1 /* -*- c++ -*- */ 2 /* 3 * Copyright 2010 Intel Corporation 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the next 13 * paragraph) shall be included in all copies or substantial portions of the 14 * Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 22 * DEALINGS IN THE SOFTWARE. 23 */ 24 25 #pragma once 26 #ifndef IR_H 27 #define IR_H 28 29 #include <stdio.h> 30 #include <stdlib.h> 31 32 #include "ralloc.h" 33 #include "glsl_types.h" 34 #include "list.h" 35 #include "ir_visitor.h" 36 #include "ir_hierarchical_visitor.h" 37 #include "main/mtypes.h" 38 39 /** 40 * \defgroup IR Intermediate representation nodes 41 * 42 * @{ 43 */ 44 45 /** 46 * Class tags 47 * 48 * Each concrete class derived from \c ir_instruction has a value in this 49 * enumerant. The value for the type is stored in \c ir_instruction::ir_type 50 * by the constructor. While using type tags is not very C++, it is extremely 51 * convenient. For example, during debugging you can simply inspect 52 * \c ir_instruction::ir_type to find out the actual type of the object. 53 * 54 * In addition, it is possible to use a switch-statement based on \c 55 * \c ir_instruction::ir_type to select different behavior for different object 56 * types. For functions that have only slight differences for several object 57 * types, this allows writing very straightforward, readable code. 58 */ 59 enum ir_node_type { 60 /** 61 * Zero is unused so that the IR validator can detect cases where 62 * \c ir_instruction::ir_type has not been initialized. 63 */ 64 ir_type_unset, 65 ir_type_variable, 66 ir_type_assignment, 67 ir_type_call, 68 ir_type_constant, 69 ir_type_dereference_array, 70 ir_type_dereference_record, 71 ir_type_dereference_variable, 72 ir_type_discard, 73 ir_type_expression, 74 ir_type_function, 75 ir_type_function_signature, 76 ir_type_if, 77 ir_type_loop, 78 ir_type_loop_jump, 79 ir_type_return, 80 ir_type_swizzle, 81 ir_type_texture, 82 ir_type_max /**< maximum ir_type enum number, for validation */ 83 }; 84 85 /** 86 * Base class of all IR instructions 87 */ 88 class ir_instruction : public exec_node { 89 public: 90 enum ir_node_type ir_type; 91 92 /** 93 * GCC 4.7+ and clang warn when deleting an ir_instruction unless 94 * there's a virtual destructor present. Because we almost 95 * universally use ralloc for our memory management of 96 * ir_instructions, the destructor doesn't need to do any work. 97 */ 98 virtual ~ir_instruction() 99 { 100 } 101 102 /** ir_print_visitor helper for debugging. */ 103 void print(void) const; 104 105 virtual void accept(ir_visitor *) = 0; 106 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0; 107 virtual ir_instruction *clone(void *mem_ctx, 108 struct hash_table *ht) const = 0; 109 110 /** 111 * \name IR instruction downcast functions 112 * 113 * These functions either cast the object to a derived class or return 114 * \c NULL if the object's type does not match the specified derived class. 115 * Additional downcast functions will be added as needed. 116 */ 117 /*@{*/ 118 virtual class ir_variable * as_variable() { return NULL; } 119 virtual class ir_function * as_function() { return NULL; } 120 virtual class ir_dereference * as_dereference() { return NULL; } 121 virtual class ir_dereference_array * as_dereference_array() { return NULL; } 122 virtual class ir_dereference_variable *as_dereference_variable() { return NULL; } 123 virtual class ir_expression * as_expression() { return NULL; } 124 virtual class ir_rvalue * as_rvalue() { return NULL; } 125 virtual class ir_loop * as_loop() { return NULL; } 126 virtual class ir_assignment * as_assignment() { return NULL; } 127 virtual class ir_call * as_call() { return NULL; } 128 virtual class ir_return * as_return() { return NULL; } 129 virtual class ir_if * as_if() { return NULL; } 130 virtual class ir_swizzle * as_swizzle() { return NULL; } 131 virtual class ir_constant * as_constant() { return NULL; } 132 virtual class ir_discard * as_discard() { return NULL; } 133 /*@}*/ 134 135 protected: 136 ir_instruction() 137 { 138 ir_type = ir_type_unset; 139 } 140 }; 141 142 143 /** 144 * The base class for all "values"/expression trees. 145 */ 146 class ir_rvalue : public ir_instruction { 147 public: 148 const struct glsl_type *type; 149 150 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const; 151 152 virtual void accept(ir_visitor *v) 153 { 154 v->visit(this); 155 } 156 157 virtual ir_visitor_status accept(ir_hierarchical_visitor *); 158 159 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL); 160 161 virtual ir_rvalue * as_rvalue() 162 { 163 return this; 164 } 165 166 ir_rvalue *as_rvalue_to_saturate(); 167 168 virtual bool is_lvalue() const 169 { 170 return false; 171 } 172 173 /** 174 * Get the variable that is ultimately referenced by an r-value 175 */ 176 virtual ir_variable *variable_referenced() const 177 { 178 return NULL; 179 } 180 181 182 /** 183 * If an r-value is a reference to a whole variable, get that variable 184 * 185 * \return 186 * Pointer to a variable that is completely dereferenced by the r-value. If 187 * the r-value is not a dereference or the dereference does not access the 188 * entire variable (i.e., it's just one array element, struct field), \c NULL 189 * is returned. 190 */ 191 virtual ir_variable *whole_variable_referenced() 192 { 193 return NULL; 194 } 195 196 /** 197 * Determine if an r-value has the value zero 198 * 199 * The base implementation of this function always returns \c false. The 200 * \c ir_constant class over-rides this function to return \c true \b only 201 * for vector and scalar types that have all elements set to the value 202 * zero (or \c false for booleans). 203 * 204 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one, 205 * ir_constant::is_basis 206 */ 207 virtual bool is_zero() const; 208 209 /** 210 * Determine if an r-value has the value one 211 * 212 * The base implementation of this function always returns \c false. The 213 * \c ir_constant class over-rides this function to return \c true \b only 214 * for vector and scalar types that have all elements set to the value 215 * one (or \c true for booleans). 216 * 217 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one, 218 * ir_constant::is_basis 219 */ 220 virtual bool is_one() const; 221 222 /** 223 * Determine if an r-value has the value negative one 224 * 225 * The base implementation of this function always returns \c false. The 226 * \c ir_constant class over-rides this function to return \c true \b only 227 * for vector and scalar types that have all elements set to the value 228 * negative one. For boolean types, the result is always \c false. 