Home | History | Annotate | Download | only in api
      1 /*-------------------------------------------------------------------------
      2  * Vulkan Conformance Tests
      3  * ------------------------
      4  *
      5  * Copyright (c) 2015 Google Inc.
      6  *
      7  * Licensed under the Apache License, Version 2.0 (the "License");
      8  * you may not use this file except in compliance with the License.
      9  * You may obtain a copy of the License at
     10  *
     11  *      http://www.apache.org/licenses/LICENSE-2.0
     12  *
     13  * Unless required by applicable law or agreed to in writing, software
     14  * distributed under the License is distributed on an "AS IS" BASIS,
     15  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16  * See the License for the specific language governing permissions and
     17  * limitations under the License.
     18  *
     19  *//*!
     20  * \file
     21  * \brief Api Feature Query tests
     22  *//*--------------------------------------------------------------------*/
     23 
     24 #include "vktApiFeatureInfo.hpp"
     25 
     26 #include "vktTestCaseUtil.hpp"
     27 #include "vktTestGroupUtil.hpp"
     28 
     29 #include "vkPlatform.hpp"
     30 #include "vkStrUtil.hpp"
     31 #include "vkRef.hpp"
     32 #include "vkDeviceUtil.hpp"
     33 #include "vkQueryUtil.hpp"
     34 #include "vkImageUtil.hpp"
     35 #include "vkApiVersion.hpp"
     36 
     37 #include "tcuTestLog.hpp"
     38 #include "tcuFormatUtil.hpp"
     39 #include "tcuTextureUtil.hpp"
     40 #include "tcuResultCollector.hpp"
     41 
     42 #include "deUniquePtr.hpp"
     43 #include "deString.h"
     44 #include "deStringUtil.hpp"
     45 #include "deSTLUtil.hpp"
     46 #include "deMemory.h"
     47 #include "deMath.h"
     48 
     49 #include <vector>
     50 #include <set>
     51 #include <string>
     52 
     53 namespace vkt
     54 {
     55 namespace api
     56 {
     57 namespace
     58 {
     59 
     60 using namespace vk;
     61 using std::vector;
     62 using std::set;
     63 using std::string;
     64 using tcu::TestLog;
     65 using tcu::ScopedLogSection;
     66 
     67 enum
     68 {
     69 	GUARD_SIZE								= 0x20,			//!< Number of bytes to check
     70 	GUARD_VALUE								= 0xcd,			//!< Data pattern
     71 };
     72 
     73 static const VkDeviceSize MINIMUM_REQUIRED_IMAGE_RESOURCE_SIZE =	(1LLU<<31);	//!< Minimum value for VkImageFormatProperties::maxResourceSize (2GiB)
     74 
     75 enum LimitFormat
     76 {
     77 	LIMIT_FORMAT_SIGNED_INT,
     78 	LIMIT_FORMAT_UNSIGNED_INT,
     79 	LIMIT_FORMAT_FLOAT,
     80 	LIMIT_FORMAT_DEVICE_SIZE,
     81 	LIMIT_FORMAT_BITMASK,
     82 
     83 	LIMIT_FORMAT_LAST
     84 };
     85 
     86 enum LimitType
     87 {
     88 	LIMIT_TYPE_MIN,
     89 	LIMIT_TYPE_MAX,
     90 	LIMIT_TYPE_NONE,
     91 
     92 	LIMIT_TYPE_LAST
     93 };
     94 
     95 #define LIMIT(_X_)		DE_OFFSET_OF(VkPhysicalDeviceLimits, _X_), (const char*)(#_X_)
     96 #define FEATURE(_X_)	DE_OFFSET_OF(VkPhysicalDeviceFeatures, _X_)
     97 
     98 inline bool isExtensionSupported (const vector<string>& extensionStrings, const string& extensionName)
     99 {
    100 	return de::contains(extensionStrings.begin(), extensionStrings.end(), extensionName);
    101 }
    102 
    103 bool validateFeatureLimits(VkPhysicalDeviceProperties* properties, VkPhysicalDeviceFeatures* features, TestLog& log)
    104 {
    105 	bool						limitsOk	= true;
    106 	VkPhysicalDeviceLimits*		limits		= &properties->limits;
    107 	struct FeatureLimitTable
    108 	{
    109 		deUint32		offset;
    110 		const char*		name;
    111 		deUint32		uintVal;			//!< Format is UNSIGNED_INT
    112 		deInt32			intVal;				//!< Format is SIGNED_INT
    113 		deUint64		deviceSizeVal;		//!< Format is DEVICE_SIZE
    114 		float			floatVal;			//!< Format is FLOAT
    115 		LimitFormat		format;
    116 		LimitType		type;
    117 		deInt32			unsuppTableNdx;
    118 	} featureLimitTable[] =   //!< Based on 1.0.28 Vulkan spec
    119 	{
    120 		{ LIMIT(maxImageDimension1D),								4096, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1 },
    121 		{ LIMIT(maxImageDimension2D),								4096, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1 },
    122 		{ LIMIT(maxImageDimension3D),								256, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN  , -1 },
    123 		{ LIMIT(maxImageDimensionCube),								4096, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1 },
    124 		{ LIMIT(maxImageArrayLayers),								256, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN   , -1 },
    125 		{ LIMIT(maxTexelBufferElements),							65536, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN  , -1 },
    126 		{ LIMIT(maxUniformBufferRange),								16384, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN  , -1 },
    127 		{ LIMIT(maxStorageBufferRange),								0, 0, 0, 0, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_NONE, -1 },
    128 		{ LIMIT(maxPushConstantsSize),								128, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN  , -1 },
    129 		{ LIMIT(maxMemoryAllocationCount),							4096, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1 },
    130 		{ LIMIT(maxSamplerAllocationCount),							0, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_NONE , -1 },
    131 		{ LIMIT(bufferImageGranularity),							0, 0, 1, 0.0f, LIMIT_FORMAT_DEVICE_SIZE, LIMIT_TYPE_MIN, -1 },
    132 		{ LIMIT(bufferImageGranularity),							0, 0, 131072, 0.0f, LIMIT_FORMAT_DEVICE_SIZE, LIMIT_TYPE_MAX, -1 },
    133 		{ LIMIT(sparseAddressSpaceSize),							0, 0, 2UL*1024*1024*1024, 0.0f, LIMIT_FORMAT_DEVICE_SIZE, LIMIT_TYPE_MIN, -1 },
    134 		{ LIMIT(maxBoundDescriptorSets),							4, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1 },
    135 		{ LIMIT(maxPerStageDescriptorSamplers),						16, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1 },
    136 		{ LIMIT(maxPerStageDescriptorUniformBuffers),				12, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1 },
    137 		{ LIMIT(maxPerStageDescriptorStorageBuffers),				4, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1 },
    138 		{ LIMIT(maxPerStageDescriptorSampledImages),				16, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1 },
    139 		{ LIMIT(maxPerStageDescriptorStorageImages),				4, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1 },
    140 		{ LIMIT(maxPerStageDescriptorInputAttachments),				4, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1 },
    141 		{ LIMIT(maxPerStageResources),								0, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_NONE , -1 },
    142 		{ LIMIT(maxDescriptorSetSamplers),							96, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1 },
    143 		{ LIMIT(maxDescriptorSetUniformBuffers),					72, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1 },
    144 		{ LIMIT(maxDescriptorSetUniformBuffersDynamic),				8, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1 },
    145 		{ LIMIT(maxDescriptorSetStorageBuffers),					24, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1 },
    146 		{ LIMIT(maxDescriptorSetStorageBuffersDynamic),				4, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN  , -1 },
    147 		{ LIMIT(maxDescriptorSetSampledImages),						96, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN  , -1 },
    148 		{ LIMIT(maxDescriptorSetStorageImages),						24, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN  , -1 },
    149 		{ LIMIT(maxDescriptorSetInputAttachments),					0, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_NONE  , -1 },
    150 		{ LIMIT(maxVertexInputAttributes),							16, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN  , -1 },
    151 		{ LIMIT(maxVertexInputBindings),							16, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN  , -1 },
    152 		{ LIMIT(maxVertexInputAttributeOffset),						2047, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN  , -1 },
    153 		{ LIMIT(maxVertexInputBindingStride),						2048, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN  , -1 },
    154 		{ LIMIT(maxVertexOutputComponents),							64, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN  , -1 },
    155 		{ LIMIT(maxTessellationGenerationLevel),					64, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN  , -1 },
    156 		{ LIMIT(maxTessellationPatchSize),							32, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1 },
    157 		{ LIMIT(maxTessellationControlPerVertexInputComponents),	64, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN  , -1 },
    158 		{ LIMIT(maxTessellationControlPerVertexOutputComponents),	64, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN  , -1 },
    159 		{ LIMIT(maxTessellationControlPerPatchOutputComponents),	120, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN  , -1 },
    160 		{ LIMIT(maxTessellationControlTotalOutputComponents),		2048, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN  , -1 },
    161 		{ LIMIT(maxTessellationEvaluationInputComponents),			64, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN  , -1 },
    162 		{ LIMIT(maxTessellationEvaluationOutputComponents),			64, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN  , -1 },
    163 		{ LIMIT(maxGeometryShaderInvocations),						32, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN  , -1 },
    164 		{ LIMIT(maxGeometryInputComponents),						64, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN  , -1 },
    165 		{ LIMIT(maxGeometryOutputComponents),						64, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN  , -1 },
    166 		{ LIMIT(maxGeometryOutputVertices),							256, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN  , -1 },
    167 		{ LIMIT(maxGeometryTotalOutputComponents),					1024, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN  , -1 },
    168 		{ LIMIT(maxFragmentInputComponents),						64, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN  , -1 },
    169 		{ LIMIT(maxFragmentOutputAttachments),						4, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN  , -1 },
    170 		{ LIMIT(maxFragmentDualSrcAttachments),						1, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN  , -1 },
    171 		{ LIMIT(maxFragmentCombinedOutputResources),				4, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN  , -1 },
    172 		{ LIMIT(maxComputeSharedMemorySize),						16384, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN   , -1 },
    173 		{ LIMIT(maxComputeWorkGroupCount[0]),						65535, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN   , -1 },
    174 		{ LIMIT(maxComputeWorkGroupCount[1]),						65535, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN   , -1 },
    175 		{ LIMIT(maxComputeWorkGroupCount[2]),						65535,  0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN   , -1 },
    176 		{ LIMIT(maxComputeWorkGroupInvocations),					128, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN    , -1 },
    177 		{ LIMIT(maxComputeWorkGroupSize[0]),						128, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN    , -1 },
    178 		{ LIMIT(maxComputeWorkGroupSize[1]),						128, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN    , -1 },
    179 		{ LIMIT(maxComputeWorkGroupSize[2]),						64, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN    , -1 },
    180 		{ LIMIT(subPixelPrecisionBits),								4, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN    , -1 },
    181 		{ LIMIT(subTexelPrecisionBits),								4, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN    , -1 },
    182 		{ LIMIT(mipmapPrecisionBits),								4, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN    , -1 },
    183 		{ LIMIT(maxDrawIndexedIndexValue),							(deUint32)~0, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1 },
    184 		{ LIMIT(maxDrawIndirectCount),								65535, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN    , -1 },
    185 		{ LIMIT(maxSamplerLodBias),									0, 0, 0, 2.0f, LIMIT_FORMAT_FLOAT, LIMIT_TYPE_MIN, -1 },
    186 		{ LIMIT(maxSamplerAnisotropy),								0, 0, 0, 16.0f, LIMIT_FORMAT_FLOAT, LIMIT_TYPE_MIN, -1 },
    187 		{ LIMIT(maxViewports),										16, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1 },
    188 		{ LIMIT(maxViewportDimensions[0]),							4096, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1 },
    189 		{ LIMIT(maxViewportDimensions[1]),							4096, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1 },
    190 		{ LIMIT(viewportBoundsRange[0]),							0, 0, 0, -8192.0f, LIMIT_FORMAT_FLOAT, LIMIT_TYPE_MAX, -1 },
    191 		{ LIMIT(viewportBoundsRange[1]),							0, 0, 0, 8191.0f, LIMIT_FORMAT_FLOAT, LIMIT_TYPE_MIN, -1 },
    192 		{ LIMIT(viewportSubPixelBits),								0, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1 },
    193 		{ LIMIT(minMemoryMapAlignment),								64, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1 },
    194 		{ LIMIT(minTexelBufferOffsetAlignment),						0, 0, 1, 0.0f, LIMIT_FORMAT_DEVICE_SIZE, LIMIT_TYPE_MIN, -1 },
    195 		{ LIMIT(minTexelBufferOffsetAlignment),						0, 0, 256, 0.0f, LIMIT_FORMAT_DEVICE_SIZE, LIMIT_TYPE_MAX, -1 },
    196 		{ LIMIT(minUniformBufferOffsetAlignment),					0, 0, 1, 0.0f, LIMIT_FORMAT_DEVICE_SIZE, LIMIT_TYPE_MIN, -1 },
    197 		{ LIMIT(minUniformBufferOffsetAlignment),					0, 0, 256, 0.0f, LIMIT_FORMAT_DEVICE_SIZE, LIMIT_TYPE_MAX, -1 },
    198 		{ LIMIT(minStorageBufferOffsetAlignment),					0, 0, 1, 0.0f, LIMIT_FORMAT_DEVICE_SIZE, LIMIT_TYPE_MIN, -1 },
    199 		{ LIMIT(minStorageBufferOffsetAlignment),					0, 0, 256, 0.0f, LIMIT_FORMAT_DEVICE_SIZE, LIMIT_TYPE_MAX, -1 },
    200 		{ LIMIT(minTexelOffset),									0, -8, 0, 0.0f, LIMIT_FORMAT_SIGNED_INT, LIMIT_TYPE_MAX, -1 },
    201 		{ LIMIT(maxTexelOffset),									7, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1 },
    202 		{ LIMIT(minTexelGatherOffset),								0, -8, 0, 0.0f, LIMIT_FORMAT_SIGNED_INT, LIMIT_TYPE_MAX, -1 },
    203 		{ LIMIT(maxTexelGatherOffset),								7, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1 },
    204 		{ LIMIT(minInterpolationOffset),							0, 0, 0, -0.5f, LIMIT_FORMAT_FLOAT, LIMIT_TYPE_MAX, -1 },
    205 		{ LIMIT(maxInterpolationOffset),							0, 0, 0, 0.5f - (1.0f/deFloatPow(2.0f, (float)limits->subPixelInterpolationOffsetBits)), LIMIT_FORMAT_FLOAT, LIMIT_TYPE_MIN, -1 },
    206 		{ LIMIT(subPixelInterpolationOffsetBits),					4, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1 },
    207 		{ LIMIT(maxFramebufferWidth),								4096, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1 },
    208 		{ LIMIT(maxFramebufferHeight),								4096, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1 },
    209 		{ LIMIT(maxFramebufferLayers),								0, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1 },
    210 		{ LIMIT(framebufferColorSampleCounts),						VK_SAMPLE_COUNT_1_BIT|VK_SAMPLE_COUNT_4_BIT, 0, 0, 0.0f, LIMIT_FORMAT_BITMASK, LIMIT_TYPE_MIN, -1 },
    211 		{ LIMIT(framebufferDepthSampleCounts),						VK_SAMPLE_COUNT_1_BIT|VK_SAMPLE_COUNT_4_BIT, 0, 0, 0.0f, LIMIT_FORMAT_BITMASK, LIMIT_TYPE_MIN, -1 },
    212 		{ LIMIT(framebufferStencilSampleCounts),					VK_SAMPLE_COUNT_1_BIT|VK_SAMPLE_COUNT_4_BIT, 0, 0, 0.0f, LIMIT_FORMAT_BITMASK, LIMIT_TYPE_MIN, -1 },
    213 		{ LIMIT(framebufferNoAttachmentsSampleCounts),				VK_SAMPLE_COUNT_1_BIT|VK_SAMPLE_COUNT_4_BIT, 0, 0, 0.0f, LIMIT_FORMAT_BITMASK, LIMIT_TYPE_MIN, -1 },
    214 		{ LIMIT(maxColorAttachments),								4, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1 },
    215 		{ LIMIT(sampledImageColorSampleCounts),						VK_SAMPLE_COUNT_1_BIT|VK_SAMPLE_COUNT_4_BIT, 0, 0, 0.0f, LIMIT_FORMAT_BITMASK, LIMIT_TYPE_MIN, -1 },
    216 		{ LIMIT(sampledImageIntegerSampleCounts),					VK_SAMPLE_COUNT_1_BIT, 0, 0, 0.0f, LIMIT_FORMAT_BITMASK, LIMIT_TYPE_MIN, -1 },
    217 		{ LIMIT(sampledImageDepthSampleCounts),						VK_SAMPLE_COUNT_1_BIT|VK_SAMPLE_COUNT_4_BIT, 0, 0, 0.0f, LIMIT_FORMAT_BITMASK, LIMIT_TYPE_MIN, -1 },
    218 		{ LIMIT(sampledImageStencilSampleCounts),					VK_SAMPLE_COUNT_1_BIT|VK_SAMPLE_COUNT_4_BIT, 0, 0, 0.0f, LIMIT_FORMAT_BITMASK, LIMIT_TYPE_MIN, -1 },
    219 		{ LIMIT(storageImageSampleCounts),							VK_SAMPLE_COUNT_1_BIT|VK_SAMPLE_COUNT_4_BIT, 0, 0, 0.0f, LIMIT_FORMAT_BITMASK, LIMIT_TYPE_MIN, -1 },
    220 		{ LIMIT(maxSampleMaskWords),								1, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1 },
    221 		{ LIMIT(timestampComputeAndGraphics),						0, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_NONE, -1 },
    222 		{ LIMIT(timestampPeriod),									0, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_NONE, -1 },
    223 		{ LIMIT(maxClipDistances),									8, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1 },
    224 		{ LIMIT(maxCullDistances),									8, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1 },
    225 		{ LIMIT(maxCombinedClipAndCullDistances),					8, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1 },
    226 		{ LIMIT(discreteQueuePriorities),							8, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_NONE, -1 },
    227 		{ LIMIT(pointSizeRange[0]),									0, 0, 0, 0.0f, LIMIT_FORMAT_FLOAT, LIMIT_TYPE_MIN, -1 },
    228 		{ LIMIT(pointSizeRange[0]),									0, 0, 0, 1.0f, LIMIT_FORMAT_FLOAT, LIMIT_TYPE_MAX, -1 },
    229 		{ LIMIT(pointSizeRange[1]),									0, 0, 0, 64.0f - limits->pointSizeGranularity , LIMIT_FORMAT_FLOAT, LIMIT_TYPE_MIN, -1 },
    230 		{ LIMIT(lineWidthRange[0]),									0, 0, 0, 0.0f, LIMIT_FORMAT_FLOAT, LIMIT_TYPE_MIN, -1 },
    231 		{ LIMIT(lineWidthRange[0]),									0, 0, 0, 1.0f, LIMIT_FORMAT_FLOAT, LIMIT_TYPE_MAX, -1 },
    232 		{ LIMIT(lineWidthRange[1]),									0, 0, 0, 8.0f - limits->lineWidthGranularity, LIMIT_FORMAT_FLOAT, LIMIT_TYPE_MIN, -1 },
    233 		{ LIMIT(pointSizeGranularity),								0, 0, 0, 1.0f, LIMIT_FORMAT_FLOAT, LIMIT_TYPE_MAX, -1 },
    234 		{ LIMIT(lineWidthGranularity),								0, 0, 0, 1.0f, LIMIT_FORMAT_FLOAT, LIMIT_TYPE_MAX, -1 },
    235 		{ LIMIT(strictLines),										0, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_NONE, -1 },
    236 		{ LIMIT(standardSampleLocations),							0, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_NONE, -1 },
    237 		{ LIMIT(optimalBufferCopyOffsetAlignment),					0, 0, 0, 0.0f, LIMIT_FORMAT_DEVICE_SIZE, LIMIT_TYPE_NONE, -1 },
    238 		{ LIMIT(optimalBufferCopyRowPitchAlignment),				0, 0, 0, 0.0f, LIMIT_FORMAT_DEVICE_SIZE, LIMIT_TYPE_NONE, -1 },
    239 		{ LIMIT(nonCoherentAtomSize),								0, 0, 1, 0.0f, LIMIT_FORMAT_DEVICE_SIZE, LIMIT_TYPE_MIN, -1 },
    240 		{ LIMIT(nonCoherentAtomSize),								0, 0, 256, 0.0f, LIMIT_FORMAT_DEVICE_SIZE, LIMIT_TYPE_MAX, -1 },
    241 	};
    242 
    243 	const struct UnsupportedFeatureLimitTable
    244 	{
    245 		deUint32		limitOffset;
    246 		const char*		name;
    247 		deUint32		featureOffset;
    248 		deUint32		uintVal;			//!< Format is UNSIGNED_INT
    249 		deInt32			intVal;				//!< Format is SIGNED_INT
    250 		deUint64		deviceSizeVal;		//!< Format is DEVICE_SIZE
    251 		float			floatVal;			//!< Format is FLOAT
    252 	} unsupportedFeatureTable[] =
    253 	{
    254 		{ LIMIT(sparseAddressSpaceSize),							FEATURE(sparseBinding),					0, 0, 0, 0.0f },
    255 		{ LIMIT(maxTessellationGenerationLevel),					FEATURE(tessellationShader),			0, 0, 0, 0.0f },
    256 		{ LIMIT(maxTessellationPatchSize),							FEATURE(tessellationShader),			0, 0, 0, 0.0f },
    257 		{ LIMIT(maxTessellationControlPerVertexInputComponents),	FEATURE(tessellationShader),			0, 0, 0, 0.0f },
    258 		{ LIMIT(maxTessellationControlPerVertexOutputComponents),	FEATURE(tessellationShader),			0, 0, 0, 0.0f },
    259 		{ LIMIT(maxTessellationControlPerPatchOutputComponents),	FEATURE(tessellationShader),			0, 0, 0, 0.0f },
    260 		{ LIMIT(maxTessellationControlTotalOutputComponents),		FEATURE(tessellationShader),			0, 0, 0, 0.0f },
    261 		{ LIMIT(maxTessellationEvaluationInputComponents),			FEATURE(tessellationShader),			0, 0, 0, 0.0f },
    262 		{ LIMIT(maxTessellationEvaluationOutputComponents),			FEATURE(tessellationShader),			0, 0, 0, 0.0f },
    263 		{ LIMIT(maxGeometryShaderInvocations),						FEATURE(geometryShader),				0, 0, 0, 0.0f },
    264 		{ LIMIT(maxGeometryInputComponents),						FEATURE(geometryShader),				0, 0, 0, 0.0f },
    265 		{ LIMIT(maxGeometryOutputComponents),						FEATURE(geometryShader),				0, 0, 0, 0.0f },
    266 		{ LIMIT(maxGeometryOutputVertices),							FEATURE(geometryShader),				0, 0, 0, 0.0f },
    267 		{ LIMIT(maxGeometryTotalOutputComponents),					FEATURE(geometryShader),				0, 0, 0, 0.0f },
    268 		{ LIMIT(maxFragmentDualSrcAttachments),						FEATURE(dualSrcBlend),					0, 0, 0, 0.0f },
    269 		{ LIMIT(maxDrawIndexedIndexValue),							FEATURE(fullDrawIndexUint32),			(1<<24)-1, 0, 0, 0.0f },
    270 		{ LIMIT(maxDrawIndirectCount),								FEATURE(multiDrawIndirect),				1, 0, 0, 0.0f },
    271 		{ LIMIT(maxSamplerAnisotropy),								FEATURE(samplerAnisotropy),				1, 0, 0, 0.0f },
    272 		{ LIMIT(maxViewports),										FEATURE(multiViewport),					1, 0, 0, 0.0f },
    273 		{ LIMIT(minTexelGatherOffset),								FEATURE(shaderImageGatherExtended),		0, 0, 0, 0.0f },
    274 		{ LIMIT(maxTexelGatherOffset),								FEATURE(shaderImageGatherExtended),		0, 0, 0, 0.0f },
    275 		{ LIMIT(minInterpolationOffset),							FEATURE(sampleRateShading),				0, 0, 0, 0.0f },
    276 		{ LIMIT(maxInterpolationOffset),							FEATURE(sampleRateShading),				0, 0, 0, 0.0f },
    277 		{ LIMIT(subPixelInterpolationOffsetBits),					FEATURE(sampleRateShading),				0, 0, 0, 0.0f },
    278 		{ LIMIT(storageImageSampleCounts),							FEATURE(shaderStorageImageMultisample),	VK_SAMPLE_COUNT_1_BIT, 0, 0, 0.0f },
    279 		{ LIMIT(maxClipDistances),									FEATURE(shaderClipDistance),			0, 0, 0, 0.0f },
    280 		{ LIMIT(maxCullDistances),									FEATURE(shaderClipDistance),			0, 0, 0, 0.0f },
    281 		{ LIMIT(maxCombinedClipAndCullDistances),					FEATURE(shaderClipDistance),			0, 0, 0, 0.0f },
