Home | History | Annotate | Download | only in optimizing
      1 /*
      2  * Copyright (C) 2016 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "instruction_builder.h"
     18 
     19 #include "art_method-inl.h"
     20 #include "bytecode_utils.h"
     21 #include "class_linker.h"
     22 #include "dex_instruction-inl.h"
     23 #include "driver/compiler_options.h"
     24 #include "imtable-inl.h"
     25 #include "sharpening.h"
     26 #include "scoped_thread_state_change-inl.h"
     27 
     28 namespace art {
     29 
     30 void HInstructionBuilder::MaybeRecordStat(MethodCompilationStat compilation_stat) {
     31   if (compilation_stats_ != nullptr) {
     32     compilation_stats_->RecordStat(compilation_stat);
     33   }
     34 }
     35 
     36 HBasicBlock* HInstructionBuilder::FindBlockStartingAt(uint32_t dex_pc) const {
     37   return block_builder_->GetBlockAt(dex_pc);
     38 }
     39 
     40 inline ArenaVector<HInstruction*>* HInstructionBuilder::GetLocalsFor(HBasicBlock* block) {
     41   ArenaVector<HInstruction*>* locals = &locals_for_[block->GetBlockId()];
     42   const size_t vregs = graph_->GetNumberOfVRegs();
     43   if (locals->size() == vregs) {
     44     return locals;
     45   }
     46   return GetLocalsForWithAllocation(block, locals, vregs);
     47 }
     48 
     49 ArenaVector<HInstruction*>* HInstructionBuilder::GetLocalsForWithAllocation(
     50     HBasicBlock* block,
     51     ArenaVector<HInstruction*>* locals,
     52     const size_t vregs) {
     53   DCHECK_NE(locals->size(), vregs);
     54   locals->resize(vregs, nullptr);
     55   if (block->IsCatchBlock()) {
     56     // We record incoming inputs of catch phis at throwing instructions and
     57     // must therefore eagerly create the phis. Phis for undefined vregs will
     58     // be deleted when the first throwing instruction with the vreg undefined
     59     // is encountered. Unused phis will be removed by dead phi analysis.
     60     for (size_t i = 0; i < vregs; ++i) {
     61       // No point in creating the catch phi if it is already undefined at
     62       // the first throwing instruction.
     63       HInstruction* current_local_value = (*current_locals_)[i];
     64       if (current_local_value != nullptr) {
     65         HPhi* phi = new (arena_) HPhi(
     66             arena_,
     67             i,
     68             0,
     69             current_local_value->GetType());
     70         block->AddPhi(phi);
     71         (*locals)[i] = phi;
     72       }
     73     }
     74   }
     75   return locals;
     76 }
     77 
     78 inline HInstruction* HInstructionBuilder::ValueOfLocalAt(HBasicBlock* block, size_t local) {
     79   ArenaVector<HInstruction*>* locals = GetLocalsFor(block);
     80   return (*locals)[local];
     81 }
     82 
     83 void HInstructionBuilder::InitializeBlockLocals() {
     84   current_locals_ = GetLocalsFor(current_block_);
     85 
     86   if (current_block_->IsCatchBlock()) {
     87     // Catch phis were already created and inputs collected from throwing sites.
     88     if (kIsDebugBuild) {
     89       // Make sure there was at least one throwing instruction which initialized
     90       // locals (guaranteed by HGraphBuilder) and that all try blocks have been
     91       // visited already (from HTryBoundary scoping and reverse post order).
     92       bool catch_block_visited = false;
     93       for (HBasicBlock* current : graph_->GetReversePostOrder()) {
     94         if (current == current_block_) {
     95           catch_block_visited = true;
     96         } else if (current->IsTryBlock()) {
     97           const HTryBoundary& try_entry = current->GetTryCatchInformation()->GetTryEntry();
     98           if (try_entry.HasExceptionHandler(*current_block_)) {
     99             DCHECK(!catch_block_visited) << "Catch block visited before its try block.";
    100           }
    101         }
    102       }
    103       DCHECK_EQ(current_locals_->size(), graph_->GetNumberOfVRegs())
    104           << "No instructions throwing into a live catch block.";
    105     }
    106   } else if (current_block_->IsLoopHeader()) {
    107     // If the block is a loop header, we know we only have visited the pre header
    108     // because we are visiting in reverse post order. We create phis for all initialized
    109     // locals from the pre header. Their inputs will be populated at the end of
    110     // the analysis.
    111     for (size_t local = 0; local < current_locals_->size(); ++local) {
    112       HInstruction* incoming =
    113           ValueOfLocalAt(current_block_->GetLoopInformation()->GetPreHeader(), local);
    114       if (incoming != nullptr) {
    115         HPhi* phi = new (arena_) HPhi(
    116             arena_,
    117             local,
    118             0,
    119             incoming->GetType());
    120         current_block_->AddPhi(phi);
    121         (*current_locals_)[local] = phi;
    122       }
    123     }
    124 
    125     // Save the loop header so that the last phase of the analysis knows which
    126     // blocks need to be updated.
    127     loop_headers_.push_back(current_block_);
    128   } else if (current_block_->GetPredecessors().size() > 0) {
    129     // All predecessors have already been visited because we are visiting in reverse post order.
    130     // We merge the values of all locals, creating phis if those values differ.
    131     for (size_t local = 0; local < current_locals_->size(); ++local) {
    132       bool one_predecessor_has_no_value = false;
    133       bool is_different = false;
    134       HInstruction* value = ValueOfLocalAt(current_block_->GetPredecessors()[0], local);
    135 
    136       for (HBasicBlock* predecessor : current_block_->GetPredecessors()) {
    137         HInstruction* current = ValueOfLocalAt(predecessor, local);
    138         if (current == nullptr) {
    139           one_predecessor_has_no_value = true;
    140           break;
    141         } else if (current != value) {
    142           is_different = true;
    143         }
    144       }
    145 
    146       if (one_predecessor_has_no_value) {
    147         // If one predecessor has no value for this local, we trust the verifier has
    148         // successfully checked that there is a store dominating any read after this block.
    149         continue;
    150       }
    151 
    152       if (is_different) {
    153         HInstruction* first_input = ValueOfLocalAt(current_block_->GetPredecessors()[0], local);
    154         HPhi* phi = new (arena_) HPhi(
    155             arena_,
    156             local,
    157             current_block_->GetPredecessors().size(),
    158             first_input->GetType());
    159         for (size_t i = 0; i < current_block_->GetPredecessors().size(); i++) {
    160           HInstruction* pred_value = ValueOfLocalAt(current_block_->GetPredecessors()[i], local);
    161           phi->SetRawInputAt(i, pred_value);
    162         }
    163         current_block_->AddPhi(phi);
    164         value = phi;
    165       }
    166       (*current_locals_)[local] = value;
    167     }
    168   }
    169 }
    170 
    171 void HInstructionBuilder::PropagateLocalsToCatchBlocks() {
    172   const HTryBoundary& try_entry = current_block_->GetTryCatchInformation()->GetTryEntry();
    173   for (HBasicBlock* catch_block : try_entry.GetExceptionHandlers()) {
    174     ArenaVector<HInstruction*>* handler_locals = GetLocalsFor(catch_block);
    175     DCHECK_EQ(handler_locals->size(), current_locals_->size());
    176     for (size_t vreg = 0, e = current_locals_->size(); vreg < e; ++vreg) {
    177       HInstruction* handler_value = (*handler_locals)[vreg];
    178       if (handler_value == nullptr) {
    179         // Vreg was undefined at a previously encountered throwing instruction
    180         // and the catch phi was deleted. Do not record the local value.
    181         continue;
    182       }
    183       DCHECK(handler_value->IsPhi());
    184 
    185       HInstruction* local_value = (*current_locals_)[vreg];
    186       if (local_value == nullptr) {
    187         // This is the first instruction throwing into `catch_block` where
    188         // `vreg` is undefined. Delete the catch phi.
    189         catch_block->RemovePhi(handler_value->AsPhi());
    190         (*handler_locals)[vreg] = nullptr;
    191       } else {
    192         // Vreg has been defined at all instructions throwing into `catch_block`
    193         // encountered so far. Record the local value in the catch phi.
    194         handler_value->AsPhi()->AddInput(local_value);
    195       }
    196     }
    197   }
    198 }
    199 
    200 void HInstructionBuilder::AppendInstruction(HInstruction* instruction) {
    201   current_block_->AddInstruction(instruction);
    202   InitializeInstruction(instruction);
    203 }
    204 
    205 void HInstructionBuilder::InsertInstructionAtTop(HInstruction* instruction) {
    206   if (current_block_->GetInstructions().IsEmpty()) {
    207     current_block_->AddInstruction(instruction);
    208   } else {
    209     current_block_->InsertInstructionBefore(instruction, current_block_->GetFirstInstruction());
    210   }
    211   InitializeInstruction(instruction);
    212 }
    213 
    214 void HInstructionBuilder::InitializeInstruction(HInstruction* instruction) {
    215   if (instruction->NeedsEnvironment()) {
    216     HEnvironment* environment = new (arena_) HEnvironment(
    217         arena_,
    218         current_locals_->size(),
    219         graph_->GetArtMethod(),
    220         instruction->GetDexPc(),
    221         instruction);
    222     environment->CopyFrom(*current_locals_);
    223     instruction->SetRawEnvironment(environment);
    224   }
    225 }
    226 
    227 HInstruction* HInstructionBuilder::LoadNullCheckedLocal(uint32_t register_index, uint32_t dex_pc) {
    228   HInstruction* ref = LoadLocal(register_index, Primitive::kPrimNot);
    229   if (!ref->CanBeNull()) {
    230     return ref;
    231   }
    232 
    233   HNullCheck* null_check = new (arena_) HNullCheck(ref, dex_pc);
    234   AppendInstruction(null_check);
    235   return null_check;
    236 }
    237 
    238 void HInstructionBuilder::SetLoopHeaderPhiInputs() {
    239   for (size_t i = loop_headers_.size(); i > 0; --i) {
    240     HBasicBlock* block = loop_headers_[i - 1];
    241     for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
    242       HPhi* phi = it.Current()->AsPhi();
    243       size_t vreg = phi->GetRegNumber();
    244       for (HBasicBlock* predecessor : block->GetPredecessors()) {
    245         HInstruction* value = ValueOfLocalAt(predecessor, vreg);
    246         if (value == nullptr) {
    247           // Vreg is undefined at this predecessor. Mark it dead and leave with
    248           // fewer inputs than predecessors. SsaChecker will fail if not removed.
    249           phi->SetDead();
    250           break;
    251         } else {
    252           phi->AddInput(value);
    253         }
    254       }
    255     }
    256   }
    257 }
    258 
    259 static bool IsBlockPopulated(HBasicBlock* block) {
    260   if (block->IsLoopHeader()) {
    261     // Suspend checks were inserted into loop headers during building of dominator tree.
    262     DCHECK(block->GetFirstInstruction()->IsSuspendCheck());
    263     return block->GetFirstInstruction() != block->GetLastInstruction();
    264   } else {
    265     return !block->GetInstructions().IsEmpty();
    266   }
    267 }
    268 
    269 bool HInstructionBuilder::Build() {
    270   locals_for_.resize(graph_->GetBlocks().size(),
    271                      ArenaVector<HInstruction*>(arena_->Adapter(kArenaAllocGraphBuilder)));
    272 
    273   // Find locations where we want to generate extra stackmaps for native debugging.
    274   // This allows us to generate the info only at interesting points (for example,
    275   // at start of java statement) rather than before every dex instruction.
    276   const bool native_debuggable = compiler_driver_ != nullptr &&
    277                                  compiler_driver_->GetCompilerOptions().GetNativeDebuggable();
    278   ArenaBitVector* native_debug_info_locations = nullptr;
    279   if (native_debuggable) {
    280     const uint32_t num_instructions = code_item_.insns_size_in_code_units_;
    281     native_debug_info_locations = new (arena_) ArenaBitVector (arena_, num_instructions, false);
    282     FindNativeDebugInfoLocations(native_debug_info_locations);
    283   }
    284 
    285   for (HBasicBlock* block : graph_->GetReversePostOrder()) {
    286     current_block_ = block;
    287     uint32_t block_dex_pc = current_block_->GetDexPc();
    288 
    289     InitializeBlockLocals();
    290 
    291     if (current_block_->IsEntryBlock()) {
    292       InitializeParameters();
    293       AppendInstruction(new (arena_) HSuspendCheck(0u));
    294       AppendInstruction(new (arena_) HGoto(0u));
    295       continue;
    296     } else if (current_block_->IsExitBlock()) {
    297       AppendInstruction(new (arena_) HExit());
    298       continue;
    299     } else if (current_block_->IsLoopHeader()) {
    300       HSuspendCheck* suspend_check = new (arena_) HSuspendCheck(current_block_->GetDexPc());
    301       current_block_->GetLoopInformation()->SetSuspendCheck(suspend_check);
    302       // This is slightly odd because the loop header might not be empty (TryBoundary).
    303       // But we're still creating the environment with locals from the top of the block.
    304       InsertInstructionAtTop(suspend_check);
    305     }
    306 
    307     if (block_dex_pc == kNoDexPc || current_block_ != block_builder_->GetBlockAt(block_dex_pc)) {
    308       // Synthetic block that does not need to be populated.
    309       DCHECK(IsBlockPopulated(current_block_));
    310       continue;
    311     }
    312 
    313     DCHECK(!IsBlockPopulated(current_block_));
    314 
    315     for (CodeItemIterator it(code_item_, block_dex_pc); !it.Done(); it.Advance()) {
    316       if (current_block_ == nullptr) {
    317         // The previous instruction ended this block.
    318         break;
    319       }
    320 
    321       uint32_t dex_pc = it.CurrentDexPc();
    322       if (dex_pc != block_dex_pc && FindBlockStartingAt(dex_pc) != nullptr) {
    323         // This dex_pc starts a new basic block.
    324         break;
    325       }
    326 
    327       if (current_block_->IsTryBlock() && IsThrowingDexInstruction(it.CurrentInstruction())) {
    328         PropagateLocalsToCatchBlocks();
    329       }
    330 
    331       if (native_debuggable && native_debug_info_locations->IsBitSet(dex_pc)) {
    332         AppendInstruction(new (arena_) HNativeDebugInfo(dex_pc));
    333       }
    334 
    335       if (!ProcessDexInstruction(it.CurrentInstruction(), dex_pc)) {
    336         return false;
    337       }
    338     }
    339 
    340     if (current_block_ != nullptr) {
    341       // Branching instructions clear current_block, so we know the last
    342       // instruction of the current block is not a branching instruction.
    343       // We add an unconditional Goto to the next block.
    344       DCHECK_EQ(current_block_->GetSuccessors().size(), 1u);
    345       AppendInstruction(new (arena_) HGoto());
    346     }
    347   }
    348 
    349   SetLoopHeaderPhiInputs();
    350 
    351   return true;
    352 }
    353 
    354 void HInstructionBuilder::FindNativeDebugInfoLocations(ArenaBitVector* locations) {
    355   // The callback gets called when the line number changes.
    356   // In other words, it marks the start of new java statement.
    357   struct Callback {
    358     static bool Position(void* ctx, const DexFile::PositionInfo& entry) {
    359       static_cast<ArenaBitVector*>(ctx)->SetBit(entry.address_);
    360       return false;
    361     }
    362   };
    363   dex_file_->DecodeDebugPositionInfo(&code_item_, Callback::Position, locations);
    364   // Instruction-specific tweaks.