229 * 230 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one 231 * ir_constant::is_basis 232 */ 233 virtual bool is_negative_one() const; 234 235 /** 236 * Determine if an r-value is a basis vector 237 * 238 * The base implementation of this function always returns \c false. The 239 * \c ir_constant class over-rides this function to return \c true \b only 240 * for vector and scalar types that have one element set to the value one, 241 * and the other elements set to the value zero. For boolean types, the 242 * result is always \c false. 243 * 244 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one, 245 * is_constant::is_negative_one 246 */ 247 virtual bool is_basis() const; 248 249 250 /** 251 * Return a generic value of error_type. 252 * 253 * Allocation will be performed with 'mem_ctx' as ralloc owner. 254 */ 255 static ir_rvalue *error_value(void *mem_ctx); 256 257 protected: 258 ir_rvalue(); 259 }; 260 261 262 /** 263 * Variable storage classes 264 */ 265 enum ir_variable_mode { 266 ir_var_auto = 0, /**< Function local variables and globals. */ 267 ir_var_uniform, /**< Variable declared as a uniform. */ 268 ir_var_in, 269 ir_var_out, 270 ir_var_inout, 271 ir_var_const_in, /**< "in" param that must be a constant expression */ 272 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */ 273 ir_var_temporary /**< Temporary variable generated during compilation. */ 274 }; 275 276 /** 277 * \brief Layout qualifiers for gl_FragDepth. 278 * 279 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared 280 * with a layout qualifier. 281 */ 282 enum ir_depth_layout { 283 ir_depth_layout_none, /**< No depth layout is specified. */ 284 ir_depth_layout_any, 285 ir_depth_layout_greater, 286 ir_depth_layout_less, 287 ir_depth_layout_unchanged 288 }; 289 290 /** 291 * \brief Convert depth layout qualifier to string. 292 */ 293 const char* 294 depth_layout_string(ir_depth_layout layout); 295 296 /** 297 * Description of built-in state associated with a uniform 298 * 299 * \sa ir_variable::state_slots 300 */ 301 struct ir_state_slot { 302 int tokens[5]; 303 int swizzle; 304 }; 305 306 class ir_variable : public ir_instruction { 307 public: 308 ir_variable(const struct glsl_type *, const char *, ir_variable_mode); 309 310 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const; 311 312 virtual ir_variable *as_variable() 313 { 314 return this; 315 } 316 317 virtual void accept(ir_visitor *v) 318 { 319 v->visit(this); 320 } 321 322 virtual ir_visitor_status accept(ir_hierarchical_visitor *); 323 324 325 /** 326 * Get the string value for the interpolation qualifier 327 * 328 * \return The string that would be used in a shader to specify \c 329 * mode will be returned. 330 * 331 * This function is used to generate error messages of the form "shader 332 * uses %s interpolation qualifier", so in the case where there is no 333 * interpolation qualifier, it returns "no". 334 * 335 * This function should only be used on a shader input or output variable. 336 */ 337 const char *interpolation_string() const; 338 339 /** 340 * Determine how this variable should be interpolated based on its 341 * interpolation qualifier (if present), whether it is gl_Color or 342 * gl_SecondaryColor, and whether flatshading is enabled in the current GL 343 * state. 344 * 345 * The return value will always be either INTERP_QUALIFIER_SMOOTH, 346 * INTERP_QUALIFIER_NOPERSPECTIVE, or INTERP_QUALIFIER_FLAT. 347 */ 348 glsl_interp_qualifier determine_interpolation_mode(bool flat_shade); 349 350 /** 351 * Declared type of the variable 352 */ 353 const struct glsl_type *type; 354 355 /** 356 * Declared name of the variable 357 */ 358 const char *name; 359 360 /** 361 * Highest element accessed with a constant expression array index 362 * 363 * Not used for non-array variables. 364 */ 365 unsigned max_array_access; 366 367 /** 368 * Is the variable read-only? 369 * 370 * This is set for variables declared as \c const, shader inputs, 371 * and uniforms. 372 */ 373 unsigned read_only:1; 374 unsigned centroid:1; 375 unsigned invariant:1; 376 377 /** 378 * Has this variable been used for reading or writing? 379 * 380 * Several GLSL semantic checks require knowledge of whether or not a 381 * variable has been used. For example, it is an error to redeclare a 382 * variable as invariant after it has been used. 383 * 384 * This is only maintained in the ast_to_hir.cpp path, not in 385 * Mesa's fixed function or ARB program paths. 386 */ 387 unsigned used:1; 388 389 /** 390 * Has this variable been statically assigned? 391 * 392 * This answers whether the variable was assigned in any path of 393 * the shader during ast_to_hir. This doesn't answer whether it is 394 * still written after dead code removal, nor is it maintained in 395 * non-ast_to_hir.cpp (GLSL parsing) paths. 396 */ 397 unsigned assigned:1; 398 399 /** 400 * Storage class of the variable. 401 * 402 * \sa ir_variable_mode 403 */ 404 unsigned mode:3; 405 406 /** 407 * Interpolation mode for shader inputs / outputs 408 * 409 * \sa ir_variable_interpolation 410 */ 411 unsigned interpolation:2; 412 413 /** 414 * \name ARB_fragment_coord_conventions 415 * @{ 416 */ 417 unsigned origin_upper_left:1; 418 unsigned pixel_center_integer:1; 419 /*@}*/ 420 421 /** 422 * Was the location explicitly set in the shader? 423 * 424 * If the location is explicitly set in the shader, it \b cannot be changed 425 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have 426 * no effect). 427 */ 428 unsigned explicit_location:1; 429 unsigned explicit_index:1; 430 431 /** 432 * Does this variable have an initializer? 433 * 434 * This is used by the linker to cross-validiate initializers of global 435 * variables. 436 */ 437 unsigned has_initializer:1; 438 439 /** 440 * \brief Layout qualifier for gl_FragDepth. 441 * 442 * This is not equal to \c ir_depth_layout_none if and only if this 443 * variable is \c gl_FragDepth and a layout qualifier is specified. 444 */ 445 ir_depth_layout depth_layout; 446 447 /** 448 * Storage location of the base of this variable 449 * 450 * The precise meaning of this field depends on the nature of the variable. 451 * 452 * - Vertex shader input: one of the values from \c gl_vert_attrib. 