last GC will not have necessarily been cleared.
   2012   CollectGarbageInternal(gc_plan_.back(), kGcCauseExplicit, clear_soft_references);
   2013 }
   2014 
   2015 bool Heap::SupportHomogeneousSpaceCompactAndCollectorTransitions() const {
   2016   return main_space_backup_.get() != nullptr && main_space_ != nullptr &&
   2017       foreground_collector_type_ == kCollectorTypeCMS;
   2018 }
   2019 
   2020 HomogeneousSpaceCompactResult Heap::PerformHomogeneousSpaceCompact() {
   2021   Thread* self = Thread::Current();
   2022   // Inc requested homogeneous space compaction.
   2023   count_requested_homogeneous_space_compaction_++;
   2024   // Store performed homogeneous space compaction at a new request arrival.
   2025   ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
   2026   Locks::mutator_lock_->AssertNotHeld(self);
   2027   {
   2028     ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete);
   2029     MutexLock mu(self, *gc_complete_lock_);
   2030     // Ensure there is only one GC at a time.
   2031     WaitForGcToCompleteLocked(kGcCauseHomogeneousSpaceCompact, self);
   2032     // Homogeneous space compaction is a copying transition, can't run it if the moving GC disable count
   2033     // is non zero.
   2034     // If the collector type changed to something which doesn't benefit from homogeneous space compaction,
   2035     // exit.
   2036     if (disable_moving_gc_count_ != 0 || IsMovingGc(collector_type_) ||
   2037         !main_space_->CanMoveObjects()) {
   2038       return kErrorReject;
   2039     }
   2040     if (!SupportHomogeneousSpaceCompactAndCollectorTransitions()) {
   2041       return kErrorUnsupported;
   2042     }
   2043     collector_type_running_ = kCollectorTypeHomogeneousSpaceCompact;
   2044   }
   2045   if (Runtime::Current()->IsShuttingDown(self)) {
   2046     // Don't allow heap transitions to happen if the runtime is shutting down since these can
   2047     // cause objects to get finalized.
   2048     FinishGC(self, collector::kGcTypeNone);
   2049     return HomogeneousSpaceCompactResult::kErrorVMShuttingDown;
   2050   }
   2051   collector::GarbageCollector* collector;
   2052   {
   2053     ScopedSuspendAll ssa(__FUNCTION__);
   2054     uint64_t start_time = NanoTime();
   2055     // Launch compaction.
   2056     space::MallocSpace* to_space = main_space_backup_.release();
   2057     space::MallocSpace* from_space = main_space_;
   2058     to_space->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
   2059     const uint64_t space_size_before_compaction = from_space->Size();
   2060     AddSpace(to_space);
   2061     // Make sure that we will have enough room to copy.
   2062     CHECK_GE(to_space->GetFootprintLimit(), from_space->GetFootprintLimit());
   2063     collector = Compact(to_space, from_space, kGcCauseHomogeneousSpaceCompact);
   2064     const uint64_t space_size_after_compaction = to_space->Size();
   2065     main_space_ = to_space;
   2066     main_space_backup_.reset(from_space);
   2067     RemoveSpace(from_space);
   2068     SetSpaceAsDefault(main_space_);  // Set as default to reset the proper dlmalloc space.
   2069     // Update performed homogeneous space compaction count.
   2070     count_performed_homogeneous_space_compaction_++;
   2071     // Print statics log and resume all threads.
   2072     uint64_t duration = NanoTime() - start_time;
   2073     VLOG(heap) << "Heap homogeneous space compaction took " << PrettyDuration(duration) << " size: "
   2074                << PrettySize(space_size_before_compaction) << " -> "
   2075                << PrettySize(space_size_after_compaction) << " compact-ratio: "
   2076                << std::fixed << static_cast<double>(space_size_after_compaction) /
   2077                static_cast<double>(space_size_before_compaction);
   2078   }
   2079   // Finish GC.
   2080   reference_processor_->EnqueueClearedReferences(self);
   2081   GrowForUtilization(semi_space_collector_);
   2082   LogGC(kGcCauseHomogeneousSpaceCompact, collector);
   2083   FinishGC(self, collector::kGcTypeFull);
   2084   {
   2085     ScopedObjectAccess soa(self);
   2086     soa.Vm()->UnloadNativeLibraries();
   2087   }
   2088   return HomogeneousSpaceCompactResult::kSuccess;
   2089 }
   2090 
   2091 void Heap::TransitionCollector(CollectorType collector_type) {
   2092   if (collector_type == collector_type_) {
   2093     return;
   2094   }
   2095   // Collector transition must not happen with CC
   2096   CHECK(!kUseReadBarrier);
   2097   VLOG(heap) << "TransitionCollector: " << static_cast<int>(collector_type_)
   2098              << " -> " << static_cast<int>(collector_type);
   2099   uint64_t start_time = NanoTime();
   2100   uint32_t before_allocated = num_bytes_allocated_.LoadSequentiallyConsistent();
   2101   Runtime* const runtime = Runtime::Current();
   2102   Thread* const self = Thread::Current();
   2103   ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
   2104   Locks::mutator_lock_->AssertNotHeld(self);
   2105   // Busy wait until we can GC (StartGC can fail if we have a non-zero
   2106   // compacting_gc_disable_count_, this should rarely occurs).
   2107   for (;;) {
   2108     {
   2109       ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete);
   2110       MutexLock mu(self, *gc_complete_lock_);
   2111       // Ensure there is only one GC at a time.
   2112       WaitForGcToCompleteLocked(kGcCauseCollectorTransition, self);
   2113       // Currently we only need a heap transition if we switch from a moving collector to a
   2114       // non-moving one, or visa versa.
   2115       const bool copying_transition = IsMovingGc(collector_type_) != IsMovingGc(collector_type);
   2116       // If someone else beat us to it and changed the collector before we could, exit.
   2117       // This is safe to do before the suspend all since we set the collector_type_running_ before
   2118       // we exit the loop. If another thread attempts to do the heap transition before we exit,
   2119       // then it would get blocked on WaitForGcToCompleteLocked.
   2120       if (collector_type == collector_type_) {
   2121         return;
   2122       }
   2123       // GC can be disabled if someone has a used GetPrimitiveArrayCritical but not yet released.
   2124       if (!copying_transition || disable_moving_gc_count_ == 0) {
   2125         // TODO: Not hard code in semi-space collector?
   2126         collector_type_running_ = copying_transition ? kCollectorTypeSS : collector_type;
   2127         break;
   2128       }
   2129     }
   2130     usleep(1000);
   2131   }
   2132   if (runtime->IsShuttingDown(self)) {
   2133     // Don't allow heap transitions to happen if the runtime is shutting down since these can
   2134     // cause objects to get finalized.
   2135     FinishGC(self, collector::kGcTypeNone);
   2136     return;
   2137   }
   2138   collector::GarbageCollector* collector = nullptr;
   2139   {
   2140     ScopedSuspendAll ssa(__FUNCTION__);
   2141     switch (collector_type) {
   2142       case kCollectorTypeSS: {
   2143         if (!IsMovingGc(collector_type_)) {
   2144           // Create the bump pointer space from the backup space.
   2145           CHECK(main_space_backup_ != nullptr);
   2146           std::unique_ptr<MemMap> mem_map(main_space_backup_->ReleaseMemMap());
   2147           // We are transitioning from non moving GC -> moving GC, since we copied from the bump
   2148           // pointer space last transition it will be protected.
   2149           CHECK(mem_map != nullptr);
   2150           mem_map->Protect(PROT_READ | PROT_WRITE);
   2151           bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space",
   2152                                                                           mem_map.release());
   2153           AddSpace(bump_pointer_space_);
   2154           collector = Compact(bump_pointer_space_, main_space_, kGcCauseCollectorTransition);
   2155           // Use the now empty main space mem map for the bump pointer temp space.
   2156           mem_map.reset(main_space_->ReleaseMemMap());
   2157           // Unset the pointers just in case.
   2158           if (dlmalloc_space_ == main_space_) {
   2159             dlmalloc_space_ = nullptr;
   2160           } else if (rosalloc_space_ == main_space_) {
   2161             rosalloc_space_ = nullptr;
   2162           }
   2163           // Remove the main space so that we don't try to trim it, this doens't work for debug
   2164           // builds since RosAlloc attempts to read the magic number from a protected page.
   2165           RemoveSpace(main_space_);
   2166           RemoveRememberedSet(main_space_);
   2167           delete main_space_;  // Delete the space since it has been removed.
   2168           main_space_ = nullptr;
   2169           RemoveRememberedSet(main_space_backup_.get());
   2170           main_space_backup_.reset(nullptr);  // Deletes the space.
   2171           temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2",
   2172                                                                   mem_map.release());
   2173           AddSpace(temp_space_);
   2174         }
   2175         break;
   2176       }
   2177       case kCollectorTypeMS:
   2178         // Fall through.
   2179       case kCollectorTypeCMS: {
   2180         if (IsMovingGc(collector_type_)) {
   2181           CHECK(temp_space_ != nullptr);
   2182           std::unique_ptr<MemMap> mem_map(temp_space_->ReleaseMemMap());
   2183           RemoveSpace(temp_space_);
   2184           temp_space_ = nullptr;
   2185           mem_map->Protect(PROT_READ | PROT_WRITE);
   2186           CreateMainMallocSpace(mem_map.get(),
   2187                                 kDefaultInitialSize,
   2188                                 std::min(mem_map->Size(), growth_limit_),
   2189                                 mem_map->Size());
   2190           mem_map.release();
   2191           // Compact to the main space from the bump pointer space, don't need to swap semispaces.
   2192           AddSpace(main_space_);
   2193           collector = Compact(main_space_, bump_pointer_space_, kGcCauseCollectorTransition);
   2194           mem_map.reset(bump_pointer_space_->ReleaseMemMap());
   2195           RemoveSpace(bump_pointer_space_);
   2196           bump_pointer_space_ = nullptr;
   2197           const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
   2198           // Temporarily unprotect the backup mem map so rosalloc can write the debug magic number.
   2199           if (kIsDebugBuild && kUseRosAlloc) {
   2200             mem_map->Protect(PROT_READ | PROT_WRITE);
   2201           }
   2202           main_space_backup_.reset(CreateMallocSpaceFromMemMap(
   2203               mem_map.get(),
   2204               kDefaultInitialSize,
   2205               std::min(mem_map->Size(), growth_limit_),
   2206               mem_map->Size(),
   2207               name,
   2208               true));
   2209           if (kIsDebugBuild && kUseRosAlloc) {
   2210             mem_map->Protect(PROT_NONE);
   2211           }
   2212           mem_map.release();
   2213         }
   2214         break;
   2215       }
   2216       default: {
   2217         LOG(FATAL) << "Attempted to transition to invalid collector type "
   2218                    << static_cast<size_t>(collector_type);
   2219         break;
   2220       }
   2221     }
   2222     ChangeCollector(collector_type);
   2223   }
   2224   // Can't call into java code with all threads suspended.
   2225   reference_processor_->EnqueueClearedReferences(self);
   2226   uint64_t duration = NanoTime() - start_time;
   2227   GrowForUtilization(semi_space_collector_);
   2228   DCHECK(collector != nullptr);
   2229   LogGC(kGcCauseCollectorTransition, collector);
   2230   FinishGC(self, collector::kGcTypeFull);
   2231   {
   2232     ScopedObjectAccess soa(self);
   2233     soa.Vm()->UnloadNativeLibraries();
   2234   }
   2235   int32_t after_allocated = num_bytes_allocated_.LoadSequentiallyConsistent();
   2236   int32_t delta_allocated = before_allocated - after_allocated;
   2237   std::string saved_str;
   2238   if (delta_allocated >= 0) {
   2239     saved_str = " saved at least " + PrettySize(delta_allocated);
   2240   } else {
   2241     saved_str = " expanded " + PrettySize(-delta_allocated);
   2242   }
   2243   VLOG(heap) << "Collector transition to " << collector_type << " took "
   2244              << PrettyDuration(duration) << saved_str;
   2245 }
   2246 
   2247 void Heap::ChangeCollector(CollectorType collector_type) {
   2248   // TODO: Only do this with all mutators suspended to avoid races.
   2249   if (collector_type != collector_type_) {
   2250     if (collector_type == kCollectorTypeMC) {
   2251       // Don't allow mark compact unless support is compiled in.
   2252       CHECK(kMarkCompactSupport);
   2253     }
   2254     collector_type_ = collector_type;
   2255     gc_plan_.clear();
   2256     switch (collector_type_) {
   2257       case kCollectorTypeCC: {
   2258         gc_plan_.push_back(collector::kGcTypeFull);
   2259         if (use_tlab_) {
   2260           ChangeAllocator(kAllocatorTypeRegionTLAB);
   2261         } else {
   2262           ChangeAllocator(kAllocatorTypeRegion);
   2263         }
   2264         break;
   2265       }
   2266       case kCollectorTypeMC:  // Fall-through.
   2267       case kCollectorTypeSS:  // Fall-through.
   2268       case kCollectorTypeGSS: {
   2269         gc_plan_.push_back(collector::kGcTypeFull);
   2270         if (use_tlab_) {
   2271           ChangeAllocator(kAllocatorTypeTLAB);
   2272         } else {
   2273           ChangeAllocator(kAllocatorTypeBumpPointer);
   2274         }
   2275         break;
   2276       }
   2277       case kCollectorTypeMS: {
   2278         gc_plan_.push_back(collector::kGcTypeSticky);
   2279         gc_plan_.push_back(collector::kGcTypePartial);
   2280         gc_plan_.push_back(collector::kGcTypeFull);
   2281         ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
   2282         break;
   2283       }
   2284       case kCollectorTypeCMS: {
   2285         gc_plan_.push_back(collector::kGcTypeSticky);
   2286         gc_plan_.push_back(collector::kGcTypePartial);
   2287         gc_plan_.push_back(collector::kGcTypeFull);
   2288         ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
   2289         break;
   2290       }
   2291       default: {
   2292         UNIMPLEMENTED(FATAL);
   2293         UNREACHABLE();
   2294       }
   2295     }
   2296     if (IsGcConcurrent()) {
   2297       concurrent_start_bytes_ =
   2298           std::max(max_allowed_footprint_, kMinConcurrentRemainingBytes) - kMinConcurrentRemainingBytes;
   2299     } else {
   2300       concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
   2301     }
   2302   }
   2303 }
   2304 
   2305 // Special compacting collector which uses sub-optimal bin packing to reduce zygote space size.