    365   const Instruction* const begin = Instruction::At(code_item_.insns_);
    366   const Instruction* const end = begin->RelativeAt(code_item_.insns_size_in_code_units_);
    367   for (const Instruction* inst = begin; inst < end; inst = inst->Next()) {
    368     switch (inst->Opcode()) {
    369       case Instruction::MOVE_EXCEPTION: {
    370         // Stop in native debugger after the exception has been moved.
    371         // The compiler also expects the move at the start of basic block so
    372         // we do not want to interfere by inserting native-debug-info before it.
    373         locations->ClearBit(inst->GetDexPc(code_item_.insns_));
    374         const Instruction* next = inst->Next();
    375         if (next < end) {
    376           locations->SetBit(next->GetDexPc(code_item_.insns_));
    377         }
    378         break;
    379       }
    380       default:
    381         break;
    382     }
    383   }
    384 }
    385 
    386 HInstruction* HInstructionBuilder::LoadLocal(uint32_t reg_number, Primitive::Type type) const {
    387   HInstruction* value = (*current_locals_)[reg_number];
    388   DCHECK(value != nullptr);
    389 
    390   // If the operation requests a specific type, we make sure its input is of that type.
    391   if (type != value->GetType()) {
    392     if (Primitive::IsFloatingPointType(type)) {
    393       value = ssa_builder_->GetFloatOrDoubleEquivalent(value, type);
    394     } else if (type == Primitive::kPrimNot) {
    395       value = ssa_builder_->GetReferenceTypeEquivalent(value);
    396     }
    397     DCHECK(value != nullptr);
    398   }
    399 
    400   return value;
    401 }
    402 
    403 void HInstructionBuilder::UpdateLocal(uint32_t reg_number, HInstruction* stored_value) {
    404   Primitive::Type stored_type = stored_value->GetType();
    405   DCHECK_NE(stored_type, Primitive::kPrimVoid);
    406 
    407   // Storing into vreg `reg_number` may implicitly invalidate the surrounding
    408   // registers. Consider the following cases:
    409   // (1) Storing a wide value must overwrite previous values in both `reg_number`
    410   //     and `reg_number+1`. We store `nullptr` in `reg_number+1`.
    411   // (2) If vreg `reg_number-1` holds a wide value, writing into `reg_number`
    412   //     must invalidate it. We store `nullptr` in `reg_number-1`.
    413   // Consequently, storing a wide value into the high vreg of another wide value
    414   // will invalidate both `reg_number-1` and `reg_number+1`.
    415 
    416   if (reg_number != 0) {
    417     HInstruction* local_low = (*current_locals_)[reg_number - 1];
    418     if (local_low != nullptr && Primitive::Is64BitType(local_low->GetType())) {
    419       // The vreg we are storing into was previously the high vreg of a pair.
    420       // We need to invalidate its low vreg.
    421       DCHECK((*current_locals_)[reg_number] == nullptr);
    422       (*current_locals_)[reg_number - 1] = nullptr;
    423     }
    424   }
    425 
    426   (*current_locals_)[reg_number] = stored_value;
    427   if (Primitive::Is64BitType(stored_type)) {
    428     // We are storing a pair. Invalidate the instruction in the high vreg.
    429     (*current_locals_)[reg_number + 1] = nullptr;
    430   }
    431 }
    432 
    433 void HInstructionBuilder::InitializeParameters() {
    434   DCHECK(current_block_->IsEntryBlock());
    435 
    436   // dex_compilation_unit_ is null only when unit testing.
    437   if (dex_compilation_unit_ == nullptr) {
    438     return;
    439   }
    440 
    441   const char* shorty = dex_compilation_unit_->GetShorty();
    442   uint16_t number_of_parameters = graph_->GetNumberOfInVRegs();
    443   uint16_t locals_index = graph_->GetNumberOfLocalVRegs();
    444   uint16_t parameter_index = 0;
    445 
    446   const DexFile::MethodId& referrer_method_id =
    447       dex_file_->GetMethodId(dex_compilation_unit_->GetDexMethodIndex());
    448   if (!dex_compilation_unit_->IsStatic()) {
    449     // Add the implicit 'this' argument, not expressed in the signature.
    450     HParameterValue* parameter = new (arena_) HParameterValue(*dex_file_,
    451                                                               referrer_method_id.class_idx_,
    452                                                               parameter_index++,
    453                                                               Primitive::kPrimNot,
    454                                                               true);
    455     AppendInstruction(parameter);
    456     UpdateLocal(locals_index++, parameter);
    457     number_of_parameters--;
    458   }
    459 
    460   const DexFile::ProtoId& proto = dex_file_->GetMethodPrototype(referrer_method_id);
    461   const DexFile::TypeList* arg_types = dex_file_->GetProtoParameters(proto);
    462   for (int i = 0, shorty_pos = 1; i < number_of_parameters; i++) {
    463     HParameterValue* parameter = new (arena_) HParameterValue(
    464         *dex_file_,
    465         arg_types->GetTypeItem(shorty_pos - 1).type_idx_,
    466         parameter_index++,
    467         Primitive::GetType(shorty[shorty_pos]),
    468         false);
    469     ++shorty_pos;
    470     AppendInstruction(parameter);
    471     // Store the parameter value in the local that the dex code will use
    472     // to reference that parameter.
    473     UpdateLocal(locals_index++, parameter);
    474     if (Primitive::Is64BitType(parameter->GetType())) {
    475       i++;
    476       locals_index++;
    477       parameter_index++;
    478     }
    479   }
    480 }
    481 
    482 template<typename T>
    483 void HInstructionBuilder::If_22t(const Instruction& instruction, uint32_t dex_pc) {
    484   HInstruction* first = LoadLocal(instruction.VRegA(), Primitive::kPrimInt);
    485   HInstruction* second = LoadLocal(instruction.VRegB(), Primitive::kPrimInt);
    486   T* comparison = new (arena_) T(first, second, dex_pc);
    487   AppendInstruction(comparison);
    488   AppendInstruction(new (arena_) HIf(comparison, dex_pc));
    489   current_block_ = nullptr;
    490 }
    491 
    492 template<typename T>
    493 void HInstructionBuilder::If_21t(const Instruction& instruction, uint32_t dex_pc) {
    494   HInstruction* value = LoadLocal(instruction.VRegA(), Primitive::kPrimInt);
    495   T* comparison = new (arena_) T(value, graph_->GetIntConstant(0, dex_pc), dex_pc);
    496   AppendInstruction(comparison);
    497   AppendInstruction(new (arena_) HIf(comparison, dex_pc));
    498   current_block_ = nullptr;
    499 }
    500 
    501 template<typename T>
    502 void HInstructionBuilder::Unop_12x(const Instruction& instruction,
    503                                    Primitive::Type type,
    504                                    uint32_t dex_pc) {
    505   HInstruction* first = LoadLocal(instruction.VRegB(), type);
    506   AppendInstruction(new (arena_) T(type, first, dex_pc));
    507   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
    508 }
    509 
    510 void HInstructionBuilder::Conversion_12x(const Instruction& instruction,
    511                                          Primitive::Type input_type,
    512                                          Primitive::Type result_type,
    513                                          uint32_t dex_pc) {
    514   HInstruction* first = LoadLocal(instruction.VRegB(), input_type);
    515   AppendInstruction(new (arena_) HTypeConversion(result_type, first, dex_pc));
    516   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
    517 }
    518 
    519 template<typename T>
    520 void HInstructionBuilder::Binop_23x(const Instruction& instruction,
    521                                     Primitive::Type type,
    522                                     uint32_t dex_pc) {
    523   HInstruction* first = LoadLocal(instruction.VRegB(), type);
    524   HInstruction* second = LoadLocal(instruction.VRegC(), type);
    525   AppendInstruction(new (arena_) T(type, first, second, dex_pc));
    526   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
    527 }
    528 
    529 template<typename T>
    530 void HInstructionBuilder::Binop_23x_shift(const Instruction& instruction,
    531                                           Primitive::Type type,
    532                                           uint32_t dex_pc) {
    533   HInstruction* first = LoadLocal(instruction.VRegB(), type);
    534   HInstruction* second = LoadLocal(instruction.VRegC(), Primitive::kPrimInt);
    535   AppendInstruction(new (arena_) T(type, first, second, dex_pc));
    536   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
    537 }
    538 
    539 void HInstructionBuilder::Binop_23x_cmp(const Instruction& instruction,
    540                                         Primitive::Type type,
    541                                         ComparisonBias bias,
    542                                         uint32_t dex_pc) {
    543   HInstruction* first = LoadLocal(instruction.VRegB(), type);
    544   HInstruction* second = LoadLocal(instruction.VRegC(), type);
    545   AppendInstruction(new (arena_) HCompare(type, first, second, bias, dex_pc));
    546   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
    547 }
    548 
    549 template<typename T>
    550 void HInstructionBuilder::Binop_12x_shift(const Instruction& instruction,
    551                                           Primitive::Type type,
    552                                           uint32_t dex_pc) {
    553   HInstruction* first = LoadLocal(instruction.VRegA(), type);
    554   HInstruction* second = LoadLocal(instruction.VRegB(), Primitive::kPrimInt);
    555   AppendInstruction(new (arena_) T(type, first, second, dex_pc));
    556   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
    557 }
    558 
    559 template<typename T>
    560 void HInstructionBuilder::Binop_12x(const Instruction& instruction,
    561                                     Primitive::Type type,
    562                                     uint32_t dex_pc) {
    563   HInstruction* first = LoadLocal(instruction.VRegA(), type);
    564   HInstruction* second = LoadLocal(instruction.VRegB(), type);
    565   AppendInstruction(new (arena_) T(type, first, second, dex_pc));
    566   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
    567 }
    568 
    569 template<typename T>
    570 void HInstructionBuilder::Binop_22s(const Instruction& instruction, bool reverse, uint32_t dex_pc) {
    571   HInstruction* first = LoadLocal(instruction.VRegB(), Primitive::kPrimInt);
    572   HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22s(), dex_pc);
    573   if (reverse) {
    574     std::swap(first, second);
    575   }
    576   AppendInstruction(new (arena_) T(Primitive::kPrimInt, first, second, dex_pc));
    577   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
    578 }
    579 
    580 template<typename T>
    581 void HInstructionBuilder::Binop_22b(const Instruction& instruction, bool reverse, uint32_t dex_pc) {
    582   HInstruction* first = LoadLocal(instruction.VRegB(), Primitive::kPrimInt);
    583   HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22b(), dex_pc);
    584   if (reverse) {
    585     std::swap(first, second);
    586   }
    587   AppendInstruction(new (arena_) T(Primitive::kPrimInt, first, second, dex_pc));
    588   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
    589 }
    590 
    591 static bool RequiresConstructorBarrier(const DexCompilationUnit* cu, CompilerDriver* driver) {
    592   // Can be null in unit tests only.
    593   if (UNLIKELY(cu == nullptr)) {
    594     return false;
    595   }
    596 
    597   Thread* self = Thread::Current();
    598   return cu->IsConstructor()
    599       && driver->RequiresConstructorBarrier(self, cu->GetDexFile(), cu->GetClassDefIndex());
    600 }
    601 
    602 // Returns true if `block` has only one successor which starts at the next
    603 // dex_pc after `instruction` at `dex_pc`.
    604 static bool IsFallthroughInstruction(const Instruction& instruction,
    605                                      uint32_t dex_pc,
    606                                      HBasicBlock* block) {
    607   uint32_t next_dex_pc = dex_pc + instruction.SizeInCodeUnits();
    608   return block->GetSingleSuccessor()->GetDexPc() == next_dex_pc;
    609 }
    610 
    611 void HInstructionBuilder::BuildSwitch(const Instruction& instruction, uint32_t dex_pc) {
    612   HInstruction* value = LoadLocal(instruction.VRegA(), Primitive::kPrimInt);
    613   DexSwitchTable table(instruction, dex_pc);
    614 
    615   if (table.GetNumEntries() == 0) {
    616     // Empty Switch. Code falls through to the next block.
    617     DCHECK(IsFallthroughInstruction(instruction, dex_pc, current_block_));
    618     AppendInstruction(new (arena_) HGoto(dex_pc));
    619   } else if (table.ShouldBuildDecisionTree()) {
    620     for (DexSwitchTableIterator it(table); !it.Done(); it.Advance()) {
    621       HInstruction* case_value = graph_->GetIntConstant(it.CurrentKey(), dex_pc);
    622       HEqual* comparison = new (arena_) HEqual(value, case_value, dex_pc);
    623       AppendInstruction(comparison);
    624       AppendInstruction(new (arena_) HIf(comparison, dex_pc));
    625 
    626       if (!it.IsLast()) {
    627         current_block_ = FindBlockStartingAt(it.GetDexPcForCurrentIndex());
    628       }
    629     }
    630   } else {
    631     AppendInstruction(
    632         new (arena_) HPackedSwitch(table.GetEntryAt(0), table.GetNumEntries(), value, dex_pc));
    633   }
    634 
    635   current_block_ = nullptr;
    636 }
    637 
    638 void HInstructionBuilder::BuildReturn(const Instruction& instruction,
    639                                       Primitive::Type type,
    640                                       uint32_t dex_pc) {
    641   if (type == Primitive::kPrimVoid) {
    642     // This may insert additional redundant constructor fences from the super constructors.
    643     // TODO: remove redundant constructor fences (b/36656456).
    644     if (RequiresConstructorBarrier(dex_compilation_unit_, compiler_driver_)) {
    645       AppendInstruction(new (arena_) HMemoryBarrier(kStoreStore, dex_pc));
    646     }
    647     AppendInstruction(new (arena_) HReturnVoid(dex_pc));
    648   } else {
    649     HInstruction* value = LoadLocal(instruction.VRegA(), type);
    650     AppendInstruction(new (arena_) HReturn(value, dex_pc));
    651   }
    652   current_block_ = nullptr;
    653 }
    654 
    655 static InvokeType GetInvokeTypeFromOpCode(Instruction::Code opcode) {
    656   switch (opcode) {
    657     case Instruction::INVOKE_STATIC:
    658     case Instruction::INVOKE_STATIC_RANGE:
    659       return kStatic;
    660     case Instruction::INVOKE_DIRECT:
    661     case Instruction::INVOKE_DIRECT_RANGE:
    662       return kDirect;
    663     case Instruction::INVOKE_VIRTUAL:
    664     case Instruction::INVOKE_VIRTUAL_QUICK:
    665     case Instruction::INVOKE_VIRTUAL_RANGE:
    666     case Instruction::INVOKE_VIRTUAL_RANGE_QUICK:
    667       return kVirtual;
    668     case Instruction::INVOKE_INTERFACE:
    669     case Instruction::INVOKE_INTERFACE_RANGE:
    670       return kInterface;
    671     case Instruction::INVOKE_SUPER_RANGE:
    672     case Instruction::INVOKE_SUPER:
    673       return kSuper;
    674     default:
    675       LOG(FATAL) << "Unexpected invoke opcode: " << opcode;
    676       UNREACHABLE();
    677   }
    678 }
    679 
    680 ArtMethod* HInstructionBuilder::ResolveMethod(uint16_t method_idx, InvokeType invoke_type) {
    681   ScopedObjectAccess soa(Thread::Current());
    682   StackHandleScope<2> hs(soa.Self());
    683 
    684   ClassLinker* class_linker = dex_compilation_unit_->GetClassLinker();
    685   Handle<mirror::ClassLoader> class_loader = dex_compilation_unit_->GetClassLoader();
    686   Handle<mirror::Class> compiling_class(hs.NewHandle(GetCompilingClass()));
    687   // We fetch the referenced class eagerly (that is, the class pointed by in the MethodId
    688   // at method_idx), as `CanAccessResolvedMethod` expects it be be in the dex cache.