453 * - Vertex shader output: one of the values from \c gl_vert_result. 454 * - Fragment shader input: one of the values from \c gl_frag_attrib. 455 * - Fragment shader output: one of the values from \c gl_frag_result. 456 * - Uniforms: Per-stage uniform slot number for default uniform block. 457 * - Uniforms: Index within the uniform block definition for UBO members. 458 * - Other: This field is not currently used. 459 * 460 * If the variable is a uniform, shader input, or shader output, and the 461 * slot has not been assigned, the value will be -1. 462 */ 463 int location; 464 465 /** 466 * Uniform block number for uniforms. 467 * 468 * This index is into the shader's list of uniform blocks, not the 469 * linked program's merged list. 470 * 471 * If the variable is not in a uniform block, the value will be -1. 472 */ 473 int uniform_block; 474 475 /** 476 * output index for dual source blending. 477 */ 478 int index; 479 480 /** 481 * Built-in state that backs this uniform 482 * 483 * Once set at variable creation, \c state_slots must remain invariant. 484 * This is because, ideally, this array would be shared by all clones of 485 * this variable in the IR tree. In other words, we'd really like for it 486 * to be a fly-weight. 487 * 488 * If the variable is not a uniform, \c num_state_slots will be zero and 489 * \c state_slots will be \c NULL. 490 */ 491 /*@{*/ 492 unsigned num_state_slots; /**< Number of state slots used */ 493 ir_state_slot *state_slots; /**< State descriptors. */ 494 /*@}*/ 495 496 /** 497 * Emit a warning if this variable is accessed. 498 */ 499 const char *warn_extension; 500 501 /** 502 * Value assigned in the initializer of a variable declared "const" 503 */ 504 ir_constant *constant_value; 505 506 /** 507 * Constant expression assigned in the initializer of the variable 508 * 509 * \warning 510 * This field and \c ::constant_value are distinct. Even if the two fields 511 * refer to constants with the same value, they must point to separate 512 * objects. 513 */ 514 ir_constant *constant_initializer; 515 }; 516 517 518 /*@{*/ 519 /** 520 * The representation of a function instance; may be the full definition or 521 * simply a prototype. 522 */ 523 class ir_function_signature : public ir_instruction { 524 /* An ir_function_signature will be part of the list of signatures in 525 * an ir_function. 526 */ 527 public: 528 ir_function_signature(const glsl_type *return_type); 529 530 virtual ir_function_signature *clone(void *mem_ctx, 531 struct hash_table *ht) const; 532 ir_function_signature *clone_prototype(void *mem_ctx, 533 struct hash_table *ht) const; 534 535 virtual void accept(ir_visitor *v) 536 { 537 v->visit(this); 538 } 539 540 virtual ir_visitor_status accept(ir_hierarchical_visitor *); 541 542 /** 543 * Attempt to evaluate this function as a constant expression, 544 * given a list of the actual parameters and the variable context. 545 * Returns NULL for non-built-ins. 546 */ 547 ir_constant *constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context); 548 549 /** 550 * Get the name of the function for which this is a signature 551 */ 552 const char *function_name() const; 553 554 /** 555 * Get a handle to the function for which this is a signature 556 * 557 * There is no setter function, this function returns a \c const pointer, 558 * and \c ir_function_signature::_function is private for a reason. The 559 * only way to make a connection between a function and function signature 560 * is via \c ir_function::add_signature. This helps ensure that certain 561 * invariants (i.e., a function signature is in the list of signatures for 562 * its \c _function) are met. 563 * 564 * \sa ir_function::add_signature 565 */ 566 inline const class ir_function *function() const 567 { 568 return this->_function; 569 } 570 571 /** 572 * Check whether the qualifiers match between this signature's parameters 573 * and the supplied parameter list. If not, returns the name of the first 574 * parameter with mismatched qualifiers (for use in error messages). 575 */ 576 const char *qualifiers_match(exec_list *params); 577 578 /** 579 * Replace the current parameter list with the given one. This is useful 580 * if the current information came from a prototype, and either has invalid 581 * or missing parameter names. 582 */ 583 void replace_parameters(exec_list *new_params); 584 585 /** 586 * Function return type. 587 * 588 * \note This discards the optional precision qualifier. 589 */ 590 const struct glsl_type *return_type; 591 592 /** 593 * List of ir_variable of function parameters. 594 * 595 * This represents the storage. The paramaters passed in a particular 596 * call will be in ir_call::actual_paramaters. 597 */ 598 struct exec_list parameters; 599 600 /** Whether or not this function has a body (which may be empty). */ 601 unsigned is_defined:1; 602 603 /** Whether or not this function signature is a built-in. */ 604 unsigned is_builtin:1; 605 606 /** Body of instructions in the function. */ 607 struct exec_list body; 608 609 private: 610 /** Function of which this signature is one overload. */ 611 class ir_function *_function; 612 613 /** Function signature of which this one is a prototype clone */ 614 const ir_function_signature *origin; 615 616 friend class ir_function; 617 618 /** 619 * Helper function to run a list of instructions for constant 620 * expression evaluation. 621 * 622 * The hash table represents the values of the visible variables. 623 * There are no scoping issues because the table is indexed on 624 * ir_variable pointers, not variable names. 625 * 626 * Returns false if the expression is not constant, true otherwise, 627 * and the value in *result if result is non-NULL. 628 */ 629 bool constant_expression_evaluate_expression_list(const struct exec_list &body, 630 struct hash_table *variable_context, 631 ir_constant **result); 632 }; 633 634 635 /** 636 * Header for tracking multiple overloaded functions with the same name. 637 * Contains a list of ir_function_signatures representing each of the 638 * actual functions. 