   2306 class ZygoteCompactingCollector FINAL : public collector::SemiSpace {
   2307  public:
   2308   ZygoteCompactingCollector(gc::Heap* heap, bool is_running_on_memory_tool)
   2309       : SemiSpace(heap, false, "zygote collector"),
   2310         bin_live_bitmap_(nullptr),
   2311         bin_mark_bitmap_(nullptr),
   2312         is_running_on_memory_tool_(is_running_on_memory_tool) {}
   2313 
   2314   void BuildBins(space::ContinuousSpace* space) {
   2315     bin_live_bitmap_ = space->GetLiveBitmap();
   2316     bin_mark_bitmap_ = space->GetMarkBitmap();
   2317     BinContext context;
   2318     context.prev_ = reinterpret_cast<uintptr_t>(space->Begin());
   2319     context.collector_ = this;
   2320     WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
   2321     // Note: This requires traversing the space in increasing order of object addresses.
   2322     bin_live_bitmap_->Walk(Callback, reinterpret_cast<void*>(&context));
   2323     // Add the last bin which spans after the last object to the end of the space.
   2324     AddBin(reinterpret_cast<uintptr_t>(space->End()) - context.prev_, context.prev_);
   2325   }
   2326 
   2327  private:
   2328   struct BinContext {
   2329     uintptr_t prev_;  // The end of the previous object.
   2330     ZygoteCompactingCollector* collector_;
   2331   };
   2332   // Maps from bin sizes to locations.
   2333   std::multimap<size_t, uintptr_t> bins_;
   2334   // Live bitmap of the space which contains the bins.
   2335   accounting::ContinuousSpaceBitmap* bin_live_bitmap_;
   2336   // Mark bitmap of the space which contains the bins.
   2337   accounting::ContinuousSpaceBitmap* bin_mark_bitmap_;
   2338   const bool is_running_on_memory_tool_;
   2339 
   2340   static void Callback(mirror::Object* obj, void* arg)
   2341       REQUIRES_SHARED(Locks::mutator_lock_) {
   2342     DCHECK(arg != nullptr);
   2343     BinContext* context = reinterpret_cast<BinContext*>(arg);
   2344     ZygoteCompactingCollector* collector = context->collector_;
   2345     uintptr_t object_addr = reinterpret_cast<uintptr_t>(obj);
   2346     size_t bin_size = object_addr - context->prev_;
   2347     // Add the bin consisting of the end of the previous object to the start of the current object.
   2348     collector->AddBin(bin_size, context->prev_);
   2349     context->prev_ = object_addr + RoundUp(obj->SizeOf<kDefaultVerifyFlags>(), kObjectAlignment);
   2350   }
   2351 
   2352   void AddBin(size_t size, uintptr_t position) {
   2353     if (is_running_on_memory_tool_) {
   2354       MEMORY_TOOL_MAKE_DEFINED(reinterpret_cast<void*>(position), size);
   2355     }
   2356     if (size != 0) {
   2357       bins_.insert(std::make_pair(size, position));
   2358     }
   2359   }
   2360 
   2361   virtual bool ShouldSweepSpace(space::ContinuousSpace* space ATTRIBUTE_UNUSED) const {
   2362     // Don't sweep any spaces since we probably blasted the internal accounting of the free list
   2363     // allocator.
   2364     return false;
   2365   }
   2366 
   2367   virtual mirror::Object* MarkNonForwardedObject(mirror::Object* obj)
   2368       REQUIRES(Locks::heap_bitmap_lock_, Locks::mutator_lock_) {
   2369     size_t obj_size = obj->SizeOf<kDefaultVerifyFlags>();
   2370     size_t alloc_size = RoundUp(obj_size, kObjectAlignment);
   2371     mirror::Object* forward_address;
   2372     // Find the smallest bin which we can move obj in.
   2373     auto it = bins_.lower_bound(alloc_size);
   2374     if (it == bins_.end()) {
   2375       // No available space in the bins, place it in the target space instead (grows the zygote
   2376       // space).
   2377       size_t bytes_allocated, dummy;
   2378       forward_address = to_space_->Alloc(self_, alloc_size, &bytes_allocated, nullptr, &dummy);
   2379       if (to_space_live_bitmap_ != nullptr) {
   2380         to_space_live_bitmap_->Set(forward_address);
   2381       } else {
   2382         GetHeap()->GetNonMovingSpace()->GetLiveBitmap()->Set(forward_address);
   2383         GetHeap()->GetNonMovingSpace()->GetMarkBitmap()->Set(forward_address);
   2384       }
   2385     } else {
   2386       size_t size = it->first;
   2387       uintptr_t pos = it->second;
   2388       bins_.erase(it);  // Erase the old bin which we replace with the new smaller bin.
   2389       forward_address = reinterpret_cast<mirror::Object*>(pos);
   2390       // Set the live and mark bits so that sweeping system weaks works properly.
   2391       bin_live_bitmap_->Set(forward_address);
   2392       bin_mark_bitmap_->Set(forward_address);
   2393       DCHECK_GE(size, alloc_size);
   2394       // Add a new bin with the remaining space.
   2395       AddBin(size - alloc_size, pos + alloc_size);
   2396     }
   2397     // Copy the object over to its new location. Don't use alloc_size to avoid valgrind error.
   2398     memcpy(reinterpret_cast<void*>(forward_address), obj, obj_size);
   2399     if (kUseBakerReadBarrier) {
   2400       obj->AssertReadBarrierState();
   2401       forward_address->AssertReadBarrierState();
   2402     }
   2403     return forward_address;
   2404   }
   2405 };
   2406 
   2407 void Heap::UnBindBitmaps() {
   2408   TimingLogger::ScopedTiming t("UnBindBitmaps", GetCurrentGcIteration()->GetTimings());
   2409   for (const auto& space : GetContinuousSpaces()) {
   2410     if (space->IsContinuousMemMapAllocSpace()) {
   2411       space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
   2412       if (alloc_space->HasBoundBitmaps()) {
   2413         alloc_space->UnBindBitmaps();
   2414       }
   2415     }
   2416   }
   2417 }
   2418 
   2419 void Heap::PreZygoteFork() {
   2420   if (!HasZygoteSpace()) {
   2421     // We still want to GC in case there is some unreachable non moving objects that could cause a
   2422     // suboptimal bin packing when we compact the zygote space.
   2423     CollectGarbageInternal(collector::kGcTypeFull, kGcCauseBackground, false);
   2424     // Trim the pages at the end of the non moving space. Trim while not holding zygote lock since
   2425     // the trim process may require locking the mutator lock.
   2426     non_moving_space_->Trim();
   2427   }
   2428   Thread* self = Thread::Current();
   2429   MutexLock mu(self, zygote_creation_lock_);
   2430   // Try to see if we have any Zygote spaces.
   2431   if (HasZygoteSpace()) {
   2432     return;
   2433   }
   2434   Runtime::Current()->GetInternTable()->AddNewTable();
   2435   Runtime::Current()->GetClassLinker()->MoveClassTableToPreZygote();
   2436   VLOG(heap) << "Starting PreZygoteFork";
   2437   // The end of the non-moving space may be protected, unprotect it so that we can copy the zygote
   2438   // there.
   2439   non_moving_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
   2440   const bool same_space = non_moving_space_ == main_space_;
   2441   if (kCompactZygote) {
   2442     // Temporarily disable rosalloc verification because the zygote
   2443     // compaction will mess up the rosalloc internal metadata.
   2444     ScopedDisableRosAllocVerification disable_rosalloc_verif(this);
   2445     ZygoteCompactingCollector zygote_collector(this, is_running_on_memory_tool_);
   2446     zygote_collector.BuildBins(non_moving_space_);
   2447     // Create a new bump pointer space which we will compact into.
   2448     space::BumpPointerSpace target_space("zygote bump space", non_moving_space_->End(),
   2449                                          non_moving_space_->Limit());
   2450     // Compact the bump pointer space to a new zygote bump pointer space.
   2451     bool reset_main_space = false;
   2452     if (IsMovingGc(collector_type_)) {
   2453       if (collector_type_ == kCollectorTypeCC) {
   2454         zygote_collector.SetFromSpace(region_space_);
   2455       } else {
   2456         zygote_collector.SetFromSpace(bump_pointer_space_);
   2457       }
   2458     } else {
   2459       CHECK(main_space_ != nullptr);
   2460       CHECK_NE(main_space_, non_moving_space_)
   2461           << "Does not make sense to compact within the same space";
   2462       // Copy from the main space.
   2463       zygote_collector.SetFromSpace(main_space_);
   2464       reset_main_space = true;
   2465     }
   2466     zygote_collector.SetToSpace(&target_space);
   2467     zygote_collector.SetSwapSemiSpaces(false);
   2468     zygote_collector.Run(kGcCauseCollectorTransition, false);
   2469     if (reset_main_space) {
   2470       main_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
   2471       madvise(main_space_->Begin(), main_space_->Capacity(), MADV_DONTNEED);
   2472       MemMap* mem_map = main_space_->ReleaseMemMap();
   2473       RemoveSpace(main_space_);
   2474       space::Space* old_main_space = main_space_;
   2475       CreateMainMallocSpace(mem_map, kDefaultInitialSize, std::min(mem_map->Size(), growth_limit_),
   2476                             mem_map->Size());
   2477       delete old_main_space;
   2478       AddSpace(main_space_);
   2479     } else {
   2480       if (collector_type_ == kCollectorTypeCC) {
   2481         region_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
   2482         // Evacuated everything out of the region space, clear the mark bitmap.
   2483         region_space_->GetMarkBitmap()->Clear();
   2484       } else {
   2485         bump_pointer_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
   2486       }
   2487     }
   2488     if (temp_space_ != nullptr) {
   2489       CHECK(temp_space_->IsEmpty());
   2490     }
   2491     total_objects_freed_ever_ += GetCurrentGcIteration()->GetFreedObjects();
   2492     total_bytes_freed_ever_ += GetCurrentGcIteration()->GetFreedBytes();
   2493     // Update the end and write out image.
   2494     non_moving_space_->SetEnd(target_space.End());
   2495     non_moving_space_->SetLimit(target_space.Limit());
   2496     VLOG(heap) << "Create zygote space with size=" << non_moving_space_->Size() << " bytes";
   2497   }
   2498   // Change the collector to the post zygote one.
   2499   ChangeCollector(foreground_collector_type_);
   2500   // Save the old space so that we can remove it after we complete creating the zygote space.
   2501   space::MallocSpace* old_alloc_space = non_moving_space_;
   2502   // Turn the current alloc space into a zygote space and obtain the new alloc space composed of
   2503   // the remaining available space.
   2504   // Remove the old space before creating the zygote space since creating the zygote space sets
   2505   // the old alloc space's bitmaps to null.
   2506   RemoveSpace(old_alloc_space);
   2507   if (collector::SemiSpace::kUseRememberedSet) {
   2508     // Sanity bound check.
   2509     FindRememberedSetFromSpace(old_alloc_space)->AssertAllDirtyCardsAreWithinSpace();
   2510     // Remove the remembered set for the now zygote space (the old
   2511     // non-moving space). Note now that we have compacted objects into
   2512     // the zygote space, the data in the remembered set is no longer
   2513     // needed. The zygote space will instead have a mod-union table
   2514     // from this point on.
   2515     RemoveRememberedSet(old_alloc_space);
   2516   }
   2517   // Remaining space becomes the new non moving space.
   2518   zygote_space_ = old_alloc_space->CreateZygoteSpace(kNonMovingSpaceName, low_memory_mode_,
   2519                                                      &non_moving_space_);
   2520   CHECK(!non_moving_space_->CanMoveObjects());
   2521   if (same_space) {
   2522     main_space_ = non_moving_space_;
   2523     SetSpaceAsDefault(main_space_);
   2524   }
   2525   delete old_alloc_space;
   2526   CHECK(HasZygoteSpace()) << "Failed creating zygote space";
   2527   AddSpace(zygote_space_);
   2528   non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
   2529   AddSpace(non_moving_space_);
   2530   if (kUseBakerReadBarrier && gc::collector::ConcurrentCopying::kGrayDirtyImmuneObjects) {
   2531     // Treat all of the objects in the zygote as marked to avoid unnecessary dirty pages. This is
   2532     // safe since we mark all of the objects that may reference non immune objects as gray.
   2533     zygote_space_->GetLiveBitmap()->VisitMarkedRange(
   2534         reinterpret_cast<uintptr_t>(zygote_space_->Begin()),
   2535         reinterpret_cast<uintptr_t>(zygote_space_->Limit()),
   2536         [](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
   2537       CHECK(obj->AtomicSetMarkBit(0, 1));
   2538     });
   2539   }
   2540 
   2541   // Create the zygote space mod union table.
   2542   accounting::ModUnionTable* mod_union_table =
   2543       new accounting::ModUnionTableCardCache("zygote space mod-union table", this, zygote_space_);
   2544   CHECK(mod_union_table != nullptr) << "Failed to create zygote space mod-union table";
   2545 
   2546   if (collector_type_ != kCollectorTypeCC) {
   2547     // Set all the cards in the mod-union table since we don't know which objects contain references
   2548     // to large objects.
   2549     mod_union_table->SetCards();
   2550   } else {
   2551     // Make sure to clear the zygote space cards so that we don't dirty pages in the next GC. There
   2552     // may be dirty cards from the zygote compaction or reference processing. These cards are not
   2553     // necessary to have marked since the zygote space may not refer to any objects not in the
   2554     // zygote or image spaces at this point.
   2555     mod_union_table->ProcessCards();
   2556     mod_union_table->ClearTable();
   2557 
   2558     // For CC we never collect zygote large objects. This means we do not need to set the cards for
   2559     // the zygote mod-union table and we can also clear all of the existing image mod-union tables.
   2560     // The existing mod-union tables are only for image spaces and may only reference zygote and
   2561     // image objects.
   2562     for (auto& pair : mod_union_tables_) {
   2563       CHECK(pair.first->IsImageSpace());
   2564       CHECK(!pair.first->AsImageSpace()->GetImageHeader().IsAppImage());
   2565       accounting::ModUnionTable* table = pair.second;
   2566       table->ClearTable();
   2567     }
   2568   }
   2569   AddModUnionTable(mod_union_table);
   2570   large_object_space_->SetAllLargeObjectsAsZygoteObjects(self);
   2571   if (collector::SemiSpace::kUseRememberedSet) {
   2572     // Add a new remembered set for the post-zygote non-moving space.
