Home | History | Annotate | Download | only in ec
      1 /* Originally written by Bodo Moeller and Nils Larsch for the OpenSSL project.
      2  * ====================================================================
      3  * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions
      7  * are met:
      8  *
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  *
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in
     14  *    the documentation and/or other materials provided with the
     15  *    distribution.
     16  *
     17  * 3. All advertising materials mentioning features or use of this
     18  *    software must display the following acknowledgment:
     19  *    "This product includes software developed by the OpenSSL Project
     20  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
     21  *
     22  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
     23  *    endorse or promote products derived from this software without
     24  *    prior written permission. For written permission, please contact
     25  *    openssl-core (at) openssl.org.
     26  *
     27  * 5. Products derived from this software may not be called "OpenSSL"
     28  *    nor may "OpenSSL" appear in their names without prior written
     29  *    permission of the OpenSSL Project.
     30  *
     31  * 6. Redistributions of any form whatsoever must retain the following
     32  *    acknowledgment:
     33  *    "This product includes software developed by the OpenSSL Project
     34  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
     35  *
     36  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
     37  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     38  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     39  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
     40  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     41  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     42  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     43  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     44  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     45  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     46  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
     47  * OF THE POSSIBILITY OF SUCH DAMAGE.
     48  * ====================================================================
     49  *
     50  * This product includes cryptographic software written by Eric Young
     51  * (eay (at) cryptsoft.com).  This product includes software written by Tim
     52  * Hudson (tjh (at) cryptsoft.com).
     53  *
     54  */
     55 /* ====================================================================
     56  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
     57  *
     58  * Portions of the attached software ("Contribution") are developed by
     59  * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
     60  *
     61  * The Contribution is licensed pursuant to the OpenSSL open source
     62  * license provided above.
     63  *
     64  * The elliptic curve binary polynomial software is originally written by
     65  * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
     66  * Laboratories. */
     67 
     68 #include <openssl/ec.h>
     69 
     70 #include <openssl/bn.h>
     71 #include <openssl/err.h>
     72 #include <openssl/mem.h>
     73 
     74 #include "../bn/internal.h"
     75 #include "internal.h"
     76 
     77 
     78 int ec_GFp_mont_group_init(EC_GROUP *group) {
     79   int ok;
     80 
     81   ok = ec_GFp_simple_group_init(group);
     82   group->mont = NULL;
     83   return ok;
     84 }
     85 
     86 void ec_GFp_mont_group_finish(EC_GROUP *group) {
     87   BN_MONT_CTX_free(group->mont);
     88   group->mont = NULL;
     89   ec_GFp_simple_group_finish(group);
     90 }
     91 
     92 int ec_GFp_mont_group_copy(EC_GROUP *dest, const EC_GROUP *src) {
     93   BN_MONT_CTX_free(dest->mont);
     94   dest->mont = NULL;
     95 
     96   if (!ec_GFp_simple_group_copy(dest, src)) {
     97     return 0;
     98   }
     99 
    100   if (src->mont != NULL) {
    101     dest->mont = BN_MONT_CTX_new();
    102     if (dest->mont == NULL) {
    103       return 0;
    104     }
    105     if (!BN_MONT_CTX_copy(dest->mont, src->mont)) {
    106       goto err;
    107     }
    108   }
    109 
    110   return 1;
    111 
    112 err:
    113   BN_MONT_CTX_free(dest->mont);
    114   dest->mont = NULL;
    115   return 0;
    116 }
    117 
    118 int ec_GFp_mont_group_set_curve(EC_GROUP *group, const BIGNUM *p,
    119                                 const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) {
    120   BN_CTX *new_ctx = NULL;
    121   BN_MONT_CTX *mont = NULL;
    122   int ret = 0;
    123 
    124   BN_MONT_CTX_free(group->mont);
    125   group->mont = NULL;
    126 
    127   if (ctx == NULL) {
    128     ctx = new_ctx = BN_CTX_new();
    129     if (ctx == NULL) {
    130       return 0;
    131     }
    132   }
    133 
    134   mont = BN_MONT_CTX_new();
    135   if (mont == NULL) {
    136     goto err;
    137   }
    138   if (!BN_MONT_CTX_set(mont, p, ctx)) {
    139     OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
    140     goto err;
    141   }
    142 
    143   group->mont = mont;
    144   mont = NULL;
    145 
    146   ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
    147 
    148   if (!ret) {
    149     BN_MONT_CTX_free(group->mont);
    150     group->mont = NULL;
    151   }
    152 
    153 err:
    154   BN_CTX_free(new_ctx);
    155   BN_MONT_CTX_free(mont);
    156   return ret;
    157 }
    158 
    159 int ec_GFp_mont_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
    160                           const BIGNUM *b, BN_CTX *ctx) {
    161   if (group->mont == NULL) {
    162     OPENSSL_PUT_ERROR(EC, EC_R_NOT_INITIALIZED);
    163     return 0;
    164   }
    165 
    166   return BN_mod_mul_montgomery(r, a, b, group->mont, ctx);
    167 }
    168 
    169 int ec_GFp_mont_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
    170                           BN_CTX *ctx) {
    171   if (group->mont == NULL) {
    172     OPENSSL_PUT_ERROR(EC, EC_R_NOT_INITIALIZED);
    173     return 0;
    174   }
    175 
    176   return BN_mod_mul_montgomery(r, a, a, group->mont, ctx);
    177 }
    178 
    179 int ec_GFp_mont_field_encode(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
    180                              BN_CTX *ctx) {
    181   if (group->mont == NULL) {
    182     OPENSSL_PUT_ERROR(EC, EC_R_NOT_INITIALIZED);
    183     return 0;
    184   }
    185 
    186   return BN_to_montgomery(r, a, group->mont, ctx);
    187 }
    188 
    189 int ec_GFp_mont_field_decode(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
    190                              BN_CTX *ctx) {
    191   if (group->mont == NULL) {
    192     OPENSSL_PUT_ERROR(EC, EC_R_NOT_INITIALIZED);
    193     return 0;
    194   }
    195 
    196   return BN_from_montgomery(r, a, group->mont, ctx);
    197 }
    198 
    199 static int ec_GFp_mont_point_get_affine_coordinates(const EC_GROUP *group,
    200                                                     const EC_POINT *point,
    201                                                     BIGNUM *x, BIGNUM *y,
    202                                                     BN_CTX *ctx) {
    203   if (EC_POINT_is_at_infinity(group, point)) {
    204     OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
    205     return 0;
    206   }
    207 
    208   BN_CTX *new_ctx = NULL;
    209   if (ctx == NULL) {
    210     ctx = new_ctx = BN_CTX_new();
    211     if (ctx == NULL) {
    212       return 0;
    213     }
    214   }
    215 
    216   int ret = 0;
    217 
    218   BN_CTX_start(ctx);
    219 
    220   if (BN_cmp(&point->Z, &group->one) == 0) {
    221     /* |point| is already affine. */
    222     if (x != NULL && !BN_from_montgomery(x, &point->X, group->mont, ctx)) {
    223       goto err;
    224     }
    225     if (y != NULL && !BN_from_montgomery(y, &point->Y, group->mont, ctx)) {
    226       goto err;
    227     }
    228   } else {
    229     /* transform  (X, Y, Z)  into  (x, y) := (X/Z^2, Y/Z^3) */
    230 
    231     BIGNUM *Z_1 = BN_CTX_get(ctx);
    232     BIGNUM *Z_2 = BN_CTX_get(ctx);
    233     BIGNUM *Z_3 = BN_CTX_get(ctx);
    234     if (Z_1 == NULL ||
    235         Z_2 == NULL ||
    236         Z_3 == NULL) {
    237       goto err;
    238     }
    239 
    240     /* The straightforward way to calculate the inverse of a Montgomery-encoded
    241      * value where the result is Montgomery-encoded is:
    242      *
    243      *    |BN_from_montgomery| + invert + |BN_to_montgomery|.
    244      *
    245      * This is equivalent, but more efficient, because |BN_from_montgomery|
    246      * is more efficient (at least in theory) than |BN_to_montgomery|, since it
    247      * doesn't have to do the multiplication before the reduction.
    248      *
    249      * Use Fermat's Little Theorem instead of |BN_mod_inverse_odd| since this
    250      * inversion may be done as the final step of private key operations.
    251      * Unfortunately, this is suboptimal for ECDSA verification. */
    252     if (!BN_from_montgomery(Z_1, &point->Z, group->mont, ctx) ||
    253         !BN_from_montgomery(Z_1, Z_1, group->mont, ctx) ||
    254         !bn_mod_inverse_prime(Z_1, Z_1, &group->field, ctx, group->mont)) {
    255       goto err;
    256     }
    257 
    258     if (!BN_mod_mul_montgomery(Z_2, Z_1, Z_1, group->mont, ctx)) {
    259       goto err;
    260     }
    261 
    262     /* Instead of using |BN_from_montgomery| to convert the |x| coordinate
    263      * and then calling |BN_from_montgomery| again to convert the |y|
    264      * coordinate below, convert the common factor |Z_2| once now, saving one
    265      * reduction. */
    266     if (!BN_from_montgomery(Z_2, Z_2, group->mont, ctx)) {
    267       goto err;
    268     }
    269 
    270     if (x != NULL) {
    271       if (!BN_mod_mul_montgomery(x, &point->X, Z_2, group->mont, ctx)) {
    272         goto err;
    273       }
    274     }
    275 
    276     if (y != NULL) {
    277       if (!BN_mod_mul_montgomery(Z_3, Z_2, Z_1, group->mont, ctx) ||
    278           !BN_mod_mul_montgomery(y, &point->Y, Z_3, group->mont, ctx)) {
    279         goto err;
    280       }
    281     }
    282   }
    283 
    284   ret = 1;
    285 
    286 err:
    287   BN_CTX_end(ctx);
    288   BN_CTX_free(new_ctx);
    289   return ret;
    290 }
    291 
    292 const EC_METHOD EC_GFp_mont_method = {
    293     ec_GFp_mont_group_init,
    294     ec_GFp_mont_group_finish,
    295     ec_GFp_mont_group_copy,
    296     ec_GFp_mont_group_set_curve,
    297     ec_GFp_mont_point_get_affine_coordinates,
    298     ec_wNAF_mul /* XXX: Not constant time. */,
    299     ec_GFp_mont_field_mul,
    300     ec_GFp_mont_field_sqr,
    301     ec_GFp_mont_field_encode,
    302     ec_GFp_mont_field_decode,
    303 };
    304