639 */ 640 class ir_function : public ir_instruction { 641 public: 642 ir_function(const char *name); 643 644 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const; 645 646 virtual ir_function *as_function() 647 { 648 return this; 649 } 650 651 virtual void accept(ir_visitor *v) 652 { 653 v->visit(this); 654 } 655 656 virtual ir_visitor_status accept(ir_hierarchical_visitor *); 657 658 void add_signature(ir_function_signature *sig) 659 { 660 sig->_function = this; 661 this->signatures.push_tail(sig); 662 } 663 664 /** 665 * Get an iterator for the set of function signatures 666 */ 667 exec_list_iterator iterator() 668 { 669 return signatures.iterator(); 670 } 671 672 /** 673 * Find a signature that matches a set of actual parameters, taking implicit 674 * conversions into account. Also flags whether the match was exact. 675 */ 676 ir_function_signature *matching_signature(const exec_list *actual_param, 677 bool *match_is_exact); 678 679 /** 680 * Find a signature that matches a set of actual parameters, taking implicit 681 * conversions into account. 682 */ 683 ir_function_signature *matching_signature(const exec_list *actual_param); 684 685 /** 686 * Find a signature that exactly matches a set of actual parameters without 687 * any implicit type conversions. 688 */ 689 ir_function_signature *exact_matching_signature(const exec_list *actual_ps); 690 691 /** 692 * Name of the function. 693 */ 694 const char *name; 695 696 /** Whether or not this function has a signature that isn't a built-in. */ 697 bool has_user_signature(); 698 699 /** 700 * List of ir_function_signature for each overloaded function with this name. 701 */ 702 struct exec_list signatures; 703 }; 704 705 inline const char *ir_function_signature::function_name() const 706 { 707 return this->_function->name; 708 } 709 /*@}*/ 710 711 712 /** 713 * IR instruction representing high-level if-statements 714 */ 715 class ir_if : public ir_instruction { 716 public: 717 ir_if(ir_rvalue *condition) 718 : condition(condition) 719 { 720 ir_type = ir_type_if; 721 } 722 723 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const; 724 725 virtual ir_if *as_if() 726 { 727 return this; 728 } 729 730 virtual void accept(ir_visitor *v) 731 { 732 v->visit(this); 733 } 734 735 virtual ir_visitor_status accept(ir_hierarchical_visitor *); 736 737 ir_rvalue *condition; 738 /** List of ir_instruction for the body of the then branch */ 739 exec_list then_instructions; 740 /** List of ir_instruction for the body of the else branch */ 741 exec_list else_instructions; 742 }; 743 744 745 /** 746 * IR instruction representing a high-level loop structure. 747 */ 748 class ir_loop : public ir_instruction { 749 public: 750 ir_loop(); 751 752 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const; 753 754 virtual void accept(ir_visitor *v) 755 { 756 v->visit(this); 757 } 758 759 virtual ir_visitor_status accept(ir_hierarchical_visitor *); 760 761 virtual ir_loop *as_loop() 762 { 763 return this; 764 } 765 766 /** 767 * Get an iterator for the instructions of the loop body 768 */ 769 exec_list_iterator iterator() 770 { 771 return body_instructions.iterator(); 772 } 773 774 /** List of ir_instruction that make up the body of the loop. */ 775 exec_list body_instructions; 776 777 /** 778 * \name Loop counter and controls 779 * 780 * Represents a loop like a FORTRAN \c do-loop. 781 * 782 * \note 783 * If \c from and \c to are the same value, the loop will execute once. 784 */ 785 /*@{*/ 786 ir_rvalue *from; /** Value of the loop counter on the first 787 * iteration of the loop. 788 */ 789 ir_rvalue *to; /** Value of the loop counter on the last 790 * iteration of the loop. 791 */ 792 ir_rvalue *increment; 793 ir_variable *counter; 794 795 /** 796 * Comparison operation in the loop terminator. 797 * 798 * If any of the loop control fields are non-\c NULL, this field must be 799 * one of \c ir_binop_less, \c ir_binop_greater, \c ir_binop_lequal, 800 * \c ir_binop_gequal, \c ir_binop_equal, or \c ir_binop_nequal. 801 */ 802 int cmp; 803 /*@}*/ 804 }; 805 806 807 class ir_assignment : public ir_instruction { 808 public: 809 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL); 810 811 /** 812 * Construct an assignment with an explicit write mask 813 * 814 * \note 815 * Since a write mask is supplied, the LHS must already be a bare 816 * \c ir_dereference. The cannot be any swizzles in the LHS. 817 */ 818 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition, 819 unsigned write_mask); 820 821 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const; 822 823 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL); 824 825 virtual void accept(ir_visitor *v) 826 { 827 v->visit(this); 828 } 829 830 virtual ir_visitor_status accept(ir_hierarchical_visitor *); 831 832 virtual ir_assignment * as_assignment() 833 { 834 return this; 835 } 836 837 /** 838 * Get a whole variable written by an assignment 839 * 840 * If the LHS of the assignment writes a whole variable, the variable is 841 * returned. Otherwise \c NULL is returned. Examples of whole-variable 842 * assignment are: 843 * 844 * - Assigning to a scalar 845 * - Assigning to all components of a vector 846 * - Whole array (or matrix) assignment 847 * - Whole structure assignment 848 */ 849 ir_variable *whole_variable_written(); 850 851 /** 852 * Set the LHS of an assignment 853 */ 854 void set_lhs(ir_rvalue *lhs); 855 856 /** 857 * Left-hand side of the assignment. 858 * 859 * This should be treated as read only. If you need to set the LHS of an 860 * assignment, use \c ir_assignment::set_lhs. 861 */ 862 ir_dereference *lhs; 863 864 /** 865 * Value being assigned 866 */ 867 ir_rvalue *rhs; 868 869 /** 870 * Optional condition for the assignment. 871 */ 872 ir_rvalue *condition; 873 874 875 /** 876 * Component mask written 877 * 878 * For non-vector types in the LHS, this field will be zero. For vector 879 * types, a bit will be set for each component that is written. Note that 880 * for \c vec2 and \c vec3 types only the lower bits will ever be set. 881 * 882 * A partially-set write mask means that each enabled channel gets 883 * the value from a consecutive channel of the rhs. For example, 884 * to write just .xyw of gl_FrontColor with color: 885 * 886 * (assign (constant bool (1)) (xyw) 887 * (var_ref gl_FragColor) 888 * (swiz xyw (var_ref color))) 889 */ 890 unsigned write_mask:4; 891 }; 892 893 /* Update ir_expression::num_operands() and operator_strs when 894 * updating this list. 895 */ 896 enum ir_expression_operation { 897 ir_unop_bit_not, 898 ir_unop_logic_not, 899 ir_unop_neg, 900 ir_unop_abs, 901 ir_unop_sign, 902 ir_unop_rcp, 903 ir_unop_rsq, 904 ir_unop_sqrt, 905 ir_unop_exp, /**< Log base e on gentype */ 906 ir_unop_log, /**< Natural log on gentype */ 907 ir_unop_exp2, 908 ir_unop_log2, 909 ir_unop_f2i, /**< Float-to-integer conversion. */ 910 ir_unop_f2u, /**< Float-to-unsigned conversion. */ 911 ir_unop_i2f, /**< Integer-to-float conversion. */ 912 ir_unop_f2b, /**< Float-to-boolean conversion */ 913 ir_unop_b2f, /**< Boolean-to-float conversion */ 914 ir_unop_i2b, /**< int-to-boolean conversion */ 915 ir_unop_b2i, /**< Boolean-to-int conversion */ 916 ir_unop_u2f, /**< Unsigned-to-float conversion. */ 917 ir_unop_i2u, /**< Integer-to-unsigned conversion. */ 918 ir_unop_u2i, /**< Unsigned-to-integer conversion. */ 919 ir_unop_bitcast_i2f, /**< Bit-identical int-to-float "conversion" */ 920 ir_unop_bitcast_f2i, /**< Bit-identical float-to-int "conversion" */ 921 ir_unop_bitcast_u2f, /**< Bit-identical uint-to-float "conversion" */ 922 ir_unop_bitcast_f2u, /**< Bit-identical float-to-uint "conversion" */ 923 ir_unop_any, 924 925 /** 926 * \name Unary floating-point rounding operations. 