   2573     accounting::RememberedSet* post_zygote_non_moving_space_rem_set =
   2574         new accounting::RememberedSet("Post-zygote non-moving space remembered set", this,
   2575                                       non_moving_space_);
   2576     CHECK(post_zygote_non_moving_space_rem_set != nullptr)
   2577         << "Failed to create post-zygote non-moving space remembered set";
   2578     AddRememberedSet(post_zygote_non_moving_space_rem_set);
   2579   }
   2580 }
   2581 
   2582 void Heap::FlushAllocStack() {
   2583   MarkAllocStackAsLive(allocation_stack_.get());
   2584   allocation_stack_->Reset();
   2585 }
   2586 
   2587 void Heap::MarkAllocStack(accounting::ContinuousSpaceBitmap* bitmap1,
   2588                           accounting::ContinuousSpaceBitmap* bitmap2,
   2589                           accounting::LargeObjectBitmap* large_objects,
   2590                           accounting::ObjectStack* stack) {
   2591   DCHECK(bitmap1 != nullptr);
   2592   DCHECK(bitmap2 != nullptr);
   2593   const auto* limit = stack->End();
   2594   for (auto* it = stack->Begin(); it != limit; ++it) {
   2595     const mirror::Object* obj = it->AsMirrorPtr();
   2596     if (!kUseThreadLocalAllocationStack || obj != nullptr) {
   2597       if (bitmap1->HasAddress(obj)) {
   2598         bitmap1->Set(obj);
   2599       } else if (bitmap2->HasAddress(obj)) {
   2600         bitmap2->Set(obj);
   2601       } else {
   2602         DCHECK(large_objects != nullptr);
   2603         large_objects->Set(obj);
   2604       }
   2605     }
   2606   }
   2607 }
   2608 
   2609 void Heap::SwapSemiSpaces() {
   2610   CHECK(bump_pointer_space_ != nullptr);
   2611   CHECK(temp_space_ != nullptr);
   2612   std::swap(bump_pointer_space_, temp_space_);
   2613 }
   2614 
   2615 collector::GarbageCollector* Heap::Compact(space::ContinuousMemMapAllocSpace* target_space,
   2616                                            space::ContinuousMemMapAllocSpace* source_space,
   2617                                            GcCause gc_cause) {
   2618   CHECK(kMovingCollector);
   2619   if (target_space != source_space) {
   2620     // Don't swap spaces since this isn't a typical semi space collection.
   2621     semi_space_collector_->SetSwapSemiSpaces(false);
   2622     semi_space_collector_->SetFromSpace(source_space);
   2623     semi_space_collector_->SetToSpace(target_space);
   2624     semi_space_collector_->Run(gc_cause, false);
   2625     return semi_space_collector_;
   2626   } else {
   2627     CHECK(target_space->IsBumpPointerSpace())
   2628         << "In-place compaction is only supported for bump pointer spaces";
   2629     mark_compact_collector_->SetSpace(target_space->AsBumpPointerSpace());
   2630     mark_compact_collector_->Run(kGcCauseCollectorTransition, false);
   2631     return mark_compact_collector_;
   2632   }
   2633 }
   2634 
   2635 collector::GcType Heap::CollectGarbageInternal(collector::GcType gc_type,
   2636                                                GcCause gc_cause,
   2637                                                bool clear_soft_references) {
   2638   Thread* self = Thread::Current();
   2639   Runtime* runtime = Runtime::Current();
   2640   // If the heap can't run the GC, silently fail and return that no GC was run.
   2641   switch (gc_type) {
   2642     case collector::kGcTypePartial: {
   2643       if (!HasZygoteSpace()) {
   2644         return collector::kGcTypeNone;
   2645       }
   2646       break;
   2647     }
   2648     default: {
   2649       // Other GC types don't have any special cases which makes them not runnable. The main case
   2650       // here is full GC.
   2651     }
   2652   }
   2653   ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
   2654   Locks::mutator_lock_->AssertNotHeld(self);
   2655   if (self->IsHandlingStackOverflow()) {
   2656     // If we are throwing a stack overflow error we probably don't have enough remaining stack
   2657     // space to run the GC.
   2658     return collector::kGcTypeNone;
   2659   }
   2660   bool compacting_gc;
   2661   {
   2662     gc_complete_lock_->AssertNotHeld(self);
   2663     ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete);
   2664     MutexLock mu(self, *gc_complete_lock_);
   2665     // Ensure there is only one GC at a time.
   2666     WaitForGcToCompleteLocked(gc_cause, self);
   2667     compacting_gc = IsMovingGc(collector_type_);
   2668     // GC can be disabled if someone has a used GetPrimitiveArrayCritical.
   2669     if (compacting_gc && disable_moving_gc_count_ != 0) {
   2670       LOG(WARNING) << "Skipping GC due to disable moving GC count " << disable_moving_gc_count_;
   2671       return collector::kGcTypeNone;
   2672     }
   2673     if (gc_disabled_for_shutdown_) {
   2674       return collector::kGcTypeNone;
   2675     }
   2676     collector_type_running_ = collector_type_;
   2677   }
   2678   if (gc_cause == kGcCauseForAlloc && runtime->HasStatsEnabled()) {
   2679     ++runtime->GetStats()->gc_for_alloc_count;
   2680     ++self->GetStats()->gc_for_alloc_count;
   2681   }
   2682   const uint64_t bytes_allocated_before_gc = GetBytesAllocated();
   2683   // Approximate heap size.
   2684   ATRACE_INT("Heap size (KB)", bytes_allocated_before_gc / KB);
   2685 
   2686   if (gc_type == NonStickyGcType()) {
   2687     // Move all bytes from new_native_bytes_allocated_ to
   2688     // old_native_bytes_allocated_ now that GC has been triggered, resetting
   2689     // new_native_bytes_allocated_ to zero in the process.
   2690     old_native_bytes_allocated_.FetchAndAddRelaxed(new_native_bytes_allocated_.ExchangeRelaxed(0));
   2691   }
   2692 
   2693   DCHECK_LT(gc_type, collector::kGcTypeMax);
   2694   DCHECK_NE(gc_type, collector::kGcTypeNone);
   2695 
   2696   collector::GarbageCollector* collector = nullptr;
   2697   // TODO: Clean this up.
   2698   if (compacting_gc) {
   2699     DCHECK(current_allocator_ == kAllocatorTypeBumpPointer ||
   2700            current_allocator_ == kAllocatorTypeTLAB ||
   2701            current_allocator_ == kAllocatorTypeRegion ||
   2702            current_allocator_ == kAllocatorTypeRegionTLAB);
   2703     switch (collector_type_) {
   2704       case kCollectorTypeSS:
   2705         // Fall-through.
   2706       case kCollectorTypeGSS:
   2707         semi_space_collector_->SetFromSpace(bump_pointer_space_);
   2708         semi_space_collector_->SetToSpace(temp_space_);
   2709         semi_space_collector_->SetSwapSemiSpaces(true);
   2710         collector = semi_space_collector_;
   2711         break;
   2712       case kCollectorTypeCC:
   2713         collector = concurrent_copying_collector_;
   2714         break;
   2715       case kCollectorTypeMC:
   2716         mark_compact_collector_->SetSpace(bump_pointer_space_);
   2717         collector = mark_compact_collector_;
   2718         break;
   2719       default:
   2720         LOG(FATAL) << "Invalid collector type " << static_cast<size_t>(collector_type_);
   2721     }
   2722     if (collector != mark_compact_collector_ && collector != concurrent_copying_collector_) {
   2723       temp_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
   2724       if (kIsDebugBuild) {
   2725         // Try to read each page of the memory map in case mprotect didn't work properly b/19894268.
   2726         temp_space_->GetMemMap()->TryReadable();
   2727       }
   2728       CHECK(temp_space_->IsEmpty());
   2729     }
   2730     gc_type = collector::kGcTypeFull;  // TODO: Not hard code this in.
   2731   } else if (current_allocator_ == kAllocatorTypeRosAlloc ||
   2732       current_allocator_ == kAllocatorTypeDlMalloc) {
   2733     collector = FindCollectorByGcType(gc_type);
   2734   } else {
   2735     LOG(FATAL) << "Invalid current allocator " << current_allocator_;
   2736   }
   2737   if (IsGcConcurrent()) {
   2738     // Disable concurrent GC check so that we don't have spammy JNI requests.
   2739     // This gets recalculated in GrowForUtilization. It is important that it is disabled /
   2740     // calculated in the same thread so that there aren't any races that can cause it to become
   2741     // permanantly disabled. b/17942071
   2742     concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
   2743   }
   2744 
   2745   CHECK(collector != nullptr)
   2746       << "Could not find garbage collector with collector_type="
   2747       << static_cast<size_t>(collector_type_) << " and gc_type=" << gc_type;
   2748   collector->Run(gc_cause, clear_soft_references || runtime->IsZygote());
   2749   total_objects_freed_ever_ += GetCurrentGcIteration()->GetFreedObjects();
   2750   total_bytes_freed_ever_ += GetCurrentGcIteration()->GetFreedBytes();
   2751   RequestTrim(self);
   2752   // Enqueue cleared references.
   2753   reference_processor_->EnqueueClearedReferences(self);
   2754   // Grow the heap so that we know when to perform the next GC.
   2755   GrowForUtilization(collector, bytes_allocated_before_gc);
   2756   LogGC(gc_cause, collector);
   2757   FinishGC(self, gc_type);
   2758   // Inform DDMS that a GC completed.
   2759   Dbg::GcDidFinish();
   2760   // Unload native libraries for class unloading. We do this after calling FinishGC to prevent
   2761   // deadlocks in case the JNI_OnUnload function does allocations.
   2762   {
   2763     ScopedObjectAccess soa(self);
   2764     soa.Vm()->UnloadNativeLibraries();
   2765   }
   2766   return gc_type;
   2767 }
   2768 
   2769 void Heap::LogGC(GcCause gc_cause, collector::GarbageCollector* collector) {
   2770   const size_t duration = GetCurrentGcIteration()->GetDurationNs();
   2771   const std::vector<uint64_t>& pause_times = GetCurrentGcIteration()->GetPauseTimes();
   2772   // Print the GC if it is an explicit GC (e.g. Runtime.gc()) or a slow GC
   2773   // (mutator time blocked >= long_pause_log_threshold_).
   2774   bool log_gc = kLogAllGCs || gc_cause == kGcCauseExplicit;
   2775   if (!log_gc && CareAboutPauseTimes()) {
   2776     // GC for alloc pauses the allocating thread, so consider it as a pause.
   2777     log_gc = duration > long_gc_log_threshold_ ||
   2778         (gc_cause == kGcCauseForAlloc && duration > long_pause_log_threshold_);
   2779     for (uint64_t pause : pause_times) {
   2780       log_gc = log_gc || pause >= long_pause_log_threshold_;
   2781     }
   2782   }
   2783   if (log_gc) {
   2784     const size_t percent_free = GetPercentFree();
   2785     const size_t current_heap_size = GetBytesAllocated();
   2786     const size_t total_memory = GetTotalMemory();
   2787     std::ostringstream pause_string;
   2788     for (size_t i = 0; i < pause_times.size(); ++i) {
   2789       pause_string << PrettyDuration((pause_times[i] / 1000) * 1000)
   2790                    << ((i != pause_times.size() - 1) ? "," : "");
   2791     }
   2792     LOG(INFO) << gc_cause << " " << collector->GetName()
   2793               << " GC freed "  << current_gc_iteration_.GetFreedObjects() << "("
   2794               << PrettySize(current_gc_iteration_.GetFreedBytes()) << ") AllocSpace objects, "
   2795               << current_gc_iteration_.GetFreedLargeObjects() << "("
   2796               << PrettySize(current_gc_iteration_.GetFreedLargeObjectBytes()) << ") LOS objects, "
   2797               << percent_free << "% free, " << PrettySize(current_heap_size) << "/"
   2798               << PrettySize(total_memory) << ", " << "paused " << pause_string.str()
   2799               << " total " << PrettyDuration((duration / 1000) * 1000);
   2800     VLOG(heap) << Dumpable<TimingLogger>(*current_gc_iteration_.GetTimings());
   2801   }
   2802 }
   2803 
   2804 void Heap::FinishGC(Thread* self, collector::GcType gc_type) {
   2805   MutexLock mu(self, *gc_complete_lock_);
   2806   collector_type_running_ = kCollectorTypeNone;
   2807   if (gc_type != collector::kGcTypeNone) {
   2808     last_gc_type_ = gc_type;
   2809 
   2810     // Update stats.
   2811     ++gc_count_last_window_;
   2812     if (running_collection_is_blocking_) {
   2813       // If the currently running collection was a blocking one,
   2814       // increment the counters and reset the flag.
   2815       ++blocking_gc_count_;
   2816       blocking_gc_time_ += GetCurrentGcIteration()->GetDurationNs();
   2817       ++blocking_gc_count_last_window_;
   2818     }
   2819     // Update the gc count rate histograms if due.
   2820     UpdateGcCountRateHistograms();
   2821   }
   2822   // Reset.
   2823   running_collection_is_blocking_ = false;
   2824   thread_running_gc_ = nullptr;
   2825   // Wake anyone who may have been waiting for the GC to complete.
   2826   gc_complete_cond_->Broadcast(self);
   2827 }
   2828 
   2829 void Heap::UpdateGcCountRateHistograms() {
   2830   // Invariant: if the time since the last update includes more than
   2831   // one windows, all the GC runs (if > 0) must have happened in first
   2832   // window because otherwise the update must have already taken place
   2833   // at an earlier GC run. So, we report the non-first windows with
   2834   // zero counts to the histograms.
   2835   DCHECK_EQ(last_update_time_gc_count_rate_histograms_ % kGcCountRateHistogramWindowDuration, 0U);
   2836   uint64_t now = NanoTime();
   2837   DCHECK_GE(now, last_update_time_gc_count_rate_histograms_);
   2838   uint64_t time_since_last_update = now - last_update_time_gc_count_rate_histograms_;
   2839   uint64_t num_of_windows = time_since_last_update / kGcCountRateHistogramWindowDuration;
   2840   if (time_since_last_update >= kGcCountRateHistogramWindowDuration) {
   2841     // Record the first window.
   2842     gc_count_rate_histogram_.AddValue(gc_count_last_window_ - 1);  // Exclude the current run.
   2843     blocking_gc_count_rate_histogram_.AddValue(running_collection_is_blocking_ ?
   2844         blocking_gc_count_last_window_ - 1 : blocking_gc_count_last_window_);
   2845     // Record the other windows (with zero counts).
