Home | History | Annotate | Download | only in arm64
      1 // Copyright 2013 the V8 project authors. All rights reserved.
      2 //
      3 // Redistribution and use in source and binary forms, with or without
      4 // modification, are permitted provided that the following conditions are
      5 // met:
      6 //
      7 //     * Redistributions of source code must retain the above copyright
      8 //       notice, this list of conditions and the following disclaimer.
      9 //     * Redistributions in binary form must reproduce the above
     10 //       copyright notice, this list of conditions and the following
     11 //       disclaimer in the documentation and/or other materials provided
     12 //       with the distribution.
     13 //     * Neither the name of Google Inc. nor the names of its
     14 //       contributors may be used to endorse or promote products derived
     15 //       from this software without specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     18 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     19 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     20 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     21 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     22 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     23 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     24 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     25 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     26 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     27 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     28 
     29 #if V8_TARGET_ARCH_ARM64
     30 
     31 #define ARM64_DEFINE_REG_STATICS
     32 #include "src/arm64/assembler-arm64.h"
     33 
     34 #include "src/arm64/assembler-arm64-inl.h"
     35 #include "src/arm64/frames-arm64.h"
     36 #include "src/base/bits.h"
     37 #include "src/base/cpu.h"
     38 #include "src/register-configuration.h"
     39 
     40 namespace v8 {
     41 namespace internal {
     42 
     43 
     44 // -----------------------------------------------------------------------------
     45 // CpuFeatures implementation.
     46 
     47 void CpuFeatures::ProbeImpl(bool cross_compile) {
     48   // AArch64 has no configuration options, no further probing is required.
     49   supported_ = 0;
     50 
     51   // Only use statically determined features for cross compile (snapshot).
     52   if (cross_compile) return;
     53 
     54   // We used to probe for coherent cache support, but on older CPUs it
     55   // causes crashes (crbug.com/524337), and newer CPUs don't even have
     56   // the feature any more.
     57 }
     58 
     59 void CpuFeatures::PrintTarget() { }
     60 void CpuFeatures::PrintFeatures() {}
     61 
     62 // -----------------------------------------------------------------------------
     63 // CPURegList utilities.
     64 
     65 CPURegister CPURegList::PopLowestIndex() {
     66   DCHECK(IsValid());
     67   if (IsEmpty()) {
     68     return NoCPUReg;
     69   }
     70   int index = CountTrailingZeros(list_, kRegListSizeInBits);
     71   DCHECK((1 << index) & list_);
     72   Remove(index);
     73   return CPURegister::Create(index, size_, type_);
     74 }
     75 
     76 
     77 CPURegister CPURegList::PopHighestIndex() {
     78   DCHECK(IsValid());
     79   if (IsEmpty()) {
     80     return NoCPUReg;
     81   }
     82   int index = CountLeadingZeros(list_, kRegListSizeInBits);
     83   index = kRegListSizeInBits - 1 - index;
     84   DCHECK((1 << index) & list_);
     85   Remove(index);
     86   return CPURegister::Create(index, size_, type_);
     87 }
     88 
     89 
     90 void CPURegList::RemoveCalleeSaved() {
     91   if (type() == CPURegister::kRegister) {
     92     Remove(GetCalleeSaved(RegisterSizeInBits()));
     93   } else if (type() == CPURegister::kFPRegister) {
     94     Remove(GetCalleeSavedFP(RegisterSizeInBits()));
     95   } else {
     96     DCHECK(type() == CPURegister::kNoRegister);
     97     DCHECK(IsEmpty());
     98     // The list must already be empty, so do nothing.
     99   }
    100 }
    101 
    102 
    103 CPURegList CPURegList::GetCalleeSaved(int size) {
    104   return CPURegList(CPURegister::kRegister, size, 19, 29);
    105 }
    106 
    107 
    108 CPURegList CPURegList::GetCalleeSavedFP(int size) {
    109   return CPURegList(CPURegister::kFPRegister, size, 8, 15);
    110 }
    111 
    112 
    113 CPURegList CPURegList::GetCallerSaved(int size) {
    114   // Registers x0-x18 and lr (x30) are caller-saved.