927 */ 928 /*@{*/ 929 ir_unop_trunc, 930 ir_unop_ceil, 931 ir_unop_floor, 932 ir_unop_fract, 933 ir_unop_round_even, 934 /*@}*/ 935 936 /** 937 * \name Trigonometric operations. 938 */ 939 /*@{*/ 940 ir_unop_sin, 941 ir_unop_cos, 942 ir_unop_sin_reduced, /**< Reduced range sin. [-pi, pi] */ 943 ir_unop_cos_reduced, /**< Reduced range cos. [-pi, pi] */ 944 /*@}*/ 945 946 /** 947 * \name Partial derivatives. 948 */ 949 /*@{*/ 950 ir_unop_dFdx, 951 ir_unop_dFdy, 952 /*@}*/ 953 954 ir_unop_noise, 955 956 /** 957 * A sentinel marking the last of the unary operations. 958 */ 959 ir_last_unop = ir_unop_noise, 960 961 ir_binop_add, 962 ir_binop_sub, 963 ir_binop_mul, 964 ir_binop_div, 965 966 /** 967 * Takes one of two combinations of arguments: 968 * 969 * - mod(vecN, vecN) 970 * - mod(vecN, float) 971 * 972 * Does not take integer types. 973 */ 974 ir_binop_mod, 975 976 /** 977 * \name Binary comparison operators which return a boolean vector. 978 * The type of both operands must be equal. 979 */ 980 /*@{*/ 981 ir_binop_less, 982 ir_binop_greater, 983 ir_binop_lequal, 984 ir_binop_gequal, 985 ir_binop_equal, 986 ir_binop_nequal, 987 /** 988 * Returns single boolean for whether all components of operands[0] 989 * equal the components of operands[1]. 990 */ 991 ir_binop_all_equal, 992 /** 993 * Returns single boolean for whether any component of operands[0] 994 * is not equal to the corresponding component of operands[1]. 995 */ 996 ir_binop_any_nequal, 997 /*@}*/ 998 999 /** 1000 * \name Bit-wise binary operations. 1001 */ 1002 /*@{*/ 1003 ir_binop_lshift, 1004 ir_binop_rshift, 1005 ir_binop_bit_and, 1006 ir_binop_bit_xor, 1007 ir_binop_bit_or, 1008 /*@}*/ 1009 1010 ir_binop_logic_and, 1011 ir_binop_logic_xor, 1012 ir_binop_logic_or, 1013 1014 ir_binop_dot, 1015 ir_binop_min, 1016 ir_binop_max, 1017 1018 ir_binop_pow, 1019 1020 /** 1021 * Load a value the size of a given GLSL type from a uniform block. 1022 * 1023 * operand0 is the ir_constant uniform block index in the linked shader. 1024 * operand1 is a byte offset within the uniform block. 1025 */ 1026 ir_binop_ubo_load, 1027 1028 /** 1029 * A sentinel marking the last of the binary operations. 1030 */ 1031 ir_last_binop = ir_binop_ubo_load, 1032 1033 ir_quadop_vector, 1034 1035 /** 1036 * A sentinel marking the last of all operations. 1037 */ 1038 ir_last_opcode = ir_quadop_vector 1039 }; 1040 1041 class ir_expression : public ir_rvalue { 1042 public: 1043 /** 1044 * Constructor for unary operation expressions 1045 */ 1046 ir_expression(int op, const struct glsl_type *type, ir_rvalue *); 1047 ir_expression(int op, ir_rvalue *); 1048 1049 /** 1050 * Constructor for binary operation expressions 1051 */ 1052 ir_expression(int op, const struct glsl_type *type, 1053 ir_rvalue *, ir_rvalue *); 1054 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1); 1055 1056 /** 1057 * Constructor for quad operator expressions 1058 */ 1059 ir_expression(int op, const struct glsl_type *type, 1060 ir_rvalue *, ir_rvalue *, ir_rvalue *, ir_rvalue *); 1061 1062 virtual ir_expression *as_expression() 1063 { 1064 return this; 1065 } 1066 1067 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const; 1068 1069 /** 1070 * Attempt to constant-fold the expression 1071 * 1072 * The "variable_context" hash table links ir_variable * to ir_constant * 1073 * that represent the variables' values. \c NULL represents an empty 1074 * context. 1075 * 1076 * If the expression cannot be constant folded, this method will return 1077 * \c NULL. 1078 */ 1079 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL); 1080 1081 /** 1082 * Determine the number of operands used by an expression 1083 */ 1084 static unsigned int get_num_operands(ir_expression_operation); 1085 1086 /** 1087 * Determine the number of operands used by an expression 1088 */ 1089 unsigned int get_num_operands() const 1090 { 1091 return (this->operation == ir_quadop_vector) 1092 ? this->type->vector_elements : get_num_operands(operation); 1093 } 1094 1095 /** 1096 * Return a string representing this expression's operator. 1097 */ 1098 const char *operator_string(); 1099 1100 /** 1101 * Return a string representing this expression's operator. 1102 */ 1103 static const char *operator_string(ir_expression_operation); 1104 1105 1106 /** 1107 * Do a reverse-lookup to translate the given string into an operator. 1108 */ 1109 static ir_expression_operation get_operator(const char *); 1110 1111 virtual void accept(ir_visitor *v) 1112 { 1113 v->visit(this); 1114 } 1115 1116 virtual ir_visitor_status accept(ir_hierarchical_visitor *); 1117 1118 ir_expression_operation operation; 1119 ir_rvalue *operands[4]; 1120 }; 1121 1122 1123 /** 1124 * HIR instruction representing a high-level function call, containing a list 1125 * of parameters and returning a value in the supplied temporary. 1126 */ 1127 class ir_call : public ir_instruction { 1128 public: 1129 ir_call(ir_function_signature *callee, 1130 ir_dereference_variable *return_deref, 1131 exec_list *actual_parameters) 1132 : return_deref(return_deref), callee(callee) 1133 { 1134 ir_type = ir_type_call; 1135 assert(callee->return_type != NULL); 1136 actual_parameters->move_nodes_to(& this->actual_parameters); 1137 this->use_builtin = callee->is_builtin; 1138 } 1139 1140 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const; 1141 1142 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL); 1143 1144 virtual ir_call *as_call() 1145 { 1146 return this; 1147 } 1148 1149 virtual void accept(ir_visitor *v) 1150 { 1151 v->visit(this); 1152 } 1153 1154 virtual ir_visitor_status accept(ir_hierarchical_visitor *); 1155 1156 /** 1157 * Get an iterator for the set of acutal parameters 1158 */ 1159 exec_list_iterator iterator() 1160 { 1161 return actual_parameters.iterator(); 1162 } 1163 1164 /** 1165 * Get the name of the function being called. 