    282 		{ LIMIT(pointSizeRange[0]),									FEATURE(largePoints),					0, 0, 0, 1.0f },
    283 		{ LIMIT(pointSizeRange[1]),									FEATURE(largePoints),					0, 0, 0, 1.0f },
    284 		{ LIMIT(lineWidthRange[0]),									FEATURE(wideLines),						0, 0, 0, 1.0f },
    285 		{ LIMIT(lineWidthRange[1]),									FEATURE(wideLines),						0, 0, 0, 1.0f },
    286 		{ LIMIT(pointSizeGranularity),								FEATURE(largePoints),					0, 0, 0, 0.0f },
    287 		{ LIMIT(lineWidthGranularity),								FEATURE(wideLines),						0, 0, 0, 0.0f }
    288 	};
    289 
    290 	log << TestLog::Message << *limits << TestLog::EndMessage;
    291 
    292 	//!< First build a map from limit to unsupported table index
    293 	for (deUint32 ndx = 0; ndx < DE_LENGTH_OF_ARRAY(featureLimitTable); ndx++)
    294 	{
    295 		for (deUint32 unsuppNdx = 0; unsuppNdx < DE_LENGTH_OF_ARRAY(unsupportedFeatureTable); unsuppNdx++)
    296 		{
    297 			if (unsupportedFeatureTable[unsuppNdx].limitOffset == featureLimitTable[ndx].offset)
    298 			{
    299 				featureLimitTable[ndx].unsuppTableNdx = unsuppNdx;
    300 				break;
    301 			}
    302 		}
    303 	}
    304 
    305 	for (deUint32 ndx = 0; ndx < DE_LENGTH_OF_ARRAY(featureLimitTable); ndx++)
    306 	{
    307 		switch (featureLimitTable[ndx].format)
    308 		{
    309 			case LIMIT_FORMAT_UNSIGNED_INT:
    310 			{
    311 				deUint32 limitToCheck = featureLimitTable[ndx].uintVal;
    312 				if (featureLimitTable[ndx].unsuppTableNdx != -1)
    313 				{
    314 					if (*((VkBool32*)((deUint8*)features+unsupportedFeatureTable[featureLimitTable[ndx].unsuppTableNdx].featureOffset)) == VK_FALSE)
    315 						limitToCheck = unsupportedFeatureTable[featureLimitTable[ndx].unsuppTableNdx].uintVal;
    316 				}
    317 
    318 				if (featureLimitTable[ndx].type == LIMIT_TYPE_MIN)
    319 				{
    320 
    321 					if (*((deUint32*)((deUint8*)limits+featureLimitTable[ndx].offset)) < limitToCheck)
    322 					{
    323 						log << TestLog::Message << "limit Validation failed " << featureLimitTable[ndx].name
    324 							<< " not valid-limit type MIN - actual is "
    325 							<< *((deUint32*)((deUint8*)limits + featureLimitTable[ndx].offset)) << TestLog::EndMessage;
    326 						limitsOk = false;
    327 					}
    328 				}
    329 				else if (featureLimitTable[ndx].type == LIMIT_TYPE_MAX)
    330 				{
    331 					if (*((deUint32*)((deUint8*)limits+featureLimitTable[ndx].offset)) > limitToCheck)
    332 					{
    333 						log << TestLog::Message << "limit validation failed,  " << featureLimitTable[ndx].name
    334 							<< " not valid-limit type MAX - actual is "
    335 							<< *((deUint32*)((deUint8*)limits + featureLimitTable[ndx].offset)) << TestLog::EndMessage;
    336 						limitsOk = false;
    337 					}
    338 				}
    339 				break;
    340 			}
    341 
    342 			case LIMIT_FORMAT_FLOAT:
    343 			{
    344 				float limitToCheck = featureLimitTable[ndx].floatVal;
    345 				if (featureLimitTable[ndx].unsuppTableNdx != -1)
    346 				{
    347 					if (*((VkBool32*)((deUint8*)features+unsupportedFeatureTable[featureLimitTable[ndx].unsuppTableNdx].featureOffset)) == VK_FALSE)
    348 						limitToCheck = unsupportedFeatureTable[featureLimitTable[ndx].unsuppTableNdx].floatVal;
    349 				}
    350 
    351 				if (featureLimitTable[ndx].type == LIMIT_TYPE_MIN)
    352 				{
    353 					if (*((float*)((deUint8*)limits+featureLimitTable[ndx].offset)) < limitToCheck)
    354 					{
    355 						log << TestLog::Message << "limit validation failed, " << featureLimitTable[ndx].name
    356 							<< " not valid-limit type MIN - actual is "
    357 							<< *((float*)((deUint8*)limits + featureLimitTable[ndx].offset)) << TestLog::EndMessage;
    358 						limitsOk = false;
    359 					}
    360 				}
    361 				else if (featureLimitTable[ndx].type == LIMIT_TYPE_MAX)
    362 				{
    363 					if (*((float*)((deUint8*)limits+featureLimitTable[ndx].offset)) > limitToCheck)
    364 					{
    365 						log << TestLog::Message << "limit validation failed, " << featureLimitTable[ndx].name
    366 							<< " not valid-limit type MAX actual is "
    367 							<< *((float*)((deUint8*)limits + featureLimitTable[ndx].offset)) << TestLog::EndMessage;
    368 						limitsOk = false;
    369 					}
    370 				}
    371 				break;
    372 			}
    373 
    374 			case LIMIT_FORMAT_SIGNED_INT:
    375 			{
    376 				deInt32 limitToCheck = featureLimitTable[ndx].intVal;
    377 				if (featureLimitTable[ndx].unsuppTableNdx != -1)
    378 				{
    379 					if (*((VkBool32*)((deUint8*)features+unsupportedFeatureTable[featureLimitTable[ndx].unsuppTableNdx].featureOffset)) == VK_FALSE)
    380 						limitToCheck = unsupportedFeatureTable[featureLimitTable[ndx].unsuppTableNdx].intVal;
    381 				}
    382 				if (featureLimitTable[ndx].type == LIMIT_TYPE_MIN)
    383 				{
    384 					if (*((deInt32*)((deUint8*)limits+featureLimitTable[ndx].offset)) < limitToCheck)
    385 					{
    386 						log << TestLog::Message <<  "limit validation failed, " << featureLimitTable[ndx].name
    387 							<< " not valid-limit type MIN actual is "
    388 							<< *((deInt32*)((deUint8*)limits + featureLimitTable[ndx].offset)) << TestLog::EndMessage;
    389 						limitsOk = false;
    390 					}
    391 				}
    392 				else if (featureLimitTable[ndx].type == LIMIT_TYPE_MAX)
    393 				{
    394 					if (*((deInt32*)((deUint8*)limits+featureLimitTable[ndx].offset)) > limitToCheck)
    395 					{
    396 						log << TestLog::Message << "limit validation failed, " << featureLimitTable[ndx].name
    397 							<< " not valid-limit type MAX actual is "
    398 							<< *((deInt32*)((deUint8*)limits + featureLimitTable[ndx].offset)) << TestLog::EndMessage;
    399 						limitsOk = false;
    400 					}
    401 				}
    402 				break;
    403 			}
    404 
    405 			case LIMIT_FORMAT_DEVICE_SIZE:
    406 			{
    407 				deUint64 limitToCheck = featureLimitTable[ndx].deviceSizeVal;
    408 				if (featureLimitTable[ndx].unsuppTableNdx != -1)
    409 				{
    410 					if (*((VkBool32*)((deUint8*)features+unsupportedFeatureTable[featureLimitTable[ndx].unsuppTableNdx].featureOffset)) == VK_FALSE)
    411 						limitToCheck = unsupportedFeatureTable[featureLimitTable[ndx].unsuppTableNdx].deviceSizeVal;
    412 				}
    413 
    414 				if (featureLimitTable[ndx].type == LIMIT_TYPE_MIN)
    415 				{
    416 					if (*((deUint64*)((deUint8*)limits+featureLimitTable[ndx].offset)) < limitToCheck)
    417 					{
    418 						log << TestLog::Message << "limit validation failed, " << featureLimitTable[ndx].name
    419 							<< " not valid-limit type MIN actual is "
    420 							<< *((deUint64*)((deUint8*)limits + featureLimitTable[ndx].offset)) << TestLog::EndMessage;
    421 						limitsOk = false;
    422 					}
    423 				}
    424 				else if (featureLimitTable[ndx].type == LIMIT_TYPE_MAX)
    425 				{
    426 					if (*((deUint64*)((deUint8*)limits+featureLimitTable[ndx].offset)) > limitToCheck)
    427 					{
    428 						log << TestLog::Message << "limit validation failed, " << featureLimitTable[ndx].name
    429 							<< " not valid-limit type MAX actual is "
    430 							<< *((deUint64*)((deUint8*)limits + featureLimitTable[ndx].offset)) << TestLog::EndMessage;
    431 						limitsOk = false;
    432 					}
    433 				}
    434 				break;
    435 			}
    436 
    437 			case LIMIT_FORMAT_BITMASK:
    438 			{
    439 				deUint32 limitToCheck = featureLimitTable[ndx].uintVal;
    440 				if (featureLimitTable[ndx].unsuppTableNdx != -1)
    441 				{
    442 					if (*((VkBool32*)((deUint8*)features+unsupportedFeatureTable[featureLimitTable[ndx].unsuppTableNdx].featureOffset)) == VK_FALSE)
    443 						limitToCheck = unsupportedFeatureTable[featureLimitTable[ndx].unsuppTableNdx].uintVal;
    444 				}
    445 
    446 				if (featureLimitTable[ndx].type == LIMIT_TYPE_MIN)
    447 				{
    448 					if ((*((deUint32*)((deUint8*)limits+featureLimitTable[ndx].offset)) & limitToCheck) != limitToCheck)
    449 					{
    450 						log << TestLog::Message << "limit validation failed, " << featureLimitTable[ndx].name
    451 							<< " not valid-limit type bitmask actual is "
    452 							<< *((deUint64*)((deUint8*)limits + featureLimitTable[ndx].offset)) << TestLog::EndMessage;
    453 						limitsOk = false;
    454 					}
    455 				}
    456 				break;
    457 			}
    458 
    459 			default:
    460 				DE_ASSERT(0);
    461 				limitsOk = false;
    462 		}
    463 	}
    464 
    465 	for (deUint32 ndx = 0; ndx < DE_LENGTH_OF_ARRAY(limits->maxViewportDimensions); ndx++)
    466 	{
    467 		if (limits->maxImageDimension2D > limits->maxViewportDimensions[ndx])
    468 		{
    469 			log << TestLog::Message << "limit validation failed, maxImageDimension2D of " << limits->maxImageDimension2D
    470 				<< "is larger than maxViewportDimension[" << ndx << "] of " << limits->maxViewportDimensions[ndx] << TestLog::EndMessage;
    471 			limitsOk = false;
    472 		}
    473 	}
    474 
    475 	if (limits->viewportBoundsRange[0] > float(-2 * limits->maxViewportDimensions[0]))
    476 	{
    477 		log << TestLog::Message << "limit validation failed, viewPortBoundsRange[0] of " << limits->viewportBoundsRange[0]
    478 			<< "is larger than -2*maxViewportDimension[0] of " << -2*limits->maxViewportDimensions[0] << TestLog::EndMessage;
    479 		limitsOk = false;
    480 	}
    481 
    482 	if (limits->viewportBoundsRange[1] < float(2 * limits->maxViewportDimensions[1] - 1))
    483 	{
    484 		log << TestLog::Message << "limit validation failed, viewportBoundsRange[1] of " << limits->viewportBoundsRange[1]
    485 			<< "is less than 2*maxViewportDimension[1] of " << 2*limits->maxViewportDimensions[1] << TestLog::EndMessage;
    486 		limitsOk = false;
    487 	}
    488 
    489 	return limitsOk;
    490 }
    491 
    492 template<typename T>
    493 class CheckIncompleteResult
    494 {
    495 public:
    496 	virtual			~CheckIncompleteResult	(void) {}
    497 	virtual void	getResult				(Context& context, T* data) = 0;
    498 
    499 	void operator() (Context& context, tcu::ResultCollector& results, const std::size_t expectedCompleteSize)
    500 	{
    501 		if (expectedCompleteSize == 0)
    502 			return;
    503 
    504 		vector<T>		outputData	(expectedCompleteSize);
    505 		const deUint32	usedSize	= static_cast<deUint32>(expectedCompleteSize / 3);
    506 
    507 		ValidateQueryBits::fillBits(outputData.begin(), outputData.end());	// unused entries should have this pattern intact
    508 		m_count		= usedSize;
    509 		m_result	= VK_SUCCESS;
    510 
    511 		getResult(context, &outputData[0]);									// update m_count and m_result
    512 
    513 		if (m_count != usedSize || m_result != VK_INCOMPLETE || !ValidateQueryBits::checkBits(outputData.begin() + m_count, outputData.end()))
    514 			results.fail("Query didn't return VK_INCOMPLETE");
    515 	}
    516 
    517 protected:
    518 	deUint32	m_count;
    519 	VkResult	m_result;
    520 };
    521 
    522 struct CheckEnumeratePhysicalDevicesIncompleteResult : public CheckIncompleteResult<VkPhysicalDevice>
    523 {
    524 	void getResult (Context& context, VkPhysicalDevice* data)
    525 	{
    526 		m_result = context.getInstanceInterface().enumeratePhysicalDevices(context.getInstance(), &m_count, data);
    527 	}
    528 };
    529 
    530 struct CheckEnumerateInstanceLayerPropertiesIncompleteResult : public CheckIncompleteResult<VkLayerProperties>
    531 {
    532 	void getResult (Context& context, VkLayerProperties* data)
    533 	{
    534 		m_result = context.getPlatformInterface().enumerateInstanceLayerProperties(&m_count, data);
    535 	}
    536 };
    537 
    538 struct CheckEnumerateDeviceLayerPropertiesIncompleteResult : public CheckIncompleteResult<VkLayerProperties>
    539 {
    540 	void getResult (Context& context, VkLayerProperties* data)
    541 	{
    542 		m_result = context.getInstanceInterface().enumerateDeviceLayerProperties(context.getPhysicalDevice(), &m_count, data);
    543 	}
    544 };
    545 
    546 struct CheckEnumerateInstanceExtensionPropertiesIncompleteResult : public CheckIncompleteResult<VkExtensionProperties>
    547 {
    548 	CheckEnumerateInstanceExtensionPropertiesIncompleteResult (std::string layerName = std::string()) : m_layerName(layerName) {}
    549 
    550 	void getResult (Context& context, VkExtensionProperties* data)
    551 	{
    552 		const char* pLayerName = (m_layerName.length() != 0 ? m_layerName.c_str() : DE_NULL);
    553 		m_result = context.getPlatformInterface().enumerateInstanceExtensionProperties(pLayerName, &m_count, data);
    554 	}
    555 
    556 private:
    557 	const std::string	m_layerName;
    558 };
    559 
    560 struct CheckEnumerateDeviceExtensionPropertiesIncompleteResult : public CheckIncompleteResult<VkExtensionProperties>
    561 {
    562 	CheckEnumerateDeviceExtensionPropertiesIncompleteResult (std::string layerName = std::string()) : m_layerName(layerName) {}
    563 
    564 	void getResult (Context& context, VkExtensionProperties* data)
    565 	{
    566 		const char* pLayerName = (m_layerName.length() != 0 ? m_layerName.c_str() : DE_NULL);
    567 		m_result = context.getInstanceInterface().enumerateDeviceExtensionProperties(context.getPhysicalDevice(), pLayerName, &m_count, data);
    568 	}
    569 
    570 private:
    571 	const std::string	m_layerName;
    572 };
    573 
    574 tcu::TestStatus enumeratePhysicalDevices (Context& context)
    575 {
    576 	TestLog&						log		= context.getTestContext().getLog();
    577 	tcu::ResultCollector			results	(log);
    578 	const vector<VkPhysicalDevice>	devices	= enumeratePhysicalDevices(context.getInstanceInterface(), context.getInstance());
    579 
    580 	log << TestLog::Integer("NumDevices", "Number of devices", "", QP_KEY_TAG_NONE, deInt64(devices.size()));
    581 
    582 	for (size_t ndx = 0; ndx < devices.size(); ndx++)
    583 		log << TestLog::Message << ndx << ": " << devices[ndx] << TestLog::EndMessage;
    584 
    585 	CheckEnumeratePhysicalDevicesIncompleteResult()(context, results, devices.size());
    586 
    587 	return tcu::TestStatus(results.getResult(), results.getMessage());
    588 }
    589 
    590 template<typename T>
    591 void collectDuplicates (set<T>& duplicates, const vector<T>& values)
    592 {
    593 	set<T> seen;
    594 
    595 	for (size_t ndx = 0; ndx < values.size(); ndx++)
    596 	{
    597 		const T& value = values[ndx];
    598 
    599 		if (!seen.insert(value).second)
    600 			duplicates.insert(value);
    601 	}
    602 }
    603 
    604 void checkDuplicates (tcu::ResultCollector& results, const char* what, const vector<string>& values)
    605 {
    606 	set<string> duplicates;
    607 
    608 	collectDuplicates(duplicates, values);
    609 
    610 	for (set<string>::const_iterator iter = duplicates.begin(); iter != duplicates.end(); ++iter)
    611 	{
    612 		std::ostringstream msg;
    613 		msg << "Duplicate " << what << ": " << *iter;
    614 		results.fail(msg.str());
    615 	}
    616 }
    617 
    618 void checkDuplicateExtensions (tcu::ResultCollector& results, const vector<string>& extensions)
    619 {
    620 	checkDuplicates(results, "extension", extensions);
    621 }
    622 
    623 void checkDuplicateLayers (tcu::ResultCollector& results, const vector<string>& layers)
    624 {
    625 	checkDuplicates(results, "layer", layers);
    626 }
    627 
    628 void checkKhrExtensions (tcu::ResultCollector&		results,
    629 						 const vector<string>&		extensions,
    630 						 const int					numAllowedKhrExtensions,
    631 						 const char* const*			allowedKhrExtensions)
    632 {
    633 	const set<string>	allowedExtSet		(allowedKhrExtensions, allowedKhrExtensions+numAllowedKhrExtensions);
    634 
    635 	for (vector<string>::const_iterator extIter = extensions.begin(); extIter != extensions.end(); ++extIter)
    636 	{
    637 		// Only Khronos-controlled extensions are checked
    638 		if (de::beginsWith(*extIter, "VK_KHR_") &&
    639 			!de::contains(allowedExtSet, *extIter))
    640 		{
    641 			results.fail("Unknown KHR extension " + *extIter);
    642 		}
    643 	}
    644 }
    645 
    646 void checkInstanceExtensions (tcu::ResultCollector& results, const vector<string>& extensions)
    647 {
    648 	static const char* s_allowedInstanceKhrExtensions[] =
    649 	{
    650 		"VK_KHR_surface",
    651 		"VK_KHR_display",
    652 		"VK_KHR_android_surface",
    653 		"VK_KHR_mir_surface",
    654 		"VK_KHR_wayland_surface",
    655 		"VK_KHR_win32_surface",
    656 		"VK_KHR_xcb_surface",
    657 		"VK_KHR_xlib_surface",
    658 		"VK_KHR_get_physical_device_properties2",
    659 		"VK_KHR_get_surface_capabilities2",
    660 	};
    661 
    662 	checkKhrExtensions(results, extensions, DE_LENGTH_OF_ARRAY(s_allowedInstanceKhrExtensions), s_allowedInstanceKhrExtensions);
    663 	checkDuplicateExtensions(results, extensions);
    664 }
    665 
    666 void checkDeviceExtensions (tcu::ResultCollector& results, const vector<string>& extensions)
    667 {
    668 	static const char* s_allowedDeviceKhrExtensions[] =
    669 	{
    670 		"VK_KHR_swapchain",
    671 		"VK_KHR_display_swapchain",
    672 		"VK_KHR_sampler_mirror_clamp_to_edge",
    673 		"VK_KHR_shader_draw_parameters",
    674 		"VK_KHR_maintenance1",
    675 		"VK_KHR_push_descriptor",
    676 		"VK_KHR_descriptor_update_template",
    677 		"VK_KHR_incremental_present",
    678 		"VK_KHR_shared_presentable_image",
    679 	};
    680 
    681 	checkKhrExtensions(results, extensions, DE_LENGTH_OF_ARRAY(s_allowedDeviceKhrExtensions), s_allowedDeviceKhrExtensions);
    682 	checkDuplicateExtensions(results, extensions);
    683 }
    684 
    685 tcu::TestStatus enumerateInstanceLayers (Context& context)
    686 {
    687 	TestLog&						log					= context.getTestContext().getLog();
    688 	tcu::ResultCollector			results				(log);
    689 	const vector<VkLayerProperties>	properties			= enumerateInstanceLayerProperties(context.getPlatformInterface());
    690 	vector<string>					layerNames;
    691 
    692 	for (size_t ndx = 0; ndx < properties.size(); ndx++)
    693 	{
    694 		log << TestLog::Message << ndx << ": " << properties[ndx] << TestLog::EndMessage;
    695 
    696 		layerNames.push_back(properties[ndx].layerName);
    697 	}
    698 
    699 	checkDuplicateLayers(results, layerNames);
    700 	CheckEnumerateInstanceLayerPropertiesIncompleteResult()(context, results, layerNames.size());
    701 
    702 	return tcu::TestStatus(results.getResult(), results.getMessage());
    703 }
    704 
    705 tcu::TestStatus enumerateInstanceExtensions (Context& context)
    706 {
    707 	TestLog&				log		= context.getTestContext().getLog();
    708 	tcu::ResultCollector	results	(log);
    709 
    710 	{
    711 		const ScopedLogSection				section		(log, "Global", "Global Extensions");
    712 		const vector<VkExtensionProperties>	properties	= enumerateInstanceExtensionProperties(context.getPlatformInterface(), DE_NULL);
    713 		vector<string>						extensionNames;
    714 
    715 		for (size_t ndx = 0; ndx < properties.size(); ndx++)
    716 		{
    717 			log << TestLog::Message << ndx << ": " << properties[ndx] << TestLog::EndMessage;
    718 
    719 			extensionNames.push_back(properties[ndx].extensionName);
    720 		}
    721 
    722 		checkInstanceExtensions(results, extensionNames);
    723 		CheckEnumerateInstanceExtensionPropertiesIncompleteResult()(context, results, properties.size());
    724 	}
    725 
    726 	{
    727 		const vector<VkLayerProperties>	layers	= enumerateInstanceLayerProperties(context.getPlatformInterface());
    728 
    729 		for (vector<VkLayerProperties>::const_iterator layer = layers.begin(); layer != layers.end(); ++layer)
    730 		{
    731 			const ScopedLogSection				section				(log, layer->layerName, string("Layer: ") + layer->layerName);
    732 			const vector<VkExtensionProperties>	properties			= enumerateInstanceExtensionProperties(context.getPlatformInterface(), layer->layerName);
    733 			vector<string>						extensionNames;
    734 
    735 			for (size_t extNdx = 0; extNdx < properties.size(); extNdx++)
    736 			{
    737 				log << TestLog::Message << extNdx << ": " << properties[extNdx] << TestLog::EndMessage;
    738 
    739 				extensionNames.push_back(properties[extNdx].extensionName);
    740 			}
    741 
    742 			checkInstanceExtensions(results, extensionNames);
    743 			CheckEnumerateInstanceExtensionPropertiesIncompleteResult(layer->layerName)(context, results, properties.size());
    744 		}
    745 	}
    746 
    747 	return tcu::TestStatus(results.getResult(), results.getMessage());
    748 }
    749 
    750 tcu::TestStatus enumerateDeviceLayers (Context& context)
    751 {
    752 	TestLog&						log			= context.getTestContext().getLog();
    753 	tcu::ResultCollector			results		(log);
    754 	const vector<VkLayerProperties>	properties	= enumerateDeviceLayerProperties(context.getInstanceInterface(), context.getPhysicalDevice());
    755 	vector<string>					layerNames;
    756 
    757 	for (size_t ndx = 0; ndx < properties.size(); ndx++)
    758 	{
    759 		log << TestLog::Message << ndx << ": " << properties[ndx] << TestLog::EndMessage;
    760 
    761 		layerNames.push_back(properties[ndx].layerName);
    762 	}
    763 
    764 	checkDuplicateLayers(results, layerNames);
    765 	CheckEnumerateDeviceLayerPropertiesIncompleteResult()(context, results, layerNames.size());
    766 
    767 	return tcu::TestStatus(results.getResult(), results.getMessage());
    768 }
    769 
    770 tcu::TestStatus enumerateDeviceExtensions (Context& context)
    771 {
    772 	TestLog&				log		= context.getTestContext().getLog();