    689   Handle<mirror::Class> methods_class(hs.NewHandle(class_linker->ResolveReferencedClassOfMethod(
    690       method_idx, dex_compilation_unit_->GetDexCache(), class_loader)));
    691 
    692   if (UNLIKELY(methods_class == nullptr)) {
    693     // Clean up any exception left by type resolution.
    694     soa.Self()->ClearException();
    695     return nullptr;
    696   }
    697 
    698   ArtMethod* resolved_method = class_linker->ResolveMethod<ClassLinker::kForceICCECheck>(
    699       *dex_compilation_unit_->GetDexFile(),
    700       method_idx,
    701       dex_compilation_unit_->GetDexCache(),
    702       class_loader,
    703       /* referrer */ nullptr,
    704       invoke_type);
    705 
    706   if (UNLIKELY(resolved_method == nullptr)) {
    707     // Clean up any exception left by type resolution.
    708     soa.Self()->ClearException();
    709     return nullptr;
    710   }
    711 
    712   // Check access. The class linker has a fast path for looking into the dex cache
    713   // and does not check the access if it hits it.
    714   if (compiling_class == nullptr) {
    715     if (!resolved_method->IsPublic()) {
    716       return nullptr;
    717     }
    718   } else if (!compiling_class->CanAccessResolvedMethod(resolved_method->GetDeclaringClass(),
    719                                                        resolved_method,
    720                                                        dex_compilation_unit_->GetDexCache().Get(),
    721                                                        method_idx)) {
    722     return nullptr;
    723   }
    724 
    725   // We have to special case the invoke-super case, as ClassLinker::ResolveMethod does not.
    726   // We need to look at the referrer's super class vtable. We need to do this to know if we need to
    727   // make this an invoke-unresolved to handle cross-dex invokes or abstract super methods, both of
    728   // which require runtime handling.
    729   if (invoke_type == kSuper) {
    730     if (compiling_class == nullptr) {
    731       // We could not determine the method's class we need to wait until runtime.
    732       DCHECK(Runtime::Current()->IsAotCompiler());
    733       return nullptr;
    734     }
    735     if (!methods_class->IsAssignableFrom(compiling_class.Get())) {
    736       // We cannot statically determine the target method. The runtime will throw a
    737       // NoSuchMethodError on this one.
    738       return nullptr;
    739     }
    740     ArtMethod* actual_method;
    741     if (methods_class->IsInterface()) {
    742       actual_method = methods_class->FindVirtualMethodForInterfaceSuper(
    743           resolved_method, class_linker->GetImagePointerSize());
    744     } else {
    745       uint16_t vtable_index = resolved_method->GetMethodIndex();
    746       actual_method = compiling_class->GetSuperClass()->GetVTableEntry(
    747           vtable_index, class_linker->GetImagePointerSize());
    748     }
    749     if (actual_method != resolved_method &&
    750         !IsSameDexFile(*actual_method->GetDexFile(), *dex_compilation_unit_->GetDexFile())) {
    751       // The back-end code generator relies on this check in order to ensure that it will not
    752       // attempt to read the dex_cache with a dex_method_index that is not from the correct
    753       // dex_file. If we didn't do this check then the dex_method_index will not be updated in the
    754       // builder, which means that the code-generator (and compiler driver during sharpening and
    755       // inliner, maybe) might invoke an incorrect method.
    756       // TODO: The actual method could still be referenced in the current dex file, so we
    757       //       could try locating it.
    758       // TODO: Remove the dex_file restriction.
    759       return nullptr;
    760     }
    761     if (!actual_method->IsInvokable()) {
    762       // Fail if the actual method cannot be invoked. Otherwise, the runtime resolution stub
    763       // could resolve the callee to the wrong method.
    764       return nullptr;
    765     }
    766     resolved_method = actual_method;
    767   }
    768 
    769   // Check for incompatible class changes. The class linker has a fast path for
    770   // looking into the dex cache and does not check incompatible class changes if it hits it.
    771   if (resolved_method->CheckIncompatibleClassChange(invoke_type)) {
    772     return nullptr;
    773   }
    774 
    775   return resolved_method;
    776 }
    777 
    778 static bool IsStringConstructor(ArtMethod* method) {
    779   ScopedObjectAccess soa(Thread::Current());
    780   return method->GetDeclaringClass()->IsStringClass() && method->IsConstructor();
    781 }
    782 
    783 bool HInstructionBuilder::BuildInvoke(const Instruction& instruction,
    784                                       uint32_t dex_pc,
    785                                       uint32_t method_idx,
    786                                       uint32_t number_of_vreg_arguments,
    787                                       bool is_range,
    788                                       uint32_t* args,
    789                                       uint32_t register_index) {
    790   InvokeType invoke_type = GetInvokeTypeFromOpCode(instruction.Opcode());
    791   const char* descriptor = dex_file_->GetMethodShorty(method_idx);
    792   Primitive::Type return_type = Primitive::GetType(descriptor[0]);
    793 
    794   // Remove the return type from the 'proto'.
    795   size_t number_of_arguments = strlen(descriptor) - 1;
    796   if (invoke_type != kStatic) {  // instance call
    797     // One extra argument for 'this'.
    798     number_of_arguments++;
    799   }
    800 
    801   ArtMethod* resolved_method = ResolveMethod(method_idx, invoke_type);
    802 
    803   if (UNLIKELY(resolved_method == nullptr)) {
    804     MaybeRecordStat(MethodCompilationStat::kUnresolvedMethod);
    805     HInvoke* invoke = new (arena_) HInvokeUnresolved(arena_,
    806                                                      number_of_arguments,
    807                                                      return_type,
    808                                                      dex_pc,
    809                                                      method_idx,
    810                                                      invoke_type);
    811     return HandleInvoke(invoke,
    812                         number_of_vreg_arguments,
    813                         args,
    814                         register_index,
    815                         is_range,
    816                         descriptor,
    817                         nullptr, /* clinit_check */
    818                         true /* is_unresolved */);
    819   }
    820 
    821   // Replace calls to String.<init> with StringFactory.
    822   if (IsStringConstructor(resolved_method)) {
    823     uint32_t string_init_entry_point = WellKnownClasses::StringInitToEntryPoint(resolved_method);
    824     HInvokeStaticOrDirect::DispatchInfo dispatch_info = {
    825         HInvokeStaticOrDirect::MethodLoadKind::kStringInit,
    826         HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod,
    827         dchecked_integral_cast<uint64_t>(string_init_entry_point)
    828     };
    829     MethodReference target_method(dex_file_, method_idx);
    830     HInvoke* invoke = new (arena_) HInvokeStaticOrDirect(
    831         arena_,
    832         number_of_arguments - 1,
    833         Primitive::kPrimNot /*return_type */,
    834         dex_pc,
    835         method_idx,
    836         nullptr,
    837         dispatch_info,
    838         invoke_type,
    839         target_method,
    840         HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit);
    841     return HandleStringInit(invoke,
    842                             number_of_vreg_arguments,
    843                             args,
    844                             register_index,
    845                             is_range,
    846                             descriptor);
    847   }
    848 
    849   // Potential class initialization check, in the case of a static method call.
    850   HClinitCheck* clinit_check = nullptr;
    851   HInvoke* invoke = nullptr;
    852   if (invoke_type == kDirect || invoke_type == kStatic || invoke_type == kSuper) {
    853     // By default, consider that the called method implicitly requires
    854     // an initialization check of its declaring method.
    855     HInvokeStaticOrDirect::ClinitCheckRequirement clinit_check_requirement
    856         = HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit;
    857     ScopedObjectAccess soa(Thread::Current());
    858     if (invoke_type == kStatic) {
    859       clinit_check = ProcessClinitCheckForInvoke(
    860           dex_pc, resolved_method, &clinit_check_requirement);
    861     } else if (invoke_type == kSuper) {
    862       if (IsSameDexFile(*resolved_method->GetDexFile(), *dex_compilation_unit_->GetDexFile())) {
    863         // Update the method index to the one resolved. Note that this may be a no-op if
    864         // we resolved to the method referenced by the instruction.
    865         method_idx = resolved_method->GetDexMethodIndex();
    866       }
    867     }
    868 
    869     HInvokeStaticOrDirect::DispatchInfo dispatch_info = {
    870         HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod,
    871         HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod,
    872         0u
    873     };
    874     MethodReference target_method(resolved_method->GetDexFile(),
    875                                   resolved_method->GetDexMethodIndex());
    876     invoke = new (arena_) HInvokeStaticOrDirect(arena_,
    877                                                 number_of_arguments,
    878                                                 return_type,
    879                                                 dex_pc,
    880                                                 method_idx,
    881                                                 resolved_method,
    882                                                 dispatch_info,
    883                                                 invoke_type,
    884                                                 target_method,
    885                                                 clinit_check_requirement);
    886   } else if (invoke_type == kVirtual) {
    887     ScopedObjectAccess soa(Thread::Current());  // Needed for the method index
    888     invoke = new (arena_) HInvokeVirtual(arena_,
    889                                          number_of_arguments,
    890                                          return_type,
    891                                          dex_pc,
    892                                          method_idx,
    893                                          resolved_method,
    894                                          resolved_method->GetMethodIndex());
    895   } else {
    896     DCHECK_EQ(invoke_type, kInterface);
    897     ScopedObjectAccess soa(Thread::Current());  // Needed for the IMT index.
    898     invoke = new (arena_) HInvokeInterface(arena_,
    899                                            number_of_arguments,
    900                                            return_type,
    901                                            dex_pc,
    902                                            method_idx,
    903                                            resolved_method,
    904                                            ImTable::GetImtIndex(resolved_method));
    905   }
    906 
    907   return HandleInvoke(invoke,
    908                       number_of_vreg_arguments,
    909                       args,
    910                       register_index,
    911                       is_range,
    912                       descriptor,
    913                       clinit_check,
    914                       false /* is_unresolved */);
    915 }
    916 
    917 bool HInstructionBuilder::BuildInvokePolymorphic(const Instruction& instruction ATTRIBUTE_UNUSED,
    918                                                  uint32_t dex_pc,
    919                                                  uint32_t method_idx,
    920                                                  uint32_t proto_idx,
    921                                                  uint32_t number_of_vreg_arguments,
    922                                                  bool is_range,
    923                                                  uint32_t* args,
    924                                                  uint32_t register_index) {
    925   const char* descriptor = dex_file_->GetShorty(proto_idx);
    926   DCHECK_EQ(1 + ArtMethod::NumArgRegisters(descriptor), number_of_vreg_arguments);
    927   Primitive::Type return_type = Primitive::GetType(descriptor[0]);
    928   size_t number_of_arguments = strlen(descriptor);
    929   HInvoke* invoke = new (arena_) HInvokePolymorphic(arena_,
    930                                                     number_of_arguments,
    931                                                     return_type,
    932                                                     dex_pc,
    933                                                     method_idx);
    934   return HandleInvoke(invoke,
    935                       number_of_vreg_arguments,
    936                       args,
    937                       register_index,
    938                       is_range,
    939                       descriptor,
    940                       nullptr /* clinit_check */,
    941                       false /* is_unresolved */);
    942 }
    943 
    944 bool HInstructionBuilder::BuildNewInstance(dex::TypeIndex type_index, uint32_t dex_pc) {
    945   ScopedObjectAccess soa(Thread::Current());
    946 
    947   HLoadClass* load_class = BuildLoadClass(type_index, dex_pc);
    948 
    949   HInstruction* cls = load_class;
    950   Handle<mirror::Class> klass = load_class->GetClass();
    951 
    952   if (!IsInitialized(klass)) {
    953     cls = new (arena_) HClinitCheck(load_class, dex_pc);
    954     AppendInstruction(cls);
    955   }
    956 
    957   // Only the access check entrypoint handles the finalizable class case. If we
    958   // need access checks, then we haven't resolved the method and the class may
    959   // again be finalizable.
    960   QuickEntrypointEnum entrypoint = kQuickAllocObjectInitialized;
    961   if (load_class->NeedsAccessCheck() || klass->IsFinalizable() || !klass->IsInstantiable()) {
    962     entrypoint = kQuickAllocObjectWithChecks;
    963   }
    964 
    965   // Consider classes we haven't resolved as potentially finalizable.
    966   bool finalizable = (klass == nullptr) || klass->IsFinalizable();
    967 
    968   AppendInstruction(new (arena_) HNewInstance(
    969       cls,
    970       dex_pc,
    971       type_index,
    972       *dex_compilation_unit_->GetDexFile(),
    973       finalizable,
    974       entrypoint));
    975   return true;
    976 }
    977 
    978 static bool IsSubClass(mirror::Class* to_test, mirror::Class* super_class)
    979     REQUIRES_SHARED(Locks::mutator_lock_) {
    980   return to_test != nullptr && !to_test->IsInterface() && to_test->IsSubClass(super_class);
    981 }
    982 
    983 bool HInstructionBuilder::IsInitialized(Handle<mirror::Class> cls) const {
    984   if (cls == nullptr) {
    985     return false;
    986   }
    987 
    988   // `CanAssumeClassIsLoaded` will return true if we're JITting, or will
    989   // check whether the class is in an image for the AOT compilation.
    990   if (cls->IsInitialized() &&
    991       compiler_driver_->CanAssumeClassIsLoaded(cls.Get())) {
    992     return true;
    993   }
    994 
    995   if (IsSubClass(GetOutermostCompilingClass(), cls.Get())) {
    996     return true;
    997   }
    998 
    999   // TODO: We should walk over the inlined methods, but we don't pass
   1000   //       that information to the builder.
   1001   if (IsSubClass(GetCompilingClass(), cls.Get())) {
   1002     return true;
   1003   }
   1004 
   1005   return false;
   1006 }
   1007 
   1008 HClinitCheck* HInstructionBuilder::ProcessClinitCheckForInvoke(
   1009       uint32_t dex_pc,
   1010       ArtMethod* resolved_method,
   1011       HInvokeStaticOrDirect::ClinitCheckRequirement* clinit_check_requirement) {
   1012   Handle<mirror::Class> klass = handles_->NewHandle(resolved_method->GetDeclaringClass());
   1013 
   1014   HClinitCheck* clinit_check = nullptr;
   1015   if (IsInitialized(klass)) {
   1016     *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kNone;
   1017   } else {
   1018     HLoadClass* cls = BuildLoadClass(klass->GetDexTypeIndex(),
   1019                                      klass->GetDexFile(),
   1020                                      klass,
   1021                                      dex_pc,
   1022                                      /* needs_access_check */ false);
   1023     if (cls != nullptr) {
   1024       *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit;
   1025       clinit_check = new (arena_) HClinitCheck(cls, dex_pc);
   1026       AppendInstruction(clinit_check);
   1027     }
   1028   }
   1029   return clinit_check;
   1030 }
   1031 
   1032 bool HInstructionBuilder::SetupInvokeArguments(HInvoke* invoke,
   1033                                                uint32_t number_of_vreg_arguments,
   1034                                                uint32_t* args,
   1035                                                uint32_t register_index,
   1036                                                bool is_range,
   1037                                                const char* descriptor,
   1038                                                size_t start_index,
   1039                                                size_t* argument_index) {
   1040   uint32_t descriptor_index = 1;  // Skip the return type.