   2846     for (uint64_t i = 0; i < num_of_windows - 1; ++i) {
   2847       gc_count_rate_histogram_.AddValue(0);
   2848       blocking_gc_count_rate_histogram_.AddValue(0);
   2849     }
   2850     // Update the last update time and reset the counters.
   2851     last_update_time_gc_count_rate_histograms_ =
   2852         (now / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration;
   2853     gc_count_last_window_ = 1;  // Include the current run.
   2854     blocking_gc_count_last_window_ = running_collection_is_blocking_ ? 1 : 0;
   2855   }
   2856   DCHECK_EQ(last_update_time_gc_count_rate_histograms_ % kGcCountRateHistogramWindowDuration, 0U);
   2857 }
   2858 
   2859 class RootMatchesObjectVisitor : public SingleRootVisitor {
   2860  public:
   2861   explicit RootMatchesObjectVisitor(const mirror::Object* obj) : obj_(obj) { }
   2862 
   2863   void VisitRoot(mirror::Object* root, const RootInfo& info)
   2864       OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
   2865     if (root == obj_) {
   2866       LOG(INFO) << "Object " << obj_ << " is a root " << info.ToString();
   2867     }
   2868   }
   2869 
   2870  private:
   2871   const mirror::Object* const obj_;
   2872 };
   2873 
   2874 
   2875 class ScanVisitor {
   2876  public:
   2877   void operator()(const mirror::Object* obj) const {
   2878     LOG(ERROR) << "Would have rescanned object " << obj;
   2879   }
   2880 };
   2881 
   2882 // Verify a reference from an object.
   2883 class VerifyReferenceVisitor : public SingleRootVisitor {
   2884  public:
   2885   VerifyReferenceVisitor(Heap* heap, Atomic<size_t>* fail_count, bool verify_referent)
   2886       REQUIRES_SHARED(Locks::mutator_lock_, Locks::heap_bitmap_lock_)
   2887       : heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {}
   2888 
   2889   size_t GetFailureCount() const {
   2890     return fail_count_->LoadSequentiallyConsistent();
   2891   }
   2892 
   2893   void operator()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED, ObjPtr<mirror::Reference> ref) const
   2894       REQUIRES_SHARED(Locks::mutator_lock_) {
   2895     if (verify_referent_) {
   2896       VerifyReference(ref.Ptr(), ref->GetReferent(), mirror::Reference::ReferentOffset());
   2897     }
   2898   }
   2899 
   2900   void operator()(ObjPtr<mirror::Object> obj,
   2901                   MemberOffset offset,
   2902                   bool is_static ATTRIBUTE_UNUSED) const
   2903       REQUIRES_SHARED(Locks::mutator_lock_) {
   2904     VerifyReference(obj.Ptr(), obj->GetFieldObject<mirror::Object>(offset), offset);
   2905   }
   2906 
   2907   bool IsLive(ObjPtr<mirror::Object> obj) const NO_THREAD_SAFETY_ANALYSIS {
   2908     return heap_->IsLiveObjectLocked(obj, true, false, true);
   2909   }
   2910 
   2911   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
   2912       REQUIRES_SHARED(Locks::mutator_lock_) {
   2913     if (!root->IsNull()) {
   2914       VisitRoot(root);
   2915     }
   2916   }
   2917   void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
   2918       REQUIRES_SHARED(Locks::mutator_lock_) {
   2919     const_cast<VerifyReferenceVisitor*>(this)->VisitRoot(
   2920         root->AsMirrorPtr(), RootInfo(kRootVMInternal));
   2921   }
   2922 
   2923   virtual void VisitRoot(mirror::Object* root, const RootInfo& root_info) OVERRIDE
   2924       REQUIRES_SHARED(Locks::mutator_lock_) {
   2925     if (root == nullptr) {
   2926       LOG(ERROR) << "Root is null with info " << root_info.GetType();
   2927     } else if (!VerifyReference(nullptr, root, MemberOffset(0))) {
   2928       LOG(ERROR) << "Root " << root << " is dead with type " << mirror::Object::PrettyTypeOf(root)
   2929           << " thread_id= " << root_info.GetThreadId() << " root_type= " << root_info.GetType();
   2930     }
   2931   }
   2932 
   2933  private:
   2934   // TODO: Fix the no thread safety analysis.
   2935   // Returns false on failure.
   2936   bool VerifyReference(mirror::Object* obj, mirror::Object* ref, MemberOffset offset) const
   2937       NO_THREAD_SAFETY_ANALYSIS {
   2938     if (ref == nullptr || IsLive(ref)) {
   2939       // Verify that the reference is live.
   2940       return true;
   2941     }
   2942     if (fail_count_->FetchAndAddSequentiallyConsistent(1) == 0) {
   2943       // Print message on only on first failure to prevent spam.
   2944       LOG(ERROR) << "!!!!!!!!!!!!!!Heap corruption detected!!!!!!!!!!!!!!!!!!!";
   2945     }
   2946     if (obj != nullptr) {
   2947       // Only do this part for non roots.
   2948       accounting::CardTable* card_table = heap_->GetCardTable();
   2949       accounting::ObjectStack* alloc_stack = heap_->allocation_stack_.get();
   2950       accounting::ObjectStack* live_stack = heap_->live_stack_.get();
   2951       uint8_t* card_addr = card_table->CardFromAddr(obj);
   2952       LOG(ERROR) << "Object " << obj << " references dead object " << ref << " at offset "
   2953                  << offset << "\n card value = " << static_cast<int>(*card_addr);
   2954       if (heap_->IsValidObjectAddress(obj->GetClass())) {
   2955         LOG(ERROR) << "Obj type " << obj->PrettyTypeOf();
   2956       } else {
   2957         LOG(ERROR) << "Object " << obj << " class(" << obj->GetClass() << ") not a heap address";
   2958       }
   2959 
   2960       // Attempt to find the class inside of the recently freed objects.
   2961       space::ContinuousSpace* ref_space = heap_->FindContinuousSpaceFromObject(ref, true);
   2962       if (ref_space != nullptr && ref_space->IsMallocSpace()) {
   2963         space::MallocSpace* space = ref_space->AsMallocSpace();
   2964         mirror::Class* ref_class = space->FindRecentFreedObject(ref);
   2965         if (ref_class != nullptr) {
   2966           LOG(ERROR) << "Reference " << ref << " found as a recently freed object with class "
   2967                      << ref_class->PrettyClass();
   2968         } else {
   2969           LOG(ERROR) << "Reference " << ref << " not found as a recently freed object";
   2970         }
   2971       }
   2972 
   2973       if (ref->GetClass() != nullptr && heap_->IsValidObjectAddress(ref->GetClass()) &&
   2974           ref->GetClass()->IsClass()) {
   2975         LOG(ERROR) << "Ref type " << ref->PrettyTypeOf();
   2976       } else {
   2977         LOG(ERROR) << "Ref " << ref << " class(" << ref->GetClass()
   2978                    << ") is not a valid heap address";
   2979       }
   2980 
   2981       card_table->CheckAddrIsInCardTable(reinterpret_cast<const uint8_t*>(obj));
   2982       void* cover_begin = card_table->AddrFromCard(card_addr);
   2983       void* cover_end = reinterpret_cast<void*>(reinterpret_cast<size_t>(cover_begin) +
   2984           accounting::CardTable::kCardSize);
   2985       LOG(ERROR) << "Card " << reinterpret_cast<void*>(card_addr) << " covers " << cover_begin
   2986           << "-" << cover_end;
   2987       accounting::ContinuousSpaceBitmap* bitmap =
   2988           heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(obj);
   2989 
   2990       if (bitmap == nullptr) {
   2991         LOG(ERROR) << "Object " << obj << " has no bitmap";
   2992         if (!VerifyClassClass(obj->GetClass())) {
   2993           LOG(ERROR) << "Object " << obj << " failed class verification!";
   2994         }
   2995       } else {
   2996         // Print out how the object is live.
   2997         if (bitmap->Test(obj)) {
   2998           LOG(ERROR) << "Object " << obj << " found in live bitmap";
   2999         }
   3000         if (alloc_stack->Contains(const_cast<mirror::Object*>(obj))) {
   3001           LOG(ERROR) << "Object " << obj << " found in allocation stack";
   3002         }
   3003         if (live_stack->Contains(const_cast<mirror::Object*>(obj))) {
   3004           LOG(ERROR) << "Object " << obj << " found in live stack";
   3005         }
   3006         if (alloc_stack->Contains(const_cast<mirror::Object*>(ref))) {
   3007           LOG(ERROR) << "Ref " << ref << " found in allocation stack";
   3008         }
   3009         if (live_stack->Contains(const_cast<mirror::Object*>(ref))) {
   3010           LOG(ERROR) << "Ref " << ref << " found in live stack";
   3011         }
   3012         // Attempt to see if the card table missed the reference.
   3013         ScanVisitor scan_visitor;
   3014         uint8_t* byte_cover_begin = reinterpret_cast<uint8_t*>(card_table->AddrFromCard(card_addr));
   3015         card_table->Scan<false>(bitmap, byte_cover_begin,
   3016                                 byte_cover_begin + accounting::CardTable::kCardSize, scan_visitor);
   3017       }
   3018 
   3019       // Search to see if any of the roots reference our object.
   3020       RootMatchesObjectVisitor visitor1(obj);
   3021       Runtime::Current()->VisitRoots(&visitor1);
   3022       // Search to see if any of the roots reference our reference.
   3023       RootMatchesObjectVisitor visitor2(ref);
   3024       Runtime::Current()->VisitRoots(&visitor2);
   3025     }
   3026     return false;
   3027   }
   3028 
   3029   Heap* const heap_;
   3030   Atomic<size_t>* const fail_count_;
   3031   const bool verify_referent_;
   3032 };
   3033 
   3034 // Verify all references within an object, for use with HeapBitmap::Visit.
   3035 class VerifyObjectVisitor {
   3036  public:
   3037   VerifyObjectVisitor(Heap* heap, Atomic<size_t>* fail_count, bool verify_referent)
   3038       : heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {}
   3039 
   3040   void operator()(mirror::Object* obj)
   3041       REQUIRES_SHARED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
   3042     // Note: we are verifying the references in obj but not obj itself, this is because obj must
   3043     // be live or else how did we find it in the live bitmap?
   3044     VerifyReferenceVisitor visitor(heap_, fail_count_, verify_referent_);
   3045     // The class doesn't count as a reference but we should verify it anyways.
   3046     obj->VisitReferences(visitor, visitor);
   3047   }
   3048 
   3049   static void VisitCallback(mirror::Object* obj, void* arg)
   3050       REQUIRES_SHARED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
   3051     VerifyObjectVisitor* visitor = reinterpret_cast<VerifyObjectVisitor*>(arg);
   3052     visitor->operator()(obj);
   3053   }
   3054 
   3055   void VerifyRoots() REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!Locks::heap_bitmap_lock_) {
   3056     ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
   3057     VerifyReferenceVisitor visitor(heap_, fail_count_, verify_referent_);
   3058     Runtime::Current()->VisitRoots(&visitor);
   3059   }
   3060 
   3061   size_t GetFailureCount() const {
   3062     return fail_count_->LoadSequentiallyConsistent();
   3063   }
   3064 
   3065  private:
   3066   Heap* const heap_;
   3067   Atomic<size_t>* const fail_count_;
   3068   const bool verify_referent_;
   3069 };
   3070 
   3071 void Heap::PushOnAllocationStackWithInternalGC(Thread* self, ObjPtr<mirror::Object>* obj) {
   3072   // Slow path, the allocation stack push back must have already failed.
   3073   DCHECK(!allocation_stack_->AtomicPushBack(obj->Ptr()));
   3074   do {
   3075     // TODO: Add handle VerifyObject.
   3076     StackHandleScope<1> hs(self);
   3077     HandleWrapperObjPtr<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
   3078     // Push our object into the reserve region of the allocaiton stack. This is only required due
   3079     // to heap verification requiring that roots are live (either in the live bitmap or in the
   3080     // allocation stack).
   3081     CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(obj->Ptr()));
   3082     CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
   3083   } while (!allocation_stack_->AtomicPushBack(obj->Ptr()));
   3084 }
   3085 
   3086 void Heap::PushOnThreadLocalAllocationStackWithInternalGC(Thread* self,
   3087                                                           ObjPtr<mirror::Object>* obj) {
   3088   // Slow path, the allocation stack push back must have already failed.
   3089   DCHECK(!self->PushOnThreadLocalAllocationStack(obj->Ptr()));
   3090   StackReference<mirror::Object>* start_address;
   3091   StackReference<mirror::Object>* end_address;
   3092   while (!allocation_stack_->AtomicBumpBack(kThreadLocalAllocationStackSize, &start_address,
   3093                                             &end_address)) {
   3094     // TODO: Add handle VerifyObject.
   3095     StackHandleScope<1> hs(self);
   3096     HandleWrapperObjPtr<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
   3097     // Push our object into the reserve region of the allocaiton stack. This is only required due
   3098     // to heap verification requiring that roots are live (either in the live bitmap or in the
   3099     // allocation stack).
   3100     CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(obj->Ptr()));
   3101     // Push into the reserve allocation stack.
   3102     CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
   3103   }
   3104   self->SetThreadLocalAllocationStack(start_address, end_address);
   3105   // Retry on the new thread-local allocation stack.
   3106   CHECK(self->PushOnThreadLocalAllocationStack(obj->Ptr()));  // Must succeed.
   3107 }
   3108 
   3109 // Must do this with mutators suspended since we are directly accessing the allocation stacks.
   3110 size_t Heap::VerifyHeapReferences(bool verify_referents) {
   3111   Thread* self = Thread::Current();
   3112   Locks::mutator_lock_->AssertExclusiveHeld(self);
   3113   // Lets sort our allocation stacks so that we can efficiently binary search them.
   3114   allocation_stack_->Sort();
   3115   live_stack_->Sort();
   3116   // Since we sorted the allocation stack content, need to revoke all
   3117   // thread-local allocation stacks.
   3118   RevokeAllThreadLocalAllocationStacks(self);
   3119   Atomic<size_t> fail_count_(0);
   3120   VerifyObjectVisitor visitor(this, &fail_count_, verify_referents);
   3121   // Verify objects in the allocation stack since these will be objects which were:
   3122   // 1. Allocated prior to the GC (pre GC verification).
   3123   // 2. Allocated during the GC (pre sweep GC verification).
   3124   // We don't want to verify the objects in the live stack since they themselves may be
   3125   // pointing to dead objects if they are not reachable.