1166 */ 1167 const char *callee_name() const 1168 { 1169 return callee->function_name(); 1170 } 1171 1172 /** 1173 * Generates an inline version of the function before @ir, 1174 * storing the return value in return_deref. 1175 */ 1176 void generate_inline(ir_instruction *ir); 1177 1178 /** 1179 * Storage for the function's return value. 1180 * This must be NULL if the return type is void. 1181 */ 1182 ir_dereference_variable *return_deref; 1183 1184 /** 1185 * The specific function signature being called. 1186 */ 1187 ir_function_signature *callee; 1188 1189 /* List of ir_rvalue of paramaters passed in this call. */ 1190 exec_list actual_parameters; 1191 1192 /** Should this call only bind to a built-in function? */ 1193 bool use_builtin; 1194 }; 1195 1196 1197 /** 1198 * \name Jump-like IR instructions. 1199 * 1200 * These include \c break, \c continue, \c return, and \c discard. 1201 */ 1202 /*@{*/ 1203 class ir_jump : public ir_instruction { 1204 protected: 1205 ir_jump() 1206 { 1207 ir_type = ir_type_unset; 1208 } 1209 }; 1210 1211 class ir_return : public ir_jump { 1212 public: 1213 ir_return() 1214 : value(NULL) 1215 { 1216 this->ir_type = ir_type_return; 1217 } 1218 1219 ir_return(ir_rvalue *value) 1220 : value(value) 1221 { 1222 this->ir_type = ir_type_return; 1223 } 1224 1225 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const; 1226 1227 virtual ir_return *as_return() 1228 { 1229 return this; 1230 } 1231 1232 ir_rvalue *get_value() const 1233 { 1234 return value; 1235 } 1236 1237 virtual void accept(ir_visitor *v) 1238 { 1239 v->visit(this); 1240 } 1241 1242 virtual ir_visitor_status accept(ir_hierarchical_visitor *); 1243 1244 ir_rvalue *value; 1245 }; 1246 1247 1248 /** 1249 * Jump instructions used inside loops 1250 * 1251 * These include \c break and \c continue. The \c break within a loop is 1252 * different from the \c break within a switch-statement. 1253 * 1254 * \sa ir_switch_jump 1255 */ 1256 class ir_loop_jump : public ir_jump { 1257 public: 1258 enum jump_mode { 1259 jump_break, 1260 jump_continue 1261 }; 1262 1263 ir_loop_jump(jump_mode mode) 1264 { 1265 this->ir_type = ir_type_loop_jump; 1266 this->mode = mode; 1267 } 1268 1269 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const; 1270 1271 virtual void accept(ir_visitor *v) 1272 { 1273 v->visit(this); 1274 } 1275 1276 virtual ir_visitor_status accept(ir_hierarchical_visitor *); 1277 1278 bool is_break() const 1279 { 1280 return mode == jump_break; 1281 } 1282 1283 bool is_continue() const 1284 { 1285 return mode == jump_continue; 1286 } 1287 1288 /** Mode selector for the jump instruction. */ 1289 enum jump_mode mode; 1290 }; 1291 1292 /** 1293 * IR instruction representing discard statements. 1294 */ 1295 class ir_discard : public ir_jump { 1296 public: 1297 ir_discard() 1298 { 1299 this->ir_type = ir_type_discard; 1300 this->condition = NULL; 1301 } 1302 1303 ir_discard(ir_rvalue *cond) 1304 { 1305 this->ir_type = ir_type_discard; 1306 this->condition = cond; 1307 } 1308 1309 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const; 1310 1311 virtual void accept(ir_visitor *v) 1312 { 1313 v->visit(this); 1314 } 1315 1316 virtual ir_visitor_status accept(ir_hierarchical_visitor *); 1317 1318 virtual ir_discard *as_discard() 1319 { 1320 return this; 1321 } 1322 1323 ir_rvalue *condition; 1324 }; 1325 /*@}*/ 1326 1327 1328 /** 1329 * Texture sampling opcodes used in ir_texture 1330 */ 1331 enum ir_texture_opcode { 1332 ir_tex, /**< Regular texture look-up */ 1333 ir_txb, /**< Texture look-up with LOD bias */ 1334 ir_txl, /**< Texture look-up with explicit LOD */ 1335 ir_txd, /**< Texture look-up with partial derivatvies */ 1336 ir_txf, /**< Texel fetch with explicit LOD */ 1337 ir_txs /**< Texture size */ 1338 }; 1339 1340 1341 /** 1342 * IR instruction to sample a texture 1343 * 1344 * The specific form of the IR instruction depends on the \c mode value 1345 * selected from \c ir_texture_opcodes. In the printed IR, these will 1346 * appear as: 1347 * 1348 * Texel offset (0 or an expression) 1349 * | Projection divisor 1350 * | | Shadow comparitor 1351 * | | | 1352 * v v v 1353 * (tex <type> <sampler> <coordinate> 0 1 ( )) 1354 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>) 1355 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>) 1356 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy)) 1357 * (txf <type> <sampler> <coordinate> 0 <lod>) 1358 * (txs <type> <sampler> <lod>) 1359 */ 1360 class ir_texture : public ir_rvalue { 1361 public: 1362 ir_texture(enum ir_texture_opcode op) 1363 : op(op), coordinate(NULL), projector(NULL), shadow_comparitor(NULL), 1364 offset(NULL) 1365 { 1366 this->ir_type = ir_type_texture; 1367 } 1368 1369 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const; 1370 1371 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL); 1372 1373 virtual void accept(ir_visitor *v) 1374 { 1375 v->visit(this); 1376 } 1377 1378 virtual ir_visitor_status accept(ir_hierarchical_visitor *); 1379 1380 /** 1381 * Return a string representing the ir_texture_opcode. 1382 */ 1383 const char *opcode_string(); 1384 1385 /** Set the sampler and type. */ 1386 void set_sampler(ir_dereference *sampler, const glsl_type *type); 1387 1388 /** 1389 * Do a reverse-lookup to translate a string into an ir_texture_opcode. 1390 */ 1391 static ir_texture_opcode get_opcode(const char *); 1392 1393 enum ir_texture_opcode op; 1394 1395 /** Sampler to use for the texture access. */ 1396 ir_dereference *sampler; 1397 1398 /** Texture coordinate to sample */ 1399 ir_rvalue *coordinate; 1400 1401 /** 1402 * Value used for projective divide. 1403 * 1404 * If there is no projective divide (the common case), this will be 1405 * \c NULL. Optimization passes should check for this to point to a constant 1406 * of 1.0 and replace that with \c NULL. 1407 */ 1408 ir_rvalue *projector; 1409 1410 /** 1411 * Coordinate used for comparison on shadow look-ups. 1412 * 1413 * If there is no shadow comparison, this will be \c NULL. For the 1414 * \c ir_txf opcode, this *must* be \c NULL. 1415 */ 1416 ir_rvalue *shadow_comparitor; 1417 1418 /** Texel offset. */ 1419 ir_rvalue *offset; 1420 1421 union { 1422 ir_rvalue *lod; /**< Floating point LOD */ 1423 ir_rvalue *bias; /**< Floating point LOD bias */ 1424 struct { 1425 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */ 1426 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */ 1427 } grad; 1428 } lod_info; 1429 }; 1430 1431 1432 struct ir_swizzle_mask { 1433 unsigned x:2; 1434 unsigned y:2; 1435 unsigned z:2; 1436 unsigned w:2; 1437 1438 /** 1439 * Number of components in the swizzle. 