    773 	tcu::ResultCollector	results	(log);
    774 
    775 	{
    776 		const ScopedLogSection				section		(log, "Global", "Global Extensions");
    777 		const vector<VkExtensionProperties>	properties	= enumerateDeviceExtensionProperties(context.getInstanceInterface(), context.getPhysicalDevice(), DE_NULL);
    778 		vector<string>						extensionNames;
    779 
    780 		for (size_t ndx = 0; ndx < properties.size(); ndx++)
    781 		{
    782 			log << TestLog::Message << ndx << ": " << properties[ndx] << TestLog::EndMessage;
    783 
    784 			extensionNames.push_back(properties[ndx].extensionName);
    785 		}
    786 
    787 		checkDeviceExtensions(results, extensionNames);
    788 		CheckEnumerateDeviceExtensionPropertiesIncompleteResult()(context, results, properties.size());
    789 	}
    790 
    791 	{
    792 		const vector<VkLayerProperties>	layers	= enumerateDeviceLayerProperties(context.getInstanceInterface(), context.getPhysicalDevice());
    793 
    794 		for (vector<VkLayerProperties>::const_iterator layer = layers.begin(); layer != layers.end(); ++layer)
    795 		{
    796 			const ScopedLogSection				section		(log, layer->layerName, string("Layer: ") + layer->layerName);
    797 			const vector<VkExtensionProperties>	properties	= enumerateDeviceExtensionProperties(context.getInstanceInterface(), context.getPhysicalDevice(), layer->layerName);
    798 			vector<string>						extensionNames;
    799 
    800 			for (size_t extNdx = 0; extNdx < properties.size(); extNdx++)
    801 			{
    802 				log << TestLog::Message << extNdx << ": " << properties[extNdx] << TestLog::EndMessage;
    803 
    804 
    805 				extensionNames.push_back(properties[extNdx].extensionName);
    806 			}
    807 
    808 			checkDeviceExtensions(results, extensionNames);
    809 			CheckEnumerateDeviceExtensionPropertiesIncompleteResult(layer->layerName)(context, results, properties.size());
    810 		}
    811 	}
    812 
    813 	return tcu::TestStatus(results.getResult(), results.getMessage());
    814 }
    815 
    816 #define VK_SIZE_OF(STRUCT, MEMBER)					(sizeof(((STRUCT*)0)->MEMBER))
    817 #define OFFSET_TABLE_ENTRY(STRUCT, MEMBER)			{ (size_t)DE_OFFSET_OF(STRUCT, MEMBER), VK_SIZE_OF(STRUCT, MEMBER) }
    818 
    819 tcu::TestStatus deviceFeatures (Context& context)
    820 {
    821 	using namespace ValidateQueryBits;
    822 
    823 	TestLog&						log			= context.getTestContext().getLog();
    824 	VkPhysicalDeviceFeatures*		features;
    825 	deUint8							buffer[sizeof(VkPhysicalDeviceFeatures) + GUARD_SIZE];
    826 
    827 	const QueryMemberTableEntry featureOffsetTable[] =
    828 	{
    829 		OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, robustBufferAccess),
    830 		OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, fullDrawIndexUint32),
    831 		OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, imageCubeArray),
    832 		OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, independentBlend),
    833 		OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, geometryShader),
    834 		OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, tessellationShader),
    835 		OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, sampleRateShading),
    836 		OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, dualSrcBlend),
    837 		OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, logicOp),
    838 		OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, multiDrawIndirect),
    839 		OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, drawIndirectFirstInstance),
    840 		OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, depthClamp),
    841 		OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, depthBiasClamp),
    842 		OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, fillModeNonSolid),
    843 		OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, depthBounds),
    844 		OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, wideLines),
    845 		OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, largePoints),
    846 		OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, alphaToOne),
    847 		OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, multiViewport),
    848 		OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, samplerAnisotropy),
    849 		OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, textureCompressionETC2),
    850 		OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, textureCompressionASTC_LDR),
    851 		OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, textureCompressionBC),
    852 		OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, occlusionQueryPrecise),
    853 		OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, pipelineStatisticsQuery),
    854 		OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, vertexPipelineStoresAndAtomics),
    855 		OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, fragmentStoresAndAtomics),
    856 		OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, shaderTessellationAndGeometryPointSize),
    857 		OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, shaderImageGatherExtended),
    858 		OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, shaderStorageImageExtendedFormats),
    859 		OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, shaderStorageImageMultisample),
    860 		OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, shaderStorageImageReadWithoutFormat),
    861 		OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, shaderStorageImageWriteWithoutFormat),
    862 		OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, shaderUniformBufferArrayDynamicIndexing),
    863 		OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, shaderSampledImageArrayDynamicIndexing),
    864 		OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, shaderStorageBufferArrayDynamicIndexing),
    865 		OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, shaderStorageImageArrayDynamicIndexing),
    866 		OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, shaderClipDistance),
    867 		OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, shaderCullDistance),
    868 		OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, shaderFloat64),
    869 		OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, shaderInt64),
    870 		OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, shaderInt16),
    871 		OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, shaderResourceResidency),
    872 		OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, shaderResourceMinLod),
    873 		OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, sparseBinding),
    874 		OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, sparseResidencyBuffer),
    875 		OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, sparseResidencyImage2D),
    876 		OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, sparseResidencyImage3D),
    877 		OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, sparseResidency2Samples),
    878 		OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, sparseResidency4Samples),
    879 		OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, sparseResidency8Samples),
    880 		OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, sparseResidency16Samples),
    881 		OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, sparseResidencyAliased),
    882 		OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, variableMultisampleRate),
    883 		OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, inheritedQueries),
    884 		{ 0, 0 }
    885 	};
    886 
    887 	deMemset(buffer, GUARD_VALUE, sizeof(buffer));
    888 	features = reinterpret_cast<VkPhysicalDeviceFeatures*>(buffer);
    889 
    890 	context.getInstanceInterface().getPhysicalDeviceFeatures(context.getPhysicalDevice(), features);
    891 
    892 	log << TestLog::Message << "device = " << context.getPhysicalDevice() << TestLog::EndMessage
    893 		<< TestLog::Message << *features << TestLog::EndMessage;
    894 
    895 	// Requirements and dependencies
    896 	{
    897 		if (!features->robustBufferAccess)
    898 			return tcu::TestStatus::fail("robustBufferAccess is not supported");
    899 
    900 		// multiViewport requires MultiViewport (SPIR-V capability) support, which depends on Geometry
    901 		if (features->multiViewport && !features->geometryShader)
    902 			return tcu::TestStatus::fail("multiViewport is supported but geometryShader is not");
    903 	}
    904 
    905 	for (int ndx = 0; ndx < GUARD_SIZE; ndx++)
    906 	{
    907 		if (buffer[ndx + sizeof(VkPhysicalDeviceFeatures)] != GUARD_VALUE)
    908 		{
    909 			log << TestLog::Message << "deviceFeatures - Guard offset " << ndx << " not valid" << TestLog::EndMessage;
    910 			return tcu::TestStatus::fail("deviceFeatures buffer overflow");
    911 		}
    912 	}
    913 
    914 	if (!validateInitComplete(context.getPhysicalDevice(), &InstanceInterface::getPhysicalDeviceFeatures, context.getInstanceInterface(), featureOffsetTable))
    915 	{
    916 		log << TestLog::Message << "deviceFeatures - VkPhysicalDeviceFeatures not completely initialized" << TestLog::EndMessage;
    917 		return tcu::TestStatus::fail("deviceFeatures incomplete initialization");
    918 	}
    919 
    920 	return tcu::TestStatus::pass("Query succeeded");
    921 }
    922 
    923 static const ValidateQueryBits::QueryMemberTableEntry s_physicalDevicePropertiesOffsetTable[] =
    924 {
    925 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, apiVersion),
    926 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, driverVersion),
    927 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, vendorID),
    928 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, deviceID),
    929 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, deviceType),
    930 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, pipelineCacheUUID),
    931 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxImageDimension1D),
    932 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxImageDimension2D),
    933 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxImageDimension3D),
    934 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxImageDimensionCube),
    935 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxImageArrayLayers),
    936 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxTexelBufferElements),
    937 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxUniformBufferRange),
    938 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxStorageBufferRange),
    939 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxPushConstantsSize),
    940 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxMemoryAllocationCount),
    941 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxSamplerAllocationCount),
    942 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.bufferImageGranularity),
    943 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.sparseAddressSpaceSize),
    944 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxBoundDescriptorSets),
    945 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxPerStageDescriptorSamplers),
    946 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxPerStageDescriptorUniformBuffers),
    947 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxPerStageDescriptorStorageBuffers),
    948 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxPerStageDescriptorSampledImages),
    949 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxPerStageDescriptorStorageImages),
    950 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxPerStageDescriptorInputAttachments),
    951 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxPerStageResources),
    952 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxDescriptorSetSamplers),
    953 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxDescriptorSetUniformBuffers),
    954 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxDescriptorSetUniformBuffersDynamic),
    955 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxDescriptorSetStorageBuffers),
    956 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxDescriptorSetStorageBuffersDynamic),
    957 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxDescriptorSetSampledImages),
    958 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxDescriptorSetStorageImages),
    959 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxDescriptorSetInputAttachments),
    960 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxVertexInputAttributes),
    961 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxVertexInputBindings),
    962 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxVertexInputAttributeOffset),
    963 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxVertexInputBindingStride),
    964 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxVertexOutputComponents),
    965 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxTessellationGenerationLevel),
    966 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxTessellationPatchSize),
    967 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxTessellationControlPerVertexInputComponents),
    968 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxTessellationControlPerVertexOutputComponents),
    969 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxTessellationControlPerPatchOutputComponents),
    970 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxTessellationControlTotalOutputComponents),
    971 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxTessellationEvaluationInputComponents),
    972 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxTessellationEvaluationOutputComponents),
    973 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxGeometryShaderInvocations),
    974 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxGeometryInputComponents),
    975 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxGeometryOutputComponents),
    976 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxGeometryOutputVertices),
    977 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxGeometryTotalOutputComponents),
    978 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxFragmentInputComponents),
    979 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxFragmentOutputAttachments),
    980 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxFragmentDualSrcAttachments),
    981 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxFragmentCombinedOutputResources),
    982 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxComputeSharedMemorySize),
    983 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxComputeWorkGroupCount[3]),
    984 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxComputeWorkGroupInvocations),
    985 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxComputeWorkGroupSize[3]),
    986 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.subPixelPrecisionBits),
    987 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.subTexelPrecisionBits),
    988 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.mipmapPrecisionBits),
    989 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxDrawIndexedIndexValue),
    990 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxDrawIndirectCount),
    991 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxSamplerLodBias),
    992 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxSamplerAnisotropy),
    993 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxViewports),
    994 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxViewportDimensions[2]),
    995 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.viewportBoundsRange[2]),
    996 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.viewportSubPixelBits),
    997 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.minMemoryMapAlignment),
    998 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.minTexelBufferOffsetAlignment),
    999 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.minUniformBufferOffsetAlignment),
   1000 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.minStorageBufferOffsetAlignment),
   1001 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.minTexelOffset),
   1002 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxTexelOffset),
   1003 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.minTexelGatherOffset),
   1004 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxTexelGatherOffset),
   1005 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.minInterpolationOffset),
   1006 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxInterpolationOffset),
   1007 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.subPixelInterpolationOffsetBits),
   1008 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxFramebufferWidth),
   1009 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxFramebufferHeight),
   1010 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxFramebufferLayers),
   1011 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.framebufferColorSampleCounts),
   1012 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.framebufferDepthSampleCounts),
   1013 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.framebufferStencilSampleCounts),
   1014 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.framebufferNoAttachmentsSampleCounts),
   1015 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxColorAttachments),
   1016 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.sampledImageColorSampleCounts),
   1017 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.sampledImageIntegerSampleCounts),
   1018 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.sampledImageDepthSampleCounts),
   1019 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.sampledImageStencilSampleCounts),
   1020 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.storageImageSampleCounts),
   1021 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxSampleMaskWords),
   1022 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.timestampComputeAndGraphics),
   1023 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.timestampPeriod),
   1024 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxClipDistances),
   1025 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxCullDistances),
   1026 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxCombinedClipAndCullDistances),
   1027 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.discreteQueuePriorities),
   1028 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.pointSizeRange[2]),
   1029 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.lineWidthRange[2]),
   1030 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.pointSizeGranularity),
   1031 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.lineWidthGranularity),
   1032 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.strictLines),
   1033 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.standardSampleLocations),
   1034 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.optimalBufferCopyOffsetAlignment),
   1035 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.optimalBufferCopyRowPitchAlignment),
   1036 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.nonCoherentAtomSize),
   1037 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, sparseProperties.residencyStandard2DBlockShape),
   1038 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, sparseProperties.residencyStandard2DMultisampleBlockShape),
   1039 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, sparseProperties.residencyStandard3DBlockShape),
   1040 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, sparseProperties.residencyAlignedMipSize),
   1041 	OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, sparseProperties.residencyNonResidentStrict),
   1042 	{ 0, 0 }
   1043 };
   1044 
   1045 tcu::TestStatus deviceProperties (Context& context)
   1046 {
   1047 	using namespace ValidateQueryBits;
   1048 
   1049 	TestLog&						log			= context.getTestContext().getLog();
   1050 	VkPhysicalDeviceProperties*		props;
   1051 	VkPhysicalDeviceFeatures		features;
   1052 	deUint8							buffer[sizeof(VkPhysicalDeviceProperties) + GUARD_SIZE];
   1053 
   1054 	props = reinterpret_cast<VkPhysicalDeviceProperties*>(buffer);
   1055 	deMemset(props, GUARD_VALUE, sizeof(buffer));
   1056 
   1057 	context.getInstanceInterface().getPhysicalDeviceProperties(context.getPhysicalDevice(), props);
   1058 	context.getInstanceInterface().getPhysicalDeviceFeatures(context.getPhysicalDevice(), &features);
   1059 
   1060 	log << TestLog::Message << "device = " << context.getPhysicalDevice() << TestLog::EndMessage
   1061 		<< TestLog::Message << *props << TestLog::EndMessage;
   1062 
   1063 	if (!validateFeatureLimits(props, &features, log))
   1064 		return tcu::TestStatus::fail("deviceProperties - feature limits failed");
   1065 
   1066 	for (int ndx = 0; ndx < GUARD_SIZE; ndx++)
   1067 	{
   1068 		if (buffer[ndx + sizeof(VkPhysicalDeviceProperties)] != GUARD_VALUE)
   1069 		{
   1070 			log << TestLog::Message << "deviceProperties - Guard offset " << ndx << " not valid" << TestLog::EndMessage;
   1071 			return tcu::TestStatus::fail("deviceProperties buffer overflow");
   1072 		}
   1073 	}
   1074 
   1075 	if (!validateInitComplete(context.getPhysicalDevice(), &InstanceInterface::getPhysicalDeviceProperties, context.getInstanceInterface(), s_physicalDevicePropertiesOffsetTable))
   1076 	{
   1077 		log << TestLog::Message << "deviceProperties - VkPhysicalDeviceProperties not completely initialized" << TestLog::EndMessage;
   1078 		return tcu::TestStatus::fail("deviceProperties incomplete initialization");
   1079 	}
   1080 
   1081 	// Check if deviceName string is properly terminated.