   3126   VisitObjectsPaused(VerifyObjectVisitor::VisitCallback, &visitor);
   3127   // Verify the roots:
   3128   visitor.VerifyRoots();
   3129   if (visitor.GetFailureCount() > 0) {
   3130     // Dump mod-union tables.
   3131     for (const auto& table_pair : mod_union_tables_) {
   3132       accounting::ModUnionTable* mod_union_table = table_pair.second;
   3133       mod_union_table->Dump(LOG_STREAM(ERROR) << mod_union_table->GetName() << ": ");
   3134     }
   3135     // Dump remembered sets.
   3136     for (const auto& table_pair : remembered_sets_) {
   3137       accounting::RememberedSet* remembered_set = table_pair.second;
   3138       remembered_set->Dump(LOG_STREAM(ERROR) << remembered_set->GetName() << ": ");
   3139     }
   3140     DumpSpaces(LOG_STREAM(ERROR));
   3141   }
   3142   return visitor.GetFailureCount();
   3143 }
   3144 
   3145 class VerifyReferenceCardVisitor {
   3146  public:
   3147   VerifyReferenceCardVisitor(Heap* heap, bool* failed)
   3148       REQUIRES_SHARED(Locks::mutator_lock_,
   3149                             Locks::heap_bitmap_lock_)
   3150       : heap_(heap), failed_(failed) {
   3151   }
   3152 
   3153   // There is no card marks for native roots on a class.
   3154   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
   3155       const {}
   3156   void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
   3157 
   3158   // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
   3159   // annotalysis on visitors.
   3160   void operator()(mirror::Object* obj, MemberOffset offset, bool is_static) const
   3161       NO_THREAD_SAFETY_ANALYSIS {
   3162     mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
   3163     // Filter out class references since changing an object's class does not mark the card as dirty.
   3164     // Also handles large objects, since the only reference they hold is a class reference.
   3165     if (ref != nullptr && !ref->IsClass()) {
   3166       accounting::CardTable* card_table = heap_->GetCardTable();
   3167       // If the object is not dirty and it is referencing something in the live stack other than
   3168       // class, then it must be on a dirty card.
   3169       if (!card_table->AddrIsInCardTable(obj)) {
   3170         LOG(ERROR) << "Object " << obj << " is not in the address range of the card table";
   3171         *failed_ = true;
   3172       } else if (!card_table->IsDirty(obj)) {
   3173         // TODO: Check mod-union tables.
   3174         // Card should be either kCardDirty if it got re-dirtied after we aged it, or
   3175         // kCardDirty - 1 if it didnt get touched since we aged it.
   3176         accounting::ObjectStack* live_stack = heap_->live_stack_.get();
   3177         if (live_stack->ContainsSorted(ref)) {
   3178           if (live_stack->ContainsSorted(obj)) {
   3179             LOG(ERROR) << "Object " << obj << " found in live stack";
   3180           }
   3181           if (heap_->GetLiveBitmap()->Test(obj)) {
   3182             LOG(ERROR) << "Object " << obj << " found in live bitmap";
   3183           }
   3184           LOG(ERROR) << "Object " << obj << " " << mirror::Object::PrettyTypeOf(obj)
   3185                     << " references " << ref << " " << mirror::Object::PrettyTypeOf(ref)
   3186                     << " in live stack";
   3187 
   3188           // Print which field of the object is dead.
   3189           if (!obj->IsObjectArray()) {
   3190             mirror::Class* klass = is_static ? obj->AsClass() : obj->GetClass();
   3191             CHECK(klass != nullptr);
   3192             for (ArtField& field : (is_static ? klass->GetSFields() : klass->GetIFields())) {
   3193               if (field.GetOffset().Int32Value() == offset.Int32Value()) {
   3194                 LOG(ERROR) << (is_static ? "Static " : "") << "field in the live stack is "
   3195                            << field.PrettyField();
   3196                 break;
   3197               }
   3198             }
   3199           } else {
   3200             mirror::ObjectArray<mirror::Object>* object_array =
   3201                 obj->AsObjectArray<mirror::Object>();
   3202             for (int32_t i = 0; i < object_array->GetLength(); ++i) {
   3203               if (object_array->Get(i) == ref) {
   3204                 LOG(ERROR) << (is_static ? "Static " : "") << "obj[" << i << "] = ref";
   3205               }
   3206             }
   3207           }
   3208 
   3209           *failed_ = true;
   3210         }
   3211       }
   3212     }
   3213   }
   3214 
   3215  private:
   3216   Heap* const heap_;
   3217   bool* const failed_;
   3218 };
   3219 
   3220 class VerifyLiveStackReferences {
   3221  public:
   3222   explicit VerifyLiveStackReferences(Heap* heap)
   3223       : heap_(heap),
   3224         failed_(false) {}
   3225 
   3226   void operator()(mirror::Object* obj) const
   3227       REQUIRES_SHARED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
   3228     VerifyReferenceCardVisitor visitor(heap_, const_cast<bool*>(&failed_));
   3229     obj->VisitReferences(visitor, VoidFunctor());
   3230   }
   3231 
   3232   bool Failed() const {
   3233     return failed_;
   3234   }
   3235 
   3236  private:
   3237   Heap* const heap_;
   3238   bool failed_;
   3239 };
   3240 
   3241 bool Heap::VerifyMissingCardMarks() {
   3242   Thread* self = Thread::Current();
   3243   Locks::mutator_lock_->AssertExclusiveHeld(self);
   3244   // We need to sort the live stack since we binary search it.
   3245   live_stack_->Sort();
   3246   // Since we sorted the allocation stack content, need to revoke all
   3247   // thread-local allocation stacks.
   3248   RevokeAllThreadLocalAllocationStacks(self);
   3249   VerifyLiveStackReferences visitor(this);
   3250   GetLiveBitmap()->Visit(visitor);
   3251   // We can verify objects in the live stack since none of these should reference dead objects.
   3252   for (auto* it = live_stack_->Begin(); it != live_stack_->End(); ++it) {
   3253     if (!kUseThreadLocalAllocationStack || it->AsMirrorPtr() != nullptr) {
   3254       visitor(it->AsMirrorPtr());
   3255     }
   3256   }
   3257   return !visitor.Failed();
   3258 }
   3259 
   3260 void Heap::SwapStacks() {
   3261   if (kUseThreadLocalAllocationStack) {
   3262     live_stack_->AssertAllZero();
   3263   }
   3264   allocation_stack_.swap(live_stack_);
   3265 }
   3266 
   3267 void Heap::RevokeAllThreadLocalAllocationStacks(Thread* self) {
   3268   // This must be called only during the pause.
   3269   DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
   3270   MutexLock mu(self, *Locks::runtime_shutdown_lock_);
   3271   MutexLock mu2(self, *Locks::thread_list_lock_);
   3272   std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
   3273   for (Thread* t : thread_list) {
   3274     t->RevokeThreadLocalAllocationStack();
   3275   }
   3276 }
   3277 
   3278 void Heap::AssertThreadLocalBuffersAreRevoked(Thread* thread) {
   3279   if (kIsDebugBuild) {
   3280     if (rosalloc_space_ != nullptr) {
   3281       rosalloc_space_->AssertThreadLocalBuffersAreRevoked(thread);
   3282     }
   3283     if (bump_pointer_space_ != nullptr) {
   3284       bump_pointer_space_->AssertThreadLocalBuffersAreRevoked(thread);
   3285     }
   3286   }
   3287 }
   3288 
   3289 void Heap::AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked() {
   3290   if (kIsDebugBuild) {
   3291     if (bump_pointer_space_ != nullptr) {
   3292       bump_pointer_space_->AssertAllThreadLocalBuffersAreRevoked();
   3293     }
   3294   }
   3295 }
   3296 
   3297 accounting::ModUnionTable* Heap::FindModUnionTableFromSpace(space::Space* space) {
   3298   auto it = mod_union_tables_.find(space);
   3299   if (it == mod_union_tables_.end()) {
   3300     return nullptr;
   3301   }
   3302   return it->second;
   3303 }
   3304 
   3305 accounting::RememberedSet* Heap::FindRememberedSetFromSpace(space::Space* space) {
   3306   auto it = remembered_sets_.find(space);
   3307   if (it == remembered_sets_.end()) {
   3308     return nullptr;
   3309   }
   3310   return it->second;
   3311 }
   3312 
   3313 void Heap::ProcessCards(TimingLogger* timings,
   3314                         bool use_rem_sets,
   3315                         bool process_alloc_space_cards,
   3316                         bool clear_alloc_space_cards) {
   3317   TimingLogger::ScopedTiming t(__FUNCTION__, timings);
   3318   // Clear cards and keep track of cards cleared in the mod-union table.
   3319   for (const auto& space : continuous_spaces_) {
   3320     accounting::ModUnionTable* table = FindModUnionTableFromSpace(space);
   3321     accounting::RememberedSet* rem_set = FindRememberedSetFromSpace(space);
   3322     if (table != nullptr) {
   3323       const char* name = space->IsZygoteSpace() ? "ZygoteModUnionClearCards" :
   3324           "ImageModUnionClearCards";
   3325       TimingLogger::ScopedTiming t2(name, timings);
   3326       table->ProcessCards();
   3327     } else if (use_rem_sets && rem_set != nullptr) {
   3328       DCHECK(collector::SemiSpace::kUseRememberedSet && collector_type_ == kCollectorTypeGSS)
   3329           << static_cast<int>(collector_type_);
   3330       TimingLogger::ScopedTiming t2("AllocSpaceRemSetClearCards", timings);
   3331       rem_set->ClearCards();
   3332     } else if (process_alloc_space_cards) {
   3333       TimingLogger::ScopedTiming t2("AllocSpaceClearCards", timings);
   3334       if (clear_alloc_space_cards) {
   3335         uint8_t* end = space->End();
   3336         if (space->IsImageSpace()) {
   3337           // Image space end is the end of the mirror objects, it is not necessarily page or card
   3338           // aligned. Align up so that the check in ClearCardRange does not fail.
   3339           end = AlignUp(end, accounting::CardTable::kCardSize);
   3340         }
   3341         card_table_->ClearCardRange(space->Begin(), end);
   3342       } else {
   3343         // No mod union table for the AllocSpace. Age the cards so that the GC knows that these
   3344         // cards were dirty before the GC started.
   3345         // TODO: Need to use atomic for the case where aged(cleaning thread) -> dirty(other thread)
   3346         // -> clean(cleaning thread).
   3347         // The races are we either end up with: Aged card, unaged card. Since we have the
   3348         // checkpoint roots and then we scan / update mod union tables after. We will always
   3349         // scan either card. If we end up with the non aged card, we scan it it in the pause.
   3350         card_table_->ModifyCardsAtomic(space->Begin(), space->End(), AgeCardVisitor(),
   3351                                        VoidFunctor());
   3352       }
   3353     }
   3354   }
   3355 }
   3356 
   3357 struct IdentityMarkHeapReferenceVisitor : public MarkObjectVisitor {
   3358   virtual mirror::Object* MarkObject(mirror::Object* obj) OVERRIDE {
   3359     return obj;
   3360   }
   3361   virtual void MarkHeapReference(mirror::HeapReference<mirror::Object>*, bool) OVERRIDE {
   3362   }
   3363 };
   3364 
   3365 void Heap::PreGcVerificationPaused(collector::GarbageCollector* gc) {
   3366   Thread* const self = Thread::Current();
   3367   TimingLogger* const timings = current_gc_iteration_.GetTimings();
   3368   TimingLogger::ScopedTiming t(__FUNCTION__, timings);
   3369   if (verify_pre_gc_heap_) {
   3370     TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyHeapReferences", timings);
   3371     size_t failures = VerifyHeapReferences();
   3372     if (failures > 0) {
   3373       LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
   3374           << " failures";
   3375     }
   3376   }
   3377   // Check that all objects which reference things in the live stack are on dirty cards.
   3378   if (verify_missing_card_marks_) {
   3379     TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyMissingCardMarks", timings);
   3380     ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
   3381     SwapStacks();
   3382     // Sort the live stack so that we can quickly binary search it later.
   3383     CHECK(VerifyMissingCardMarks()) << "Pre " << gc->GetName()
   3384                                     << " missing card mark verification failed\n" << DumpSpaces();
   3385     SwapStacks();
   3386   }
   3387   if (verify_mod_union_table_) {
   3388     TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyModUnionTables", timings);
   3389     ReaderMutexLock reader_lock(self, *Locks::heap_bitmap_lock_);
   3390     for (const auto& table_pair : mod_union_tables_) {
   3391       accounting::ModUnionTable* mod_union_table = table_pair.second;
   3392       IdentityMarkHeapReferenceVisitor visitor;
   3393       mod_union_table->UpdateAndMarkReferences(&visitor);
   3394       mod_union_table->Verify();
   3395     }
   3396   }
   3397 }
   3398 
   3399 void Heap::PreGcVerification(collector::GarbageCollector* gc) {
   3400   if (verify_pre_gc_heap_ || verify_missing_card_marks_ || verify_mod_union_table_) {
   3401     collector::GarbageCollector::ScopedPause pause(gc, false);
   3402     PreGcVerificationPaused(gc);
   3403   }
   3404 }
   3405 
   3406 void Heap::PrePauseRosAllocVerification(collector::GarbageCollector* gc ATTRIBUTE_UNUSED) {
   3407   // TODO: Add a new runtime option for this?
   3408   if (verify_pre_gc_rosalloc_) {
   3409     RosAllocVerification(current_gc_iteration_.GetTimings(), "PreGcRosAllocVerification");
   3410   }
   3411 }
   3412 
   3413 void Heap::PreSweepingGcVerification(collector::GarbageCollector* gc) {
   3414   Thread* const self = Thread::Current();
   3415   TimingLogger* const timings = current_gc_iteration_.GetTimings();
   3416   TimingLogger::ScopedTiming t(__FUNCTION__, timings);
   3417   // Called before sweeping occurs since we want to make sure we are not going so reclaim any
   3418   // reachable objects.
   3419   if (verify_pre_sweeping_heap_) {
   3420     TimingLogger::ScopedTiming t2("(Paused)PostSweepingVerifyHeapReferences", timings);
   3421     CHECK_NE(self->GetState(), kRunnable);
   3422     {
   3423       WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
   3424       // Swapping bound bitmaps does nothing.
   3425       gc->SwapBitmaps();
   3426     }
   3427     // Pass in false since concurrent reference processing can mean that the reference referents
   3428     // may point to dead objects at the point which PreSweepingGcVerification is called.