   1041 
   1042   for (size_t i = start_index;
   1043        // Make sure we don't go over the expected arguments or over the number of
   1044        // dex registers given. If the instruction was seen as dead by the verifier,
   1045        // it hasn't been properly checked.
   1046        (i < number_of_vreg_arguments) && (*argument_index < invoke->GetNumberOfArguments());
   1047        i++, (*argument_index)++) {
   1048     Primitive::Type type = Primitive::GetType(descriptor[descriptor_index++]);
   1049     bool is_wide = (type == Primitive::kPrimLong) || (type == Primitive::kPrimDouble);
   1050     if (!is_range
   1051         && is_wide
   1052         && ((i + 1 == number_of_vreg_arguments) || (args[i] + 1 != args[i + 1]))) {
   1053       // Longs and doubles should be in pairs, that is, sequential registers. The verifier should
   1054       // reject any class where this is violated. However, the verifier only does these checks
   1055       // on non trivially dead instructions, so we just bailout the compilation.
   1056       VLOG(compiler) << "Did not compile "
   1057                      << dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex())
   1058                      << " because of non-sequential dex register pair in wide argument";
   1059       MaybeRecordStat(MethodCompilationStat::kNotCompiledMalformedOpcode);
   1060       return false;
   1061     }
   1062     HInstruction* arg = LoadLocal(is_range ? register_index + i : args[i], type);
   1063     invoke->SetArgumentAt(*argument_index, arg);
   1064     if (is_wide) {
   1065       i++;
   1066     }
   1067   }
   1068 
   1069   if (*argument_index != invoke->GetNumberOfArguments()) {
   1070     VLOG(compiler) << "Did not compile "
   1071                    << dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex())
   1072                    << " because of wrong number of arguments in invoke instruction";
   1073     MaybeRecordStat(MethodCompilationStat::kNotCompiledMalformedOpcode);
   1074     return false;
   1075   }
   1076 
   1077   if (invoke->IsInvokeStaticOrDirect() &&
   1078       HInvokeStaticOrDirect::NeedsCurrentMethodInput(
   1079           invoke->AsInvokeStaticOrDirect()->GetMethodLoadKind())) {
   1080     invoke->SetArgumentAt(*argument_index, graph_->GetCurrentMethod());
   1081     (*argument_index)++;
   1082   }
   1083 
   1084   return true;
   1085 }
   1086 
   1087 bool HInstructionBuilder::HandleInvoke(HInvoke* invoke,
   1088                                        uint32_t number_of_vreg_arguments,
   1089                                        uint32_t* args,
   1090                                        uint32_t register_index,
   1091                                        bool is_range,
   1092                                        const char* descriptor,
   1093                                        HClinitCheck* clinit_check,
   1094                                        bool is_unresolved) {
   1095   DCHECK(!invoke->IsInvokeStaticOrDirect() || !invoke->AsInvokeStaticOrDirect()->IsStringInit());
   1096 
   1097   size_t start_index = 0;
   1098   size_t argument_index = 0;
   1099   if (invoke->GetInvokeType() != InvokeType::kStatic) {  // Instance call.
   1100     uint32_t obj_reg = is_range ? register_index : args[0];
   1101     HInstruction* arg = is_unresolved
   1102         ? LoadLocal(obj_reg, Primitive::kPrimNot)
   1103         : LoadNullCheckedLocal(obj_reg, invoke->GetDexPc());
   1104     invoke->SetArgumentAt(0, arg);
   1105     start_index = 1;
   1106     argument_index = 1;
   1107   }
   1108 
   1109   if (!SetupInvokeArguments(invoke,
   1110                             number_of_vreg_arguments,
   1111                             args,
   1112                             register_index,
   1113                             is_range,
   1114                             descriptor,
   1115                             start_index,
   1116                             &argument_index)) {
   1117     return false;
   1118   }
   1119 
   1120   if (clinit_check != nullptr) {
   1121     // Add the class initialization check as last input of `invoke`.
   1122     DCHECK(invoke->IsInvokeStaticOrDirect());
   1123     DCHECK(invoke->AsInvokeStaticOrDirect()->GetClinitCheckRequirement()
   1124         == HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit);
   1125     invoke->SetArgumentAt(argument_index, clinit_check);
   1126     argument_index++;
   1127   }
   1128 
   1129   AppendInstruction(invoke);
   1130   latest_result_ = invoke;
   1131 
   1132   return true;
   1133 }
   1134 
   1135 bool HInstructionBuilder::HandleStringInit(HInvoke* invoke,
   1136                                            uint32_t number_of_vreg_arguments,
   1137                                            uint32_t* args,
   1138                                            uint32_t register_index,
   1139                                            bool is_range,
   1140                                            const char* descriptor) {
   1141   DCHECK(invoke->IsInvokeStaticOrDirect());
   1142   DCHECK(invoke->AsInvokeStaticOrDirect()->IsStringInit());
   1143 
   1144   size_t start_index = 1;
   1145   size_t argument_index = 0;
   1146   if (!SetupInvokeArguments(invoke,
   1147                             number_of_vreg_arguments,
   1148                             args,
   1149                             register_index,
   1150                             is_range,
   1151                             descriptor,
   1152                             start_index,
   1153                             &argument_index)) {
   1154     return false;
   1155   }
   1156 
   1157   AppendInstruction(invoke);
   1158 
   1159   // This is a StringFactory call, not an actual String constructor. Its result
   1160   // replaces the empty String pre-allocated by NewInstance.
   1161   uint32_t orig_this_reg = is_range ? register_index : args[0];
   1162   HInstruction* arg_this = LoadLocal(orig_this_reg, Primitive::kPrimNot);
   1163 
   1164   // Replacing the NewInstance might render it redundant. Keep a list of these
   1165   // to be visited once it is clear whether it is has remaining uses.
   1166   if (arg_this->IsNewInstance()) {
   1167     ssa_builder_->AddUninitializedString(arg_this->AsNewInstance());
   1168   } else {
   1169     DCHECK(arg_this->IsPhi());
   1170     // NewInstance is not the direct input of the StringFactory call. It might
   1171     // be redundant but optimizing this case is not worth the effort.
   1172   }
   1173 
   1174   // Walk over all vregs and replace any occurrence of `arg_this` with `invoke`.
   1175   for (size_t vreg = 0, e = current_locals_->size(); vreg < e; ++vreg) {
   1176     if ((*current_locals_)[vreg] == arg_this) {
   1177       (*current_locals_)[vreg] = invoke;
   1178     }
   1179   }
   1180 
   1181   return true;
   1182 }
   1183 
   1184 static Primitive::Type GetFieldAccessType(const DexFile& dex_file, uint16_t field_index) {
   1185   const DexFile::FieldId& field_id = dex_file.GetFieldId(field_index);
   1186   const char* type = dex_file.GetFieldTypeDescriptor(field_id);
   1187   return Primitive::GetType(type[0]);
   1188 }
   1189 
   1190 bool HInstructionBuilder::BuildInstanceFieldAccess(const Instruction& instruction,
   1191                                                    uint32_t dex_pc,
   1192                                                    bool is_put) {
   1193   uint32_t source_or_dest_reg = instruction.VRegA_22c();
   1194   uint32_t obj_reg = instruction.VRegB_22c();
   1195   uint16_t field_index;
   1196   if (instruction.IsQuickened()) {
   1197     if (!CanDecodeQuickenedInfo()) {
   1198       return false;
   1199     }
   1200     field_index = LookupQuickenedInfo(dex_pc);
   1201   } else {
   1202     field_index = instruction.VRegC_22c();
   1203   }
   1204 
   1205   ScopedObjectAccess soa(Thread::Current());
   1206   ArtField* resolved_field = ResolveField(field_index, /* is_static */ false, is_put);
   1207 
   1208   // Generate an explicit null check on the reference, unless the field access
   1209   // is unresolved. In that case, we rely on the runtime to perform various
   1210   // checks first, followed by a null check.
   1211   HInstruction* object = (resolved_field == nullptr)
   1212       ? LoadLocal(obj_reg, Primitive::kPrimNot)
   1213       : LoadNullCheckedLocal(obj_reg, dex_pc);
   1214 
   1215   Primitive::Type field_type = (resolved_field == nullptr)
   1216       ? GetFieldAccessType(*dex_file_, field_index)
   1217       : resolved_field->GetTypeAsPrimitiveType();
   1218   if (is_put) {
   1219     HInstruction* value = LoadLocal(source_or_dest_reg, field_type);
   1220     HInstruction* field_set = nullptr;
   1221     if (resolved_field == nullptr) {
   1222       MaybeRecordStat(MethodCompilationStat::kUnresolvedField);
   1223       field_set = new (arena_) HUnresolvedInstanceFieldSet(object,
   1224                                                            value,
   1225                                                            field_type,
   1226                                                            field_index,
   1227                                                            dex_pc);
   1228     } else {
   1229       uint16_t class_def_index = resolved_field->GetDeclaringClass()->GetDexClassDefIndex();
   1230       field_set = new (arena_) HInstanceFieldSet(object,
   1231                                                  value,
   1232                                                  resolved_field,
   1233                                                  field_type,
   1234                                                  resolved_field->GetOffset(),
   1235                                                  resolved_field->IsVolatile(),
   1236                                                  field_index,
   1237                                                  class_def_index,
   1238                                                  *dex_file_,
   1239                                                  dex_pc);
   1240     }
   1241     AppendInstruction(field_set);
   1242   } else {
   1243     HInstruction* field_get = nullptr;
   1244     if (resolved_field == nullptr) {
   1245       MaybeRecordStat(MethodCompilationStat::kUnresolvedField);
   1246       field_get = new (arena_) HUnresolvedInstanceFieldGet(object,
   1247                                                            field_type,
   1248                                                            field_index,
   1249                                                            dex_pc);
   1250     } else {
   1251       uint16_t class_def_index = resolved_field->GetDeclaringClass()->GetDexClassDefIndex();
   1252       field_get = new (arena_) HInstanceFieldGet(object,
   1253                                                  resolved_field,
   1254                                                  field_type,
   1255                                                  resolved_field->GetOffset(),
   1256                                                  resolved_field->IsVolatile(),
   1257                                                  field_index,
   1258                                                  class_def_index,
   1259                                                  *dex_file_,
   1260                                                  dex_pc);
   1261     }
   1262     AppendInstruction(field_get);
   1263     UpdateLocal(source_or_dest_reg, field_get);
   1264   }
   1265 
   1266   return true;
   1267 }
   1268 
   1269 static mirror::Class* GetClassFrom(CompilerDriver* driver,
   1270                                    const DexCompilationUnit& compilation_unit) {
   1271   ScopedObjectAccess soa(Thread::Current());
   1272   Handle<mirror::ClassLoader> class_loader = compilation_unit.GetClassLoader();
   1273   Handle<mirror::DexCache> dex_cache = compilation_unit.GetDexCache();
   1274 
   1275   return driver->ResolveCompilingMethodsClass(soa, dex_cache, class_loader, &compilation_unit);
   1276 }
   1277 
   1278 mirror::Class* HInstructionBuilder::GetOutermostCompilingClass() const {
   1279   return GetClassFrom(compiler_driver_, *outer_compilation_unit_);
   1280 }
   1281 
   1282 mirror::Class* HInstructionBuilder::GetCompilingClass() const {
   1283   return GetClassFrom(compiler_driver_, *dex_compilation_unit_);
   1284 }
   1285 
   1286 bool HInstructionBuilder::IsOutermostCompilingClass(dex::TypeIndex type_index) const {
   1287   ScopedObjectAccess soa(Thread::Current());
   1288   StackHandleScope<2> hs(soa.Self());
   1289   Handle<mirror::DexCache> dex_cache = dex_compilation_unit_->GetDexCache();
   1290   Handle<mirror::ClassLoader> class_loader = dex_compilation_unit_->GetClassLoader();
   1291   Handle<mirror::Class> cls(hs.NewHandle(compiler_driver_->ResolveClass(
   1292       soa, dex_cache, class_loader, type_index, dex_compilation_unit_)));
   1293   Handle<mirror::Class> outer_class(hs.NewHandle(GetOutermostCompilingClass()));
   1294 
   1295   // GetOutermostCompilingClass returns null when the class is unresolved
   1296   // (e.g. if it derives from an unresolved class). This is bogus knowing that
   1297   // we are compiling it.
   1298   // When this happens we cannot establish a direct relation between the current
   1299   // class and the outer class, so we return false.
   1300   // (Note that this is only used for optimizing invokes and field accesses)
   1301   return (cls != nullptr) && (outer_class.Get() == cls.Get());
   1302 }
   1303 
   1304 void HInstructionBuilder::BuildUnresolvedStaticFieldAccess(const Instruction& instruction,
   1305                                                            uint32_t dex_pc,
   1306                                                            bool is_put,
   1307                                                            Primitive::Type field_type) {
   1308   uint32_t source_or_dest_reg = instruction.VRegA_21c();
   1309   uint16_t field_index = instruction.VRegB_21c();
   1310 
   1311   if (is_put) {
   1312     HInstruction* value = LoadLocal(source_or_dest_reg, field_type);
   1313     AppendInstruction(
   1314         new (arena_) HUnresolvedStaticFieldSet(value, field_type, field_index, dex_pc));
   1315   } else {
   1316     AppendInstruction(new (arena_) HUnresolvedStaticFieldGet(field_type, field_index, dex_pc));
   1317     UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction());
   1318   }
   1319 }
   1320 
   1321 ArtField* HInstructionBuilder::ResolveField(uint16_t field_idx, bool is_static, bool is_put) {
   1322   ScopedObjectAccess soa(Thread::Current());
   1323   StackHandleScope<2> hs(soa.Self());
   1324 
   1325   ClassLinker* class_linker = dex_compilation_unit_->GetClassLinker();
   1326   Handle<mirror::ClassLoader> class_loader = dex_compilation_unit_->GetClassLoader();
   1327   Handle<mirror::Class> compiling_class(hs.NewHandle(GetCompilingClass()));
   1328 
   1329   ArtField* resolved_field = class_linker->ResolveField(*dex_compilation_unit_->GetDexFile(),
   1330                                                         field_idx,
   1331                                                         dex_compilation_unit_->GetDexCache(),
   1332                                                         class_loader,
   1333                                                         is_static);
   1334 
   1335   if (UNLIKELY(resolved_field == nullptr)) {
   1336     // Clean up any exception left by type resolution.
   1337     soa.Self()->ClearException();
   1338     return nullptr;
   1339   }
   1340 
   1341   // Check static/instance. The class linker has a fast path for looking into the dex cache
   1342   // and does not check static/instance if it hits it.
   1343   if (UNLIKELY(resolved_field->IsStatic() != is_static)) {
   1344     return nullptr;
   1345   }
   1346 
   1347   // Check access.
   1348   if (compiling_class == nullptr) {
   1349     if (!resolved_field->IsPublic()) {
   1350       return nullptr;
   1351     }
   1352   } else if (!compiling_class->CanAccessResolvedField(resolved_field->GetDeclaringClass(),
   1353                                                       resolved_field,
   1354                                                       dex_compilation_unit_->GetDexCache().Get(),
   1355                                                       field_idx)) {
   1356     return nullptr;
   1357   }
   1358 
   1359   if (is_put &&
   1360       resolved_field->IsFinal() &&
   1361       (compiling_class.Get() != resolved_field->GetDeclaringClass())) {
   1362     // Final fields can only be updated within their own class.