   1082 	if (deStrnlen(props->deviceName, VK_MAX_PHYSICAL_DEVICE_NAME_SIZE) == VK_MAX_PHYSICAL_DEVICE_NAME_SIZE)
   1083 	{
   1084 		log << TestLog::Message << "deviceProperties - VkPhysicalDeviceProperties deviceName not properly initialized" << TestLog::EndMessage;
   1085 		return tcu::TestStatus::fail("deviceProperties incomplete initialization");
   1086 	}
   1087 
   1088 	{
   1089 		const ApiVersion deviceVersion = unpackVersion(props->apiVersion);
   1090 		const ApiVersion deqpVersion = unpackVersion(VK_API_VERSION);
   1091 
   1092 		if (deviceVersion.majorNum != deqpVersion.majorNum)
   1093 		{
   1094 			log << TestLog::Message << "deviceProperties - API Major Version " << deviceVersion.majorNum << " is not valid" << TestLog::EndMessage;
   1095 			return tcu::TestStatus::fail("deviceProperties apiVersion not valid");
   1096 		}
   1097 
   1098 		if (deviceVersion.minorNum > deqpVersion.minorNum)
   1099 		{
   1100 			log << TestLog::Message << "deviceProperties - API Minor Version " << deviceVersion.minorNum << " is not valid for this version of dEQP" << TestLog::EndMessage;
   1101 			return tcu::TestStatus::fail("deviceProperties apiVersion not valid");
   1102 		}
   1103 	}
   1104 
   1105 	return tcu::TestStatus::pass("DeviceProperites query succeeded");
   1106 }
   1107 
   1108 tcu::TestStatus deviceQueueFamilyProperties (Context& context)
   1109 {
   1110 	TestLog&								log					= context.getTestContext().getLog();
   1111 	const vector<VkQueueFamilyProperties>	queueProperties		= getPhysicalDeviceQueueFamilyProperties(context.getInstanceInterface(), context.getPhysicalDevice());
   1112 
   1113 	log << TestLog::Message << "device = " << context.getPhysicalDevice() << TestLog::EndMessage;
   1114 
   1115 	for (size_t queueNdx = 0; queueNdx < queueProperties.size(); queueNdx++)
   1116 		log << TestLog::Message << queueNdx << ": " << queueProperties[queueNdx] << TestLog::EndMessage;
   1117 
   1118 	return tcu::TestStatus::pass("Querying queue properties succeeded");
   1119 }
   1120 
   1121 tcu::TestStatus deviceMemoryProperties (Context& context)
   1122 {
   1123 	TestLog&							log			= context.getTestContext().getLog();
   1124 	VkPhysicalDeviceMemoryProperties*	memProps;
   1125 	deUint8								buffer[sizeof(VkPhysicalDeviceMemoryProperties) + GUARD_SIZE];
   1126 
   1127 	memProps = reinterpret_cast<VkPhysicalDeviceMemoryProperties*>(buffer);
   1128 	deMemset(buffer, GUARD_VALUE, sizeof(buffer));
   1129 
   1130 	context.getInstanceInterface().getPhysicalDeviceMemoryProperties(context.getPhysicalDevice(), memProps);
   1131 
   1132 	log << TestLog::Message << "device = " << context.getPhysicalDevice() << TestLog::EndMessage
   1133 		<< TestLog::Message << *memProps << TestLog::EndMessage;
   1134 
   1135 	for (deInt32 ndx = 0; ndx < GUARD_SIZE; ndx++)
   1136 	{
   1137 		if (buffer[ndx + sizeof(VkPhysicalDeviceMemoryProperties)] != GUARD_VALUE)
   1138 		{
   1139 			log << TestLog::Message << "deviceMemoryProperties - Guard offset " << ndx << " not valid" << TestLog::EndMessage;
   1140 			return tcu::TestStatus::fail("deviceMemoryProperties buffer overflow");
   1141 		}
   1142 	}
   1143 
   1144 	if (memProps->memoryHeapCount >= VK_MAX_MEMORY_HEAPS)
   1145 	{
   1146 		log << TestLog::Message << "deviceMemoryProperties - HeapCount larger than " << (deUint32)VK_MAX_MEMORY_HEAPS << TestLog::EndMessage;
   1147 		return tcu::TestStatus::fail("deviceMemoryProperties HeapCount too large");
   1148 	}
   1149 
   1150 	if (memProps->memoryHeapCount == 1)
   1151 	{
   1152 		if ((memProps->memoryHeaps[0].flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT) == 0)
   1153 		{
   1154 			log << TestLog::Message << "deviceMemoryProperties - Single heap is not marked DEVICE_LOCAL" << TestLog::EndMessage;
   1155 			return tcu::TestStatus::fail("deviceMemoryProperties invalid HeapFlags");
   1156 		}
   1157 	}
   1158 
   1159 	const VkMemoryPropertyFlags validPropertyFlags[] =
   1160 	{
   1161 		0,
   1162 		VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
   1163 		VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT|VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT|VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
   1164 		VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT|VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT|VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
   1165 		VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT|VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT|VK_MEMORY_PROPERTY_HOST_CACHED_BIT|VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
   1166 		VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT|VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
   1167 		VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT|VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
   1168 		VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT|VK_MEMORY_PROPERTY_HOST_CACHED_BIT|VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
   1169 		VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT|VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT
   1170 	};
   1171 
   1172 	const VkMemoryPropertyFlags requiredPropertyFlags[] =
   1173 	{
   1174 		VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT|VK_MEMORY_PROPERTY_HOST_COHERENT_BIT
   1175 	};
   1176 
   1177 	bool requiredFlagsFound[DE_LENGTH_OF_ARRAY(requiredPropertyFlags)];
   1178 	std::fill(DE_ARRAY_BEGIN(requiredFlagsFound), DE_ARRAY_END(requiredFlagsFound), false);
   1179 
   1180 	for (deUint32 memoryNdx = 0; memoryNdx < memProps->memoryTypeCount; memoryNdx++)
   1181 	{
   1182 		bool validPropTypeFound = false;
   1183 
   1184 		if (memProps->memoryTypes[memoryNdx].heapIndex >= memProps->memoryHeapCount)
   1185 		{
   1186 			log << TestLog::Message << "deviceMemoryProperties - heapIndex " << memProps->memoryTypes[memoryNdx].heapIndex << " larger than heapCount" << TestLog::EndMessage;
   1187 			return tcu::TestStatus::fail("deviceMemoryProperties - invalid heapIndex");
   1188 		}
   1189 
   1190 		const VkMemoryPropertyFlags bitsToCheck = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT|VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT|VK_MEMORY_PROPERTY_HOST_COHERENT_BIT|VK_MEMORY_PROPERTY_HOST_CACHED_BIT|VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT;
   1191 
   1192 		for (const VkMemoryPropertyFlags* requiredFlagsIterator = DE_ARRAY_BEGIN(requiredPropertyFlags); requiredFlagsIterator != DE_ARRAY_END(requiredPropertyFlags); requiredFlagsIterator++)
   1193 			if ((memProps->memoryTypes[memoryNdx].propertyFlags & *requiredFlagsIterator) == *requiredFlagsIterator)
   1194 				requiredFlagsFound[requiredFlagsIterator - DE_ARRAY_BEGIN(requiredPropertyFlags)] = true;
   1195 
   1196 		if (de::contains(DE_ARRAY_BEGIN(validPropertyFlags), DE_ARRAY_END(validPropertyFlags), memProps->memoryTypes[memoryNdx].propertyFlags & bitsToCheck))
   1197 			validPropTypeFound = true;
   1198 
   1199 		if (!validPropTypeFound)
   1200 		{
   1201 			log << TestLog::Message << "deviceMemoryProperties - propertyFlags "
   1202 				<< memProps->memoryTypes[memoryNdx].propertyFlags << " not valid" << TestLog::EndMessage;
   1203 			return tcu::TestStatus::fail("deviceMemoryProperties propertyFlags not valid");
   1204 		}
   1205 
   1206 		if (memProps->memoryTypes[memoryNdx].propertyFlags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT)
   1207 		{
   1208 			if ((memProps->memoryHeaps[memProps->memoryTypes[memoryNdx].heapIndex].flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT) == 0)
   1209 			{
   1210 				log << TestLog::Message << "deviceMemoryProperties - DEVICE_LOCAL memory type references heap which is not DEVICE_LOCAL" << TestLog::EndMessage;
   1211 				return tcu::TestStatus::fail("deviceMemoryProperties inconsistent memoryType and HeapFlags");
   1212 			}
   1213 		}
   1214 		else
   1215 		{
   1216 			if (memProps->memoryHeaps[memProps->memoryTypes[memoryNdx].heapIndex].flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT)
   1217 			{
   1218 				log << TestLog::Message << "deviceMemoryProperties - non-DEVICE_LOCAL memory type references heap with is DEVICE_LOCAL" << TestLog::EndMessage;
   1219 				return tcu::TestStatus::fail("deviceMemoryProperties inconsistent memoryType and HeapFlags");
   1220 			}
   1221 		}
   1222 	}
   1223 
   1224 	bool* requiredFlagsFoundIterator = std::find(DE_ARRAY_BEGIN(requiredFlagsFound), DE_ARRAY_END(requiredFlagsFound), false);
   1225 	if (requiredFlagsFoundIterator != DE_ARRAY_END(requiredFlagsFound))
   1226 	{
   1227 		DE_ASSERT(requiredFlagsFoundIterator - DE_ARRAY_BEGIN(requiredFlagsFound) <= DE_LENGTH_OF_ARRAY(requiredPropertyFlags));
   1228 		log << TestLog::Message << "deviceMemoryProperties - required property flags "
   1229 			<< getMemoryPropertyFlagsStr(requiredPropertyFlags[requiredFlagsFoundIterator - DE_ARRAY_BEGIN(requiredFlagsFound)]) << " not found" << TestLog::EndMessage;
   1230 
   1231 		return tcu::TestStatus::fail("deviceMemoryProperties propertyFlags not valid");
   1232 	}
   1233 
   1234 	return tcu::TestStatus::pass("Querying memory properties succeeded");
   1235 }
   1236 
   1237 // \todo [2016-01-22 pyry] Optimize by doing format -> flags mapping instead
   1238 
   1239 VkFormatFeatureFlags getRequiredOptimalTilingFeatures (VkFormat format)
   1240 {
   1241 	static const VkFormat s_requiredSampledImageBlitSrcFormats[] =
   1242 	{
   1243 		VK_FORMAT_B4G4R4A4_UNORM_PACK16,
   1244 		VK_FORMAT_R5G6B5_UNORM_PACK16,
   1245 		VK_FORMAT_A1R5G5B5_UNORM_PACK16,
   1246 		VK_FORMAT_R8_UNORM,
   1247 		VK_FORMAT_R8_SNORM,
   1248 		VK_FORMAT_R8_UINT,
   1249 		VK_FORMAT_R8_SINT,
   1250 		VK_FORMAT_R8G8_UNORM,
   1251 		VK_FORMAT_R8G8_SNORM,
   1252 		VK_FORMAT_R8G8_UINT,
   1253 		VK_FORMAT_R8G8_SINT,
   1254 		VK_FORMAT_R8G8B8A8_UNORM,
   1255 		VK_FORMAT_R8G8B8A8_SNORM,
   1256 		VK_FORMAT_R8G8B8A8_UINT,
   1257 		VK_FORMAT_R8G8B8A8_SINT,
   1258 		VK_FORMAT_R8G8B8A8_SRGB,
   1259 		VK_FORMAT_B8G8R8A8_UNORM,
   1260 		VK_FORMAT_B8G8R8A8_SRGB,
   1261 		VK_FORMAT_A8B8G8R8_UNORM_PACK32,
   1262 		VK_FORMAT_A8B8G8R8_SNORM_PACK32,
   1263 		VK_FORMAT_A8B8G8R8_UINT_PACK32,
   1264 		VK_FORMAT_A8B8G8R8_SINT_PACK32,
   1265 		VK_FORMAT_A8B8G8R8_SRGB_PACK32,
   1266 		VK_FORMAT_A2B10G10R10_UNORM_PACK32,
   1267 		VK_FORMAT_A2B10G10R10_UINT_PACK32,
   1268 		VK_FORMAT_R16_UINT,
   1269 		VK_FORMAT_R16_SINT,
   1270 		VK_FORMAT_R16_SFLOAT,
   1271 		VK_FORMAT_R16G16_UINT,
   1272 		VK_FORMAT_R16G16_SINT,
   1273 		VK_FORMAT_R16G16_SFLOAT,
   1274 		VK_FORMAT_R16G16B16A16_UINT,
   1275 		VK_FORMAT_R16G16B16A16_SINT,
   1276 		VK_FORMAT_R16G16B16A16_SFLOAT,
   1277 		VK_FORMAT_R32_UINT,
   1278 		VK_FORMAT_R32_SINT,
   1279 		VK_FORMAT_R32_SFLOAT,
   1280 		VK_FORMAT_R32G32_UINT,
   1281 		VK_FORMAT_R32G32_SINT,
   1282 		VK_FORMAT_R32G32_SFLOAT,
   1283 		VK_FORMAT_R32G32B32A32_UINT,
   1284 		VK_FORMAT_R32G32B32A32_SINT,
   1285 		VK_FORMAT_R32G32B32A32_SFLOAT,
   1286 		VK_FORMAT_B10G11R11_UFLOAT_PACK32,
   1287 		VK_FORMAT_E5B9G9R9_UFLOAT_PACK32,
   1288 		VK_FORMAT_D16_UNORM,
   1289 		VK_FORMAT_D32_SFLOAT
   1290 	};
   1291 	static const VkFormat s_requiredSampledImageFilterLinearFormats[] =
   1292 	{
   1293 		VK_FORMAT_B4G4R4A4_UNORM_PACK16,
   1294 		VK_FORMAT_R5G6B5_UNORM_PACK16,
   1295 		VK_FORMAT_A1R5G5B5_UNORM_PACK16,
   1296 		VK_FORMAT_R8_UNORM,
   1297 		VK_FORMAT_R8_SNORM,
   1298 		VK_FORMAT_R8G8_UNORM,
   1299 		VK_FORMAT_R8G8_SNORM,
   1300 		VK_FORMAT_R8G8B8A8_UNORM,
   1301 		VK_FORMAT_R8G8B8A8_SNORM,
   1302 		VK_FORMAT_R8G8B8A8_SRGB,
   1303 		VK_FORMAT_B8G8R8A8_UNORM,
   1304 		VK_FORMAT_B8G8R8A8_SRGB,
   1305 		VK_FORMAT_A8B8G8R8_UNORM_PACK32,
   1306 		VK_FORMAT_A8B8G8R8_SNORM_PACK32,
   1307 		VK_FORMAT_A8B8G8R8_SRGB_PACK32,
   1308 		VK_FORMAT_A2B10G10R10_UNORM_PACK32,
   1309 		VK_FORMAT_R16_SFLOAT,
   1310 		VK_FORMAT_R16G16_SFLOAT,
   1311 		VK_FORMAT_R16G16B16A16_SFLOAT,
   1312 		VK_FORMAT_B10G11R11_UFLOAT_PACK32,
   1313 		VK_FORMAT_E5B9G9R9_UFLOAT_PACK32,
   1314 	};
   1315 	static const VkFormat s_requiredStorageImageFormats[] =
   1316 	{
   1317 		VK_FORMAT_R8G8B8A8_UNORM,
   1318 		VK_FORMAT_R8G8B8A8_SNORM,
   1319 		VK_FORMAT_R8G8B8A8_UINT,
   1320 		VK_FORMAT_R8G8B8A8_SINT,
   1321 		VK_FORMAT_R16G16B16A16_UINT,
   1322 		VK_FORMAT_R16G16B16A16_SINT,
   1323 		VK_FORMAT_R16G16B16A16_SFLOAT,
   1324 		VK_FORMAT_R32_UINT,
   1325 		VK_FORMAT_R32_SINT,
   1326 		VK_FORMAT_R32_SFLOAT,
   1327 		VK_FORMAT_R32G32_UINT,
   1328 		VK_FORMAT_R32G32_SINT,
   1329 		VK_FORMAT_R32G32_SFLOAT,
   1330 		VK_FORMAT_R32G32B32A32_UINT,
   1331 		VK_FORMAT_R32G32B32A32_SINT,
   1332 		VK_FORMAT_R32G32B32A32_SFLOAT
   1333 	};
   1334 	static const VkFormat s_requiredStorageImageAtomicFormats[] =
   1335 	{
   1336 		VK_FORMAT_R32_UINT,
   1337 		VK_FORMAT_R32_SINT
   1338 	};
   1339 	static const VkFormat s_requiredColorAttachmentBlitDstFormats[] =
   1340 	{
   1341 		VK_FORMAT_R5G6B5_UNORM_PACK16,
   1342 		VK_FORMAT_A1R5G5B5_UNORM_PACK16,
   1343 		VK_FORMAT_R8_UNORM,
   1344 		VK_FORMAT_R8_UINT,
   1345 		VK_FORMAT_R8_SINT,
   1346 		VK_FORMAT_R8G8_UNORM,
   1347 		VK_FORMAT_R8G8_UINT,
   1348 		VK_FORMAT_R8G8_SINT,
   1349 		VK_FORMAT_R8G8B8A8_UNORM,
   1350 		VK_FORMAT_R8G8B8A8_UINT,
   1351 		VK_FORMAT_R8G8B8A8_SINT,
   1352 		VK_FORMAT_R8G8B8A8_SRGB,
   1353 		VK_FORMAT_B8G8R8A8_UNORM,
   1354 		VK_FORMAT_B8G8R8A8_SRGB,
   1355 		VK_FORMAT_A8B8G8R8_UNORM_PACK32,
   1356 		VK_FORMAT_A8B8G8R8_UINT_PACK32,
   1357 		VK_FORMAT_A8B8G8R8_SINT_PACK32,
   1358 		VK_FORMAT_A8B8G8R8_SRGB_PACK32,
   1359 		VK_FORMAT_A2B10G10R10_UNORM_PACK32,
   1360 		VK_FORMAT_A2B10G10R10_UINT_PACK32,
   1361 		VK_FORMAT_R16_UINT,
   1362 		VK_FORMAT_R16_SINT,
   1363 		VK_FORMAT_R16_SFLOAT,
   1364 		VK_FORMAT_R16G16_UINT,
   1365 		VK_FORMAT_R16G16_SINT,
   1366 		VK_FORMAT_R16G16_SFLOAT,
   1367 		VK_FORMAT_R16G16B16A16_UINT,
   1368 		VK_FORMAT_R16G16B16A16_SINT,
   1369 		VK_FORMAT_R16G16B16A16_SFLOAT,
   1370 		VK_FORMAT_R32_UINT,
   1371 		VK_FORMAT_R32_SINT,
   1372 		VK_FORMAT_R32_SFLOAT,
   1373 		VK_FORMAT_R32G32_UINT,
   1374 		VK_FORMAT_R32G32_SINT,
   1375 		VK_FORMAT_R32G32_SFLOAT,
   1376 		VK_FORMAT_R32G32B32A32_UINT,
   1377 		VK_FORMAT_R32G32B32A32_SINT,
   1378 		VK_FORMAT_R32G32B32A32_SFLOAT
   1379 	};
   1380 	static const VkFormat s_requiredColorAttachmentBlendFormats[] =
   1381 	{
   1382 		VK_FORMAT_R5G6B5_UNORM_PACK16,
   1383 		VK_FORMAT_A1R5G5B5_UNORM_PACK16,
   1384 		VK_FORMAT_R8_UNORM,
   1385 		VK_FORMAT_R8G8_UNORM,
   1386 		VK_FORMAT_R8G8B8A8_UNORM,
   1387 		VK_FORMAT_R8G8B8A8_SRGB,
   1388 		VK_FORMAT_B8G8R8A8_UNORM,
   1389 		VK_FORMAT_B8G8R8A8_SRGB,
   1390 		VK_FORMAT_A8B8G8R8_UNORM_PACK32,
   1391 		VK_FORMAT_A8B8G8R8_SRGB_PACK32,
   1392 		VK_FORMAT_A2B10G10R10_UNORM_PACK32,
   1393 		VK_FORMAT_R16_SFLOAT,
   1394 		VK_FORMAT_R16G16_SFLOAT,
   1395 		VK_FORMAT_R16G16B16A16_SFLOAT
   1396 	};
   1397 	static const VkFormat s_requiredDepthStencilAttachmentFormats[] =
   1398 	{
   1399 		VK_FORMAT_D16_UNORM
   1400 	};
   1401 
   1402 	VkFormatFeatureFlags	flags	= (VkFormatFeatureFlags)0;
   1403 
   1404 	if (de::contains(DE_ARRAY_BEGIN(s_requiredSampledImageBlitSrcFormats), DE_ARRAY_END(s_requiredSampledImageBlitSrcFormats), format))
   1405 		flags |= VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT|VK_FORMAT_FEATURE_BLIT_SRC_BIT;
   1406 
   1407 	if (de::contains(DE_ARRAY_BEGIN(s_requiredSampledImageFilterLinearFormats), DE_ARRAY_END(s_requiredSampledImageFilterLinearFormats), format))
   1408 		flags |= VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT;
   1409 
   1410 	if (de::contains(DE_ARRAY_BEGIN(s_requiredStorageImageFormats), DE_ARRAY_END(s_requiredStorageImageFormats), format))
   1411 		flags |= VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT;
   1412 
   1413 	if (de::contains(DE_ARRAY_BEGIN(s_requiredStorageImageAtomicFormats), DE_ARRAY_END(s_requiredStorageImageAtomicFormats), format))
   1414 		flags |= VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT;
   1415 
   1416 	if (de::contains(DE_ARRAY_BEGIN(s_requiredColorAttachmentBlitDstFormats), DE_ARRAY_END(s_requiredColorAttachmentBlitDstFormats), format))
   1417 		flags |= VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT|VK_FORMAT_FEATURE_BLIT_DST_BIT;
   1418 
   1419 	if (de::contains(DE_ARRAY_BEGIN(s_requiredColorAttachmentBlendFormats), DE_ARRAY_END(s_requiredColorAttachmentBlendFormats), format))
   1420 		flags |= VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT;
   1421 
   1422 	if (de::contains(DE_ARRAY_BEGIN(s_requiredDepthStencilAttachmentFormats), DE_ARRAY_END(s_requiredDepthStencilAttachmentFormats), format))