    115   CPURegList list = CPURegList(CPURegister::kRegister, size, 0, 18);
    116   list.Combine(lr);
    117   return list;
    118 }
    119 
    120 
    121 CPURegList CPURegList::GetCallerSavedFP(int size) {
    122   // Registers d0-d7 and d16-d31 are caller-saved.
    123   CPURegList list = CPURegList(CPURegister::kFPRegister, size, 0, 7);
    124   list.Combine(CPURegList(CPURegister::kFPRegister, size, 16, 31));
    125   return list;
    126 }
    127 
    128 
    129 // This function defines the list of registers which are associated with a
    130 // safepoint slot. Safepoint register slots are saved contiguously on the stack.
    131 // MacroAssembler::SafepointRegisterStackIndex handles mapping from register
    132 // code to index in the safepoint register slots. Any change here can affect
    133 // this mapping.
    134 CPURegList CPURegList::GetSafepointSavedRegisters() {
    135   CPURegList list = CPURegList::GetCalleeSaved();
    136   list.Combine(
    137       CPURegList(CPURegister::kRegister, kXRegSizeInBits, kJSCallerSaved));
    138 
    139   // Note that unfortunately we can't use symbolic names for registers and have
    140   // to directly use register codes. This is because this function is used to
    141   // initialize some static variables and we can't rely on register variables
    142   // to be initialized due to static initialization order issues in C++.
    143 
    144   // Drop ip0 and ip1 (i.e. x16 and x17), as they should not be expected to be
    145   // preserved outside of the macro assembler.
    146   list.Remove(16);
    147   list.Remove(17);
    148 
    149   // Add x18 to the safepoint list, as although it's not in kJSCallerSaved, it
    150   // is a caller-saved register according to the procedure call standard.
    151   list.Combine(18);
    152 
    153   // Drop jssp as the stack pointer doesn't need to be included.
    154   list.Remove(28);
    155 
    156   // Add the link register (x30) to the safepoint list.
    157   list.Combine(30);
    158 
    159   return list;
    160 }
    161 
    162 
    163 // -----------------------------------------------------------------------------
    164 // Implementation of RelocInfo
    165 
    166 const int RelocInfo::kApplyMask = 1 << RelocInfo::INTERNAL_REFERENCE;
    167 
    168 
    169 bool RelocInfo::IsCodedSpecially() {
    170   // The deserializer needs to know whether a pointer is specially coded. Being
    171   // specially coded on ARM64 means that it is a movz/movk sequence. We don't
    172   // generate those for relocatable pointers.
    173   return false;
    174 }
    175 
    176 
    177 bool RelocInfo::IsInConstantPool() {
    178   Instruction* instr = reinterpret_cast<Instruction*>(pc_);
    179   return instr->IsLdrLiteralX();
    180 }
    181 
    182 Address RelocInfo::wasm_memory_reference() {
    183   DCHECK(IsWasmMemoryReference(rmode_));
    184   return Memory::Address_at(Assembler::target_pointer_address_at(pc_));
    185 }
    186 
    187 uint32_t RelocInfo::wasm_memory_size_reference() {
    188   DCHECK(IsWasmMemorySizeReference(rmode_));
    189   return Memory::uint32_at(Assembler::target_pointer_address_at(pc_));
    190 }
    191 
    192 Address RelocInfo::wasm_global_reference() {
    193   DCHECK(IsWasmGlobalReference(rmode_));
    194   return Memory::Address_at(Assembler::target_pointer_address_at(pc_));
    195 }
    196 
    197 void RelocInfo::unchecked_update_wasm_memory_reference(
    198     Address address, ICacheFlushMode flush_mode) {
    199   Assembler::set_target_address_at(isolate_, pc_, host_, address, flush_mode);