   1363     // TODO: Only allow it in constructors. b/34966607.
   1364     return nullptr;
   1365   }
   1366 
   1367   return resolved_field;
   1368 }
   1369 
   1370 bool HInstructionBuilder::BuildStaticFieldAccess(const Instruction& instruction,
   1371                                                  uint32_t dex_pc,
   1372                                                  bool is_put) {
   1373   uint32_t source_or_dest_reg = instruction.VRegA_21c();
   1374   uint16_t field_index = instruction.VRegB_21c();
   1375 
   1376   ScopedObjectAccess soa(Thread::Current());
   1377   ArtField* resolved_field = ResolveField(field_index, /* is_static */ true, is_put);
   1378 
   1379   if (resolved_field == nullptr) {
   1380     MaybeRecordStat(MethodCompilationStat::kUnresolvedField);
   1381     Primitive::Type field_type = GetFieldAccessType(*dex_file_, field_index);
   1382     BuildUnresolvedStaticFieldAccess(instruction, dex_pc, is_put, field_type);
   1383     return true;
   1384   }
   1385 
   1386   Primitive::Type field_type = resolved_field->GetTypeAsPrimitiveType();
   1387 
   1388   Handle<mirror::Class> klass = handles_->NewHandle(resolved_field->GetDeclaringClass());
   1389   HLoadClass* constant = BuildLoadClass(klass->GetDexTypeIndex(),
   1390                                         klass->GetDexFile(),
   1391                                         klass,
   1392                                         dex_pc,
   1393                                         /* needs_access_check */ false);
   1394 
   1395   if (constant == nullptr) {
   1396     // The class cannot be referenced from this compiled code. Generate
   1397     // an unresolved access.
   1398     MaybeRecordStat(MethodCompilationStat::kUnresolvedFieldNotAFastAccess);
   1399     BuildUnresolvedStaticFieldAccess(instruction, dex_pc, is_put, field_type);
   1400     return true;
   1401   }
   1402 
   1403   HInstruction* cls = constant;
   1404   if (!IsInitialized(klass)) {
   1405     cls = new (arena_) HClinitCheck(constant, dex_pc);
   1406     AppendInstruction(cls);
   1407   }
   1408 
   1409   uint16_t class_def_index = klass->GetDexClassDefIndex();
   1410   if (is_put) {
   1411     // We need to keep the class alive before loading the value.
   1412     HInstruction* value = LoadLocal(source_or_dest_reg, field_type);
   1413     DCHECK_EQ(HPhi::ToPhiType(value->GetType()), HPhi::ToPhiType(field_type));
   1414     AppendInstruction(new (arena_) HStaticFieldSet(cls,
   1415                                                    value,
   1416                                                    resolved_field,
   1417                                                    field_type,
   1418                                                    resolved_field->GetOffset(),
   1419                                                    resolved_field->IsVolatile(),
   1420                                                    field_index,
   1421                                                    class_def_index,
   1422                                                    *dex_file_,
   1423                                                    dex_pc));
   1424   } else {
   1425     AppendInstruction(new (arena_) HStaticFieldGet(cls,
   1426                                                    resolved_field,
   1427                                                    field_type,
   1428                                                    resolved_field->GetOffset(),
   1429                                                    resolved_field->IsVolatile(),
   1430                                                    field_index,
   1431                                                    class_def_index,
   1432                                                    *dex_file_,
   1433                                                    dex_pc));
   1434     UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction());
   1435   }
   1436   return true;
   1437 }
   1438 
   1439 void HInstructionBuilder::BuildCheckedDivRem(uint16_t out_vreg,
   1440                                        uint16_t first_vreg,
   1441                                        int64_t second_vreg_or_constant,
   1442                                        uint32_t dex_pc,
   1443                                        Primitive::Type type,
   1444                                        bool second_is_constant,
   1445                                        bool isDiv) {
   1446   DCHECK(type == Primitive::kPrimInt || type == Primitive::kPrimLong);
   1447 
   1448   HInstruction* first = LoadLocal(first_vreg, type);
   1449   HInstruction* second = nullptr;
   1450   if (second_is_constant) {
   1451     if (type == Primitive::kPrimInt) {
   1452       second = graph_->GetIntConstant(second_vreg_or_constant, dex_pc);
   1453     } else {
   1454       second = graph_->GetLongConstant(second_vreg_or_constant, dex_pc);
   1455     }
   1456   } else {
   1457     second = LoadLocal(second_vreg_or_constant, type);
   1458   }
   1459 
   1460   if (!second_is_constant
   1461       || (type == Primitive::kPrimInt && second->AsIntConstant()->GetValue() == 0)
   1462       || (type == Primitive::kPrimLong && second->AsLongConstant()->GetValue() == 0)) {
   1463     second = new (arena_) HDivZeroCheck(second, dex_pc);
   1464     AppendInstruction(second);
   1465   }
   1466 
   1467   if (isDiv) {
   1468     AppendInstruction(new (arena_) HDiv(type, first, second, dex_pc));
   1469   } else {
   1470     AppendInstruction(new (arena_) HRem(type, first, second, dex_pc));
   1471   }
   1472   UpdateLocal(out_vreg, current_block_->GetLastInstruction());
   1473 }
   1474 
   1475 void HInstructionBuilder::BuildArrayAccess(const Instruction& instruction,
   1476                                            uint32_t dex_pc,
   1477                                            bool is_put,
   1478                                            Primitive::Type anticipated_type) {
   1479   uint8_t source_or_dest_reg = instruction.VRegA_23x();
   1480   uint8_t array_reg = instruction.VRegB_23x();
   1481   uint8_t index_reg = instruction.VRegC_23x();
   1482 
   1483   HInstruction* object = LoadNullCheckedLocal(array_reg, dex_pc);
   1484   HInstruction* length = new (arena_) HArrayLength(object, dex_pc);
   1485   AppendInstruction(length);
   1486   HInstruction* index = LoadLocal(index_reg, Primitive::kPrimInt);
   1487   index = new (arena_) HBoundsCheck(index, length, dex_pc);
   1488   AppendInstruction(index);
   1489   if (is_put) {
   1490     HInstruction* value = LoadLocal(source_or_dest_reg, anticipated_type);
   1491     // TODO: Insert a type check node if the type is Object.
   1492     HArraySet* aset = new (arena_) HArraySet(object, index, value, anticipated_type, dex_pc);
   1493     ssa_builder_->MaybeAddAmbiguousArraySet(aset);
   1494     AppendInstruction(aset);
   1495   } else {
   1496     HArrayGet* aget = new (arena_) HArrayGet(object, index, anticipated_type, dex_pc);
   1497     ssa_builder_->MaybeAddAmbiguousArrayGet(aget);
   1498     AppendInstruction(aget);
   1499     UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction());
   1500   }
   1501   graph_->SetHasBoundsChecks(true);
   1502 }
   1503 
   1504 void HInstructionBuilder::BuildFilledNewArray(uint32_t dex_pc,
   1505                                               dex::TypeIndex type_index,
   1506                                               uint32_t number_of_vreg_arguments,
   1507                                               bool is_range,
   1508                                               uint32_t* args,
   1509                                               uint32_t register_index) {
   1510   HInstruction* length = graph_->GetIntConstant(number_of_vreg_arguments, dex_pc);
   1511   HLoadClass* cls = BuildLoadClass(type_index, dex_pc);
   1512   HInstruction* object = new (arena_) HNewArray(cls, length, dex_pc);
   1513   AppendInstruction(object);
   1514 
   1515   const char* descriptor = dex_file_->StringByTypeIdx(type_index);
   1516   DCHECK_EQ(descriptor[0], '[') << descriptor;
   1517   char primitive = descriptor[1];
   1518   DCHECK(primitive == 'I'
   1519       || primitive == 'L'
   1520       || primitive == '[') << descriptor;
   1521   bool is_reference_array = (primitive == 'L') || (primitive == '[');
   1522   Primitive::Type type = is_reference_array ? Primitive::kPrimNot : Primitive::kPrimInt;
   1523 
   1524   for (size_t i = 0; i < number_of_vreg_arguments; ++i) {
   1525     HInstruction* value = LoadLocal(is_range ? register_index + i : args[i], type);
   1526     HInstruction* index = graph_->GetIntConstant(i, dex_pc);
   1527     HArraySet* aset = new (arena_) HArraySet(object, index, value, type, dex_pc);
   1528     ssa_builder_->MaybeAddAmbiguousArraySet(aset);
   1529     AppendInstruction(aset);
   1530   }
   1531   latest_result_ = object;
   1532 }
   1533 
   1534 template <typename T>
   1535 void HInstructionBuilder::BuildFillArrayData(HInstruction* object,
   1536                                              const T* data,
   1537                                              uint32_t element_count,
   1538                                              Primitive::Type anticipated_type,
   1539                                              uint32_t dex_pc) {
   1540   for (uint32_t i = 0; i < element_count; ++i) {
   1541     HInstruction* index = graph_->GetIntConstant(i, dex_pc);
   1542     HInstruction* value = graph_->GetIntConstant(data[i], dex_pc);
   1543     HArraySet* aset = new (arena_) HArraySet(object, index, value, anticipated_type, dex_pc);
   1544     ssa_builder_->MaybeAddAmbiguousArraySet(aset);
   1545     AppendInstruction(aset);
   1546   }
   1547 }
   1548 
   1549 void HInstructionBuilder::BuildFillArrayData(const Instruction& instruction, uint32_t dex_pc) {
   1550   HInstruction* array = LoadNullCheckedLocal(instruction.VRegA_31t(), dex_pc);
   1551 
   1552   int32_t payload_offset = instruction.VRegB_31t() + dex_pc;
   1553   const Instruction::ArrayDataPayload* payload =
   1554       reinterpret_cast<const Instruction::ArrayDataPayload*>(code_item_.insns_ + payload_offset);
   1555   const uint8_t* data = payload->data;
   1556   uint32_t element_count = payload->element_count;
   1557 
   1558   if (element_count == 0u) {
   1559     // For empty payload we emit only the null check above.
   1560     return;
   1561   }
   1562 
   1563   HInstruction* length = new (arena_) HArrayLength(array, dex_pc);
   1564   AppendInstruction(length);
   1565 
   1566   // Implementation of this DEX instruction seems to be that the bounds check is
   1567   // done before doing any stores.
   1568   HInstruction* last_index = graph_->GetIntConstant(payload->element_count - 1, dex_pc);
   1569   AppendInstruction(new (arena_) HBoundsCheck(last_index, length, dex_pc));
   1570 
   1571   switch (payload->element_width) {
   1572     case 1:
   1573       BuildFillArrayData(array,
   1574                          reinterpret_cast<const int8_t*>(data),
   1575                          element_count,
   1576                          Primitive::kPrimByte,
   1577                          dex_pc);
   1578       break;
   1579     case 2:
   1580       BuildFillArrayData(array,
   1581                          reinterpret_cast<const int16_t*>(data),
   1582                          element_count,
   1583                          Primitive::kPrimShort,
   1584                          dex_pc);
   1585       break;
   1586     case 4:
   1587       BuildFillArrayData(array,
   1588                          reinterpret_cast<const int32_t*>(data),
   1589                          element_count,
   1590                          Primitive::kPrimInt,
   1591                          dex_pc);
   1592       break;
   1593     case 8:
   1594       BuildFillWideArrayData(array,
   1595                              reinterpret_cast<const int64_t*>(data),
   1596                              element_count,
   1597                              dex_pc);
   1598       break;
   1599     default:
   1600       LOG(FATAL) << "Unknown element width for " << payload->element_width;
   1601   }
   1602   graph_->SetHasBoundsChecks(true);
   1603 }
   1604 
   1605 void HInstructionBuilder::BuildFillWideArrayData(HInstruction* object,
   1606                                                  const int64_t* data,
   1607                                                  uint32_t element_count,
   1608                                                  uint32_t dex_pc) {
   1609   for (uint32_t i = 0; i < element_count; ++i) {
   1610     HInstruction* index = graph_->GetIntConstant(i, dex_pc);
   1611     HInstruction* value = graph_->GetLongConstant(data[i], dex_pc);
   1612     HArraySet* aset = new (arena_) HArraySet(object, index, value, Primitive::kPrimLong, dex_pc);
   1613     ssa_builder_->MaybeAddAmbiguousArraySet(aset);
   1614     AppendInstruction(aset);
   1615   }
   1616 }
   1617 
   1618 static TypeCheckKind ComputeTypeCheckKind(Handle<mirror::Class> cls)
   1619     REQUIRES_SHARED(Locks::mutator_lock_) {
   1620   if (cls == nullptr) {
   1621     return TypeCheckKind::kUnresolvedCheck;
   1622   } else if (cls->IsInterface()) {
   1623     return TypeCheckKind::kInterfaceCheck;
   1624   } else if (cls->IsArrayClass()) {
   1625     if (cls->GetComponentType()->IsObjectClass()) {
   1626       return TypeCheckKind::kArrayObjectCheck;
   1627     } else if (cls->CannotBeAssignedFromOtherTypes()) {
   1628       return TypeCheckKind::kExactCheck;
   1629     } else {
   1630       return TypeCheckKind::kArrayCheck;
   1631     }
   1632   } else if (cls->IsFinal()) {
   1633     return TypeCheckKind::kExactCheck;
   1634   } else if (cls->IsAbstract()) {
   1635     return TypeCheckKind::kAbstractClassCheck;
   1636   } else {
   1637     return TypeCheckKind::kClassHierarchyCheck;
   1638   }
   1639 }
   1640 
   1641 HLoadClass* HInstructionBuilder::BuildLoadClass(dex::TypeIndex type_index, uint32_t dex_pc) {
   1642   ScopedObjectAccess soa(Thread::Current());
   1643   const DexFile& dex_file = *dex_compilation_unit_->GetDexFile();
   1644   Handle<mirror::ClassLoader> class_loader = dex_compilation_unit_->GetClassLoader();
   1645   Handle<mirror::Class> klass = handles_->NewHandle(compiler_driver_->ResolveClass(
   1646       soa, dex_compilation_unit_->GetDexCache(), class_loader, type_index, dex_compilation_unit_));
   1647 
   1648   bool needs_access_check = true;
   1649   if (klass != nullptr) {
   1650     if (klass->IsPublic()) {
   1651       needs_access_check = false;
   1652     } else {
   1653       mirror::Class* compiling_class = GetCompilingClass();
   1654       if (compiling_class != nullptr && compiling_class->CanAccess(klass.Get())) {
   1655         needs_access_check = false;
   1656       }
   1657     }
   1658   }
   1659 
   1660   return BuildLoadClass(type_index, dex_file, klass, dex_pc, needs_access_check);
   1661 }
   1662 
   1663 HLoadClass* HInstructionBuilder::BuildLoadClass(dex::TypeIndex type_index,
   1664                                                 const DexFile& dex_file,
   1665                                                 Handle<mirror::Class> klass,
   1666                                                 uint32_t dex_pc,
   1667                                                 bool needs_access_check) {
   1668   // Try to find a reference in the compiling dex file.