   1423 		flags |= VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT;
   1424 
   1425 	return flags;
   1426 }
   1427 
   1428 VkFormatFeatureFlags getRequiredBufferFeatures (VkFormat format)
   1429 {
   1430 	static const VkFormat s_requiredVertexBufferFormats[] =
   1431 	{
   1432 		VK_FORMAT_R8_UNORM,
   1433 		VK_FORMAT_R8_SNORM,
   1434 		VK_FORMAT_R8_UINT,
   1435 		VK_FORMAT_R8_SINT,
   1436 		VK_FORMAT_R8G8_UNORM,
   1437 		VK_FORMAT_R8G8_SNORM,
   1438 		VK_FORMAT_R8G8_UINT,
   1439 		VK_FORMAT_R8G8_SINT,
   1440 		VK_FORMAT_R8G8B8A8_UNORM,
   1441 		VK_FORMAT_R8G8B8A8_SNORM,
   1442 		VK_FORMAT_R8G8B8A8_UINT,
   1443 		VK_FORMAT_R8G8B8A8_SINT,
   1444 		VK_FORMAT_B8G8R8A8_UNORM,
   1445 		VK_FORMAT_A8B8G8R8_UNORM_PACK32,
   1446 		VK_FORMAT_A8B8G8R8_SNORM_PACK32,
   1447 		VK_FORMAT_A8B8G8R8_UINT_PACK32,
   1448 		VK_FORMAT_A8B8G8R8_SINT_PACK32,
   1449 		VK_FORMAT_A2B10G10R10_UNORM_PACK32,
   1450 		VK_FORMAT_R16_UNORM,
   1451 		VK_FORMAT_R16_SNORM,
   1452 		VK_FORMAT_R16_UINT,
   1453 		VK_FORMAT_R16_SINT,
   1454 		VK_FORMAT_R16_SFLOAT,
   1455 		VK_FORMAT_R16G16_UNORM,
   1456 		VK_FORMAT_R16G16_SNORM,
   1457 		VK_FORMAT_R16G16_UINT,
   1458 		VK_FORMAT_R16G16_SINT,
   1459 		VK_FORMAT_R16G16_SFLOAT,
   1460 		VK_FORMAT_R16G16B16A16_UNORM,
   1461 		VK_FORMAT_R16G16B16A16_SNORM,
   1462 		VK_FORMAT_R16G16B16A16_UINT,
   1463 		VK_FORMAT_R16G16B16A16_SINT,
   1464 		VK_FORMAT_R16G16B16A16_SFLOAT,
   1465 		VK_FORMAT_R32_UINT,
   1466 		VK_FORMAT_R32_SINT,
   1467 		VK_FORMAT_R32_SFLOAT,
   1468 		VK_FORMAT_R32G32_UINT,
   1469 		VK_FORMAT_R32G32_SINT,
   1470 		VK_FORMAT_R32G32_SFLOAT,
   1471 		VK_FORMAT_R32G32B32_UINT,
   1472 		VK_FORMAT_R32G32B32_SINT,
   1473 		VK_FORMAT_R32G32B32_SFLOAT,
   1474 		VK_FORMAT_R32G32B32A32_UINT,
   1475 		VK_FORMAT_R32G32B32A32_SINT,
   1476 		VK_FORMAT_R32G32B32A32_SFLOAT
   1477 	};
   1478 	static const VkFormat s_requiredUniformTexelBufferFormats[] =
   1479 	{
   1480 		VK_FORMAT_R8_UNORM,
   1481 		VK_FORMAT_R8_SNORM,
   1482 		VK_FORMAT_R8_UINT,
   1483 		VK_FORMAT_R8_SINT,
   1484 		VK_FORMAT_R8G8_UNORM,
   1485 		VK_FORMAT_R8G8_SNORM,
   1486 		VK_FORMAT_R8G8_UINT,
   1487 		VK_FORMAT_R8G8_SINT,
   1488 		VK_FORMAT_R8G8B8A8_UNORM,
   1489 		VK_FORMAT_R8G8B8A8_SNORM,
   1490 		VK_FORMAT_R8G8B8A8_UINT,
   1491 		VK_FORMAT_R8G8B8A8_SINT,
   1492 		VK_FORMAT_B8G8R8A8_UNORM,
   1493 		VK_FORMAT_A8B8G8R8_UNORM_PACK32,
   1494 		VK_FORMAT_A8B8G8R8_SNORM_PACK32,
   1495 		VK_FORMAT_A8B8G8R8_UINT_PACK32,
   1496 		VK_FORMAT_A8B8G8R8_SINT_PACK32,
   1497 		VK_FORMAT_A2B10G10R10_UNORM_PACK32,
   1498 		VK_FORMAT_A2B10G10R10_UINT_PACK32,
   1499 		VK_FORMAT_R16_UINT,
   1500 		VK_FORMAT_R16_SINT,
   1501 		VK_FORMAT_R16_SFLOAT,
   1502 		VK_FORMAT_R16G16_UINT,
   1503 		VK_FORMAT_R16G16_SINT,
   1504 		VK_FORMAT_R16G16_SFLOAT,
   1505 		VK_FORMAT_R16G16B16A16_UINT,
   1506 		VK_FORMAT_R16G16B16A16_SINT,
   1507 		VK_FORMAT_R16G16B16A16_SFLOAT,
   1508 		VK_FORMAT_R32_UINT,
   1509 		VK_FORMAT_R32_SINT,
   1510 		VK_FORMAT_R32_SFLOAT,
   1511 		VK_FORMAT_R32G32_UINT,
   1512 		VK_FORMAT_R32G32_SINT,
   1513 		VK_FORMAT_R32G32_SFLOAT,
   1514 		VK_FORMAT_R32G32B32A32_UINT,
   1515 		VK_FORMAT_R32G32B32A32_SINT,
   1516 		VK_FORMAT_R32G32B32A32_SFLOAT,
   1517 		VK_FORMAT_B10G11R11_UFLOAT_PACK32
   1518 	};
   1519 	static const VkFormat s_requiredStorageTexelBufferFormats[] =
   1520 	{
   1521 		VK_FORMAT_R8G8B8A8_UNORM,
   1522 		VK_FORMAT_R8G8B8A8_SNORM,
   1523 		VK_FORMAT_R8G8B8A8_UINT,
   1524 		VK_FORMAT_R8G8B8A8_SINT,
   1525 		VK_FORMAT_A8B8G8R8_UNORM_PACK32,
   1526 		VK_FORMAT_A8B8G8R8_SNORM_PACK32,
   1527 		VK_FORMAT_A8B8G8R8_UINT_PACK32,
   1528 		VK_FORMAT_A8B8G8R8_SINT_PACK32,
   1529 		VK_FORMAT_R16G16B16A16_UINT,
   1530 		VK_FORMAT_R16G16B16A16_SINT,
   1531 		VK_FORMAT_R16G16B16A16_SFLOAT,
   1532 		VK_FORMAT_R32_UINT,
   1533 		VK_FORMAT_R32_SINT,
   1534 		VK_FORMAT_R32_SFLOAT,
   1535 		VK_FORMAT_R32G32_UINT,
   1536 		VK_FORMAT_R32G32_SINT,
   1537 		VK_FORMAT_R32G32_SFLOAT,
   1538 		VK_FORMAT_R32G32B32A32_UINT,
   1539 		VK_FORMAT_R32G32B32A32_SINT,
   1540 		VK_FORMAT_R32G32B32A32_SFLOAT
   1541 	};
   1542 	static const VkFormat s_requiredStorageTexelBufferAtomicFormats[] =
   1543 	{
   1544 		VK_FORMAT_R32_UINT,
   1545 		VK_FORMAT_R32_SINT
   1546 	};
   1547 
   1548 	VkFormatFeatureFlags	flags	= (VkFormatFeatureFlags)0;
   1549 
   1550 	if (de::contains(DE_ARRAY_BEGIN(s_requiredVertexBufferFormats), DE_ARRAY_END(s_requiredVertexBufferFormats), format))
   1551 		flags |= VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT;
   1552 
   1553 	if (de::contains(DE_ARRAY_BEGIN(s_requiredUniformTexelBufferFormats), DE_ARRAY_END(s_requiredUniformTexelBufferFormats), format))
   1554 		flags |= VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT;
   1555 
   1556 	if (de::contains(DE_ARRAY_BEGIN(s_requiredStorageTexelBufferFormats), DE_ARRAY_END(s_requiredStorageTexelBufferFormats), format))
   1557 		flags |= VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT;
   1558 
   1559 	if (de::contains(DE_ARRAY_BEGIN(s_requiredStorageTexelBufferAtomicFormats), DE_ARRAY_END(s_requiredStorageTexelBufferAtomicFormats), format))
   1560 		flags |= VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT;
   1561 
   1562 	return flags;
   1563 }
   1564 
   1565 tcu::TestStatus formatProperties (Context& context, VkFormat format)
   1566 {
   1567 	TestLog&					log				= context.getTestContext().getLog();
   1568 	const VkFormatProperties	properties		= getPhysicalDeviceFormatProperties(context.getInstanceInterface(), context.getPhysicalDevice(), format);
   1569 	bool						allOk			= true;
   1570 
   1571 	const struct
   1572 	{
   1573 		VkFormatFeatureFlags VkFormatProperties::*	field;
   1574 		const char*									fieldName;
   1575 		VkFormatFeatureFlags						requiredFeatures;
   1576 	} fields[] =
   1577 	{
   1578 		{ &VkFormatProperties::linearTilingFeatures,	"linearTilingFeatures",		(VkFormatFeatureFlags)0						},
   1579 		{ &VkFormatProperties::optimalTilingFeatures,	"optimalTilingFeatures",	getRequiredOptimalTilingFeatures(format)	},
   1580 		{ &VkFormatProperties::bufferFeatures,			"buffeFeatures",			getRequiredBufferFeatures(format)			}
   1581 	};
   1582 
   1583 	log << TestLog::Message << properties << TestLog::EndMessage;
   1584 
   1585 	for (int fieldNdx = 0; fieldNdx < DE_LENGTH_OF_ARRAY(fields); fieldNdx++)
   1586 	{
   1587 		const char* const				fieldName	= fields[fieldNdx].fieldName;
   1588 		const VkFormatFeatureFlags		supported	= properties.*fields[fieldNdx].field;
   1589 		const VkFormatFeatureFlags		required	= fields[fieldNdx].requiredFeatures;
   1590 
   1591 		if ((supported & required) != required)
   1592 		{
   1593 			log << TestLog::Message << "ERROR in " << fieldName << ":\n"
   1594 								    << "  required: " << getFormatFeatureFlagsStr(required) << "\n  "
   1595 									<< "  missing: " << getFormatFeatureFlagsStr(~supported & required)
   1596 				<< TestLog::EndMessage;
   1597 			allOk = false;
   1598 		}
   1599 	}
   1600 
   1601 	if (allOk)
   1602 		return tcu::TestStatus::pass("Query and validation passed");
   1603 	else
   1604 		return tcu::TestStatus::fail("Required features not supported");
   1605 }
   1606 
   1607 bool optimalTilingFeaturesSupported (Context& context, VkFormat format, VkFormatFeatureFlags features)
   1608 {
   1609 	const VkFormatProperties	properties	= getPhysicalDeviceFormatProperties(context.getInstanceInterface(), context.getPhysicalDevice(), format);
   1610 
   1611 	return (properties.optimalTilingFeatures & features) == features;
   1612 }
   1613 
   1614 bool optimalTilingFeaturesSupportedForAll (Context& context, const VkFormat* begin, const VkFormat* end, VkFormatFeatureFlags features)
   1615 {
   1616 	for (const VkFormat* cur = begin; cur != end; ++cur)
   1617 	{
   1618 		if (!optimalTilingFeaturesSupported(context, *cur, features))
   1619 			return false;
   1620 	}
   1621 
   1622 	return true;
   1623 }
   1624 
   1625 tcu::TestStatus testDepthStencilSupported (Context& context)
   1626 {
   1627 	if (!optimalTilingFeaturesSupported(context, VK_FORMAT_X8_D24_UNORM_PACK32, VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT) &&
   1628 		!optimalTilingFeaturesSupported(context, VK_FORMAT_D32_SFLOAT, VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT))
   1629 		return tcu::TestStatus::fail("Doesn't support one of VK_FORMAT_X8_D24_UNORM_PACK32 or VK_FORMAT_D32_SFLOAT");
   1630 
   1631 	if (!optimalTilingFeaturesSupported(context, VK_FORMAT_D24_UNORM_S8_UINT, VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT) &&
   1632 		!optimalTilingFeaturesSupported(context, VK_FORMAT_D32_SFLOAT_S8_UINT, VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT))
   1633 		return tcu::TestStatus::fail("Doesn't support one of VK_FORMAT_D24_UNORM_S8_UINT or VK_FORMAT_D32_SFLOAT_S8_UINT");
   1634 
   1635 	return tcu::TestStatus::pass("Required depth/stencil formats supported");
   1636 }
   1637 
   1638 tcu::TestStatus testCompressedFormatsSupported (Context& context)
   1639 {
   1640 	static const VkFormat s_allBcFormats[] =
   1641 	{
   1642 		VK_FORMAT_BC1_RGB_UNORM_BLOCK,
   1643 		VK_FORMAT_BC1_RGB_SRGB_BLOCK,
   1644 		VK_FORMAT_BC1_RGBA_UNORM_BLOCK,
   1645 		VK_FORMAT_BC1_RGBA_SRGB_BLOCK,
   1646 		VK_FORMAT_BC2_UNORM_BLOCK,
   1647 		VK_FORMAT_BC2_SRGB_BLOCK,
   1648 		VK_FORMAT_BC3_UNORM_BLOCK,
   1649 		VK_FORMAT_BC3_SRGB_BLOCK,
   1650 		VK_FORMAT_BC4_UNORM_BLOCK,
   1651 		VK_FORMAT_BC4_SNORM_BLOCK,
   1652 		VK_FORMAT_BC5_UNORM_BLOCK,
   1653 		VK_FORMAT_BC5_SNORM_BLOCK,
   1654 		VK_FORMAT_BC6H_UFLOAT_BLOCK,
   1655 		VK_FORMAT_BC6H_SFLOAT_BLOCK,
   1656 		VK_FORMAT_BC7_UNORM_BLOCK,
   1657 		VK_FORMAT_BC7_SRGB_BLOCK,
   1658 	};
   1659 	static const VkFormat s_allEtc2Formats[] =
   1660 	{
   1661 		VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK,
   1662 		VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK,
   1663 		VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK,
   1664 		VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK,
   1665 		VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK,
   1666 		VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK,
   1667 		VK_FORMAT_EAC_R11_UNORM_BLOCK,
   1668 		VK_FORMAT_EAC_R11_SNORM_BLOCK,
   1669 		VK_FORMAT_EAC_R11G11_UNORM_BLOCK,
   1670 		VK_FORMAT_EAC_R11G11_SNORM_BLOCK,
   1671 	};
   1672 	static const VkFormat s_allAstcLdrFormats[] =
   1673 	{
   1674 		VK_FORMAT_ASTC_4x4_UNORM_BLOCK,
   1675 		VK_FORMAT_ASTC_4x4_SRGB_BLOCK,
   1676 		VK_FORMAT_ASTC_5x4_UNORM_BLOCK,
   1677 		VK_FORMAT_ASTC_5x4_SRGB_BLOCK,
   1678 		VK_FORMAT_ASTC_5x5_UNORM_BLOCK,
   1679 		VK_FORMAT_ASTC_5x5_SRGB_BLOCK,
   1680 		VK_FORMAT_ASTC_6x5_UNORM_BLOCK,
   1681 		VK_FORMAT_ASTC_6x5_SRGB_BLOCK,
   1682 		VK_FORMAT_ASTC_6x6_UNORM_BLOCK,
   1683 		VK_FORMAT_ASTC_6x6_SRGB_BLOCK,
   1684 		VK_FORMAT_ASTC_8x5_UNORM_BLOCK,
   1685 		VK_FORMAT_ASTC_8x5_SRGB_BLOCK,
   1686 		VK_FORMAT_ASTC_8x6_UNORM_BLOCK,
   1687 		VK_FORMAT_ASTC_8x6_SRGB_BLOCK,
   1688 		VK_FORMAT_ASTC_8x8_UNORM_BLOCK,
   1689 		VK_FORMAT_ASTC_8x8_SRGB_BLOCK,
   1690 		VK_FORMAT_ASTC_10x5_UNORM_BLOCK,
   1691 		VK_FORMAT_ASTC_10x5_SRGB_BLOCK,
   1692 		VK_FORMAT_ASTC_10x6_UNORM_BLOCK,
   1693 		VK_FORMAT_ASTC_10x6_SRGB_BLOCK,
   1694 		VK_FORMAT_ASTC_10x8_UNORM_BLOCK,
   1695 		VK_FORMAT_ASTC_10x8_SRGB_BLOCK,
   1696 		VK_FORMAT_ASTC_10x10_UNORM_BLOCK,
   1697 		VK_FORMAT_ASTC_10x10_SRGB_BLOCK,
   1698 		VK_FORMAT_ASTC_12x10_UNORM_BLOCK,
   1699 		VK_FORMAT_ASTC_12x10_SRGB_BLOCK,
   1700 		VK_FORMAT_ASTC_12x12_UNORM_BLOCK,
   1701 		VK_FORMAT_ASTC_12x12_SRGB_BLOCK,
   1702 	};
   1703 
   1704 	static const struct
   1705 	{
   1706 		const char*									setName;
   1707 		const char*									featureName;
   1708 		const VkBool32 VkPhysicalDeviceFeatures::*	feature;
   1709 		const VkFormat*								formatsBegin;
   1710 		const VkFormat*								formatsEnd;
   1711 	} s_compressedFormatSets[] =
   1712 	{
   1713 		{ "BC",			"textureCompressionBC",			&VkPhysicalDeviceFeatures::textureCompressionBC,		DE_ARRAY_BEGIN(s_allBcFormats),			DE_ARRAY_END(s_allBcFormats)		},
   1714 		{ "ETC2",		"textureCompressionETC2",		&VkPhysicalDeviceFeatures::textureCompressionETC2,		DE_ARRAY_BEGIN(s_allEtc2Formats),		DE_ARRAY_END(s_allEtc2Formats)		},
   1715 		{ "ASTC LDR",	"textureCompressionASTC_LDR",	&VkPhysicalDeviceFeatures::textureCompressionASTC_LDR,	DE_ARRAY_BEGIN(s_allAstcLdrFormats),	DE_ARRAY_END(s_allAstcLdrFormats)	},
   1716 	};
   1717 
   1718 	TestLog&						log					= context.getTestContext().getLog();
   1719 	const VkPhysicalDeviceFeatures&	features			= context.getDeviceFeatures();
   1720 	int								numSupportedSets	= 0;
   1721 	int								numErrors			= 0;
   1722 	int								numWarnings			= 0;
   1723 
   1724 	for (int setNdx = 0; setNdx < DE_LENGTH_OF_ARRAY(s_compressedFormatSets); ++setNdx)
   1725 	{
   1726 		const char* const	setName			= s_compressedFormatSets[setNdx].setName;
   1727 		const char* const	featureName		= s_compressedFormatSets[setNdx].featureName;
   1728 		const bool			featureBitSet	= features.*s_compressedFormatSets[setNdx].feature == VK_TRUE;
   1729 		const bool			allSupported	= optimalTilingFeaturesSupportedForAll(context,
   1730 																				   s_compressedFormatSets[setNdx].formatsBegin,
   1731 																				   s_compressedFormatSets[setNdx].formatsEnd,
   1732 																				   VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT);
   1733 
   1734 		if (featureBitSet && !allSupported)
   1735 		{
   1736 			log << TestLog::Message << "ERROR: " << featureName << " = VK_TRUE but " << setName << " formats not supported" << TestLog::EndMessage;
   1737 			numErrors += 1;
   1738 		}
   1739 		else if (allSupported && !featureBitSet)
   1740 		{
   1741 			log << TestLog::Message << "WARNING: " << setName << " formats supported but " << featureName << " = VK_FALSE" << TestLog::EndMessage;
   1742 			numWarnings += 1;
   1743 		}
   1744 
   1745 		if (featureBitSet)
   1746 		{
   1747 			log << TestLog::Message << "All " << setName << " formats are supported" << TestLog::EndMessage;
   1748 			numSupportedSets += 1;
   1749 		}
   1750 		else
   1751 			log << TestLog::Message << setName << " formats are not supported" << TestLog::EndMessage;
   1752 	}
   1753 
   1754 	if (numSupportedSets == 0)
   1755 	{
   1756 		log << TestLog::Message << "No compressed format sets supported" << TestLog::EndMessage;
   1757 		numErrors += 1;
   1758 	}
   1759 
   1760 	if (numErrors > 0)
   1761 		return tcu::TestStatus::fail("Compressed format support not valid");
   1762 	else if (numWarnings > 0)
   1763 		return tcu::TestStatus(QP_TEST_RESULT_QUALITY_WARNING, "Found inconsistencies in compressed format support");
   1764 	else
   1765 		return tcu::TestStatus::pass("Compressed texture format support is valid");
   1766 }
   1767 
   1768 void createFormatTests (tcu::TestCaseGroup* testGroup)
   1769 {
   1770 	DE_STATIC_ASSERT(VK_FORMAT_UNDEFINED == 0);
   1771 
   1772 	for (deUint32 formatNdx = VK_FORMAT_UNDEFINED+1; formatNdx < VK_CORE_FORMAT_LAST; ++formatNdx)
   1773 	{
   1774 		const VkFormat		format			= (VkFormat)formatNdx;
   1775 		const char* const	enumName		= getFormatName(format);
   1776 		const string		caseName		= de::toLower(string(enumName).substr(10));
   1777 
   1778 		addFunctionCase(testGroup, caseName, enumName, formatProperties, format);
   1779 	}
   1780 
   1781 	addFunctionCase(testGroup, "depth_stencil",			"",	testDepthStencilSupported);
   1782 	addFunctionCase(testGroup, "compressed_formats",	"",	testCompressedFormatsSupported);
   1783 }
   1784 
   1785 VkImageUsageFlags getValidImageUsageFlags (const VkFormatFeatureFlags supportedFeatures, const bool useKhrMaintenance1Semantics)
   1786 {
   1787 	VkImageUsageFlags	flags	= (VkImageUsageFlags)0;
   1788 
   1789 	if (useKhrMaintenance1Semantics)
   1790 	{
   1791 		if ((supportedFeatures & VK_FORMAT_FEATURE_TRANSFER_SRC_BIT_KHR) != 0)
   1792 			flags |= VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
   1793 
   1794 		if ((supportedFeatures & VK_FORMAT_FEATURE_TRANSFER_DST_BIT_KHR) != 0)
   1795 			flags |= VK_IMAGE_USAGE_TRANSFER_DST_BIT;
   1796 	}
   1797 	else
   1798 	{
   1799 		// If format is supported at all, it must be valid transfer src+dst
   1800 		if (supportedFeatures != 0)
   1801 			flags |= VK_IMAGE_USAGE_TRANSFER_SRC_BIT|VK_IMAGE_USAGE_TRANSFER_DST_BIT;
   1802 	}
   1803 
   1804 	if ((supportedFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT) != 0)
   1805 		flags |= VK_IMAGE_USAGE_SAMPLED_BIT;