    200 }
    201 
    202 void RelocInfo::unchecked_update_wasm_memory_size(uint32_t size,
    203                                                   ICacheFlushMode flush_mode) {
    204   Memory::uint32_at(Assembler::target_pointer_address_at(pc_)) = size;
    205 }
    206 
    207 Register GetAllocatableRegisterThatIsNotOneOf(Register reg1, Register reg2,
    208                                               Register reg3, Register reg4) {
    209   CPURegList regs(reg1, reg2, reg3, reg4);
    210   const RegisterConfiguration* config = RegisterConfiguration::Crankshaft();
    211   for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
    212     int code = config->GetAllocatableDoubleCode(i);
    213     Register candidate = Register::from_code(code);
    214     if (regs.IncludesAliasOf(candidate)) continue;
    215     return candidate;
    216   }
    217   UNREACHABLE();
    218   return NoReg;
    219 }
    220 
    221 
    222 bool AreAliased(const CPURegister& reg1, const CPURegister& reg2,
    223                 const CPURegister& reg3, const CPURegister& reg4,
    224                 const CPURegister& reg5, const CPURegister& reg6,
    225                 const CPURegister& reg7, const CPURegister& reg8) {
    226   int number_of_valid_regs = 0;
    227   int number_of_valid_fpregs = 0;
    228 
    229   RegList unique_regs = 0;
    230   RegList unique_fpregs = 0;
    231 
    232   const CPURegister regs[] = {reg1, reg2, reg3, reg4, reg5, reg6, reg7, reg8};
    233 
    234   for (unsigned i = 0; i < arraysize(regs); i++) {
    235     if (regs[i].IsRegister()) {
    236       number_of_valid_regs++;
    237       unique_regs |= regs[i].Bit();
    238     } else if (regs[i].IsFPRegister()) {
    239       number_of_valid_fpregs++;
    240       unique_fpregs |= regs[i].Bit();
    241     } else {
    242       DCHECK(!regs[i].IsValid());
    243     }
    244   }
    245 
    246   int number_of_unique_regs =
    247     CountSetBits(unique_regs, sizeof(unique_regs) * kBitsPerByte);
    248   int number_of_unique_fpregs =
    249     CountSetBits(unique_fpregs, sizeof(unique_fpregs) * kBitsPerByte);
    250 
    251   DCHECK(number_of_valid_regs >= number_of_unique_regs);
    252   DCHECK(number_of_valid_fpregs >= number_of_unique_fpregs);
    253 
    254   return (number_of_valid_regs != number_of_unique_regs) ||
    255          (number_of_valid_fpregs != number_of_unique_fpregs);
    256 }
    257 
    258 
    259 bool AreSameSizeAndType(const CPURegister& reg1, const CPURegister& reg2,
    260                         const CPURegister& reg3, const CPURegister& reg4,
    261                         const CPURegister& reg5, const CPURegister& reg6,
    262                         const CPURegister& reg7, const CPURegister& reg8) {
    263   DCHECK(reg1.IsValid());
    264   bool match = true;
    265   match &= !reg2.IsValid() || reg2.IsSameSizeAndType(reg1);
    266   match &= !reg3.IsValid() || reg3.IsSameSizeAndType(reg1);
    267   match &= !reg4.IsValid() || reg4.IsSameSizeAndType(reg1);
    268   match &= !reg5.IsValid() || reg5.IsSameSizeAndType(reg1);
    269   match &= !reg6.IsValid() || reg6.IsSameSizeAndType(reg1);
    270   match &= !reg7.IsValid() || reg7.IsSameSizeAndType(reg1);
    271   match &= !reg8.IsValid() || reg8.IsSameSizeAndType(reg1);
    272   return match;
    273 }
    274 
    275 
    276 void Immediate::InitializeHandle(Handle<Object> handle) {
    277   AllowDeferredHandleDereference using_raw_address;
    278 
    279   // Verify all Objects referred by code are NOT in new space.