   1669   const DexFile* actual_dex_file = &dex_file;
   1670   if (!IsSameDexFile(dex_file, *dex_compilation_unit_->GetDexFile())) {
   1671     dex::TypeIndex local_type_index =
   1672         klass->FindTypeIndexInOtherDexFile(*dex_compilation_unit_->GetDexFile());
   1673     if (local_type_index.IsValid()) {
   1674       type_index = local_type_index;
   1675       actual_dex_file = dex_compilation_unit_->GetDexFile();
   1676     }
   1677   }
   1678 
   1679   // Note: `klass` must be from `handles_`.
   1680   HLoadClass* load_class = new (arena_) HLoadClass(
   1681       graph_->GetCurrentMethod(),
   1682       type_index,
   1683       *actual_dex_file,
   1684       klass,
   1685       klass != nullptr && (klass.Get() == GetOutermostCompilingClass()),
   1686       dex_pc,
   1687       needs_access_check);
   1688 
   1689   HLoadClass::LoadKind load_kind = HSharpening::ComputeLoadClassKind(load_class,
   1690                                                                      code_generator_,
   1691                                                                      compiler_driver_,
   1692                                                                      *dex_compilation_unit_);
   1693 
   1694   if (load_kind == HLoadClass::LoadKind::kInvalid) {
   1695     // We actually cannot reference this class, we're forced to bail.
   1696     return nullptr;
   1697   }
   1698   // Append the instruction first, as setting the load kind affects the inputs.
   1699   AppendInstruction(load_class);
   1700   load_class->SetLoadKind(load_kind);
   1701   return load_class;
   1702 }
   1703 
   1704 void HInstructionBuilder::BuildTypeCheck(const Instruction& instruction,
   1705                                          uint8_t destination,
   1706                                          uint8_t reference,
   1707                                          dex::TypeIndex type_index,
   1708                                          uint32_t dex_pc) {
   1709   HInstruction* object = LoadLocal(reference, Primitive::kPrimNot);
   1710   HLoadClass* cls = BuildLoadClass(type_index, dex_pc);
   1711 
   1712   ScopedObjectAccess soa(Thread::Current());
   1713   TypeCheckKind check_kind = ComputeTypeCheckKind(cls->GetClass());
   1714   if (instruction.Opcode() == Instruction::INSTANCE_OF) {
   1715     AppendInstruction(new (arena_) HInstanceOf(object, cls, check_kind, dex_pc));
   1716     UpdateLocal(destination, current_block_->GetLastInstruction());
   1717   } else {
   1718     DCHECK_EQ(instruction.Opcode(), Instruction::CHECK_CAST);
   1719     // We emit a CheckCast followed by a BoundType. CheckCast is a statement
   1720     // which may throw. If it succeeds BoundType sets the new type of `object`
   1721     // for all subsequent uses.
   1722     AppendInstruction(new (arena_) HCheckCast(object, cls, check_kind, dex_pc));
   1723     AppendInstruction(new (arena_) HBoundType(object, dex_pc));
   1724     UpdateLocal(reference, current_block_->GetLastInstruction());
   1725   }
   1726 }
   1727 
   1728 bool HInstructionBuilder::NeedsAccessCheck(dex::TypeIndex type_index, bool* finalizable) const {
   1729   return !compiler_driver_->CanAccessInstantiableTypeWithoutChecks(
   1730       LookupReferrerClass(), LookupResolvedType(type_index, *dex_compilation_unit_), finalizable);
   1731 }
   1732 
   1733 bool HInstructionBuilder::CanDecodeQuickenedInfo() const {
   1734   return interpreter_metadata_ != nullptr;
   1735 }
   1736 
   1737 uint16_t HInstructionBuilder::LookupQuickenedInfo(uint32_t dex_pc) {
   1738   DCHECK(interpreter_metadata_ != nullptr);
   1739 
   1740   // First check if the info has already been decoded from `interpreter_metadata_`.
   1741   auto it = skipped_interpreter_metadata_.find(dex_pc);
   1742   if (it != skipped_interpreter_metadata_.end()) {
   1743     // Remove the entry from the map and return the parsed info.
   1744     uint16_t value_in_map = it->second;
   1745     skipped_interpreter_metadata_.erase(it);
   1746     return value_in_map;
   1747   }
   1748 
   1749   // Otherwise start parsing `interpreter_metadata_` until the slot for `dex_pc`
   1750   // is found. Store skipped values in the `skipped_interpreter_metadata_` map.
   1751   while (true) {
   1752     uint32_t dex_pc_in_map = DecodeUnsignedLeb128(&interpreter_metadata_);
   1753     uint16_t value_in_map = DecodeUnsignedLeb128(&interpreter_metadata_);
   1754     DCHECK_LE(dex_pc_in_map, dex_pc);
   1755 
   1756     if (dex_pc_in_map == dex_pc) {
   1757       return value_in_map;
   1758     } else {
   1759       // Overwrite and not Put, as quickened CHECK-CAST has two entries with
   1760       // the same dex_pc. This is OK, because the compiler does not care about those
   1761       // entries.
   1762       skipped_interpreter_metadata_.Overwrite(dex_pc_in_map, value_in_map);
   1763     }
   1764   }
   1765 }
   1766 
   1767 bool HInstructionBuilder::ProcessDexInstruction(const Instruction& instruction, uint32_t dex_pc) {
   1768   switch (instruction.Opcode()) {
   1769     case Instruction::CONST_4: {
   1770       int32_t register_index = instruction.VRegA();
   1771       HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_11n(), dex_pc);
   1772       UpdateLocal(register_index, constant);
   1773       break;
   1774     }
   1775 
   1776     case Instruction::CONST_16: {
   1777       int32_t register_index = instruction.VRegA();
   1778       HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21s(), dex_pc);
   1779       UpdateLocal(register_index, constant);
   1780       break;
   1781     }
   1782 
   1783     case Instruction::CONST: {
   1784       int32_t register_index = instruction.VRegA();
   1785       HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_31i(), dex_pc);
   1786       UpdateLocal(register_index, constant);
   1787       break;
   1788     }
   1789 
   1790     case Instruction::CONST_HIGH16: {
   1791       int32_t register_index = instruction.VRegA();
   1792       HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21h() << 16, dex_pc);
   1793       UpdateLocal(register_index, constant);
   1794       break;
   1795     }
   1796 
   1797     case Instruction::CONST_WIDE_16: {
   1798       int32_t register_index = instruction.VRegA();
   1799       // Get 16 bits of constant value, sign extended to 64 bits.
   1800       int64_t value = instruction.VRegB_21s();
   1801       value <<= 48;
   1802       value >>= 48;
   1803       HLongConstant* constant = graph_->GetLongConstant(value, dex_pc);
   1804       UpdateLocal(register_index, constant);
   1805       break;
   1806     }
   1807 
   1808     case Instruction::CONST_WIDE_32: {
   1809       int32_t register_index = instruction.VRegA();
   1810       // Get 32 bits of constant value, sign extended to 64 bits.
   1811       int64_t value = instruction.VRegB_31i();
   1812       value <<= 32;
   1813       value >>= 32;
   1814       HLongConstant* constant = graph_->GetLongConstant(value, dex_pc);
   1815       UpdateLocal(register_index, constant);
   1816       break;
   1817     }
   1818 
   1819     case Instruction::CONST_WIDE: {
   1820       int32_t register_index = instruction.VRegA();
   1821       HLongConstant* constant = graph_->GetLongConstant(instruction.VRegB_51l(), dex_pc);
   1822       UpdateLocal(register_index, constant);
   1823       break;
   1824     }
   1825 
   1826     case Instruction::CONST_WIDE_HIGH16: {
   1827       int32_t register_index = instruction.VRegA();
   1828       int64_t value = static_cast<int64_t>(instruction.VRegB_21h()) << 48;
   1829       HLongConstant* constant = graph_->GetLongConstant(value, dex_pc);
   1830       UpdateLocal(register_index, constant);
   1831       break;
   1832     }
   1833 
   1834     // Note that the SSA building will refine the types.
   1835     case Instruction::MOVE:
   1836     case Instruction::MOVE_FROM16:
   1837     case Instruction::MOVE_16: {
   1838       HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimInt);
   1839       UpdateLocal(instruction.VRegA(), value);
   1840       break;
   1841     }
   1842 
   1843     // Note that the SSA building will refine the types.
   1844     case Instruction::MOVE_WIDE:
   1845     case Instruction::MOVE_WIDE_FROM16:
   1846     case Instruction::MOVE_WIDE_16: {
   1847       HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimLong);
   1848       UpdateLocal(instruction.VRegA(), value);
   1849       break;
   1850     }
   1851 
   1852     case Instruction::MOVE_OBJECT:
   1853     case Instruction::MOVE_OBJECT_16:
   1854     case Instruction::MOVE_OBJECT_FROM16: {
   1855       // The verifier has no notion of a null type, so a move-object of constant 0
   1856       // will lead to the same constant 0 in the destination register. To mimic
   1857       // this behavior, we just pretend we haven't seen a type change (int to reference)
   1858       // for the 0 constant and phis. We rely on our type propagation to eventually get the
   1859       // types correct.
   1860       uint32_t reg_number = instruction.VRegB();
   1861       HInstruction* value = (*current_locals_)[reg_number];
   1862       if (value->IsIntConstant()) {
   1863         DCHECK_EQ(value->AsIntConstant()->GetValue(), 0);
   1864       } else if (value->IsPhi()) {
   1865         DCHECK(value->GetType() == Primitive::kPrimInt || value->GetType() == Primitive::kPrimNot);
   1866       } else {
   1867         value = LoadLocal(reg_number, Primitive::kPrimNot);
   1868       }
   1869       UpdateLocal(instruction.VRegA(), value);
   1870       break;
   1871     }
   1872 
   1873     case Instruction::RETURN_VOID_NO_BARRIER:
   1874     case Instruction::RETURN_VOID: {
   1875       BuildReturn(instruction, Primitive::kPrimVoid, dex_pc);
   1876       break;
   1877     }
   1878 
   1879 #define IF_XX(comparison, cond) \
   1880     case Instruction::IF_##cond: If_22t<comparison>(instruction, dex_pc); break; \
   1881     case Instruction::IF_##cond##Z: If_21t<comparison>(instruction, dex_pc); break
   1882 
   1883     IF_XX(HEqual, EQ);
   1884     IF_XX(HNotEqual, NE);
   1885     IF_XX(HLessThan, LT);
   1886     IF_XX(HLessThanOrEqual, LE);
   1887     IF_XX(HGreaterThan, GT);
   1888     IF_XX(HGreaterThanOrEqual, GE);
   1889 
   1890     case Instruction::GOTO:
   1891     case Instruction::GOTO_16:
   1892     case Instruction::GOTO_32: {
   1893       AppendInstruction(new (arena_) HGoto(dex_pc));
   1894       current_block_ = nullptr;
   1895       break;
   1896     }
   1897 
   1898     case Instruction::RETURN: {
   1899       BuildReturn(instruction, return_type_, dex_pc);
   1900       break;
   1901     }
   1902 
   1903     case Instruction::RETURN_OBJECT: {
   1904       BuildReturn(instruction, return_type_, dex_pc);
   1905       break;
   1906     }
   1907 
   1908     case Instruction::RETURN_WIDE: {
   1909       BuildReturn(instruction, return_type_, dex_pc);
   1910       break;
   1911     }
   1912 
   1913     case Instruction::INVOKE_DIRECT:
   1914     case Instruction::INVOKE_INTERFACE:
   1915     case Instruction::INVOKE_STATIC:
   1916     case Instruction::INVOKE_SUPER:
   1917     case Instruction::INVOKE_VIRTUAL:
   1918     case Instruction::INVOKE_VIRTUAL_QUICK: {
   1919       uint16_t method_idx;
   1920       if (instruction.Opcode() == Instruction::INVOKE_VIRTUAL_QUICK) {
   1921         if (!CanDecodeQuickenedInfo()) {
   1922           return false;
   1923         }
   1924         method_idx = LookupQuickenedInfo(dex_pc);
   1925       } else {
   1926         method_idx = instruction.VRegB_35c();
   1927       }
   1928       uint32_t number_of_vreg_arguments = instruction.VRegA_35c();
   1929       uint32_t args[5];
   1930       instruction.GetVarArgs(args);
   1931       if (!BuildInvoke(instruction, dex_pc, method_idx,
   1932                        number_of_vreg_arguments, false, args, -1)) {
   1933         return false;
   1934       }
   1935       break;
   1936     }
   1937 
   1938     case Instruction::INVOKE_DIRECT_RANGE:
   1939     case Instruction::INVOKE_INTERFACE_RANGE:
   1940     case Instruction::INVOKE_STATIC_RANGE:
   1941     case Instruction::INVOKE_SUPER_RANGE:
   1942     case Instruction::INVOKE_VIRTUAL_RANGE:
   1943     case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: {
   1944       uint16_t method_idx;
   1945       if (instruction.Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK) {
   1946         if (!CanDecodeQuickenedInfo()) {
   1947           return false;
   1948         }
   1949         method_idx = LookupQuickenedInfo(dex_pc);
   1950       } else {
   1951         method_idx = instruction.VRegB_3rc();
   1952       }
   1953       uint32_t number_of_vreg_arguments = instruction.VRegA_3rc();
   1954       uint32_t register_index = instruction.VRegC();
   1955       if (!BuildInvoke(instruction, dex_pc, method_idx,
   1956                        number_of_vreg_arguments, true, nullptr, register_index)) {
   1957         return false;
   1958       }
   1959       break;
   1960     }
   1961 
   1962     case Instruction::INVOKE_POLYMORPHIC: {
   1963       uint16_t method_idx = instruction.VRegB_45cc();
   1964       uint16_t proto_idx = instruction.VRegH_45cc();
   1965       uint32_t number_of_vreg_arguments = instruction.VRegA_45cc();
   1966       uint32_t args[5];
   1967       instruction.GetVarArgs(args);
   1968       return BuildInvokePolymorphic(instruction,
   1969                                     dex_pc,
   1970                                     method_idx,
   1971                                     proto_idx,
   1972                                     number_of_vreg_arguments,
   1973                                     false,
   1974                                     args,
   1975                                     -1);
   1976     }
   1977 
   1978     case Instruction::INVOKE_POLYMORPHIC_RANGE: {
   1979       uint16_t method_idx = instruction.VRegB_4rcc();
   1980       uint16_t proto_idx = instruction.VRegH_4rcc();
   1981       uint32_t number_of_vreg_arguments = instruction.VRegA_4rcc();
   1982       uint32_t register_index = instruction.VRegC_4rcc();
   1983       return BuildInvokePolymorphic(instruction,
   1984                                     dex_pc,
   1985                                     method_idx,
   1986                                     proto_idx,
   1987                                     number_of_vreg_arguments,