   3429     size_t failures = VerifyHeapReferences(false);
   3430     if (failures > 0) {
   3431       LOG(FATAL) << "Pre sweeping " << gc->GetName() << " GC verification failed with " << failures
   3432           << " failures";
   3433     }
   3434     {
   3435       WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
   3436       gc->SwapBitmaps();
   3437     }
   3438   }
   3439   if (verify_pre_sweeping_rosalloc_) {
   3440     RosAllocVerification(timings, "PreSweepingRosAllocVerification");
   3441   }
   3442 }
   3443 
   3444 void Heap::PostGcVerificationPaused(collector::GarbageCollector* gc) {
   3445   // Only pause if we have to do some verification.
   3446   Thread* const self = Thread::Current();
   3447   TimingLogger* const timings = GetCurrentGcIteration()->GetTimings();
   3448   TimingLogger::ScopedTiming t(__FUNCTION__, timings);
   3449   if (verify_system_weaks_) {
   3450     ReaderMutexLock mu2(self, *Locks::heap_bitmap_lock_);
   3451     collector::MarkSweep* mark_sweep = down_cast<collector::MarkSweep*>(gc);
   3452     mark_sweep->VerifySystemWeaks();
   3453   }
   3454   if (verify_post_gc_rosalloc_) {
   3455     RosAllocVerification(timings, "(Paused)PostGcRosAllocVerification");
   3456   }
   3457   if (verify_post_gc_heap_) {
   3458     TimingLogger::ScopedTiming t2("(Paused)PostGcVerifyHeapReferences", timings);
   3459     size_t failures = VerifyHeapReferences();
   3460     if (failures > 0) {
   3461       LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
   3462           << " failures";
   3463     }
   3464   }
   3465 }
   3466 
   3467 void Heap::PostGcVerification(collector::GarbageCollector* gc) {
   3468   if (verify_system_weaks_ || verify_post_gc_rosalloc_ || verify_post_gc_heap_) {
   3469     collector::GarbageCollector::ScopedPause pause(gc, false);
   3470     PostGcVerificationPaused(gc);
   3471   }
   3472 }
   3473 
   3474 void Heap::RosAllocVerification(TimingLogger* timings, const char* name) {
   3475   TimingLogger::ScopedTiming t(name, timings);
   3476   for (const auto& space : continuous_spaces_) {
   3477     if (space->IsRosAllocSpace()) {
   3478       VLOG(heap) << name << " : " << space->GetName();
   3479       space->AsRosAllocSpace()->Verify();
   3480     }
   3481   }
   3482 }
   3483 
   3484 collector::GcType Heap::WaitForGcToComplete(GcCause cause, Thread* self) {
   3485   ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
   3486   MutexLock mu(self, *gc_complete_lock_);
   3487   return WaitForGcToCompleteLocked(cause, self);
   3488 }
   3489 
   3490 collector::GcType Heap::WaitForGcToCompleteLocked(GcCause cause, Thread* self) {
   3491   collector::GcType last_gc_type = collector::kGcTypeNone;
   3492   uint64_t wait_start = NanoTime();
   3493   while (collector_type_running_ != kCollectorTypeNone) {
   3494     if (self != task_processor_->GetRunningThread()) {
   3495       // The current thread is about to wait for a currently running
   3496       // collection to finish. If the waiting thread is not the heap
   3497       // task daemon thread, the currently running collection is
   3498       // considered as a blocking GC.
   3499       running_collection_is_blocking_ = true;
   3500       VLOG(gc) << "Waiting for a blocking GC " << cause;
   3501     }
   3502     ScopedTrace trace("GC: Wait For Completion");
   3503     // We must wait, change thread state then sleep on gc_complete_cond_;
   3504     gc_complete_cond_->Wait(self);
   3505     last_gc_type = last_gc_type_;
   3506   }
   3507   uint64_t wait_time = NanoTime() - wait_start;
   3508   total_wait_time_ += wait_time;
   3509   if (wait_time > long_pause_log_threshold_) {
   3510     LOG(INFO) << "WaitForGcToComplete blocked for " << PrettyDuration(wait_time)
   3511         << " for cause " << cause;
   3512   }
   3513   if (self != task_processor_->GetRunningThread()) {
   3514     // The current thread is about to run a collection. If the thread
   3515     // is not the heap task daemon thread, it's considered as a
   3516     // blocking GC (i.e., blocking itself).
   3517     running_collection_is_blocking_ = true;
   3518     // Don't log fake "GC" types that are only used for debugger or hidden APIs. If we log these,
   3519     // it results in log spam. kGcCauseExplicit is already logged in LogGC, so avoid it here too.
   3520     if (cause == kGcCauseForAlloc ||
   3521         cause == kGcCauseForNativeAlloc ||
   3522         cause == kGcCauseDisableMovingGc) {
   3523       VLOG(gc) << "Starting a blocking GC " << cause;
   3524     }
   3525   }
   3526   return last_gc_type;
   3527 }
   3528 
   3529 void Heap::DumpForSigQuit(std::ostream& os) {
   3530   os << "Heap: " << GetPercentFree() << "% free, " << PrettySize(GetBytesAllocated()) << "/"
   3531      << PrettySize(GetTotalMemory()) << "; " << GetObjectsAllocated() << " objects\n";
   3532   DumpGcPerformanceInfo(os);
   3533 }
   3534 
   3535 size_t Heap::GetPercentFree() {
   3536   return static_cast<size_t>(100.0f * static_cast<float>(GetFreeMemory()) / max_allowed_footprint_);
   3537 }
   3538 
   3539 void Heap::SetIdealFootprint(size_t max_allowed_footprint) {
   3540   if (max_allowed_footprint > GetMaxMemory()) {
   3541     VLOG(gc) << "Clamp target GC heap from " << PrettySize(max_allowed_footprint) << " to "
   3542              << PrettySize(GetMaxMemory());
   3543     max_allowed_footprint = GetMaxMemory();
   3544   }
   3545   max_allowed_footprint_ = max_allowed_footprint;
   3546 }
   3547 
   3548 bool Heap::IsMovableObject(ObjPtr<mirror::Object> obj) const {
   3549   if (kMovingCollector) {
   3550     space::Space* space = FindContinuousSpaceFromObject(obj.Ptr(), true);
   3551     if (space != nullptr) {
   3552       // TODO: Check large object?
   3553       return space->CanMoveObjects();
   3554     }
   3555   }
   3556   return false;
   3557 }
   3558 
   3559 collector::GarbageCollector* Heap::FindCollectorByGcType(collector::GcType gc_type) {
   3560   for (const auto& collector : garbage_collectors_) {
   3561     if (collector->GetCollectorType() == collector_type_ &&
   3562         collector->GetGcType() == gc_type) {
   3563       return collector;
   3564     }
   3565   }
   3566   return nullptr;
   3567 }
   3568 
   3569 double Heap::HeapGrowthMultiplier() const {
   3570   // If we don't care about pause times we are background, so return 1.0.
   3571   if (!CareAboutPauseTimes() || IsLowMemoryMode()) {
   3572     return 1.0;
   3573   }
   3574   return foreground_heap_growth_multiplier_;
   3575 }
   3576 
   3577 void Heap::GrowForUtilization(collector::GarbageCollector* collector_ran,
   3578                               uint64_t bytes_allocated_before_gc) {
   3579   // We know what our utilization is at this moment.
   3580   // This doesn't actually resize any memory. It just lets the heap grow more when necessary.
   3581   const uint64_t bytes_allocated = GetBytesAllocated();
   3582   uint64_t target_size;
   3583   collector::GcType gc_type = collector_ran->GetGcType();
   3584   const double multiplier = HeapGrowthMultiplier();  // Use the multiplier to grow more for
   3585   // foreground.
   3586   const uint64_t adjusted_min_free = static_cast<uint64_t>(min_free_ * multiplier);
   3587   const uint64_t adjusted_max_free = static_cast<uint64_t>(max_free_ * multiplier);
   3588   if (gc_type != collector::kGcTypeSticky) {
   3589     // Grow the heap for non sticky GC.
   3590     ssize_t delta = bytes_allocated / GetTargetHeapUtilization() - bytes_allocated;
   3591     CHECK_GE(delta, 0);
   3592     target_size = bytes_allocated + delta * multiplier;
   3593     target_size = std::min(target_size, bytes_allocated + adjusted_max_free);
   3594     target_size = std::max(target_size, bytes_allocated + adjusted_min_free);
   3595     next_gc_type_ = collector::kGcTypeSticky;
   3596   } else {
   3597     collector::GcType non_sticky_gc_type = NonStickyGcType();
   3598     // Find what the next non sticky collector will be.
   3599     collector::GarbageCollector* non_sticky_collector = FindCollectorByGcType(non_sticky_gc_type);
   3600     // If the throughput of the current sticky GC >= throughput of the non sticky collector, then
   3601     // do another sticky collection next.
   3602     // We also check that the bytes allocated aren't over the footprint limit in order to prevent a
   3603     // pathological case where dead objects which aren't reclaimed by sticky could get accumulated
   3604     // if the sticky GC throughput always remained >= the full/partial throughput.
   3605     if (current_gc_iteration_.GetEstimatedThroughput() * kStickyGcThroughputAdjustment >=
   3606         non_sticky_collector->GetEstimatedMeanThroughput() &&
   3607         non_sticky_collector->NumberOfIterations() > 0 &&
   3608         bytes_allocated <= max_allowed_footprint_) {
   3609       next_gc_type_ = collector::kGcTypeSticky;
   3610     } else {
   3611       next_gc_type_ = non_sticky_gc_type;
   3612     }
   3613     // If we have freed enough memory, shrink the heap back down.
   3614     if (bytes_allocated + adjusted_max_free < max_allowed_footprint_) {
   3615       target_size = bytes_allocated + adjusted_max_free;
   3616     } else {
   3617       target_size = std::max(bytes_allocated, static_cast<uint64_t>(max_allowed_footprint_));
   3618     }
   3619   }
   3620   if (!ignore_max_footprint_) {
   3621     SetIdealFootprint(target_size);
   3622     if (IsGcConcurrent()) {
   3623       const uint64_t freed_bytes = current_gc_iteration_.GetFreedBytes() +
   3624           current_gc_iteration_.GetFreedLargeObjectBytes() +
   3625           current_gc_iteration_.GetFreedRevokeBytes();
   3626       // Bytes allocated will shrink by freed_bytes after the GC runs, so if we want to figure out
   3627       // how many bytes were allocated during the GC we need to add freed_bytes back on.
   3628       CHECK_GE(bytes_allocated + freed_bytes, bytes_allocated_before_gc);
   3629       const uint64_t bytes_allocated_during_gc = bytes_allocated + freed_bytes -
   3630           bytes_allocated_before_gc;
   3631       // Calculate when to perform the next ConcurrentGC.
   3632       // Calculate the estimated GC duration.
   3633       const double gc_duration_seconds = NsToMs(current_gc_iteration_.GetDurationNs()) / 1000.0;
   3634       // Estimate how many remaining bytes we will have when we need to start the next GC.
   3635       size_t remaining_bytes = bytes_allocated_during_gc * gc_duration_seconds;
   3636       remaining_bytes = std::min(remaining_bytes, kMaxConcurrentRemainingBytes);
   3637       remaining_bytes = std::max(remaining_bytes, kMinConcurrentRemainingBytes);
   3638       if (UNLIKELY(remaining_bytes > max_allowed_footprint_)) {
   3639         // A never going to happen situation that from the estimated allocation rate we will exceed
   3640         // the applications entire footprint with the given estimated allocation rate. Schedule
   3641         // another GC nearly straight away.
   3642         remaining_bytes = kMinConcurrentRemainingBytes;
   3643       }
   3644       DCHECK_LE(remaining_bytes, max_allowed_footprint_);
   3645       DCHECK_LE(max_allowed_footprint_, GetMaxMemory());
   3646       // Start a concurrent GC when we get close to the estimated remaining bytes. When the
   3647       // allocation rate is very high, remaining_bytes could tell us that we should start a GC
   3648       // right away.
   3649       concurrent_start_bytes_ = std::max(max_allowed_footprint_ - remaining_bytes,
   3650                                          static_cast<size_t>(bytes_allocated));
   3651     }
   3652   }
   3653 }
   3654 
   3655 void Heap::ClampGrowthLimit() {
   3656   // Use heap bitmap lock to guard against races with BindLiveToMarkBitmap.
   3657   ScopedObjectAccess soa(Thread::Current());
   3658   WriterMutexLock mu(soa.Self(), *Locks::heap_bitmap_lock_);
   3659   capacity_ = growth_limit_;
   3660   for (const auto& space : continuous_spaces_) {
   3661     if (space->IsMallocSpace()) {
   3662       gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
   3663       malloc_space->ClampGrowthLimit();
   3664     }
   3665   }
   3666   // This space isn't added for performance reasons.
   3667   if (main_space_backup_.get() != nullptr) {
   3668     main_space_backup_->ClampGrowthLimit();
   3669   }
   3670 }
   3671 
   3672 void Heap::ClearGrowthLimit() {
   3673   growth_limit_ = capacity_;
   3674   ScopedObjectAccess soa(Thread::Current());
   3675   for (const auto& space : continuous_spaces_) {
   3676     if (space->IsMallocSpace()) {
   3677       gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
   3678       malloc_space->ClearGrowthLimit();
   3679       malloc_space->SetFootprintLimit(malloc_space->Capacity());
   3680     }
   3681   }
   3682   // This space isn't added for performance reasons.
   3683   if (main_space_backup_.get() != nullptr) {
   3684     main_space_backup_->ClearGrowthLimit();
   3685     main_space_backup_->SetFootprintLimit(main_space_backup_->Capacity());
   3686   }
   3687 }
   3688 
   3689 void Heap::AddFinalizerReference(Thread* self, ObjPtr<mirror::Object>* object) {
   3690   ScopedObjectAccess soa(self);
   3691   ScopedLocalRef<jobject> arg(self->GetJniEnv(), soa.AddLocalReference<jobject>(*object));
   3692   jvalue args[1];
   3693   args[0].l = arg.get();
   3694   InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_FinalizerReference_add, args);
   3695   // Restore object in case it gets moved.