    280   Object* obj = *handle;
    281   if (obj->IsHeapObject()) {
    282     value_ = reinterpret_cast<intptr_t>(handle.location());
    283     rmode_ = RelocInfo::EMBEDDED_OBJECT;
    284   } else {
    285     STATIC_ASSERT(sizeof(intptr_t) == sizeof(int64_t));
    286     value_ = reinterpret_cast<intptr_t>(obj);
    287     rmode_ = RelocInfo::NONE64;
    288   }
    289 }
    290 
    291 
    292 bool Operand::NeedsRelocation(const Assembler* assembler) const {
    293   RelocInfo::Mode rmode = immediate_.rmode();
    294 
    295   if (rmode == RelocInfo::EXTERNAL_REFERENCE) {
    296     return assembler->serializer_enabled();
    297   }
    298 
    299   return !RelocInfo::IsNone(rmode);
    300 }
    301 
    302 
    303 // Constant Pool.
    304 void ConstPool::RecordEntry(intptr_t data,
    305                             RelocInfo::Mode mode) {
    306   DCHECK(mode != RelocInfo::COMMENT && mode != RelocInfo::CONST_POOL &&
    307          mode != RelocInfo::VENEER_POOL &&
    308          mode != RelocInfo::CODE_AGE_SEQUENCE &&
    309          mode != RelocInfo::DEOPT_SCRIPT_OFFSET &&
    310          mode != RelocInfo::DEOPT_INLINING_ID &&
    311          mode != RelocInfo::DEOPT_REASON && mode != RelocInfo::DEOPT_ID);
    312   uint64_t raw_data = static_cast<uint64_t>(data);
    313   int offset = assm_->pc_offset();
    314   if (IsEmpty()) {
    315     first_use_ = offset;
    316   }
    317 
    318   std::pair<uint64_t, int> entry = std::make_pair(raw_data, offset);
    319   if (CanBeShared(mode)) {
    320     shared_entries_.insert(entry);
    321     if (shared_entries_.count(entry.first) == 1) {
    322       shared_entries_count++;
    323     }
    324   } else {
    325     unique_entries_.push_back(entry);
    326   }
    327 
    328   if (EntryCount() > Assembler::kApproxMaxPoolEntryCount) {
    329     // Request constant pool emission after the next instruction.
    330     assm_->SetNextConstPoolCheckIn(1);
    331   }
    332 }
    333 
    334 
    335 int ConstPool::DistanceToFirstUse() {
    336   DCHECK(first_use_ >= 0);
    337   return assm_->pc_offset() - first_use_;
    338 }
    339 
    340 
    341 int ConstPool::MaxPcOffset() {
    342   // There are no pending entries in the pool so we can never get out of
    343   // range.
    344   if (IsEmpty()) return kMaxInt;
    345 
    346   // Entries are not necessarily emitted in the order they are added so in the
    347   // worst case the first constant pool use will be accessing the last entry.
    348   return first_use_ + kMaxLoadLiteralRange - WorstCaseSize();
    349 }
    350 
    351 
    352 int ConstPool::WorstCaseSize() {
    353   if (IsEmpty()) return 0;
    354 
    355   // Max size prologue:
    356   //   b   over
    357   //   ldr xzr, #pool_size
    358   //   blr xzr
    359   //   nop
    360   // All entries are 64-bit for now.
    361   return 4 * kInstructionSize + EntryCount() * kPointerSize;
    362 }
    363 
    364 
    365 int ConstPool::SizeIfEmittedAtCurrentPc(bool require_jump) {
    366   if (IsEmpty()) return 0;
    367 
    368   // Prologue is:
    369   //   b   over  ;; if require_jump
    370   //   ldr xzr, #pool_size
    371   //   blr xzr
    372   //   nop       ;; if not 64-bit aligned
    373   int prologue_size = require_jump ? kInstructionSize : 0;
    374   prologue_size += 2 * kInstructionSize;
    375   prologue_size += IsAligned(assm_->pc_offset() + prologue_size, 8) ?
    376                    0 : kInstructionSize;
    377 
    378   // All entries are 64-bit for now.
    379   return prologue_size + EntryCount() * kPointerSize;
    380 }
    381 
    382 
    383 void ConstPool::Emit(bool require_jump) {
    384   DCHECK(!assm_->is_const_pool_blocked());
    385   // Prevent recursive pool emission and protect from veneer pools.