   1988                                     true,
   1989                                     nullptr,
   1990                                     register_index);
   1991     }
   1992 
   1993     case Instruction::NEG_INT: {
   1994       Unop_12x<HNeg>(instruction, Primitive::kPrimInt, dex_pc);
   1995       break;
   1996     }
   1997 
   1998     case Instruction::NEG_LONG: {
   1999       Unop_12x<HNeg>(instruction, Primitive::kPrimLong, dex_pc);
   2000       break;
   2001     }
   2002 
   2003     case Instruction::NEG_FLOAT: {
   2004       Unop_12x<HNeg>(instruction, Primitive::kPrimFloat, dex_pc);
   2005       break;
   2006     }
   2007 
   2008     case Instruction::NEG_DOUBLE: {
   2009       Unop_12x<HNeg>(instruction, Primitive::kPrimDouble, dex_pc);
   2010       break;
   2011     }
   2012 
   2013     case Instruction::NOT_INT: {
   2014       Unop_12x<HNot>(instruction, Primitive::kPrimInt, dex_pc);
   2015       break;
   2016     }
   2017 
   2018     case Instruction::NOT_LONG: {
   2019       Unop_12x<HNot>(instruction, Primitive::kPrimLong, dex_pc);
   2020       break;
   2021     }
   2022 
   2023     case Instruction::INT_TO_LONG: {
   2024       Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimLong, dex_pc);
   2025       break;
   2026     }
   2027 
   2028     case Instruction::INT_TO_FLOAT: {
   2029       Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimFloat, dex_pc);
   2030       break;
   2031     }
   2032 
   2033     case Instruction::INT_TO_DOUBLE: {
   2034       Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimDouble, dex_pc);
   2035       break;
   2036     }
   2037 
   2038     case Instruction::LONG_TO_INT: {
   2039       Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimInt, dex_pc);
   2040       break;
   2041     }
   2042 
   2043     case Instruction::LONG_TO_FLOAT: {
   2044       Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimFloat, dex_pc);
   2045       break;
   2046     }
   2047 
   2048     case Instruction::LONG_TO_DOUBLE: {
   2049       Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimDouble, dex_pc);
   2050       break;
   2051     }
   2052 
   2053     case Instruction::FLOAT_TO_INT: {
   2054       Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimInt, dex_pc);
   2055       break;
   2056     }
   2057 
   2058     case Instruction::FLOAT_TO_LONG: {
   2059       Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimLong, dex_pc);
   2060       break;
   2061     }
   2062 
   2063     case Instruction::FLOAT_TO_DOUBLE: {
   2064       Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimDouble, dex_pc);
   2065       break;
   2066     }
   2067 
   2068     case Instruction::DOUBLE_TO_INT: {
   2069       Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimInt, dex_pc);
   2070       break;
   2071     }
   2072 
   2073     case Instruction::DOUBLE_TO_LONG: {
   2074       Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimLong, dex_pc);
   2075       break;
   2076     }
   2077 
   2078     case Instruction::DOUBLE_TO_FLOAT: {
   2079       Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimFloat, dex_pc);
   2080       break;
   2081     }
   2082 
   2083     case Instruction::INT_TO_BYTE: {
   2084       Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimByte, dex_pc);
   2085       break;
   2086     }
   2087 
   2088     case Instruction::INT_TO_SHORT: {
   2089       Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimShort, dex_pc);
   2090       break;
   2091     }
   2092 
   2093     case Instruction::INT_TO_CHAR: {
   2094       Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimChar, dex_pc);
   2095       break;
   2096     }
   2097 
   2098     case Instruction::ADD_INT: {
   2099       Binop_23x<HAdd>(instruction, Primitive::kPrimInt, dex_pc);
   2100       break;
   2101     }
   2102 
   2103     case Instruction::ADD_LONG: {
   2104       Binop_23x<HAdd>(instruction, Primitive::kPrimLong, dex_pc);
   2105       break;
   2106     }
   2107 
   2108     case Instruction::ADD_DOUBLE: {
   2109       Binop_23x<HAdd>(instruction, Primitive::kPrimDouble, dex_pc);
   2110       break;
   2111     }
   2112 
   2113     case Instruction::ADD_FLOAT: {
   2114       Binop_23x<HAdd>(instruction, Primitive::kPrimFloat, dex_pc);
   2115       break;
   2116     }
   2117 
   2118     case Instruction::SUB_INT: {
   2119       Binop_23x<HSub>(instruction, Primitive::kPrimInt, dex_pc);
   2120       break;
   2121     }
   2122 
   2123     case Instruction::SUB_LONG: {
   2124       Binop_23x<HSub>(instruction, Primitive::kPrimLong, dex_pc);
   2125       break;
   2126     }
   2127 
   2128     case Instruction::SUB_FLOAT: {
   2129       Binop_23x<HSub>(instruction, Primitive::kPrimFloat, dex_pc);
   2130       break;
   2131     }
   2132 
   2133     case Instruction::SUB_DOUBLE: {
   2134       Binop_23x<HSub>(instruction, Primitive::kPrimDouble, dex_pc);
   2135       break;
   2136     }
   2137 
   2138     case Instruction::ADD_INT_2ADDR: {
   2139       Binop_12x<HAdd>(instruction, Primitive::kPrimInt, dex_pc);
   2140       break;
   2141     }
   2142 
   2143     case Instruction::MUL_INT: {
   2144       Binop_23x<HMul>(instruction, Primitive::kPrimInt, dex_pc);
   2145       break;
   2146     }
   2147 
   2148     case Instruction::MUL_LONG: {
   2149       Binop_23x<HMul>(instruction, Primitive::kPrimLong, dex_pc);
   2150       break;
   2151     }
   2152 
   2153     case Instruction::MUL_FLOAT: {
   2154       Binop_23x<HMul>(instruction, Primitive::kPrimFloat, dex_pc);
   2155       break;
   2156     }
   2157 
   2158     case Instruction::MUL_DOUBLE: {
   2159       Binop_23x<HMul>(instruction, Primitive::kPrimDouble, dex_pc);
   2160       break;
   2161     }
   2162 
   2163     case Instruction::DIV_INT: {
   2164       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
   2165                          dex_pc, Primitive::kPrimInt, false, true);
   2166       break;
   2167     }
   2168 
   2169     case Instruction::DIV_LONG: {
   2170       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
   2171                          dex_pc, Primitive::kPrimLong, false, true);
   2172       break;
   2173     }
   2174 
   2175     case Instruction::DIV_FLOAT: {
   2176       Binop_23x<HDiv>(instruction, Primitive::kPrimFloat, dex_pc);
   2177       break;
   2178     }
   2179 
   2180     case Instruction::DIV_DOUBLE: {
   2181       Binop_23x<HDiv>(instruction, Primitive::kPrimDouble, dex_pc);
   2182       break;
   2183     }
   2184 
   2185     case Instruction::REM_INT: {
   2186       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
   2187                          dex_pc, Primitive::kPrimInt, false, false);
   2188       break;
   2189     }
   2190 
   2191     case Instruction::REM_LONG: {
   2192       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
   2193                          dex_pc, Primitive::kPrimLong, false, false);
   2194       break;
   2195     }
   2196 
   2197     case Instruction::REM_FLOAT: {
   2198       Binop_23x<HRem>(instruction, Primitive::kPrimFloat, dex_pc);
   2199       break;
   2200     }
   2201 
   2202     case Instruction::REM_DOUBLE: {
   2203       Binop_23x<HRem>(instruction, Primitive::kPrimDouble, dex_pc);
   2204       break;
   2205     }
   2206 
   2207     case Instruction::AND_INT: {
   2208       Binop_23x<HAnd>(instruction, Primitive::kPrimInt, dex_pc);
   2209       break;
   2210     }
   2211 
   2212     case Instruction::AND_LONG: {
   2213       Binop_23x<HAnd>(instruction, Primitive::kPrimLong, dex_pc);
   2214       break;
   2215     }
   2216 
   2217     case Instruction::SHL_INT: {
   2218       Binop_23x_shift<HShl>(instruction, Primitive::kPrimInt, dex_pc);
   2219       break;
   2220     }
   2221 
   2222     case Instruction::SHL_LONG: {
   2223       Binop_23x_shift<HShl>(instruction, Primitive::kPrimLong, dex_pc);
   2224       break;
   2225     }
   2226 
   2227     case Instruction::SHR_INT: {
   2228       Binop_23x_shift<HShr>(instruction, Primitive::kPrimInt, dex_pc);
   2229       break;
   2230     }
   2231 
   2232     case Instruction::SHR_LONG: {
   2233       Binop_23x_shift<HShr>(instruction, Primitive::kPrimLong, dex_pc);
   2234       break;
   2235     }
   2236 
   2237     case Instruction::USHR_INT: {
   2238       Binop_23x_shift<HUShr>(instruction, Primitive::kPrimInt, dex_pc);
   2239       break;
   2240     }
   2241 
   2242     case Instruction::USHR_LONG: {
   2243       Binop_23x_shift<HUShr>(instruction, Primitive::kPrimLong, dex_pc);
   2244       break;
   2245     }
   2246 
   2247     case Instruction::OR_INT: {
   2248       Binop_23x<HOr>(instruction, Primitive::kPrimInt, dex_pc);
   2249       break;
   2250     }
   2251 
   2252     case Instruction::OR_LONG: {
   2253       Binop_23x<HOr>(instruction, Primitive::kPrimLong, dex_pc);
   2254       break;
   2255     }
   2256 
   2257     case Instruction::XOR_INT: {
   2258       Binop_23x<HXor>(instruction, Primitive::kPrimInt, dex_pc);
   2259       break;
   2260     }
   2261 
   2262     case Instruction::XOR_LONG: {
   2263       Binop_23x<HXor>(instruction, Primitive::kPrimLong, dex_pc);
   2264       break;
   2265     }
   2266 
   2267     case Instruction::ADD_LONG_2ADDR: {
   2268       Binop_12x<HAdd>(instruction, Primitive::kPrimLong, dex_pc);
   2269       break;
   2270     }
   2271 
   2272     case Instruction::ADD_DOUBLE_2ADDR: {
   2273       Binop_12x<HAdd>(instruction, Primitive::kPrimDouble, dex_pc);
   2274       break;
   2275     }
   2276 
   2277     case Instruction::ADD_FLOAT_2ADDR: {
   2278       Binop_12x<HAdd>(instruction, Primitive::kPrimFloat, dex_pc);
   2279       break;
   2280     }
   2281 
   2282     case Instruction::SUB_INT_2ADDR: {
   2283       Binop_12x<HSub>(instruction, Primitive::kPrimInt, dex_pc);
   2284       break;
   2285     }
   2286 
   2287     case Instruction::SUB_LONG_2ADDR: {
   2288       Binop_12x<HSub>(instruction, Primitive::kPrimLong, dex_pc);
   2289       break;
   2290     }
   2291 
   2292     case Instruction::SUB_FLOAT_2ADDR: {
   2293       Binop_12x<HSub>(instruction, Primitive::kPrimFloat, dex_pc);
   2294       break;
   2295     }
   2296 
   2297     case Instruction::SUB_DOUBLE_2ADDR: {
   2298       Binop_12x<HSub>(instruction, Primitive::kPrimDouble, dex_pc);
   2299       break;
   2300     }
   2301 
   2302     case Instruction::MUL_INT_2ADDR: {
   2303       Binop_12x<HMul>(instruction, Primitive::kPrimInt, dex_pc);
   2304       break;
   2305     }
   2306 
   2307     case Instruction::MUL_LONG_2ADDR: {
   2308       Binop_12x<HMul>(instruction, Primitive::kPrimLong, dex_pc);
   2309       break;
   2310     }
   2311 
   2312     case Instruction::MUL_FLOAT_2ADDR: {
   2313       Binop_12x<HMul>(instruction, Primitive::kPrimFloat, dex_pc);
   2314       break;
   2315     }
   2316 
   2317     case Instruction::MUL_DOUBLE_2ADDR: {
   2318       Binop_12x<HMul>(instruction, Primitive::kPrimDouble, dex_pc);
   2319       break;
   2320     }
   2321 
   2322     case Instruction::DIV_INT_2ADDR: {
   2323       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
   2324                          dex_pc, Primitive::kPrimInt, false, true);
   2325       break;
   2326     }
   2327 
   2328     case Instruction::DIV_LONG_2ADDR: {
   2329       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
   2330                          dex_pc, Primitive::kPrimLong, false, true);
   2331       break;
   2332     }
   2333 
   2334     case Instruction::REM_INT_2ADDR: {
   2335       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
   2336                          dex_pc, Primitive::kPrimInt, false, false);
   2337       break;
   2338     }
   2339 
   2340     case Instruction::REM_LONG_2ADDR: {
   2341       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
   2342                          dex_pc, Primitive::kPrimLong, false, false);
   2343       break;
   2344     }
   2345 
   2346     case Instruction::REM_FLOAT_2ADDR: {
   2347       Binop_12x<HRem>(instruction, Primitive::kPrimFloat, dex_pc);
   2348       break;
   2349     }
   2350 
   2351     case Instruction::REM_DOUBLE_2ADDR: {
   2352       Binop_12x<HRem>(instruction, Primitive::kPrimDouble, dex_pc);
   2353       break;
   2354     }
   2355 
   2356     case Instruction::SHL_INT_2ADDR: {
   2357       Binop_12x_shift<HShl>(instruction, Primitive::kPrimInt, dex_pc);
   2358       break;
   2359     }
   2360 
   2361     case Instruction::SHL_LONG_2ADDR: {
   2362       Binop_12x_shift<HShl>(instruction, Primitive::kPrimLong, dex_pc);
   2363       break;
   2364     }
   2365 
   2366     case Instruction::SHR_INT_2ADDR: {
   2367       Binop_12x_shift<HShr>(instruction, Primitive::kPrimInt, dex_pc);
   2368       break;
   2369     }
   2370 
   2371     case Instruction::SHR_LONG_2ADDR: {
   2372       Binop_12x_shift<HShr>(instruction, Primitive::kPrimLong, dex_pc);
   2373       break;
   2374     }
   2375 
   2376     case Instruction::USHR_INT_2ADDR: {
   2377       Binop_12x_shift<HUShr>(instruction, Primitive::kPrimInt, dex_pc);
   2378       break;
   2379     }
   2380 
   2381     case Instruction::USHR_LONG_2ADDR: {
   2382       Binop_12x_shift<HUShr>(instruction, Primitive::kPrimLong, dex_pc);
   2383       break;
   2384     }
   2385 
   2386     case Instruction::DIV_FLOAT_2ADDR: {
   2387       Binop_12x<HDiv>(instruction, Primitive::kPrimFloat, dex_pc);
   2388       break;
   2389     }
   2390 
   2391     case Instruction::DIV_DOUBLE_2ADDR: {
   2392       Binop_12x<HDiv>(instruction, Primitive::kPrimDouble, dex_pc);
   2393       break;
   2394     }
   2395 
   2396     case Instruction::AND_INT_2ADDR: {
   2397       Binop_12x<HAnd>(instruction, Primitive::kPrimInt, dex_pc);
   2398       break;
   2399     }
   2400 
   2401     case Instruction::AND_LONG_2ADDR: {
   2402       Binop_12x<HAnd>(instruction, Primitive::kPrimLong, dex_pc);
   2403       break;
   2404     }
   2405 
   2406     case Instruction::OR_INT_2ADDR: {
   2407       Binop_12x<HOr>(instruction, Primitive::kPrimInt, dex_pc);
   2408       break;
   2409     }
   2410 
   2411     case Instruction::OR_LONG_2ADDR: {
   2412       Binop_12x<HOr>(instruction, Primitive::kPrimLong, dex_pc);
   2413       break;
   2414     }
   2415 
   2416     case Instruction::XOR_INT_2ADDR: {
   2417       Binop_12x<HXor>(instruction, Primitive::kPrimInt, dex_pc);