   3696   *object = soa.Decode<mirror::Object>(arg.get());
   3697 }
   3698 
   3699 void Heap::RequestConcurrentGCAndSaveObject(Thread* self,
   3700                                             bool force_full,
   3701                                             ObjPtr<mirror::Object>* obj) {
   3702   StackHandleScope<1> hs(self);
   3703   HandleWrapperObjPtr<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
   3704   RequestConcurrentGC(self, kGcCauseBackground, force_full);
   3705 }
   3706 
   3707 class Heap::ConcurrentGCTask : public HeapTask {
   3708  public:
   3709   ConcurrentGCTask(uint64_t target_time, GcCause cause, bool force_full)
   3710       : HeapTask(target_time), cause_(cause), force_full_(force_full) {}
   3711   virtual void Run(Thread* self) OVERRIDE {
   3712     gc::Heap* heap = Runtime::Current()->GetHeap();
   3713     heap->ConcurrentGC(self, cause_, force_full_);
   3714     heap->ClearConcurrentGCRequest();
   3715   }
   3716 
   3717  private:
   3718   const GcCause cause_;
   3719   const bool force_full_;  // If true, force full (or partial) collection.
   3720 };
   3721 
   3722 static bool CanAddHeapTask(Thread* self) REQUIRES(!Locks::runtime_shutdown_lock_) {
   3723   Runtime* runtime = Runtime::Current();
   3724   return runtime != nullptr && runtime->IsFinishedStarting() && !runtime->IsShuttingDown(self) &&
   3725       !self->IsHandlingStackOverflow();
   3726 }
   3727 
   3728 void Heap::ClearConcurrentGCRequest() {
   3729   concurrent_gc_pending_.StoreRelaxed(false);
   3730 }
   3731 
   3732 void Heap::RequestConcurrentGC(Thread* self, GcCause cause, bool force_full) {
   3733   if (CanAddHeapTask(self) &&
   3734       concurrent_gc_pending_.CompareExchangeStrongSequentiallyConsistent(false, true)) {
   3735     task_processor_->AddTask(self, new ConcurrentGCTask(NanoTime(),  // Start straight away.
   3736                                                         cause,
   3737                                                         force_full));
   3738   }
   3739 }
   3740 
   3741 void Heap::ConcurrentGC(Thread* self, GcCause cause, bool force_full) {
   3742   if (!Runtime::Current()->IsShuttingDown(self)) {
   3743     // Wait for any GCs currently running to finish.
   3744     if (WaitForGcToComplete(cause, self) == collector::kGcTypeNone) {
   3745       // If the we can't run the GC type we wanted to run, find the next appropriate one and try
   3746       // that instead. E.g. can't do partial, so do full instead.
   3747       collector::GcType next_gc_type = next_gc_type_;
   3748       // If forcing full and next gc type is sticky, override with a non-sticky type.
   3749       if (force_full && next_gc_type == collector::kGcTypeSticky) {
   3750         next_gc_type = NonStickyGcType();
   3751       }
   3752       if (CollectGarbageInternal(next_gc_type, cause, false) == collector::kGcTypeNone) {
   3753         for (collector::GcType gc_type : gc_plan_) {
   3754           // Attempt to run the collector, if we succeed, we are done.
   3755           if (gc_type > next_gc_type &&
   3756               CollectGarbageInternal(gc_type, cause, false) != collector::kGcTypeNone) {
   3757             break;
   3758           }
   3759         }
   3760       }
   3761     }
   3762   }
   3763 }
   3764 
   3765 class Heap::CollectorTransitionTask : public HeapTask {
   3766  public:
   3767   explicit CollectorTransitionTask(uint64_t target_time) : HeapTask(target_time) {}
   3768 
   3769   virtual void Run(Thread* self) OVERRIDE {
   3770     gc::Heap* heap = Runtime::Current()->GetHeap();
   3771     heap->DoPendingCollectorTransition();
   3772     heap->ClearPendingCollectorTransition(self);
   3773   }
   3774 };
   3775 
   3776 void Heap::ClearPendingCollectorTransition(Thread* self) {
   3777   MutexLock mu(self, *pending_task_lock_);
   3778   pending_collector_transition_ = nullptr;
   3779 }
   3780 
   3781 void Heap::RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time) {
   3782   Thread* self = Thread::Current();
   3783   desired_collector_type_ = desired_collector_type;
   3784   if (desired_collector_type_ == collector_type_ || !CanAddHeapTask(self)) {
   3785     return;
   3786   }
   3787   if (collector_type_ == kCollectorTypeCC) {
   3788     // For CC, we invoke a full compaction when going to the background, but the collector type
   3789     // doesn't change.
   3790     DCHECK_EQ(desired_collector_type_, kCollectorTypeCCBackground);
   3791   }
   3792   DCHECK_NE(collector_type_, kCollectorTypeCCBackground);
   3793   CollectorTransitionTask* added_task = nullptr;
   3794   const uint64_t target_time = NanoTime() + delta_time;
   3795   {
   3796     MutexLock mu(self, *pending_task_lock_);
   3797     // If we have an existing collector transition, update the targe time to be the new target.
   3798     if (pending_collector_transition_ != nullptr) {
   3799       task_processor_->UpdateTargetRunTime(self, pending_collector_transition_, target_time);
   3800       return;
   3801     }
   3802     added_task = new CollectorTransitionTask(target_time);
   3803     pending_collector_transition_ = added_task;
   3804   }
   3805   task_processor_->AddTask(self, added_task);
   3806 }
   3807 
   3808 class Heap::HeapTrimTask : public HeapTask {
   3809  public:
   3810   explicit HeapTrimTask(uint64_t delta_time) : HeapTask(NanoTime() + delta_time) { }
   3811   virtual void Run(Thread* self) OVERRIDE {
   3812     gc::Heap* heap = Runtime::Current()->GetHeap();
   3813     heap->Trim(self);
   3814     heap->ClearPendingTrim(self);
   3815   }
   3816 };
   3817 
   3818 void Heap::ClearPendingTrim(Thread* self) {
   3819   MutexLock mu(self, *pending_task_lock_);
   3820   pending_heap_trim_ = nullptr;
   3821 }
   3822 
   3823 void Heap::RequestTrim(Thread* self) {
   3824   if (!CanAddHeapTask(self)) {
   3825     return;
   3826   }
   3827   // GC completed and now we must decide whether to request a heap trim (advising pages back to the
   3828   // kernel) or not. Issuing a request will also cause trimming of the libc heap. As a trim scans
   3829   // a space it will hold its lock and can become a cause of jank.
   3830   // Note, the large object space self trims and the Zygote space was trimmed and unchanging since
   3831   // forking.
   3832 
   3833   // We don't have a good measure of how worthwhile a trim might be. We can't use the live bitmap
   3834   // because that only marks object heads, so a large array looks like lots of empty space. We
   3835   // don't just call dlmalloc all the time, because the cost of an _attempted_ trim is proportional
   3836   // to utilization (which is probably inversely proportional to how much benefit we can expect).
   3837   // We could try mincore(2) but that's only a measure of how many pages we haven't given away,
   3838   // not how much use we're making of those pages.
   3839   HeapTrimTask* added_task = nullptr;
   3840   {
   3841     MutexLock mu(self, *pending_task_lock_);
   3842     if (pending_heap_trim_ != nullptr) {
   3843       // Already have a heap trim request in task processor, ignore this request.
   3844       return;
   3845     }
   3846     added_task = new HeapTrimTask(kHeapTrimWait);
   3847     pending_heap_trim_ = added_task;
   3848   }
   3849   task_processor_->AddTask(self, added_task);
   3850 }
   3851 
   3852 void Heap::RevokeThreadLocalBuffers(Thread* thread) {
   3853   if (rosalloc_space_ != nullptr) {
   3854     size_t freed_bytes_revoke = rosalloc_space_->RevokeThreadLocalBuffers(thread);
   3855     if (freed_bytes_revoke > 0U) {
   3856       num_bytes_freed_revoke_.FetchAndAddSequentiallyConsistent(freed_bytes_revoke);
   3857       CHECK_GE(num_bytes_allocated_.LoadRelaxed(), num_bytes_freed_revoke_.LoadRelaxed());
   3858     }
   3859   }
   3860   if (bump_pointer_space_ != nullptr) {
   3861     CHECK_EQ(bump_pointer_space_->RevokeThreadLocalBuffers(thread), 0U);
   3862   }
   3863   if (region_space_ != nullptr) {
   3864     CHECK_EQ(region_space_->RevokeThreadLocalBuffers(thread), 0U);
   3865   }
   3866 }
   3867 
   3868 void Heap::RevokeRosAllocThreadLocalBuffers(Thread* thread) {
   3869   if (rosalloc_space_ != nullptr) {
   3870     size_t freed_bytes_revoke = rosalloc_space_->RevokeThreadLocalBuffers(thread);
   3871     if (freed_bytes_revoke > 0U) {
   3872       num_bytes_freed_revoke_.FetchAndAddSequentiallyConsistent(freed_bytes_revoke);
   3873       CHECK_GE(num_bytes_allocated_.LoadRelaxed(), num_bytes_freed_revoke_.LoadRelaxed());
   3874     }
   3875   }
   3876 }
   3877 
   3878 void Heap::RevokeAllThreadLocalBuffers() {
   3879   if (rosalloc_space_ != nullptr) {
   3880     size_t freed_bytes_revoke = rosalloc_space_->RevokeAllThreadLocalBuffers();
   3881     if (freed_bytes_revoke > 0U) {
   3882       num_bytes_freed_revoke_.FetchAndAddSequentiallyConsistent(freed_bytes_revoke);
   3883       CHECK_GE(num_bytes_allocated_.LoadRelaxed(), num_bytes_freed_revoke_.LoadRelaxed());
   3884     }
   3885   }
   3886   if (bump_pointer_space_ != nullptr) {
   3887     CHECK_EQ(bump_pointer_space_->RevokeAllThreadLocalBuffers(), 0U);
   3888   }
   3889   if (region_space_ != nullptr) {
   3890     CHECK_EQ(region_space_->RevokeAllThreadLocalBuffers(), 0U);
   3891   }
   3892 }
   3893 
   3894 bool Heap::IsGCRequestPending() const {
   3895   return concurrent_gc_pending_.LoadRelaxed();
   3896 }
   3897 
   3898 void Heap::RunFinalization(JNIEnv* env, uint64_t timeout) {
   3899   env->CallStaticVoidMethod(WellKnownClasses::dalvik_system_VMRuntime,
   3900                             WellKnownClasses::dalvik_system_VMRuntime_runFinalization,
   3901                             static_cast<jlong>(timeout));
   3902 }
   3903 
   3904 void Heap::RegisterNativeAllocation(JNIEnv* env, size_t bytes) {
   3905   // See the REDESIGN section of go/understanding-register-native-allocation
   3906   // for an explanation of how RegisterNativeAllocation works.
   3907   size_t new_value = bytes + new_native_bytes_allocated_.FetchAndAddRelaxed(bytes);
   3908   if (new_value > NativeAllocationBlockingGcWatermark()) {
   3909     // Wait for a new GC to finish and finalizers to run, because the
   3910     // allocation rate is too high.
   3911     Thread* self = ThreadForEnv(env);
   3912 
   3913     bool run_gc = false;
   3914     {
   3915       MutexLock mu(self, *native_blocking_gc_lock_);
   3916       uint32_t initial_gcs_finished = native_blocking_gcs_finished_;
   3917       if (native_blocking_gc_in_progress_) {
   3918         // A native blocking GC is in progress from the last time the native
   3919         // allocation blocking GC watermark was exceeded. Wait for that GC to
   3920         // finish before addressing the fact that we exceeded the blocking
   3921         // watermark again.
   3922         do {
   3923           native_blocking_gc_cond_->Wait(self);
   3924         } while (native_blocking_gcs_finished_ == initial_gcs_finished);
   3925         initial_gcs_finished++;
   3926       }
   3927 
   3928       // It's possible multiple threads have seen that we exceeded the
   3929       // blocking watermark. Ensure that only one of those threads runs the
   3930       // blocking GC. The rest of the threads should instead wait for the
   3931       // blocking GC to complete.
   3932       if (native_blocking_gcs_finished_ == initial_gcs_finished) {
   3933         if (native_blocking_gc_in_progress_) {
   3934           do {
   3935             native_blocking_gc_cond_->Wait(self);
   3936           } while (native_blocking_gcs_finished_ == initial_gcs_finished);
   3937         } else {
   3938           native_blocking_gc_in_progress_ = true;
   3939           run_gc = true;
   3940         }
   3941       }
   3942     }
   3943 
   3944     if (run_gc) {
   3945       CollectGarbageInternal(NonStickyGcType(), kGcCauseForNativeAlloc, false);
   3946       RunFinalization(env, kNativeAllocationFinalizeTimeout);
   3947       CHECK(!env->ExceptionCheck());
   3948 
   3949       MutexLock mu(self, *native_blocking_gc_lock_);
   3950       native_blocking_gc_in_progress_ = false;
   3951       native_blocking_gcs_finished_++;
   3952       native_blocking_gc_cond_->Broadcast(self);
   3953     }
   3954   } else if (new_value > NativeAllocationGcWatermark() * HeapGrowthMultiplier() &&
   3955              !IsGCRequestPending()) {
   3956     // Trigger another GC because there have been enough native bytes
   3957     // allocated since the last GC.
   3958     if (IsGcConcurrent()) {
   3959       RequestConcurrentGC(ThreadForEnv(env), kGcCauseForNativeAllocBackground, /*force_full*/true);
   3960     } else {
   3961       CollectGarbageInternal(NonStickyGcType(), kGcCauseForNativeAlloc, false);
   3962     }
   3963   }
   3964 }
   3965 
   3966 void Heap::RegisterNativeFree(JNIEnv*, size_t bytes) {
   3967   // Take the bytes freed out of new_native_bytes_allocated_ first. If
   3968   // new_native_bytes_allocated_ reaches zero, take the remaining bytes freed
   3969   // out of old_native_bytes_allocated_ to ensure all freed bytes are
   3970   // accounted for.