   1806 
   1807 	if ((supportedFeatures & VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT) != 0)
   1808 		flags |= VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT|VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT|VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT;
   1809 
   1810 	if ((supportedFeatures & VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT) != 0)
   1811 		flags |= VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
   1812 
   1813 	if ((supportedFeatures & VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT) != 0)
   1814 		flags |= VK_IMAGE_USAGE_STORAGE_BIT;
   1815 
   1816 	return flags;
   1817 }
   1818 
   1819 bool isValidImageUsageFlagCombination (VkImageUsageFlags usage)
   1820 {
   1821 	if ((usage & VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT) != 0)
   1822 	{
   1823 		const VkImageUsageFlags		allowedFlags	= VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT
   1824 													| VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT
   1825 													| VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT
   1826 													| VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT;
   1827 
   1828 		// Only *_ATTACHMENT_BIT flags can be combined with TRANSIENT_ATTACHMENT_BIT
   1829 		if ((usage & ~allowedFlags) != 0)
   1830 			return false;
   1831 
   1832 		// TRANSIENT_ATTACHMENT_BIT is not valid without COLOR_ or DEPTH_STENCIL_ATTACHMENT_BIT
   1833 		if ((usage & (VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT|VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) == 0)
   1834 			return false;
   1835 	}
   1836 
   1837 	return usage != 0;
   1838 }
   1839 
   1840 VkImageCreateFlags getValidImageCreateFlags (const VkPhysicalDeviceFeatures& deviceFeatures, VkFormat, VkFormatFeatureFlags, VkImageType type, VkImageUsageFlags usage)
   1841 {
   1842 	VkImageCreateFlags	flags	= (VkImageCreateFlags)0;
   1843 
   1844 	if ((usage & VK_IMAGE_USAGE_SAMPLED_BIT) != 0)
   1845 	{
   1846 		flags |= VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT;
   1847 
   1848 		if (type == VK_IMAGE_TYPE_2D)
   1849 			flags |= VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT;
   1850 	}
   1851 
   1852 	if ((usage & (VK_IMAGE_USAGE_SAMPLED_BIT|VK_IMAGE_USAGE_STORAGE_BIT)) != 0 &&
   1853 		(usage & VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT) == 0)
   1854 	{
   1855 		if (deviceFeatures.sparseBinding)
   1856 			flags |= VK_IMAGE_CREATE_SPARSE_BINDING_BIT|VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT;
   1857 
   1858 		if (deviceFeatures.sparseResidencyAliased)
   1859 			flags |= VK_IMAGE_CREATE_SPARSE_ALIASED_BIT;
   1860 	}
   1861 
   1862 	return flags;
   1863 }
   1864 
   1865 bool isValidImageCreateFlagCombination (VkImageCreateFlags)
   1866 {
   1867 	return true;
   1868 }
   1869 
   1870 bool isRequiredImageParameterCombination (const VkPhysicalDeviceFeatures&	deviceFeatures,
   1871 										  const VkFormat					format,
   1872 										  const VkFormatProperties&			formatProperties,
   1873 										  const VkImageType					imageType,
   1874 										  const VkImageTiling				imageTiling,
   1875 										  const VkImageUsageFlags			usageFlags,
   1876 										  const VkImageCreateFlags			createFlags)
   1877 {
   1878 	DE_UNREF(deviceFeatures);
   1879 	DE_UNREF(formatProperties);
   1880 	DE_UNREF(createFlags);
   1881 
   1882 	// Linear images can have arbitrary limitations
   1883 	if (imageTiling == VK_IMAGE_TILING_LINEAR)
   1884 		return false;
   1885 
   1886 	// Support for other usages for compressed formats is optional
   1887 	if (isCompressedFormat(format) &&
   1888 		(usageFlags & ~(VK_IMAGE_USAGE_SAMPLED_BIT|VK_IMAGE_USAGE_TRANSFER_SRC_BIT|VK_IMAGE_USAGE_TRANSFER_DST_BIT)) != 0)
   1889 		return false;
   1890 
   1891 	// Support for 1D, and sliced 3D compressed formats is optional
   1892 	if (isCompressedFormat(format) && (imageType == VK_IMAGE_TYPE_1D || imageType == VK_IMAGE_TYPE_3D))
   1893 		return false;
   1894 
   1895 	// Support for 1D and 3D depth/stencil textures is optional
   1896 	if (isDepthStencilFormat(format) && (imageType == VK_IMAGE_TYPE_1D || imageType == VK_IMAGE_TYPE_3D))
   1897 		return false;
   1898 
   1899 	DE_ASSERT(deviceFeatures.sparseBinding || (createFlags & (VK_IMAGE_CREATE_SPARSE_BINDING_BIT|VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT)) == 0);
   1900 	DE_ASSERT(deviceFeatures.sparseResidencyAliased || (createFlags & VK_IMAGE_CREATE_SPARSE_ALIASED_BIT) == 0);
   1901 
   1902 	if (createFlags & VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT)
   1903 	{
   1904 		if (isCompressedFormat(format))
   1905 			return false;
   1906 
   1907 		if (isDepthStencilFormat(format))
   1908 			return false;
   1909 
   1910 		if (!deIsPowerOfTwo32(mapVkFormat(format).getPixelSize()))
   1911 			return false;
   1912 
   1913 		switch (imageType)
   1914 		{
   1915 			case VK_IMAGE_TYPE_2D:
   1916 				return (deviceFeatures.sparseResidencyImage2D == VK_TRUE);
   1917 			case VK_IMAGE_TYPE_3D:
   1918 				return (deviceFeatures.sparseResidencyImage3D == VK_TRUE);
   1919 			default:
   1920 				return false;
   1921 		}
   1922 	}
   1923 
   1924 	return true;
   1925 }
   1926 
   1927 VkSampleCountFlags getRequiredOptimalTilingSampleCounts (const VkPhysicalDeviceLimits&	deviceLimits,
   1928 														 const VkFormat					format,
   1929 														 const VkImageUsageFlags		usageFlags)
   1930 {
   1931 	if (!isCompressedFormat(format))
   1932 	{
   1933 		const tcu::TextureFormat		tcuFormat		= mapVkFormat(format);
   1934 		const bool						hasDepthComp	= (tcuFormat.order == tcu::TextureFormat::D || tcuFormat.order == tcu::TextureFormat::DS);
   1935 		const bool						hasStencilComp	= (tcuFormat.order == tcu::TextureFormat::S || tcuFormat.order == tcu::TextureFormat::DS);
   1936 		const bool						isColorFormat	= !hasDepthComp && !hasStencilComp;
   1937 		VkSampleCountFlags				sampleCounts	= ~(VkSampleCountFlags)0;
   1938 
   1939 		DE_ASSERT((hasDepthComp || hasStencilComp) != isColorFormat);
   1940 
   1941 		if ((usageFlags & VK_IMAGE_USAGE_STORAGE_BIT) != 0)
   1942 			sampleCounts &= deviceLimits.storageImageSampleCounts;
   1943 
   1944 		if ((usageFlags & VK_IMAGE_USAGE_SAMPLED_BIT) != 0)
   1945 		{
   1946 			if (hasDepthComp)
   1947 				sampleCounts &= deviceLimits.sampledImageDepthSampleCounts;
   1948 
   1949 			if (hasStencilComp)
   1950 				sampleCounts &= deviceLimits.sampledImageStencilSampleCounts;
   1951 
   1952 			if (isColorFormat)
   1953 			{
   1954 				const tcu::TextureChannelClass	chnClass	= tcu::getTextureChannelClass(tcuFormat.type);
   1955 
   1956 				if (chnClass == tcu::TEXTURECHANNELCLASS_UNSIGNED_INTEGER ||
   1957 					chnClass == tcu::TEXTURECHANNELCLASS_SIGNED_INTEGER)
   1958 					sampleCounts &= deviceLimits.sampledImageIntegerSampleCounts;
   1959 				else
   1960 					sampleCounts &= deviceLimits.sampledImageColorSampleCounts;
   1961 			}
   1962 		}
   1963 
   1964 		if ((usageFlags & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) != 0)
   1965 			sampleCounts &= deviceLimits.framebufferColorSampleCounts;
   1966 
   1967 		if ((usageFlags & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) != 0)
   1968 		{
   1969 			if (hasDepthComp)
   1970 				sampleCounts &= deviceLimits.framebufferDepthSampleCounts;
   1971 
   1972 			if (hasStencilComp)
   1973 				sampleCounts &= deviceLimits.framebufferStencilSampleCounts;
   1974 		}
   1975 
   1976 		// If there is no usage flag set that would have corresponding device limit,
   1977 		// only VK_SAMPLE_COUNT_1_BIT is required.
   1978 		if (sampleCounts == ~(VkSampleCountFlags)0)
   1979 			sampleCounts &= VK_SAMPLE_COUNT_1_BIT;
   1980 
   1981 		return sampleCounts;
   1982 	}
   1983 	else
   1984 		return VK_SAMPLE_COUNT_1_BIT;
   1985 }
   1986 
   1987 struct ImageFormatPropertyCase
   1988 {
   1989 	typedef tcu::TestStatus (*Function) (Context& context, const VkFormat format, const VkImageType imageType, const VkImageTiling tiling);
   1990 
   1991 	Function		testFunction;
   1992 	VkFormat		format;
   1993 	VkImageType		imageType;
   1994 	VkImageTiling	tiling;
   1995 
   1996 	ImageFormatPropertyCase (Function testFunction_, VkFormat format_, VkImageType imageType_, VkImageTiling tiling_)
   1997 		: testFunction	(testFunction_)
   1998 		, format		(format_)
   1999 		, imageType		(imageType_)
   2000 		, tiling		(tiling_)
   2001 	{}
   2002 
   2003 	ImageFormatPropertyCase (void)
   2004 		: testFunction	((Function)DE_NULL)
   2005 		, format		(VK_FORMAT_UNDEFINED)
   2006 		, imageType		(VK_IMAGE_TYPE_LAST)
   2007 		, tiling		(VK_IMAGE_TILING_LAST)
   2008 	{}
   2009 };
   2010 
   2011 tcu::TestStatus execImageFormatTest (Context& context, ImageFormatPropertyCase testCase)
   2012 {
   2013 	return testCase.testFunction(context, testCase.format, testCase.imageType, testCase.tiling);
   2014 }
   2015 
   2016 void createImageFormatTypeTilingTests (tcu::TestCaseGroup* testGroup, ImageFormatPropertyCase params)
   2017 {
   2018 	DE_ASSERT(params.format == VK_FORMAT_UNDEFINED);
   2019 
   2020 	for (deUint32 formatNdx = VK_FORMAT_UNDEFINED+1; formatNdx < VK_CORE_FORMAT_LAST; ++formatNdx)
   2021 	{
   2022 		const VkFormat		format			= (VkFormat)formatNdx;
   2023 		const char* const	enumName		= getFormatName(format);
   2024 		const string		caseName		= de::toLower(string(enumName).substr(10));
   2025 
   2026 		params.format = format;
   2027 
   2028 		addFunctionCase(testGroup, caseName, enumName, execImageFormatTest, params);
   2029 	}
   2030 }
   2031 
   2032 void createImageFormatTypeTests (tcu::TestCaseGroup* testGroup, ImageFormatPropertyCase params)
   2033 {
   2034 	DE_ASSERT(params.tiling == VK_IMAGE_TILING_LAST);
   2035 
   2036 	testGroup->addChild(createTestGroup(testGroup->getTestContext(), "optimal",	"",	createImageFormatTypeTilingTests, ImageFormatPropertyCase(params.testFunction, VK_FORMAT_UNDEFINED, params.imageType, VK_IMAGE_TILING_OPTIMAL)));
   2037 	testGroup->addChild(createTestGroup(testGroup->getTestContext(), "linear",	"",	createImageFormatTypeTilingTests, ImageFormatPropertyCase(params.testFunction, VK_FORMAT_UNDEFINED, params.imageType, VK_IMAGE_TILING_LINEAR)));
   2038 }
   2039 
   2040 void createImageFormatTests (tcu::TestCaseGroup* testGroup, ImageFormatPropertyCase::Function testFunction)
   2041 {
   2042 	testGroup->addChild(createTestGroup(testGroup->getTestContext(), "1d", "", createImageFormatTypeTests, ImageFormatPropertyCase(testFunction, VK_FORMAT_UNDEFINED, VK_IMAGE_TYPE_1D, VK_IMAGE_TILING_LAST)));
   2043 	testGroup->addChild(createTestGroup(testGroup->getTestContext(), "2d", "", createImageFormatTypeTests, ImageFormatPropertyCase(testFunction, VK_FORMAT_UNDEFINED, VK_IMAGE_TYPE_2D, VK_IMAGE_TILING_LAST)));
   2044 	testGroup->addChild(createTestGroup(testGroup->getTestContext(), "3d", "", createImageFormatTypeTests, ImageFormatPropertyCase(testFunction, VK_FORMAT_UNDEFINED, VK_IMAGE_TYPE_3D, VK_IMAGE_TILING_LAST)));
   2045 }
   2046 
   2047 tcu::TestStatus imageFormatProperties (Context& context, const VkFormat format, const VkImageType imageType, const VkImageTiling tiling)
   2048 {
   2049 	TestLog&						log					= context.getTestContext().getLog();
   2050 	const VkPhysicalDeviceFeatures&	deviceFeatures		= context.getDeviceFeatures();
   2051 	const VkPhysicalDeviceLimits&	deviceLimits		= context.getDeviceProperties().limits;
   2052 	const VkFormatProperties		formatProperties	= getPhysicalDeviceFormatProperties(context.getInstanceInterface(), context.getPhysicalDevice(), format);
   2053 	const bool						hasKhrMaintenance1	= isExtensionSupported(context.getDeviceExtensions(), "VK_KHR_maintenance1");
   2054 
   2055 	const VkFormatFeatureFlags		supportedFeatures	= tiling == VK_IMAGE_TILING_LINEAR ? formatProperties.linearTilingFeatures : formatProperties.optimalTilingFeatures;
   2056 	const VkImageUsageFlags			usageFlagSet		= getValidImageUsageFlags(supportedFeatures, hasKhrMaintenance1);
   2057 
   2058 	tcu::ResultCollector			results				(log, "ERROR: ");
   2059 
   2060 	if (hasKhrMaintenance1 && (supportedFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT) != 0)
   2061 	{
   2062 		results.check((supportedFeatures & (VK_FORMAT_FEATURE_TRANSFER_SRC_BIT_KHR | VK_FORMAT_FEATURE_TRANSFER_DST_BIT_KHR)) != 0,
   2063 					  "A sampled image format must have VK_FORMAT_FEATURE_TRANSFER_SRC_BIT_KHR and VK_FORMAT_FEATURE_TRANSFER_DST_BIT_KHR format feature flags set");
   2064 	}
   2065 
   2066 	for (VkImageUsageFlags curUsageFlags = 0; curUsageFlags <= usageFlagSet; curUsageFlags++)
   2067 	{
   2068 		if ((curUsageFlags & ~usageFlagSet) != 0 ||
   2069 			!isValidImageUsageFlagCombination(curUsageFlags))
   2070 			continue;
   2071 
   2072 		const VkImageCreateFlags	createFlagSet		= getValidImageCreateFlags(deviceFeatures, format, supportedFeatures, imageType, curUsageFlags);
   2073 
   2074 		for (VkImageCreateFlags curCreateFlags = 0; curCreateFlags <= createFlagSet; curCreateFlags++)
   2075 		{
   2076 			if ((curCreateFlags & ~createFlagSet) != 0 ||
   2077 				!isValidImageCreateFlagCombination(curCreateFlags))
   2078 				continue;
   2079 
   2080 			const bool				isRequiredCombination	= isRequiredImageParameterCombination(deviceFeatures,
   2081 																								  format,
   2082 																								  formatProperties,
   2083 																								  imageType,
   2084 																								  tiling,
   2085 																								  curUsageFlags,
   2086 																								  curCreateFlags);
   2087 			VkImageFormatProperties	properties;
   2088 			VkResult				queryResult;
   2089 
   2090 			log << TestLog::Message << "Testing " << getImageTypeStr(imageType) << ", "
   2091 									<< getImageTilingStr(tiling) << ", "
   2092 									<< getImageUsageFlagsStr(curUsageFlags) << ", "
   2093 									<< getImageCreateFlagsStr(curCreateFlags)
   2094 				<< TestLog::EndMessage;
   2095 
   2096 			// Set return value to known garbage
   2097 			deMemset(&properties, 0xcd, sizeof(properties));
   2098 
   2099 			queryResult = context.getInstanceInterface().getPhysicalDeviceImageFormatProperties(context.getPhysicalDevice(),
   2100 																								format,
   2101 																								imageType,
   2102 																								tiling,
   2103 																								curUsageFlags,
   2104 																								curCreateFlags,
   2105 																								&properties);
   2106 
   2107 			if (queryResult == VK_SUCCESS)
   2108 			{
   2109 				const deUint32	fullMipPyramidSize	= de::max(de::max(deLog2Ceil32(properties.maxExtent.width),
   2110 																	  deLog2Ceil32(properties.maxExtent.height)),
   2111 															  deLog2Ceil32(properties.maxExtent.depth)) + 1;
   2112 
   2113 				log << TestLog::Message << properties << "\n" << TestLog::EndMessage;
   2114 
   2115 				results.check(imageType != VK_IMAGE_TYPE_1D || (properties.maxExtent.width >= 1 && properties.maxExtent.height == 1 && properties.maxExtent.depth == 1), "Invalid dimensions for 1D image");
   2116 				results.check(imageType != VK_IMAGE_TYPE_2D || (properties.maxExtent.width >= 1 && properties.maxExtent.height >= 1 && properties.maxExtent.depth == 1), "Invalid dimensions for 2D image");
   2117 				results.check(imageType != VK_IMAGE_TYPE_3D || (properties.maxExtent.width >= 1 && properties.maxExtent.height >= 1 && properties.maxExtent.depth >= 1), "Invalid dimensions for 3D image");
   2118 				results.check(imageType != VK_IMAGE_TYPE_3D || properties.maxArrayLayers == 1, "Invalid maxArrayLayers for 3D image");
   2119 
   2120 				if (tiling == VK_IMAGE_TILING_OPTIMAL && imageType == VK_IMAGE_TYPE_2D && !(curCreateFlags & VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT) &&
   2121 					 ((supportedFeatures & (VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT | VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT)) ||
   2122 					 ((supportedFeatures & VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT) && deviceFeatures.shaderStorageImageMultisample)))
   2123 				{
   2124 					const VkSampleCountFlags	requiredSampleCounts	= getRequiredOptimalTilingSampleCounts(deviceLimits, format, curUsageFlags);
   2125 					results.check((properties.sampleCounts & requiredSampleCounts) == requiredSampleCounts, "Required sample counts not supported");
   2126 				}
   2127 				else
   2128 					results.check(properties.sampleCounts == VK_SAMPLE_COUNT_1_BIT, "sampleCounts != VK_SAMPLE_COUNT_1_BIT");
   2129 
   2130 				if (isRequiredCombination)