   2418       break;
   2419     }
   2420 
   2421     case Instruction::XOR_LONG_2ADDR: {
   2422       Binop_12x<HXor>(instruction, Primitive::kPrimLong, dex_pc);
   2423       break;
   2424     }
   2425 
   2426     case Instruction::ADD_INT_LIT16: {
   2427       Binop_22s<HAdd>(instruction, false, dex_pc);
   2428       break;
   2429     }
   2430 
   2431     case Instruction::AND_INT_LIT16: {
   2432       Binop_22s<HAnd>(instruction, false, dex_pc);
   2433       break;
   2434     }
   2435 
   2436     case Instruction::OR_INT_LIT16: {
   2437       Binop_22s<HOr>(instruction, false, dex_pc);
   2438       break;
   2439     }
   2440 
   2441     case Instruction::XOR_INT_LIT16: {
   2442       Binop_22s<HXor>(instruction, false, dex_pc);
   2443       break;
   2444     }
   2445 
   2446     case Instruction::RSUB_INT: {
   2447       Binop_22s<HSub>(instruction, true, dex_pc);
   2448       break;
   2449     }
   2450 
   2451     case Instruction::MUL_INT_LIT16: {
   2452       Binop_22s<HMul>(instruction, false, dex_pc);
   2453       break;
   2454     }
   2455 
   2456     case Instruction::ADD_INT_LIT8: {
   2457       Binop_22b<HAdd>(instruction, false, dex_pc);
   2458       break;
   2459     }
   2460 
   2461     case Instruction::AND_INT_LIT8: {
   2462       Binop_22b<HAnd>(instruction, false, dex_pc);
   2463       break;
   2464     }
   2465 
   2466     case Instruction::OR_INT_LIT8: {
   2467       Binop_22b<HOr>(instruction, false, dex_pc);
   2468       break;
   2469     }
   2470 
   2471     case Instruction::XOR_INT_LIT8: {
   2472       Binop_22b<HXor>(instruction, false, dex_pc);
   2473       break;
   2474     }
   2475 
   2476     case Instruction::RSUB_INT_LIT8: {
   2477       Binop_22b<HSub>(instruction, true, dex_pc);
   2478       break;
   2479     }
   2480 
   2481     case Instruction::MUL_INT_LIT8: {
   2482       Binop_22b<HMul>(instruction, false, dex_pc);
   2483       break;
   2484     }
   2485 
   2486     case Instruction::DIV_INT_LIT16:
   2487     case Instruction::DIV_INT_LIT8: {
   2488       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
   2489                          dex_pc, Primitive::kPrimInt, true, true);
   2490       break;
   2491     }
   2492 
   2493     case Instruction::REM_INT_LIT16:
   2494     case Instruction::REM_INT_LIT8: {
   2495       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
   2496                          dex_pc, Primitive::kPrimInt, true, false);
   2497       break;
   2498     }
   2499 
   2500     case Instruction::SHL_INT_LIT8: {
   2501       Binop_22b<HShl>(instruction, false, dex_pc);
   2502       break;
   2503     }
   2504 
   2505     case Instruction::SHR_INT_LIT8: {
   2506       Binop_22b<HShr>(instruction, false, dex_pc);
   2507       break;
   2508     }
   2509 
   2510     case Instruction::USHR_INT_LIT8: {
   2511       Binop_22b<HUShr>(instruction, false, dex_pc);
   2512       break;
   2513     }
   2514 
   2515     case Instruction::NEW_INSTANCE: {
   2516       if (!BuildNewInstance(dex::TypeIndex(instruction.VRegB_21c()), dex_pc)) {
   2517         return false;
   2518       }
   2519       UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
   2520       break;
   2521     }
   2522 
   2523     case Instruction::NEW_ARRAY: {
   2524       dex::TypeIndex type_index(instruction.VRegC_22c());
   2525       HInstruction* length = LoadLocal(instruction.VRegB_22c(), Primitive::kPrimInt);
   2526       HLoadClass* cls = BuildLoadClass(type_index, dex_pc);
   2527       AppendInstruction(new (arena_) HNewArray(cls, length, dex_pc));
   2528       UpdateLocal(instruction.VRegA_22c(), current_block_->GetLastInstruction());
   2529       break;
   2530     }
   2531 
   2532     case Instruction::FILLED_NEW_ARRAY: {
   2533       uint32_t number_of_vreg_arguments = instruction.VRegA_35c();
   2534       dex::TypeIndex type_index(instruction.VRegB_35c());
   2535       uint32_t args[5];
   2536       instruction.GetVarArgs(args);
   2537       BuildFilledNewArray(dex_pc, type_index, number_of_vreg_arguments, false, args, 0);
   2538       break;
   2539     }
   2540 
   2541     case Instruction::FILLED_NEW_ARRAY_RANGE: {
   2542       uint32_t number_of_vreg_arguments = instruction.VRegA_3rc();
   2543       dex::TypeIndex type_index(instruction.VRegB_3rc());
   2544       uint32_t register_index = instruction.VRegC_3rc();
   2545       BuildFilledNewArray(
   2546           dex_pc, type_index, number_of_vreg_arguments, true, nullptr, register_index);
   2547       break;
   2548     }
   2549 
   2550     case Instruction::FILL_ARRAY_DATA: {
   2551       BuildFillArrayData(instruction, dex_pc);
   2552       break;
   2553     }
   2554 
   2555     case Instruction::MOVE_RESULT:
   2556     case Instruction::MOVE_RESULT_WIDE:
   2557     case Instruction::MOVE_RESULT_OBJECT: {
   2558       DCHECK(latest_result_ != nullptr);
   2559       UpdateLocal(instruction.VRegA(), latest_result_);
   2560       latest_result_ = nullptr;
   2561       break;
   2562     }
   2563 
   2564     case Instruction::CMP_LONG: {
   2565       Binop_23x_cmp(instruction, Primitive::kPrimLong, ComparisonBias::kNoBias, dex_pc);
   2566       break;
   2567     }
   2568 
   2569     case Instruction::CMPG_FLOAT: {
   2570       Binop_23x_cmp(instruction, Primitive::kPrimFloat, ComparisonBias::kGtBias, dex_pc);
   2571       break;
   2572     }
   2573 
   2574     case Instruction::CMPG_DOUBLE: {
   2575       Binop_23x_cmp(instruction, Primitive::kPrimDouble, ComparisonBias::kGtBias, dex_pc);
   2576       break;
   2577     }
   2578 
   2579     case Instruction::CMPL_FLOAT: {
   2580       Binop_23x_cmp(instruction, Primitive::kPrimFloat, ComparisonBias::kLtBias, dex_pc);
   2581       break;
   2582     }
   2583 
   2584     case Instruction::CMPL_DOUBLE: {
   2585       Binop_23x_cmp(instruction, Primitive::kPrimDouble, ComparisonBias::kLtBias, dex_pc);
   2586       break;
   2587     }
   2588 
   2589     case Instruction::NOP:
   2590       break;
   2591 
   2592     case Instruction::IGET:
   2593     case Instruction::IGET_QUICK:
   2594     case Instruction::IGET_WIDE:
   2595     case Instruction::IGET_WIDE_QUICK:
   2596     case Instruction::IGET_OBJECT:
   2597     case Instruction::IGET_OBJECT_QUICK:
   2598     case Instruction::IGET_BOOLEAN:
   2599     case Instruction::IGET_BOOLEAN_QUICK:
   2600     case Instruction::IGET_BYTE:
   2601     case Instruction::IGET_BYTE_QUICK:
   2602     case Instruction::IGET_CHAR:
   2603     case Instruction::IGET_CHAR_QUICK:
   2604     case Instruction::IGET_SHORT:
   2605     case Instruction::IGET_SHORT_QUICK: {
   2606       if (!BuildInstanceFieldAccess(instruction, dex_pc, false)) {
   2607         return false;
   2608       }
   2609       break;
   2610     }
   2611 
   2612     case Instruction::IPUT:
   2613     case Instruction::IPUT_QUICK:
   2614     case Instruction::IPUT_WIDE:
   2615     case Instruction::IPUT_WIDE_QUICK:
   2616     case Instruction::IPUT_OBJECT:
   2617     case Instruction::IPUT_OBJECT_QUICK:
   2618     case Instruction::IPUT_BOOLEAN:
   2619     case Instruction::IPUT_BOOLEAN_QUICK:
   2620     case Instruction::IPUT_BYTE:
   2621     case Instruction::IPUT_BYTE_QUICK:
   2622     case Instruction::IPUT_CHAR:
   2623     case Instruction::IPUT_CHAR_QUICK:
   2624     case Instruction::IPUT_SHORT:
   2625     case Instruction::IPUT_SHORT_QUICK: {
   2626       if (!BuildInstanceFieldAccess(instruction, dex_pc, true)) {
   2627         return false;
   2628       }
   2629       break;
   2630     }
   2631 
   2632     case Instruction::SGET:
   2633     case Instruction::SGET_WIDE:
   2634     case Instruction::SGET_OBJECT:
   2635     case Instruction::SGET_BOOLEAN:
   2636     case Instruction::SGET_BYTE:
   2637     case Instruction::SGET_CHAR:
   2638     case Instruction::SGET_SHORT: {
   2639       if (!BuildStaticFieldAccess(instruction, dex_pc, false)) {
   2640         return false;
   2641       }
   2642       break;
   2643     }
   2644 
   2645     case Instruction::SPUT:
   2646     case Instruction::SPUT_WIDE:
   2647     case Instruction::SPUT_OBJECT:
   2648     case Instruction::SPUT_BOOLEAN:
   2649     case Instruction::SPUT_BYTE:
   2650     case Instruction::SPUT_CHAR:
   2651     case Instruction::SPUT_SHORT: {
   2652       if (!BuildStaticFieldAccess(instruction, dex_pc, true)) {
   2653         return false;
   2654       }
   2655       break;
   2656     }
   2657 
   2658 #define ARRAY_XX(kind, anticipated_type)                                          \
   2659     case Instruction::AGET##kind: {                                               \
   2660       BuildArrayAccess(instruction, dex_pc, false, anticipated_type);         \
   2661       break;                                                                      \
   2662     }                                                                             \
   2663     case Instruction::APUT##kind: {                                               \
   2664       BuildArrayAccess(instruction, dex_pc, true, anticipated_type);          \
   2665       break;                                                                      \
   2666     }
   2667 
   2668     ARRAY_XX(, Primitive::kPrimInt);
   2669     ARRAY_XX(_WIDE, Primitive::kPrimLong);
   2670     ARRAY_XX(_OBJECT, Primitive::kPrimNot);
   2671     ARRAY_XX(_BOOLEAN, Primitive::kPrimBoolean);
   2672     ARRAY_XX(_BYTE, Primitive::kPrimByte);
   2673     ARRAY_XX(_CHAR, Primitive::kPrimChar);
   2674     ARRAY_XX(_SHORT, Primitive::kPrimShort);
   2675 
   2676     case Instruction::ARRAY_LENGTH: {
   2677       HInstruction* object = LoadNullCheckedLocal(instruction.VRegB_12x(), dex_pc);
   2678       AppendInstruction(new (arena_) HArrayLength(object, dex_pc));
   2679       UpdateLocal(instruction.VRegA_12x(), current_block_->GetLastInstruction());
   2680       break;
   2681     }
   2682 
   2683     case Instruction::CONST_STRING: {
   2684       dex::StringIndex string_index(instruction.VRegB_21c());
   2685       AppendInstruction(
   2686           new (arena_) HLoadString(graph_->GetCurrentMethod(), string_index, *dex_file_, dex_pc));
   2687       UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction());
   2688       break;
   2689     }
   2690 
   2691     case Instruction::CONST_STRING_JUMBO: {
   2692       dex::StringIndex string_index(instruction.VRegB_31c());
   2693       AppendInstruction(
   2694           new (arena_) HLoadString(graph_->GetCurrentMethod(), string_index, *dex_file_, dex_pc));
   2695       UpdateLocal(instruction.VRegA_31c(), current_block_->GetLastInstruction());
   2696       break;
   2697     }
   2698 
   2699     case Instruction::CONST_CLASS: {
   2700       dex::TypeIndex type_index(instruction.VRegB_21c());
   2701       BuildLoadClass(type_index, dex_pc);
   2702       UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction());
   2703       break;
   2704     }
   2705 
   2706     case Instruction::MOVE_EXCEPTION: {
   2707       AppendInstruction(new (arena_) HLoadException(dex_pc));
   2708       UpdateLocal(instruction.VRegA_11x(), current_block_->GetLastInstruction());
   2709       AppendInstruction(new (arena_) HClearException(dex_pc));
   2710       break;
   2711     }
   2712 
   2713     case Instruction::THROW: {
   2714       HInstruction* exception = LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot);
   2715       AppendInstruction(new (arena_) HThrow(exception, dex_pc));
   2716       // We finished building this block. Set the current block to null to avoid
   2717       // adding dead instructions to it.
   2718       current_block_ = nullptr;
   2719       break;
   2720     }
   2721 
   2722     case Instruction::INSTANCE_OF: {
   2723       uint8_t destination = instruction.VRegA_22c();
   2724       uint8_t reference = instruction.VRegB_22c();
   2725       dex::TypeIndex type_index(instruction.VRegC_22c());
   2726       BuildTypeCheck(instruction, destination, reference, type_index, dex_pc);
   2727       break;
   2728     }
   2729 
   2730     case Instruction::CHECK_CAST: {
   2731       uint8_t reference = instruction.VRegA_21c();
   2732       dex::TypeIndex type_index(instruction.VRegB_21c());
   2733       BuildTypeCheck(instruction, -1, reference, type_index, dex_pc);
   2734       break;
   2735     }
   2736 
   2737     case Instruction::MONITOR_ENTER: {
   2738       AppendInstruction(new (arena_) HMonitorOperation(
   2739           LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot),
   2740           HMonitorOperation::OperationKind::kEnter,
   2741           dex_pc));
   2742       break;
   2743     }
   2744 
   2745     case Instruction::MONITOR_EXIT: {
   2746       AppendInstruction(new (arena_) HMonitorOperation(
   2747           LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot),
   2748           HMonitorOperation::OperationKind::kExit,
   2749           dex_pc));
   2750       break;
   2751     }
   2752 
   2753     case Instruction::SPARSE_SWITCH:
   2754     case Instruction::PACKED_SWITCH: {
   2755       BuildSwitch(instruction, dex_pc);
   2756       break;
   2757     }
   2758 
   2759     default:
   2760       VLOG(compiler) << "Did not compile "
   2761                      << dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex())
   2762                      << " because of unhandled instruction "
   2763                      << instruction.Name();
   2764       MaybeRecordStat(MethodCompilationStat::kNotCompiledUnhandledInstruction);
   2765       return false;
   2766   }
   2767   return true;
   2768 }  // NOLINT(readability/fn_size)
   2769 
   2770 ObjPtr<mirror::Class> HInstructionBuilder::LookupResolvedType(
   2771     dex::TypeIndex type_index,
   2772     const DexCompilationUnit& compilation_unit) const {
   2773   return ClassLinker::LookupResolvedType(
   2774         type_index, compilation_unit.GetDexCache().Get(), compilation_unit.GetClassLoader().Get());
   2775 }
   2776 
   2777 ObjPtr<mirror::Class> HInstructionBuilder::LookupReferrerClass() const {
   2778   // TODO: Cache the result in a Handle<mirror::Class>.
   2779   const DexFile::MethodId& method_id =
   2780       dex_compilation_unit_->GetDexFile()->GetMethodId(dex_compilation_unit_->GetDexMethodIndex());
   2781   return LookupResolvedType(method_id.class_idx_, *dex_compilation_unit_);
   2782 }
   2783 
   2784 }  // namespace art
   2785