    386   Assembler::BlockPoolsScope block_pools(assm_);
    387 
    388   int size = SizeIfEmittedAtCurrentPc(require_jump);
    389   Label size_check;
    390   assm_->bind(&size_check);
    391 
    392   assm_->RecordConstPool(size);
    393   // Emit the constant pool. It is preceded by an optional branch if
    394   // require_jump and a header which will:
    395   //  1) Encode the size of the constant pool, for use by the disassembler.
    396   //  2) Terminate the program, to try to prevent execution from accidentally
    397   //     flowing into the constant pool.
    398   //  3) align the pool entries to 64-bit.
    399   // The header is therefore made of up to three arm64 instructions:
    400   //   ldr xzr, #<size of the constant pool in 32-bit words>
    401   //   blr xzr
    402   //   nop
    403   //
    404   // If executed, the header will likely segfault and lr will point to the
    405   // instruction following the offending blr.
    406   // TODO(all): Make the alignment part less fragile. Currently code is
    407   // allocated as a byte array so there are no guarantees the alignment will
    408   // be preserved on compaction. Currently it works as allocation seems to be
    409   // 64-bit aligned.
    410 
    411   // Emit branch if required
    412   Label after_pool;
    413   if (require_jump) {
    414     assm_->b(&after_pool);
    415   }
    416 
    417   // Emit the header.
    418   assm_->RecordComment("[ Constant Pool");
    419   EmitMarker();
    420   EmitGuard();
    421   assm_->Align(8);
    422 
    423   // Emit constant pool entries.
    424   // TODO(all): currently each relocated constant is 64 bits, consider adding
    425   // support for 32-bit entries.
    426   EmitEntries();
    427   assm_->RecordComment("]");
    428 
    429   if (after_pool.is_linked()) {
    430     assm_->bind(&after_pool);
    431   }
    432 
    433   DCHECK(assm_->SizeOfCodeGeneratedSince(&size_check) ==
    434          static_cast<unsigned>(size));
    435 }
    436 
    437 
    438 void ConstPool::Clear() {
    439   shared_entries_.clear();
    440   shared_entries_count = 0;
    441   unique_entries_.clear();
    442   first_use_ = -1;
    443 }
    444 
    445 
    446 bool ConstPool::CanBeShared(RelocInfo::Mode mode) {
    447   // Constant pool currently does not support 32-bit entries.
    448   DCHECK(mode != RelocInfo::NONE32);
    449 
    450   return RelocInfo::IsNone(mode) ||
    451          (!assm_->serializer_enabled() &&
    452           (mode >= RelocInfo::FIRST_SHAREABLE_RELOC_MODE));
    453 }
    454 
    455 
    456 void ConstPool::EmitMarker() {
    457   // A constant pool size is expressed in number of 32-bits words.
    458   // Currently all entries are 64-bit.
    459   // + 1 is for the crash guard.
    460   // + 0/1 for alignment.
    461   int word_count = EntryCount() * 2 + 1 +
    462                    (IsAligned(assm_->pc_offset(), 8) ? 0 : 1);
    463   assm_->Emit(LDR_x_lit                          |
    464               Assembler::ImmLLiteral(word_count) |
    465               Assembler::Rt(xzr));
    466 }
    467 
    468 
    469 MemOperand::PairResult MemOperand::AreConsistentForPair(
    470     const MemOperand& operandA,
    471     const MemOperand& operandB,
    472     int access_size_log2) {
    473   DCHECK(access_size_log2 >= 0);
    474   DCHECK(access_size_log2 <= 3);
    475   // Step one: check that they share the same base, that the mode is Offset
    476   // and that the offset is a multiple of access size.
    477   if (!operandA.base().Is(operandB.base()) ||
    478       (operandA.addrmode() != Offset) ||
    479       (operandB.addrmode() != Offset) ||
    480       ((operandA.offset() & ((1 << access_size_log2) - 1)) != 0)) {
    481     return kNotPair;
    482   }
    483   // Step two: check that the offsets are contiguous and that the range
    484   // is OK for ldp/stp.