1440 */ 1441 unsigned num_components:3; 1442 1443 /** 1444 * Does the swizzle contain duplicate components? 1445 * 1446 * L-value swizzles cannot contain duplicate components. 1447 */ 1448 unsigned has_duplicates:1; 1449 }; 1450 1451 1452 class ir_swizzle : public ir_rvalue { 1453 public: 1454 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w, 1455 unsigned count); 1456 1457 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count); 1458 1459 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask); 1460 1461 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const; 1462 1463 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL); 1464 1465 virtual ir_swizzle *as_swizzle() 1466 { 1467 return this; 1468 } 1469 1470 /** 1471 * Construct an ir_swizzle from the textual representation. Can fail. 1472 */ 1473 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length); 1474 1475 virtual void accept(ir_visitor *v) 1476 { 1477 v->visit(this); 1478 } 1479 1480 virtual ir_visitor_status accept(ir_hierarchical_visitor *); 1481 1482 bool is_lvalue() const 1483 { 1484 return val->is_lvalue() && !mask.has_duplicates; 1485 } 1486 1487 /** 1488 * Get the variable that is ultimately referenced by an r-value 1489 */ 1490 virtual ir_variable *variable_referenced() const; 1491 1492 ir_rvalue *val; 1493 ir_swizzle_mask mask; 1494 1495 private: 1496 /** 1497 * Initialize the mask component of a swizzle 1498 * 1499 * This is used by the \c ir_swizzle constructors. 1500 */ 1501 void init_mask(const unsigned *components, unsigned count); 1502 }; 1503 1504 1505 class ir_dereference : public ir_rvalue { 1506 public: 1507 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0; 1508 1509 virtual ir_dereference *as_dereference() 1510 { 1511 return this; 1512 } 1513 1514 bool is_lvalue() const; 1515 1516 /** 1517 * Get the variable that is ultimately referenced by an r-value 1518 */ 1519 virtual ir_variable *variable_referenced() const = 0; 1520 1521 /** 1522 * Get the constant that is ultimately referenced by an r-value, 1523 * in a constant expression evaluation context. 1524 * 1525 * The offset is used when the reference is to a specific column of 1526 * a matrix. 1527 */ 1528 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const = 0; 1529 }; 1530 1531 1532 class ir_dereference_variable : public ir_dereference { 1533 public: 1534 ir_dereference_variable(ir_variable *var); 1535 1536 virtual ir_dereference_variable *clone(void *mem_ctx, 1537 struct hash_table *) const; 1538 1539 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL); 1540 1541 virtual ir_dereference_variable *as_dereference_variable() 1542 { 1543 return this; 1544 } 1545 1546 /** 1547 * Get the variable that is ultimately referenced by an r-value 1548 */ 1549 virtual ir_variable *variable_referenced() const 1550 { 1551 return this->var; 1552 } 1553 1554 /** 1555 * Get the constant that is ultimately referenced by an r-value, 1556 * in a constant expression evaluation context. 1557 * 1558 * The offset is used when the reference is to a specific column of 1559 * a matrix. 1560 */ 1561 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const; 1562 1563 virtual ir_variable *whole_variable_referenced() 1564 { 1565 /* ir_dereference_variable objects always dereference the entire 1566 * variable. However, if this dereference is dereferenced by anything 1567 * else, the complete deferefernce chain is not a whole-variable 1568 * dereference. This method should only be called on the top most 1569 * ir_rvalue in a dereference chain. 1570 */ 1571 return this->var; 1572 } 1573 1574 virtual void accept(ir_visitor *v) 1575 { 1576 v->visit(this); 1577 } 1578 1579 virtual ir_visitor_status accept(ir_hierarchical_visitor *); 1580 1581 /** 1582 * Object being dereferenced. 1583 */ 1584 ir_variable *var; 1585 }; 1586 1587 1588 class ir_dereference_array : public ir_dereference { 1589 public: 1590 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index); 1591 1592 ir_dereference_array(ir_variable *var, ir_rvalue *array_index); 1593 1594 virtual ir_dereference_array *clone(void *mem_ctx, 1595 struct hash_table *) const; 1596 1597 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL); 1598 1599 virtual ir_dereference_array *as_dereference_array() 1600 { 1601 return this; 1602 } 1603 1604 /** 1605 * Get the variable that is ultimately referenced by an r-value 1606 */ 1607 virtual ir_variable *variable_referenced() const 1608 { 1609 return this->array->variable_referenced(); 1610 } 1611 1612 /** 1613 * Get the constant that is ultimately referenced by an r-value, 1614 * in a constant expression evaluation context. 1615 * 1616 * The offset is used when the reference is to a specific column of 1617 * a matrix. 1618 */ 1619 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const; 1620 1621 virtual void accept(ir_visitor *v) 1622 { 1623 v->visit(this); 1624 } 1625 1626 virtual ir_visitor_status accept(ir_hierarchical_visitor *); 1627 1628 ir_rvalue *array; 1629 ir_rvalue *array_index; 1630 1631 private: 1632 void set_array(ir_rvalue *value); 1633 }; 1634 1635 1636 class ir_dereference_record : public ir_dereference { 1637 public: 1638 ir_dereference_record(ir_rvalue *value, const char *field); 1639 1640 ir_dereference_record(ir_variable *var, const char *field); 1641 1642 virtual ir_dereference_record *clone(void *mem_ctx, 1643 struct hash_table *) const; 1644 1645 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL); 1646 1647 /** 1648 * Get the variable that is ultimately referenced by an r-value 1649 */ 1650 virtual ir_variable *variable_referenced() const 1651 { 1652 return this->record->variable_referenced(); 1653 } 1654 1655 /** 1656 * Get the constant that is ultimately referenced by an r-value, 1657 * in a constant expression evaluation context. 1658 * 1659 * The offset is used when the reference is to a specific column of 1660 * a matrix. 