   2131 				{
   2132 					results.check(imageType != VK_IMAGE_TYPE_1D || (properties.maxExtent.width	>= deviceLimits.maxImageDimension1D),
   2133 								  "Reported dimensions smaller than device limits");
   2134 					results.check(imageType != VK_IMAGE_TYPE_2D || (properties.maxExtent.width	>= deviceLimits.maxImageDimension2D &&
   2135 																	properties.maxExtent.height	>= deviceLimits.maxImageDimension2D),
   2136 								  "Reported dimensions smaller than device limits");
   2137 					results.check(imageType != VK_IMAGE_TYPE_3D || (properties.maxExtent.width	>= deviceLimits.maxImageDimension3D &&
   2138 																	properties.maxExtent.height	>= deviceLimits.maxImageDimension3D &&
   2139 																	properties.maxExtent.depth	>= deviceLimits.maxImageDimension3D),
   2140 								  "Reported dimensions smaller than device limits");
   2141 					results.check(properties.maxMipLevels == fullMipPyramidSize, "maxMipLevels is not full mip pyramid size");
   2142 					results.check(imageType == VK_IMAGE_TYPE_3D || properties.maxArrayLayers >= deviceLimits.maxImageArrayLayers,
   2143 								  "maxArrayLayers smaller than device limits");
   2144 				}
   2145 				else
   2146 				{
   2147 					results.check(properties.maxMipLevels == 1 || properties.maxMipLevels == fullMipPyramidSize, "Invalid mip pyramid size");
   2148 					results.check(properties.maxArrayLayers >= 1, "Invalid maxArrayLayers");
   2149 				}
   2150 
   2151 				results.check(properties.maxResourceSize >= (VkDeviceSize)MINIMUM_REQUIRED_IMAGE_RESOURCE_SIZE,
   2152 							  "maxResourceSize smaller than minimum required size");
   2153 			}
   2154 			else if (queryResult == VK_ERROR_FORMAT_NOT_SUPPORTED)
   2155 			{
   2156 				log << TestLog::Message << "Got VK_ERROR_FORMAT_NOT_SUPPORTED" << TestLog::EndMessage;
   2157 
   2158 				if (isRequiredCombination)
   2159 					results.fail("VK_ERROR_FORMAT_NOT_SUPPORTED returned for required image parameter combination");
   2160 
   2161 				// Specification requires that all fields are set to 0
   2162 				results.check(properties.maxExtent.width	== 0, "maxExtent.width != 0");
   2163 				results.check(properties.maxExtent.height	== 0, "maxExtent.height != 0");
   2164 				results.check(properties.maxExtent.depth	== 0, "maxExtent.depth != 0");
   2165 				results.check(properties.maxMipLevels		== 0, "maxMipLevels != 0");
   2166 				results.check(properties.maxArrayLayers		== 0, "maxArrayLayers != 0");
   2167 				results.check(properties.sampleCounts		== 0, "sampleCounts != 0");
   2168 				results.check(properties.maxResourceSize	== 0, "maxResourceSize != 0");
   2169 			}
   2170 			else
   2171 			{
   2172 				results.fail("Got unexpected error" + de::toString(queryResult));
   2173 			}
   2174 		}
   2175 	}
   2176 
   2177 	return tcu::TestStatus(results.getResult(), results.getMessage());
   2178 }
   2179 
   2180 // VK_KHR_get_physical_device_properties2
   2181 
   2182 Move<VkInstance> createInstanceWithExtension (const PlatformInterface& vkp, const char* extensionName)
   2183 {
   2184 	const vector<VkExtensionProperties>	instanceExts	= enumerateInstanceExtensionProperties(vkp, DE_NULL);
   2185 	vector<string>						enabledExts;
   2186 
   2187 	if (!isExtensionSupported(instanceExts, RequiredExtension(extensionName)))
   2188 		TCU_THROW(NotSupportedError, (string(extensionName) + " is not supported").c_str());
   2189 
   2190 	enabledExts.push_back(extensionName);
   2191 
   2192 	return createDefaultInstance(vkp, vector<string>() /* layers */, enabledExts);
   2193 }
   2194 
   2195 tcu::TestStatus deviceFeatures2 (Context& context)
   2196 {
   2197 	const PlatformInterface&		vkp			= context.getPlatformInterface();
   2198 	const Unique<VkInstance>		instance	(createInstanceWithExtension(vkp, "VK_KHR_get_physical_device_properties2"));
   2199 	const InstanceDriver			vki			(vkp, *instance);
   2200 	const vector<VkPhysicalDevice>	devices		= enumeratePhysicalDevices(vki, *instance);
   2201 
   2202 	for (size_t deviceNdx = 0; deviceNdx < devices.size(); ++deviceNdx)
   2203 	{
   2204 		VkPhysicalDeviceFeatures		coreFeatures;
   2205 		VkPhysicalDeviceFeatures2KHR	extFeatures;
   2206 
   2207 		deMemset(&coreFeatures, 0xcd, sizeof(coreFeatures));
   2208 		deMemset(&extFeatures.features, 0xcd, sizeof(extFeatures.features));
   2209 
   2210 		extFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2_KHR;
   2211 		extFeatures.pNext = DE_NULL;
   2212 
   2213 		vki.getPhysicalDeviceFeatures(devices[deviceNdx], &coreFeatures);
   2214 		vki.getPhysicalDeviceFeatures2KHR(devices[deviceNdx], &extFeatures);
   2215 
   2216 		TCU_CHECK(extFeatures.sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2_KHR);
   2217 		TCU_CHECK(extFeatures.pNext == DE_NULL);
   2218 
   2219 		if (deMemCmp(&coreFeatures, &extFeatures.features, sizeof(VkPhysicalDeviceFeatures)) != 0)
   2220 			TCU_FAIL("Mismatch between features reported by vkGetPhysicalDeviceFeatures and vkGetPhysicalDeviceFeatures2KHR");
   2221 	}
   2222 
   2223 	return tcu::TestStatus::pass("Querying device features succeeded");
   2224 }
   2225 
   2226 tcu::TestStatus deviceProperties2 (Context& context)
   2227 {
   2228 	const PlatformInterface&		vkp			= context.getPlatformInterface();
   2229 	const Unique<VkInstance>		instance	(createInstanceWithExtension(vkp, "VK_KHR_get_physical_device_properties2"));
   2230 	const InstanceDriver			vki			(vkp, *instance);
   2231 	const vector<VkPhysicalDevice>	devices		= enumeratePhysicalDevices(vki, *instance);
   2232 
   2233 	for (size_t deviceNdx = 0; deviceNdx < devices.size(); ++deviceNdx)
   2234 	{
   2235 		VkPhysicalDeviceProperties		coreProperties;
   2236 		VkPhysicalDeviceProperties2KHR	extProperties;
   2237 
   2238 		extProperties.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2_KHR;
   2239 		extProperties.pNext = DE_NULL;
   2240 
   2241 		vki.getPhysicalDeviceProperties(devices[deviceNdx], &coreProperties);
   2242 		vki.getPhysicalDeviceProperties2KHR(devices[deviceNdx], &extProperties);
   2243 
   2244 		TCU_CHECK(extProperties.sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2_KHR);
   2245 		TCU_CHECK(extProperties.pNext == DE_NULL);
   2246 
   2247 		// We can't use memcmp() here because the structs may contain padding bytes that drivers may or may not
   2248 		// have written while writing the data and memcmp will compare them anyway, so we iterate through the
   2249 		// valid bytes for each field in the struct and compare only the valid bytes for each one.
   2250 		for (int propNdx = 0; propNdx < DE_LENGTH_OF_ARRAY(s_physicalDevicePropertiesOffsetTable); propNdx++)
   2251 		{
   2252 			const size_t offset					= s_physicalDevicePropertiesOffsetTable[propNdx].offset;
   2253 			const size_t size					= s_physicalDevicePropertiesOffsetTable[propNdx].size;
   2254 
   2255 			const deUint8* corePropertyBytes	= reinterpret_cast<deUint8*>(&coreProperties) + offset;
   2256 			const deUint8* extPropertyBytes		= reinterpret_cast<deUint8*>(&extProperties.properties) + offset;
   2257 
   2258 			if (deMemCmp(corePropertyBytes, extPropertyBytes, size) != 0)
   2259 				TCU_FAIL("Mismatch between properties reported by vkGetPhysicalDeviceProperties and vkGetPhysicalDeviceProperties2KHR");
   2260 		}
   2261 	}
   2262 
   2263 	return tcu::TestStatus::pass("Querying device properties succeeded");
   2264 }
   2265 
   2266 tcu::TestStatus deviceFormatProperties2 (Context& context)
   2267 {
   2268 	const PlatformInterface&		vkp			= context.getPlatformInterface();
   2269 	const Unique<VkInstance>		instance	(createInstanceWithExtension(vkp, "VK_KHR_get_physical_device_properties2"));
   2270 	const InstanceDriver			vki			(vkp, *instance);
   2271 	const vector<VkPhysicalDevice>	devices		= enumeratePhysicalDevices(vki, *instance);
   2272 
   2273 	for (size_t deviceNdx = 0; deviceNdx < devices.size(); ++deviceNdx)
   2274 	{
   2275 		const VkPhysicalDevice	physicalDevice	= devices[deviceNdx];
   2276 
   2277 		for (int formatNdx = 0; formatNdx < VK_CORE_FORMAT_LAST; ++formatNdx)
   2278 		{
   2279 			const VkFormat			format			= (VkFormat)formatNdx;
   2280 			VkFormatProperties		coreProperties;
   2281 			VkFormatProperties2KHR	extProperties;
   2282 
   2283 			deMemset(&coreProperties, 0xcd, sizeof(VkFormatProperties));
   2284 			deMemset(&extProperties, 0xcd, sizeof(VkFormatProperties2KHR));
   2285 
   2286 			extProperties.sType	= VK_STRUCTURE_TYPE_FORMAT_PROPERTIES_2_KHR;
   2287 			extProperties.pNext = DE_NULL;
   2288 
   2289 			vki.getPhysicalDeviceFormatProperties(physicalDevice, format, &coreProperties);
   2290 			vki.getPhysicalDeviceFormatProperties2KHR(physicalDevice, format, &extProperties);
   2291 
   2292 			TCU_CHECK(extProperties.sType == VK_STRUCTURE_TYPE_FORMAT_PROPERTIES_2_KHR);
   2293 			TCU_CHECK(extProperties.pNext == DE_NULL);
   2294 
   2295 		if (deMemCmp(&coreProperties, &extProperties.formatProperties, sizeof(VkFormatProperties)) != 0)
   2296 			TCU_FAIL("Mismatch between format properties reported by vkGetPhysicalDeviceFormatProperties and vkGetPhysicalDeviceFormatProperties2KHR");
   2297 		}
   2298 	}
   2299 
   2300 	return tcu::TestStatus::pass("Querying device format properties succeeded");
   2301 }
   2302 
   2303 tcu::TestStatus deviceQueueFamilyProperties2 (Context& context)
   2304 {
   2305 	const PlatformInterface&		vkp			= context.getPlatformInterface();
   2306 	const Unique<VkInstance>		instance	(createInstanceWithExtension(vkp, "VK_KHR_get_physical_device_properties2"));
   2307 	const InstanceDriver			vki			(vkp, *instance);
   2308 	const vector<VkPhysicalDevice>	devices		= enumeratePhysicalDevices(vki, *instance);
   2309 
   2310 	for (size_t deviceNdx = 0; deviceNdx < devices.size(); ++deviceNdx)
   2311 	{
   2312 		const VkPhysicalDevice	physicalDevice			= devices[deviceNdx];
   2313 		deUint32				numCoreQueueFamilies	= ~0u;
   2314 		deUint32				numExtQueueFamilies		= ~0u;
   2315 
   2316 		vki.getPhysicalDeviceQueueFamilyProperties(physicalDevice, &numCoreQueueFamilies, DE_NULL);
   2317 		vki.getPhysicalDeviceQueueFamilyProperties2KHR(physicalDevice, &numExtQueueFamilies, DE_NULL);
   2318 
   2319 		TCU_CHECK_MSG(numCoreQueueFamilies == numExtQueueFamilies, "Different number of queue family properties reported");
   2320 		TCU_CHECK(numCoreQueueFamilies > 0);
   2321 
   2322 		{
   2323 			std::vector<VkQueueFamilyProperties>		coreProperties	(numCoreQueueFamilies);
   2324 			std::vector<VkQueueFamilyProperties2KHR>	extProperties	(numExtQueueFamilies);
   2325 
   2326 			deMemset(&coreProperties[0], 0xcd, sizeof(VkQueueFamilyProperties)*numCoreQueueFamilies);
   2327 			deMemset(&extProperties[0], 0xcd, sizeof(VkQueueFamilyProperties2KHR)*numExtQueueFamilies);
   2328 
   2329 			for (size_t ndx = 0; ndx < extProperties.size(); ++ndx)
   2330 			{
   2331 				extProperties[ndx].sType = VK_STRUCTURE_TYPE_QUEUE_FAMILY_PROPERTIES_2_KHR;
   2332 				extProperties[ndx].pNext = DE_NULL;
   2333 			}
   2334 
   2335 			vki.getPhysicalDeviceQueueFamilyProperties(physicalDevice, &numCoreQueueFamilies, &coreProperties[0]);
   2336 			vki.getPhysicalDeviceQueueFamilyProperties2KHR(physicalDevice, &numExtQueueFamilies, &extProperties[0]);
   2337 
   2338 			TCU_CHECK((size_t)numCoreQueueFamilies == coreProperties.size());
   2339 			TCU_CHECK((size_t)numExtQueueFamilies == extProperties.size());
   2340 			DE_ASSERT(numCoreQueueFamilies == numExtQueueFamilies);
   2341 
   2342 			for (size_t ndx = 0; ndx < extProperties.size(); ++ndx)
   2343 			{
   2344 				TCU_CHECK(extProperties[ndx].sType == VK_STRUCTURE_TYPE_QUEUE_FAMILY_PROPERTIES_2_KHR);
   2345 				TCU_CHECK(extProperties[ndx].pNext == DE_NULL);
   2346 
   2347 				if (deMemCmp(&coreProperties[ndx], &extProperties[ndx].queueFamilyProperties, sizeof(VkQueueFamilyProperties)) != 0)
   2348 					TCU_FAIL("Mismatch between format properties reported by vkGetPhysicalDeviceQueueFamilyProperties and vkGetPhysicalDeviceQueueFamilyProperties2KHR");
   2349 			}
   2350 		}
   2351 	}
   2352 
   2353 	return tcu::TestStatus::pass("Querying device queue family properties succeeded");
   2354 }
   2355 
   2356 tcu::TestStatus deviceMemoryProperties2 (Context& context)
   2357 {
   2358 	const PlatformInterface&		vkp			= context.getPlatformInterface();
   2359 	const Unique<VkInstance>		instance	(createInstanceWithExtension(vkp, "VK_KHR_get_physical_device_properties2"));
   2360 	const InstanceDriver			vki			(vkp, *instance);
   2361 	const vector<VkPhysicalDevice>	devices		= enumeratePhysicalDevices(vki, *instance);
   2362 
   2363 	for (size_t deviceNdx = 0; deviceNdx < devices.size(); ++deviceNdx)
   2364 	{
   2365 		VkPhysicalDeviceMemoryProperties		coreProperties;
   2366 		VkPhysicalDeviceMemoryProperties2KHR	extProperties;
   2367 
   2368 		deMemset(&coreProperties, 0xcd, sizeof(VkPhysicalDeviceMemoryProperties));
   2369 		deMemset(&extProperties, 0xcd, sizeof(VkPhysicalDeviceMemoryProperties2KHR));
   2370 
   2371 		extProperties.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PROPERTIES_2_KHR;
   2372 		extProperties.pNext = DE_NULL;
   2373 
   2374 		vki.getPhysicalDeviceMemoryProperties(devices[deviceNdx], &coreProperties);
   2375 		vki.getPhysicalDeviceMemoryProperties2KHR(devices[deviceNdx], &extProperties);
   2376 
   2377 		TCU_CHECK(extProperties.sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PROPERTIES_2_KHR);
   2378 		TCU_CHECK(extProperties.pNext == DE_NULL);
   2379 
   2380 		if (deMemCmp(&coreProperties, &extProperties.memoryProperties, sizeof(VkPhysicalDeviceMemoryProperties)) != 0)
   2381 			TCU_FAIL("Mismatch between properties reported by vkGetPhysicalDeviceMemoryProperties and vkGetPhysicalDeviceMemoryProperties2KHR");
   2382 	}
   2383 
   2384 	return tcu::TestStatus::pass("Querying device memory properties succeeded");
   2385 }
   2386 
   2387 tcu::TestStatus imageFormatProperties2 (Context& context, const VkFormat format, const VkImageType imageType, const VkImageTiling tiling)
   2388 {
   2389 	TestLog&						log				= context.getTestContext().getLog();
   2390 
   2391 	const PlatformInterface&		vkp				= context.getPlatformInterface();
   2392 	const Unique<VkInstance>		instance		(createInstanceWithExtension(vkp, "VK_KHR_get_physical_device_properties2"));
   2393 	const InstanceDriver			vki				(vkp, *instance);
   2394 	const vector<VkPhysicalDevice>	devices			= enumeratePhysicalDevices(vki, *instance);
   2395 
   2396 	const VkImageUsageFlags			allUsageFlags	= VK_IMAGE_USAGE_TRANSFER_SRC_BIT
   2397 													| VK_IMAGE_USAGE_TRANSFER_DST_BIT
   2398 													| VK_IMAGE_USAGE_SAMPLED_BIT
   2399 													| VK_IMAGE_USAGE_STORAGE_BIT
   2400 													| VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT
   2401 													| VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT
   2402 													| VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT
   2403 													| VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT;
   2404 	const VkImageCreateFlags		allCreateFlags	= VK_IMAGE_CREATE_SPARSE_BINDING_BIT
   2405 													| VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT
   2406 													| VK_IMAGE_CREATE_SPARSE_ALIASED_BIT
   2407 													| VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT
   2408 													| VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT;
   2409 
   2410 	for (size_t deviceNdx = 0; deviceNdx < devices.size(); ++deviceNdx)
   2411 	{
   2412 		const VkPhysicalDevice	physicalDevice	= devices[deviceNdx];
   2413 
   2414 		for (VkImageUsageFlags curUsageFlags = (VkImageUsageFlags)1; curUsageFlags <= allUsageFlags; curUsageFlags++)
   2415 		{
   2416 			for (VkImageCreateFlags curCreateFlags = 0; curCreateFlags <= allCreateFlags; curCreateFlags++)
   2417 			{
   2418 				const VkPhysicalDeviceImageFormatInfo2KHR	imageFormatInfo	=
   2419 				{
   2420 					VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_FORMAT_INFO_2_KHR,
   2421 					DE_NULL,
   2422 					format,
   2423 					imageType,
   2424 					tiling,
   2425 					curUsageFlags,
   2426 					curCreateFlags
   2427 				};
   2428 
   2429 				VkImageFormatProperties						coreProperties;
   2430 				VkImageFormatProperties2KHR					extProperties;
   2431 				VkResult									coreResult;
   2432 				VkResult									extResult;
   2433 
   2434 				deMemset(&coreProperties, 0xcd, sizeof(VkImageFormatProperties));
   2435 				deMemset(&extProperties, 0xcd, sizeof(VkImageFormatProperties2KHR));
   2436 
   2437 				extProperties.sType = VK_STRUCTURE_TYPE_IMAGE_FORMAT_PROPERTIES_2_KHR;
   2438 				extProperties.pNext = DE_NULL;