    485   if ((operandB.offset() == operandA.offset() + (1 << access_size_log2)) &&
    486       is_int7(operandA.offset() >> access_size_log2)) {
    487     return kPairAB;
    488   }
    489   if ((operandA.offset() == operandB.offset() + (1 << access_size_log2)) &&
    490       is_int7(operandB.offset() >> access_size_log2)) {
    491     return kPairBA;
    492   }
    493   return kNotPair;
    494 }
    495 
    496 
    497 void ConstPool::EmitGuard() {
    498 #ifdef DEBUG
    499   Instruction* instr = reinterpret_cast<Instruction*>(assm_->pc());
    500   DCHECK(instr->preceding()->IsLdrLiteralX() &&
    501          instr->preceding()->Rt() == xzr.code());
    502 #endif
    503   assm_->EmitPoolGuard();
    504 }
    505 
    506 
    507 void ConstPool::EmitEntries() {
    508   DCHECK(IsAligned(assm_->pc_offset(), 8));
    509 
    510   typedef std::multimap<uint64_t, int>::const_iterator SharedEntriesIterator;
    511   SharedEntriesIterator value_it;
    512   // Iterate through the keys (constant pool values).
    513   for (value_it = shared_entries_.begin();
    514        value_it != shared_entries_.end();
    515        value_it = shared_entries_.upper_bound(value_it->first)) {
    516     std::pair<SharedEntriesIterator, SharedEntriesIterator> range;
    517     uint64_t data = value_it->first;
    518     range = shared_entries_.equal_range(data);
    519     SharedEntriesIterator offset_it;
    520     // Iterate through the offsets of a given key.
    521     for (offset_it = range.first; offset_it != range.second; offset_it++) {
    522       Instruction* instr = assm_->InstructionAt(offset_it->second);
    523 
    524       // Instruction to patch must be 'ldr rd, [pc, #offset]' with offset == 0.
    525       DCHECK(instr->IsLdrLiteral() && instr->ImmLLiteral() == 0);
    526       instr->SetImmPCOffsetTarget(assm_->isolate(), assm_->pc());
    527     }
    528     assm_->dc64(data);
    529   }
    530   shared_entries_.clear();
    531   shared_entries_count = 0;
    532 
    533   // Emit unique entries.
    534   std::vector<std::pair<uint64_t, int> >::const_iterator unique_it;
    535   for (unique_it = unique_entries_.begin();
    536        unique_it != unique_entries_.end();
    537        unique_it++) {
    538     Instruction* instr = assm_->InstructionAt(unique_it->second);
    539 
    540     // Instruction to patch must be 'ldr rd, [pc, #offset]' with offset == 0.
    541     DCHECK(instr->IsLdrLiteral() && instr->ImmLLiteral() == 0);
    542     instr->SetImmPCOffsetTarget(assm_->isolate(), assm_->pc());
    543     assm_->dc64(unique_it->first);
    544   }
    545   unique_entries_.clear();
    546   first_use_ = -1;
    547 }
    548 
    549 
    550 // Assembler
    551 Assembler::Assembler(Isolate* isolate, void* buffer, int buffer_size)
    552     : AssemblerBase(isolate, buffer, buffer_size),
    553       constpool_(this),
    554       recorded_ast_id_(TypeFeedbackId::None()),
    555       unresolved_branches_() {
    556   const_pool_blocked_nesting_ = 0;
    557   veneer_pool_blocked_nesting_ = 0;
    558   Reset();
    559 }
    560 
    561 
    562 Assembler::~Assembler() {
    563   DCHECK(constpool_.IsEmpty());
    564   DCHECK(const_pool_blocked_nesting_ == 0);
    565   DCHECK(veneer_pool_blocked_nesting_ == 0);
    566 }
    567 
    568 
    569 void Assembler::Reset() {
    570 #ifdef DEBUG
    571   DCHECK((pc_ >= buffer_) && (pc_ < buffer_ + buffer_size_));
    572   DCHECK(const_pool_blocked_nesting_ == 0);
    573   DCHECK(veneer_pool_blocked_nesting_ == 0);
    574   DCHECK(unresolved_branches_.empty());
    575   memset(buffer_, 0, pc_ - buffer_);
    576 #endif
    577   pc_ = buffer_;
    578   reloc_info_writer.Reposition(reinterpret_cast<byte*>(buffer_ + buffer_size_),
    579                                reinterpret_cast<byte*>(pc_));
    580   constpool_.Clear();
    581   next_constant_pool_check_ = 0;
    582   next_veneer_pool_check_ = kMaxInt;
    583   no_const_pool_before_ = 0;
    584   ClearRecordedAstId();
    585 }
    586 
    587 
    588 void Assembler::GetCode(CodeDesc* desc) {
    589   // Emit constant pool if necessary.