1661 */ 1662 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const; 1663 1664 virtual void accept(ir_visitor *v) 1665 { 1666 v->visit(this); 1667 } 1668 1669 virtual ir_visitor_status accept(ir_hierarchical_visitor *); 1670 1671 ir_rvalue *record; 1672 const char *field; 1673 }; 1674 1675 1676 /** 1677 * Data stored in an ir_constant 1678 */ 1679 union ir_constant_data { 1680 unsigned u[16]; 1681 int i[16]; 1682 float f[16]; 1683 bool b[16]; 1684 }; 1685 1686 1687 class ir_constant : public ir_rvalue { 1688 public: 1689 ir_constant(const struct glsl_type *type, const ir_constant_data *data); 1690 ir_constant(bool b); 1691 ir_constant(unsigned int u); 1692 ir_constant(int i); 1693 ir_constant(float f); 1694 1695 /** 1696 * Construct an ir_constant from a list of ir_constant values 1697 */ 1698 ir_constant(const struct glsl_type *type, exec_list *values); 1699 1700 /** 1701 * Construct an ir_constant from a scalar component of another ir_constant 1702 * 1703 * The new \c ir_constant inherits the type of the component from the 1704 * source constant. 1705 * 1706 * \note 1707 * In the case of a matrix constant, the new constant is a scalar, \b not 1708 * a vector. 1709 */ 1710 ir_constant(const ir_constant *c, unsigned i); 1711 1712 /** 1713 * Return a new ir_constant of the specified type containing all zeros. 1714 */ 1715 static ir_constant *zero(void *mem_ctx, const glsl_type *type); 1716 1717 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const; 1718 1719 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL); 1720 1721 virtual ir_constant *as_constant() 1722 { 1723 return this; 1724 } 1725 1726 virtual void accept(ir_visitor *v) 1727 { 1728 v->visit(this); 1729 } 1730 1731 virtual ir_visitor_status accept(ir_hierarchical_visitor *); 1732 1733 /** 1734 * Get a particular component of a constant as a specific type 1735 * 1736 * This is useful, for example, to get a value from an integer constant 1737 * as a float or bool. This appears frequently when constructors are 1738 * called with all constant parameters. 1739 */ 1740 /*@{*/ 1741 bool get_bool_component(unsigned i) const; 1742 float get_float_component(unsigned i) const; 1743 int get_int_component(unsigned i) const; 1744 unsigned get_uint_component(unsigned i) const; 1745 /*@}*/ 1746 1747 ir_constant *get_array_element(unsigned i) const; 1748 1749 ir_constant *get_record_field(const char *name); 1750 1751 /** 1752 * Copy the values on another constant at a given offset. 1753 * 1754 * The offset is ignored for array or struct copies, it's only for 1755 * scalars or vectors into vectors or matrices. 1756 * 1757 * With identical types on both sides and zero offset it's clone() 1758 * without creating a new object. 1759 */ 1760 1761 void copy_offset(ir_constant *src, int offset); 1762 1763 /** 1764 * Copy the values on another constant at a given offset and 1765 * following an assign-like mask. 1766 * 1767 * The mask is ignored for scalars. 1768 * 1769 * Note that this function only handles what assign can handle, 1770 * i.e. at most a vector as source and a column of a matrix as 1771 * destination. 1772 */ 1773 1774 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask); 1775 1776 /** 1777 * Determine whether a constant has the same value as another constant 1778 * 1779 * \sa ir_constant::is_zero, ir_constant::is_one, 1780 * ir_constant::is_negative_one, ir_constant::is_basis 1781 */ 1782 bool has_value(const ir_constant *) const; 1783 1784 virtual bool is_zero() const; 1785 virtual bool is_one() const; 1786 virtual bool is_negative_one() const; 1787 virtual bool is_basis() const; 1788 1789 /** 1790 * Value of the constant. 1791 * 1792 * The field used to back the values supplied by the constant is determined 1793 * by the type associated with the \c ir_instruction. Constants may be 1794 * scalars, vectors, or matrices. 1795 */ 1796 union ir_constant_data value; 1797 1798 /* Array elements */ 1799 ir_constant **array_elements; 1800 1801 /* Structure fields */ 1802 exec_list components; 1803 1804 private: 1805 /** 1806 * Parameterless constructor only used by the clone method 1807 */ 1808 ir_constant(void); 1809 }; 1810 1811 /*@}*/ 1812 1813 /** 1814 * Apply a visitor to each IR node in a list 1815 */ 1816 void 1817 visit_exec_list(exec_list *list, ir_visitor *visitor); 1818 1819 /** 1820 * Validate invariants on each IR node in a list 1821 */ 1822 void validate_ir_tree(exec_list *instructions); 1823 1824 struct _mesa_glsl_parse_state; 1825 struct gl_shader_program; 1826 1827 /** 1828 * Detect whether an unlinked shader contains static recursion 1829 * 1830 * If the list of instructions is determined to contain static recursion, 1831 * \c _mesa_glsl_error will be called to emit error messages for each function 1832 * that is in the recursion cycle. 1833 */ 1834 void 1835 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state, 1836 exec_list *instructions); 1837 1838 /** 1839 * Detect whether a linked shader contains static recursion 1840 * 1841 * If the list of instructions is determined to contain static recursion, 1842 * \c link_error_printf will be called to emit error messages for each function 1843 * that is in the recursion cycle. In addition, 1844 * \c gl_shader_program::LinkStatus will be set to false. 1845 */ 1846 void 1847 detect_recursion_linked(struct gl_shader_program *prog, 1848 exec_list *instructions); 1849 1850 /** 1851 * Make a clone of each IR instruction in a list 1852 * 1853 * \param in List of IR instructions that are to be cloned 1854 * \param out List to hold the cloned instructions 1855 */ 1856 void 1857 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in); 1858 1859 extern void 1860 _mesa_glsl_initialize_variables(exec_list *instructions, 1861 struct _mesa_glsl_parse_state *state); 1862 1863 extern void 1864 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state); 1865 1866 extern void 1867 _mesa_glsl_release_functions(void); 1868 1869 extern void 1870 reparent_ir(exec_list *list, void *mem_ctx); 1871 1872 struct glsl_symbol_table; 1873 1874 extern void 1875 import_prototypes(const exec_list *source, exec_list *dest, 1876 struct glsl_symbol_table *symbols, void *mem_ctx); 1877 1878 extern bool 1879 ir_has_call(ir_instruction *ir); 1880 1881 extern void 1882 do_set_program_inouts(exec_list *instructions, struct gl_program *prog, 1883 bool is_fragment_shader); 1884 1885 extern char * 1886 prototype_string(const glsl_type *return_type, const char *name, 1887 exec_list *parameters); 1888 1889 #endif /* IR_H */ 1890