   3971   size_t allocated;
   3972   size_t new_freed_bytes;
   3973   do {
   3974     allocated = new_native_bytes_allocated_.LoadRelaxed();
   3975     new_freed_bytes = std::min(allocated, bytes);
   3976   } while (!new_native_bytes_allocated_.CompareExchangeWeakRelaxed(allocated,
   3977                                                                    allocated - new_freed_bytes));
   3978   if (new_freed_bytes < bytes) {
   3979     old_native_bytes_allocated_.FetchAndSubRelaxed(bytes - new_freed_bytes);
   3980   }
   3981 }
   3982 
   3983 size_t Heap::GetTotalMemory() const {
   3984   return std::max(max_allowed_footprint_, GetBytesAllocated());
   3985 }
   3986 
   3987 void Heap::AddModUnionTable(accounting::ModUnionTable* mod_union_table) {
   3988   DCHECK(mod_union_table != nullptr);
   3989   mod_union_tables_.Put(mod_union_table->GetSpace(), mod_union_table);
   3990 }
   3991 
   3992 void Heap::CheckPreconditionsForAllocObject(ObjPtr<mirror::Class> c, size_t byte_count) {
   3993   CHECK(c == nullptr || (c->IsClassClass() && byte_count >= sizeof(mirror::Class)) ||
   3994         (c->IsVariableSize() || c->GetObjectSize() == byte_count))
   3995       << "ClassFlags=" << c->GetClassFlags()
   3996       << " IsClassClass=" << c->IsClassClass()
   3997       << " byte_count=" << byte_count
   3998       << " IsVariableSize=" << c->IsVariableSize()
   3999       << " ObjectSize=" << c->GetObjectSize()
   4000       << " sizeof(Class)=" << sizeof(mirror::Class)
   4001       << " klass=" << c.Ptr();
   4002   CHECK_GE(byte_count, sizeof(mirror::Object));
   4003 }
   4004 
   4005 void Heap::AddRememberedSet(accounting::RememberedSet* remembered_set) {
   4006   CHECK(remembered_set != nullptr);
   4007   space::Space* space = remembered_set->GetSpace();
   4008   CHECK(space != nullptr);
   4009   CHECK(remembered_sets_.find(space) == remembered_sets_.end()) << space;
   4010   remembered_sets_.Put(space, remembered_set);
   4011   CHECK(remembered_sets_.find(space) != remembered_sets_.end()) << space;
   4012 }
   4013 
   4014 void Heap::RemoveRememberedSet(space::Space* space) {
   4015   CHECK(space != nullptr);
   4016   auto it = remembered_sets_.find(space);
   4017   CHECK(it != remembered_sets_.end());
   4018   delete it->second;
   4019   remembered_sets_.erase(it);
   4020   CHECK(remembered_sets_.find(space) == remembered_sets_.end());
   4021 }
   4022 
   4023 void Heap::ClearMarkedObjects() {
   4024   // Clear all of the spaces' mark bitmaps.
   4025   for (const auto& space : GetContinuousSpaces()) {
   4026     accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
   4027     if (space->GetLiveBitmap() != mark_bitmap) {
   4028       mark_bitmap->Clear();
   4029     }
   4030   }
   4031   // Clear the marked objects in the discontinous space object sets.
   4032   for (const auto& space : GetDiscontinuousSpaces()) {
   4033     space->GetMarkBitmap()->Clear();
   4034   }
   4035 }
   4036 
   4037 void Heap::SetAllocationRecords(AllocRecordObjectMap* records) {
   4038   allocation_records_.reset(records);
   4039 }
   4040 
   4041 void Heap::VisitAllocationRecords(RootVisitor* visitor) const {
   4042   if (IsAllocTrackingEnabled()) {
   4043     MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
   4044     if (IsAllocTrackingEnabled()) {
   4045       GetAllocationRecords()->VisitRoots(visitor);
   4046     }
   4047   }
   4048 }
   4049 
   4050 void Heap::SweepAllocationRecords(IsMarkedVisitor* visitor) const {
   4051   if (IsAllocTrackingEnabled()) {
   4052     MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
   4053     if (IsAllocTrackingEnabled()) {
   4054       GetAllocationRecords()->SweepAllocationRecords(visitor);
   4055     }
   4056   }
   4057 }
   4058 
   4059 void Heap::AllowNewAllocationRecords() const {
   4060   CHECK(!kUseReadBarrier);
   4061   MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
   4062   AllocRecordObjectMap* allocation_records = GetAllocationRecords();
   4063   if (allocation_records != nullptr) {
   4064     allocation_records->AllowNewAllocationRecords();
   4065   }
   4066 }
   4067 
   4068 void Heap::DisallowNewAllocationRecords() const {
   4069   CHECK(!kUseReadBarrier);
   4070   MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
   4071   AllocRecordObjectMap* allocation_records = GetAllocationRecords();
   4072   if (allocation_records != nullptr) {
   4073     allocation_records->DisallowNewAllocationRecords();
   4074   }
   4075 }
   4076 
   4077 void Heap::BroadcastForNewAllocationRecords() const {
   4078   // Always broadcast without checking IsAllocTrackingEnabled() because IsAllocTrackingEnabled() may
   4079   // be set to false while some threads are waiting for system weak access in
   4080   // AllocRecordObjectMap::RecordAllocation() and we may fail to wake them up. b/27467554.
   4081   MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
   4082   AllocRecordObjectMap* allocation_records = GetAllocationRecords();
   4083   if (allocation_records != nullptr) {
   4084     allocation_records->BroadcastForNewAllocationRecords();
   4085   }
   4086 }
   4087 
   4088 void Heap::CheckGcStressMode(Thread* self, ObjPtr<mirror::Object>* obj) {
   4089   auto* const runtime = Runtime::Current();
   4090   if (gc_stress_mode_ && runtime->GetClassLinker()->IsInitialized() &&
   4091       !runtime->IsActiveTransaction() && mirror::Class::HasJavaLangClass()) {
   4092     // Check if we should GC.
   4093     bool new_backtrace = false;
   4094     {
   4095       static constexpr size_t kMaxFrames = 16u;
   4096       FixedSizeBacktrace<kMaxFrames> backtrace;
   4097       backtrace.Collect(/* skip_frames */ 2);
   4098       uint64_t hash = backtrace.Hash();
   4099       MutexLock mu(self, *backtrace_lock_);
   4100       new_backtrace = seen_backtraces_.find(hash) == seen_backtraces_.end();
   4101       if (new_backtrace) {
   4102         seen_backtraces_.insert(hash);
   4103       }
   4104     }
   4105     if (new_backtrace) {
   4106       StackHandleScope<1> hs(self);
   4107       auto h = hs.NewHandleWrapper(obj);
   4108       CollectGarbage(false);
   4109       unique_backtrace_count_.FetchAndAddSequentiallyConsistent(1);
   4110     } else {
   4111       seen_backtrace_count_.FetchAndAddSequentiallyConsistent(1);
   4112     }
   4113   }
   4114 }
   4115 
   4116 void Heap::DisableGCForShutdown() {
   4117   Thread* const self = Thread::Current();
   4118   CHECK(Runtime::Current()->IsShuttingDown(self));
   4119   MutexLock mu(self, *gc_complete_lock_);
   4120   gc_disabled_for_shutdown_ = true;
   4121 }
   4122 
   4123 bool Heap::ObjectIsInBootImageSpace(ObjPtr<mirror::Object> obj) const {
   4124   for (gc::space::ImageSpace* space : boot_image_spaces_) {
   4125     if (space->HasAddress(obj.Ptr())) {
   4126       return true;
   4127     }
   4128   }
   4129   return false;
   4130 }
   4131 
   4132 bool Heap::IsInBootImageOatFile(const void* p) const {
   4133   for (gc::space::ImageSpace* space : boot_image_spaces_) {
   4134     if (space->GetOatFile()->Contains(p)) {
   4135       return true;
   4136     }
   4137   }
   4138   return false;
   4139 }
   4140 
   4141 void Heap::GetBootImagesSize(uint32_t* boot_image_begin,
   4142                              uint32_t* boot_image_end,
   4143                              uint32_t* boot_oat_begin,
   4144                              uint32_t* boot_oat_end) {
   4145   DCHECK(boot_image_begin != nullptr);
   4146   DCHECK(boot_image_end != nullptr);
   4147   DCHECK(boot_oat_begin != nullptr);
   4148   DCHECK(boot_oat_end != nullptr);
   4149   *boot_image_begin = 0u;
   4150   *boot_image_end = 0u;
   4151   *boot_oat_begin = 0u;
   4152   *boot_oat_end = 0u;
   4153   for (gc::space::ImageSpace* space_ : GetBootImageSpaces()) {
   4154     const uint32_t image_begin = PointerToLowMemUInt32(space_->Begin());
   4155     const uint32_t image_size = space_->GetImageHeader().GetImageSize();
   4156     if (*boot_image_begin == 0 || image_begin < *boot_image_begin) {
   4157       *boot_image_begin = image_begin;
   4158     }
   4159     *boot_image_end = std::max(*boot_image_end, image_begin + image_size);
   4160     const OatFile* boot_oat_file = space_->GetOatFile();
   4161     const uint32_t oat_begin = PointerToLowMemUInt32(boot_oat_file->Begin());
   4162     const uint32_t oat_size = boot_oat_file->Size();
   4163     if (*boot_oat_begin == 0 || oat_begin < *boot_oat_begin) {
   4164       *boot_oat_begin = oat_begin;
   4165     }
   4166     *boot_oat_end = std::max(*boot_oat_end, oat_begin + oat_size);
   4167   }
   4168 }
   4169 
   4170 void Heap::SetAllocationListener(AllocationListener* l) {
   4171   AllocationListener* old = GetAndOverwriteAllocationListener(&alloc_listener_, l);
   4172 
   4173   if (old == nullptr) {
   4174     Runtime::Current()->GetInstrumentation()->InstrumentQuickAllocEntryPoints();
   4175   }
   4176 }
   4177 
   4178 void Heap::RemoveAllocationListener() {
   4179   AllocationListener* old = GetAndOverwriteAllocationListener(&alloc_listener_, nullptr);
   4180 
   4181   if (old != nullptr) {
   4182     Runtime::Current()->GetInstrumentation()->UninstrumentQuickAllocEntryPoints();
   4183   }
   4184 }
   4185 
   4186 void Heap::SetGcPauseListener(GcPauseListener* l) {
   4187   gc_pause_listener_.StoreRelaxed(l);
   4188 }
   4189 
   4190 void Heap::RemoveGcPauseListener() {
   4191   gc_pause_listener_.StoreRelaxed(nullptr);
   4192 }
   4193 
   4194 mirror::Object* Heap::AllocWithNewTLAB(Thread* self,
   4195                                        size_t alloc_size,
   4196                                        bool grow,
   4197                                        size_t* bytes_allocated,
   4198                                        size_t* usable_size,
   4199                                        size_t* bytes_tl_bulk_allocated) {
   4200   const AllocatorType allocator_type = GetCurrentAllocator();
   4201   if (kUsePartialTlabs && alloc_size <= self->TlabRemainingCapacity()) {
   4202     DCHECK_GT(alloc_size, self->TlabSize());
   4203     // There is enough space if we grow the TLAB. Lets do that. This increases the
   4204     // TLAB bytes.
   4205     const size_t min_expand_size = alloc_size - self->TlabSize();
   4206     const size_t expand_bytes = std::max(
   4207         min_expand_size,
   4208         std::min(self->TlabRemainingCapacity() - self->TlabSize(), kPartialTlabSize));
   4209     if (UNLIKELY(IsOutOfMemoryOnAllocation(allocator_type, expand_bytes, grow))) {
   4210       return nullptr;
   4211     }
   4212     *bytes_tl_bulk_allocated = expand_bytes;
   4213     self->ExpandTlab(expand_bytes);
   4214     DCHECK_LE(alloc_size, self->TlabSize());
   4215   } else if (allocator_type == kAllocatorTypeTLAB) {
   4216     DCHECK(bump_pointer_space_ != nullptr);
   4217     const size_t new_tlab_size = alloc_size + kDefaultTLABSize;
   4218     if (UNLIKELY(IsOutOfMemoryOnAllocation(allocator_type, new_tlab_size, grow))) {
   4219       return nullptr;
   4220     }
   4221     // Try allocating a new thread local buffer, if the allocation fails the space must be
   4222     // full so return null.
   4223     if (!bump_pointer_space_->AllocNewTlab(self, new_tlab_size)) {
   4224       return nullptr;
   4225     }
   4226     *bytes_tl_bulk_allocated = new_tlab_size;
   4227   } else {
   4228     DCHECK(allocator_type == kAllocatorTypeRegionTLAB);
   4229     DCHECK(region_space_ != nullptr);
   4230     if (space::RegionSpace::kRegionSize >= alloc_size) {
   4231       // Non-large. Check OOME for a tlab.
   4232       if (LIKELY(!IsOutOfMemoryOnAllocation(allocator_type,
   4233                                             space::RegionSpace::kRegionSize,
   4234                                             grow))) {
   4235         const size_t new_tlab_size = kUsePartialTlabs
   4236             ? std::max(alloc_size, kPartialTlabSize)
   4237             : gc::space::RegionSpace::kRegionSize;
   4238         // Try to allocate a tlab.
   4239         if (!region_space_->AllocNewTlab(self, new_tlab_size)) {
   4240           // Failed to allocate a tlab. Try non-tlab.
   4241           return region_space_->AllocNonvirtual<false>(alloc_size,
   4242                                                        bytes_allocated,
   4243                                                        usable_size,
   4244                                                        bytes_tl_bulk_allocated);
   4245         }
   4246         *bytes_tl_bulk_allocated = new_tlab_size;
   4247         // Fall-through to using the TLAB below.
   4248       } else {
   4249         // Check OOME for a non-tlab allocation.
   4250         if (!IsOutOfMemoryOnAllocation(allocator_type, alloc_size, grow)) {
   4251           return region_space_->AllocNonvirtual<false>(alloc_size,
   4252                                                        bytes_allocated,
   4253                                                        usable_size,
   4254                                                        bytes_tl_bulk_allocated);
   4255         }
   4256         // Neither tlab or non-tlab works. Give up.
   4257         return nullptr;
   4258       }
   4259     } else {
   4260       // Large. Check OOME.
   4261       if (LIKELY(!IsOutOfMemoryOnAllocation(allocator_type, alloc_size, grow))) {
   4262         return region_space_->AllocNonvirtual<false>(alloc_size,
   4263                                                      bytes_allocated,
   4264                                                      usable_size,
   4265                                                      bytes_tl_bulk_allocated);
   4266       }
   4267       return nullptr;
   4268     }
   4269   }
   4270   // Refilled TLAB, return.
   4271   mirror::Object* ret = self->AllocTlab(alloc_size);
   4272   DCHECK(ret != nullptr);
   4273   *bytes_allocated = alloc_size;
   4274   *usable_size = alloc_size;
   4275   return ret;
   4276 }
   4277 
   4278 const Verification* Heap::GetVerification() const {
   4279   return verification_.get();
   4280 }
   4281 
   4282 }  // namespace gc
   4283 }  // namespace art
   4284