   2439 
   2440 				coreResult	= vki.getPhysicalDeviceImageFormatProperties(physicalDevice, imageFormatInfo.format, imageFormatInfo.type, imageFormatInfo.tiling, imageFormatInfo.usage, imageFormatInfo.flags, &coreProperties);
   2441 				extResult	= vki.getPhysicalDeviceImageFormatProperties2KHR(physicalDevice, &imageFormatInfo, &extProperties);
   2442 
   2443 				TCU_CHECK(extProperties.sType == VK_STRUCTURE_TYPE_IMAGE_FORMAT_PROPERTIES_2_KHR);
   2444 				TCU_CHECK(extProperties.pNext == DE_NULL);
   2445 
   2446 				if ((coreResult != extResult) ||
   2447 					(deMemCmp(&coreProperties, &extProperties.imageFormatProperties, sizeof(VkImageFormatProperties)) != 0))
   2448 				{
   2449 					log << TestLog::Message << "ERROR: device " << deviceNdx << ": mismatch with query " << imageFormatInfo << TestLog::EndMessage
   2450 						<< TestLog::Message << "vkGetPhysicalDeviceImageFormatProperties() returned " << coreResult << ", " << coreProperties << TestLog::EndMessage
   2451 						<< TestLog::Message << "vkGetPhysicalDeviceImageFormatProperties2KHR() returned " << extResult << ", " << extProperties << TestLog::EndMessage;
   2452 					TCU_FAIL("Mismatch between image format properties reported by vkGetPhysicalDeviceImageFormatProperties and vkGetPhysicalDeviceImageFormatProperties2KHR");
   2453 				}
   2454 			}
   2455 		}
   2456 	}
   2457 
   2458 	return tcu::TestStatus::pass("Querying image format properties succeeded");
   2459 }
   2460 
   2461 tcu::TestStatus sparseImageFormatProperties2 (Context& context, const VkFormat format, const VkImageType imageType, const VkImageTiling tiling)
   2462 {
   2463 	TestLog&						log				= context.getTestContext().getLog();
   2464 
   2465 	const PlatformInterface&		vkp				= context.getPlatformInterface();
   2466 	const Unique<VkInstance>		instance		(createInstanceWithExtension(vkp, "VK_KHR_get_physical_device_properties2"));
   2467 	const InstanceDriver			vki				(vkp, *instance);
   2468 	const vector<VkPhysicalDevice>	devices			= enumeratePhysicalDevices(vki, *instance);
   2469 
   2470 	const VkImageUsageFlags			allUsageFlags	= VK_IMAGE_USAGE_TRANSFER_SRC_BIT
   2471 													| VK_IMAGE_USAGE_TRANSFER_DST_BIT
   2472 													| VK_IMAGE_USAGE_SAMPLED_BIT
   2473 													| VK_IMAGE_USAGE_STORAGE_BIT
   2474 													| VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT
   2475 													| VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT
   2476 													| VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT
   2477 													| VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT;
   2478 
   2479 	for (size_t deviceNdx = 0; deviceNdx < devices.size(); ++deviceNdx)
   2480 	{
   2481 		const VkPhysicalDevice	physicalDevice	= devices[deviceNdx];
   2482 
   2483 		for (deUint32 sampleCountBit = VK_SAMPLE_COUNT_1_BIT; sampleCountBit <= VK_SAMPLE_COUNT_64_BIT; sampleCountBit = (sampleCountBit << 1u))
   2484 		{
   2485 			for (VkImageUsageFlags curUsageFlags = (VkImageUsageFlags)1; curUsageFlags <= allUsageFlags; curUsageFlags++)
   2486 			{
   2487 				const VkPhysicalDeviceSparseImageFormatInfo2KHR	imageFormatInfo	=
   2488 				{
   2489 					VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SPARSE_IMAGE_FORMAT_INFO_2_KHR,
   2490 					DE_NULL,
   2491 					format,
   2492 					imageType,
   2493 					(VkSampleCountFlagBits)sampleCountBit,
   2494 					curUsageFlags,
   2495 					tiling,
   2496 				};
   2497 
   2498 				deUint32										numCoreProperties	= ~0u;
   2499 				deUint32										numExtProperties	= ~0u;
   2500 
   2501 				// Query count
   2502 				vki.getPhysicalDeviceSparseImageFormatProperties(physicalDevice, imageFormatInfo.format, imageFormatInfo.type, imageFormatInfo.samples, imageFormatInfo.usage, imageFormatInfo.tiling, &numCoreProperties, DE_NULL);
   2503 				vki.getPhysicalDeviceSparseImageFormatProperties2KHR(physicalDevice, &imageFormatInfo, &numExtProperties, DE_NULL);
   2504 
   2505 				if (numCoreProperties != numExtProperties)
   2506 				{
   2507 					log << TestLog::Message << "ERROR: device " << deviceNdx << ": different number of properties reported for " << imageFormatInfo << TestLog::EndMessage;
   2508 					TCU_FAIL("Mismatch in reported property count");
   2509 				}
   2510 
   2511 				if (numCoreProperties > 0)
   2512 				{
   2513 					std::vector<VkSparseImageFormatProperties>		coreProperties	(numCoreProperties);
   2514 					std::vector<VkSparseImageFormatProperties2KHR>	extProperties	(numExtProperties);
   2515 
   2516 					deMemset(&coreProperties[0], 0xcd, sizeof(VkSparseImageFormatProperties)*numCoreProperties);
   2517 					deMemset(&extProperties[0], 0xcd, sizeof(VkSparseImageFormatProperties2KHR)*numExtProperties);
   2518 
   2519 					for (deUint32 ndx = 0; ndx < numExtProperties; ++ndx)
   2520 					{
   2521 						extProperties[ndx].sType = VK_STRUCTURE_TYPE_SPARSE_IMAGE_FORMAT_PROPERTIES_2_KHR;
   2522 						extProperties[ndx].pNext = DE_NULL;
   2523 					}
   2524 
   2525 					vki.getPhysicalDeviceSparseImageFormatProperties(physicalDevice, imageFormatInfo.format, imageFormatInfo.type, imageFormatInfo.samples, imageFormatInfo.usage, imageFormatInfo.tiling, &numCoreProperties, &coreProperties[0]);
   2526 					vki.getPhysicalDeviceSparseImageFormatProperties2KHR(physicalDevice, &imageFormatInfo, &numExtProperties, &extProperties[0]);
   2527 
   2528 					TCU_CHECK((size_t)numCoreProperties == coreProperties.size());
   2529 					TCU_CHECK((size_t)numExtProperties == extProperties.size());
   2530 
   2531 					for (deUint32 ndx = 0; ndx < numCoreProperties; ++ndx)
   2532 					{
   2533 						TCU_CHECK(extProperties[ndx].sType == VK_STRUCTURE_TYPE_SPARSE_IMAGE_FORMAT_PROPERTIES_2_KHR);
   2534 						TCU_CHECK(extProperties[ndx].pNext == DE_NULL);
   2535 
   2536 						if ((deMemCmp(&coreProperties[ndx], &extProperties[ndx].properties, sizeof(VkSparseImageFormatProperties)) != 0))
   2537 						{
   2538 							log << TestLog::Message << "ERROR: device " << deviceNdx << ": mismatch with query " << imageFormatInfo << " property " << ndx << TestLog::EndMessage
   2539 								<< TestLog::Message << "vkGetPhysicalDeviceSparseImageFormatProperties() returned " << coreProperties[ndx] << TestLog::EndMessage
   2540 								<< TestLog::Message << "vkGetPhysicalDeviceSparseImageFormatProperties2KHR() returned " << extProperties[ndx] << TestLog::EndMessage;
   2541 							TCU_FAIL("Mismatch between image format properties reported by vkGetPhysicalDeviceSparseImageFormatProperties and vkGetPhysicalDeviceSparseImageFormatProperties2KHR");
   2542 						}
   2543 					}
   2544 				}
   2545 			}
   2546 		}
   2547 	}
   2548 
   2549 	return tcu::TestStatus::pass("Querying sparse image format properties succeeded");
   2550 }
   2551 
   2552 // Android CTS -specific tests
   2553 
   2554 namespace android
   2555 {
   2556 
   2557 void checkExtensions (tcu::ResultCollector& results, const set<string>& allowedExtensions, const vector<VkExtensionProperties>& reportedExtensions)
   2558 {
   2559 	for (vector<VkExtensionProperties>::const_iterator extension = reportedExtensions.begin(); extension != reportedExtensions.end(); ++extension)
   2560 	{
   2561 		const string	extensionName	(extension->extensionName);
   2562 		const bool		mustBeKnown		= de::beginsWith(extensionName, "VK_KHX_")		||
   2563 										  de::beginsWith(extensionName, "VK_GOOGLE_")	||
   2564 										  de::beginsWith(extensionName, "VK_ANDROID_");
   2565 
   2566 		if (mustBeKnown && !de::contains(allowedExtensions, extensionName))
   2567 			results.fail("Unknown extension: " + extensionName);
   2568 	}
   2569 }
   2570 
   2571 tcu::TestStatus testNoUnknownExtensions (Context& context)
   2572 {
   2573 	TestLog&				log					= context.getTestContext().getLog();
   2574 	tcu::ResultCollector	results				(log);
   2575 	set<string>				allowedInstanceExtensions;
   2576 	set<string>				allowedDeviceExtensions;
   2577 
   2578 	// All known extensions should be added to allowedExtensions:
   2579 	// allowedExtensions.insert("VK_GOOGLE_extension1");
   2580 	allowedDeviceExtensions.insert("VK_GOOGLE_display_timing");
   2581 
   2582 	// Instance extensions
   2583 	checkExtensions(results,
   2584 					allowedInstanceExtensions,
   2585 					enumerateInstanceExtensionProperties(context.getPlatformInterface(), DE_NULL));
   2586 
   2587 	// Extensions exposed by instance layers
   2588 	{
   2589 		const vector<VkLayerProperties>	layers	= enumerateInstanceLayerProperties(context.getPlatformInterface());
   2590 
   2591 		for (vector<VkLayerProperties>::const_iterator layer = layers.begin(); layer != layers.end(); ++layer)
   2592 		{
   2593 			checkExtensions(results,
   2594 							allowedInstanceExtensions,
   2595 							enumerateInstanceExtensionProperties(context.getPlatformInterface(), layer->layerName));
   2596 		}
   2597 	}
   2598 
   2599 	// Device extensions
   2600 	checkExtensions(results,
   2601 					allowedDeviceExtensions,
   2602 					enumerateDeviceExtensionProperties(context.getInstanceInterface(), context.getPhysicalDevice(), DE_NULL));
   2603 
   2604 	// Extensions exposed by device layers
   2605 	{
   2606 		const vector<VkLayerProperties>	layers	= enumerateDeviceLayerProperties(context.getInstanceInterface(), context.getPhysicalDevice());
   2607 
   2608 		for (vector<VkLayerProperties>::const_iterator layer = layers.begin(); layer != layers.end(); ++layer)
   2609 		{
   2610 			checkExtensions(results,
   2611 							allowedDeviceExtensions,
   2612 							enumerateDeviceExtensionProperties(context.getInstanceInterface(), context.getPhysicalDevice(), layer->layerName));
   2613 		}
   2614 	}
   2615 
   2616 	return tcu::TestStatus(results.getResult(), results.getMessage());
   2617 }
   2618 
   2619 tcu::TestStatus testNoLayers (Context& context)
   2620 {
   2621 	TestLog&				log		= context.getTestContext().getLog();
   2622 	tcu::ResultCollector	results	(log);
   2623 
   2624 	{
   2625 		const vector<VkLayerProperties>	layers	= enumerateInstanceLayerProperties(context.getPlatformInterface());
   2626 
   2627 		for (vector<VkLayerProperties>::const_iterator layer = layers.begin(); layer != layers.end(); ++layer)
   2628 			results.fail(string("Instance layer enumerated: ") + layer->layerName);
   2629 	}
   2630 
   2631 	{
   2632 		const vector<VkLayerProperties>	layers	= enumerateDeviceLayerProperties(context.getInstanceInterface(), context.getPhysicalDevice());
   2633 
   2634 		for (vector<VkLayerProperties>::const_iterator layer = layers.begin(); layer != layers.end(); ++layer)
   2635 			results.fail(string("Device layer enumerated: ") + layer->layerName);
   2636 	}
   2637 
   2638 	return tcu::TestStatus(results.getResult(), results.getMessage());
   2639 }
   2640 
   2641 tcu::TestStatus testMandatoryExtensions (Context& context)
   2642 {
   2643 	TestLog&				log		= context.getTestContext().getLog();
   2644 	tcu::ResultCollector	results	(log);
   2645 
   2646 	// Instance extensions
   2647 	{
   2648 		static const char*					mandatoryExtensions[]	=
   2649 		{
   2650 			"VK_KHR_get_physical_device_properties2",
   2651 		};
   2652 		const vector<VkExtensionProperties>	extensions				= enumerateInstanceExtensionProperties(context.getPlatformInterface(), DE_NULL);
   2653 
   2654 		for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(mandatoryExtensions); ++ndx)
   2655 		{
   2656 			if (!isExtensionSupported(extensions, RequiredExtension(mandatoryExtensions[ndx])))
   2657 				results.fail(string(mandatoryExtensions[ndx]) + " is not supported");
   2658 		}
   2659 	}
   2660 
   2661 	// Device extensions
   2662 	{
   2663 		static const char*					mandatoryExtensions[]	=
   2664 		{
   2665 			"VK_KHR_maintenance1",
   2666 		};
   2667 		const vector<VkExtensionProperties>	extensions				= enumerateDeviceExtensionProperties(context.getInstanceInterface(), context.getPhysicalDevice(), DE_NULL);
   2668 
   2669 		for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(mandatoryExtensions); ++ndx)
   2670 		{
   2671 			if (!isExtensionSupported(extensions, RequiredExtension(mandatoryExtensions[ndx])))
   2672 				results.fail(string(mandatoryExtensions[ndx]) + " is not supported");
   2673 		}
   2674 	}
   2675 
   2676 	return tcu::TestStatus(results.getResult(), results.getMessage());
   2677 }
   2678 
   2679 } // android
   2680 
   2681 } // anonymous
   2682 
   2683 tcu::TestCaseGroup* createFeatureInfoTests (tcu::TestContext& testCtx)
   2684 {
   2685 	de::MovePtr<tcu::TestCaseGroup>	infoTests	(new tcu::TestCaseGroup(testCtx, "info", "Platform Information Tests"));
   2686 
   2687 	{
   2688 		de::MovePtr<tcu::TestCaseGroup> instanceInfoTests	(new tcu::TestCaseGroup(testCtx, "instance", "Instance Information Tests"));
   2689 
   2690 		addFunctionCase(instanceInfoTests.get(), "physical_devices",		"Physical devices",			enumeratePhysicalDevices);
   2691 		addFunctionCase(instanceInfoTests.get(), "layers",					"Layers",					enumerateInstanceLayers);
   2692 		addFunctionCase(instanceInfoTests.get(), "extensions",				"Extensions",				enumerateInstanceExtensions);
   2693 
   2694 		infoTests->addChild(instanceInfoTests.release());
   2695 	}
   2696 
   2697 	{
   2698 		de::MovePtr<tcu::TestCaseGroup> deviceInfoTests	(new tcu::TestCaseGroup(testCtx, "device", "Device Information Tests"));
   2699 
   2700 		addFunctionCase(deviceInfoTests.get(), "features",					"Device Features",			deviceFeatures);
   2701 		addFunctionCase(deviceInfoTests.get(), "properties",				"Device Properties",		deviceProperties);
   2702 		addFunctionCase(deviceInfoTests.get(), "queue_family_properties",	"Queue family properties",	deviceQueueFamilyProperties);
   2703 		addFunctionCase(deviceInfoTests.get(), "memory_properties",			"Memory properties",		deviceMemoryProperties);
   2704 		addFunctionCase(deviceInfoTests.get(), "layers",					"Layers",					enumerateDeviceLayers);
   2705 		addFunctionCase(deviceInfoTests.get(), "extensions",				"Extensions",				enumerateDeviceExtensions);
   2706 
   2707 		infoTests->addChild(deviceInfoTests.release());
   2708 	}
   2709 
   2710 	infoTests->addChild(createTestGroup(testCtx, "format_properties",		"VkGetPhysicalDeviceFormatProperties() Tests",		createFormatTests));
   2711 	infoTests->addChild(createTestGroup(testCtx, "image_format_properties",	"VkGetPhysicalDeviceImageFormatProperties() Tests",	createImageFormatTests,	imageFormatProperties));
   2712 
   2713 	{
   2714 		de::MovePtr<tcu::TestCaseGroup> extendedPropertiesTests (new tcu::TestCaseGroup(testCtx, "get_physical_device_properties2", "VK_KHR_get_physical_device_properties2"));
   2715 
   2716 		addFunctionCase(extendedPropertiesTests.get(), "features",					"Extended Device Features",					deviceFeatures2);
   2717 		addFunctionCase(extendedPropertiesTests.get(), "properties",				"Extended Device Properties",				deviceProperties2);
   2718 		addFunctionCase(extendedPropertiesTests.get(), "format_properties",			"Extended Device Format Properties",		deviceFormatProperties2);
   2719 		addFunctionCase(extendedPropertiesTests.get(), "queue_family_properties",	"Extended Device Queue Family Properties",	deviceQueueFamilyProperties2);
   2720 		addFunctionCase(extendedPropertiesTests.get(), "memory_properties",			"Extended Device Memory Properties",		deviceMemoryProperties2);
   2721 
   2722 		infoTests->addChild(extendedPropertiesTests.release());
   2723 	}
   2724 
   2725 	infoTests->addChild(createTestGroup(testCtx, "image_format_properties2",		"VkGetPhysicalDeviceImageFormatProperties2KHR() Tests",			createImageFormatTests, imageFormatProperties2));
   2726 	infoTests->addChild(createTestGroup(testCtx, "sparse_image_format_properties2",	"VkGetPhysicalDeviceSparseImageFormatProperties2KHR() Tests",	createImageFormatTests, sparseImageFormatProperties2));
   2727 
   2728 	{
   2729 		de::MovePtr<tcu::TestCaseGroup>	androidTests	(new tcu::TestCaseGroup(testCtx, "android", "Android CTS Tests"));
   2730 
   2731 		addFunctionCase(androidTests.get(),	"mandatory_extensions",		"Test that all mandatory extensions are supported",	android::testMandatoryExtensions);
   2732 		addFunctionCase(androidTests.get(), "no_unknown_extensions",	"Test for unknown device or instance extensions",	android::testNoUnknownExtensions);
   2733 		addFunctionCase(androidTests.get(), "no_layers",				"Test that no layers are enumerated",				android::testNoLayers);
   2734 
   2735 		infoTests->addChild(androidTests.release());
   2736 	}
   2737 
   2738 	return infoTests.release();
   2739 }
   2740 
   2741 } // api
   2742 } // vkt
   2743