    590   CheckConstPool(true, false);
    591   DCHECK(constpool_.IsEmpty());
    592 
    593   // Set up code descriptor.
    594   if (desc) {
    595     desc->buffer = reinterpret_cast<byte*>(buffer_);
    596     desc->buffer_size = buffer_size_;
    597     desc->instr_size = pc_offset();
    598     desc->reloc_size =
    599         static_cast<int>((reinterpret_cast<byte*>(buffer_) + buffer_size_) -
    600                          reloc_info_writer.pos());
    601     desc->origin = this;
    602     desc->constant_pool_size = 0;
    603     desc->unwinding_info_size = 0;
    604     desc->unwinding_info = nullptr;
    605   }
    606 }
    607 
    608 
    609 void Assembler::Align(int m) {
    610   DCHECK(m >= 4 && base::bits::IsPowerOfTwo32(m));
    611   while ((pc_offset() & (m - 1)) != 0) {
    612     nop();
    613   }
    614 }
    615 
    616 
    617 void Assembler::CheckLabelLinkChain(Label const * label) {
    618 #ifdef DEBUG
    619   if (label->is_linked()) {
    620     static const int kMaxLinksToCheck = 64;  // Avoid O(n2) behaviour.
    621     int links_checked = 0;
    622     int64_t linkoffset = label->pos();
    623     bool end_of_chain = false;
    624     while (!end_of_chain) {
    625       if (++links_checked > kMaxLinksToCheck) break;
    626       Instruction * link = InstructionAt(linkoffset);
    627       int64_t linkpcoffset = link->ImmPCOffset();
    628       int64_t prevlinkoffset = linkoffset + linkpcoffset;
    629 
    630       end_of_chain = (linkoffset == prevlinkoffset);
    631       linkoffset = linkoffset + linkpcoffset;
    632     }
    633   }
    634 #endif
    635 }
    636 
    637 
    638 void Assembler::RemoveBranchFromLabelLinkChain(Instruction* branch,
    639                                                Label* label,
    640                                                Instruction* label_veneer) {
    641   DCHECK(label->is_linked());
    642 
    643   CheckLabelLinkChain(label);
    644 
    645   Instruction* link = InstructionAt(label->pos());
    646   Instruction* prev_link = link;
    647   Instruction* next_link;
    648   bool end_of_chain = false;
    649 
    650   while (link != branch && !end_of_chain) {
    651     next_link = link->ImmPCOffsetTarget();
    652     end_of_chain = (link == next_link);
    653     prev_link = link;
    654     link = next_link;
    655   }
    656 
    657   DCHECK(branch == link);
    658   next_link = branch->ImmPCOffsetTarget();
    659 
    660   if (branch == prev_link) {
    661     // The branch is the first instruction in the chain.
    662     if (branch == next_link) {
    663       // It is also the last instruction in the chain, so it is the only branch
    664       // currently referring to this label.
    665       label->Unuse();
    666     } else {
    667       label->link_to(
    668           static_cast<int>(reinterpret_cast<byte*>(next_link) - buffer_));
    669     }
    670 
    671   } else if (branch == next_link) {
    672     // The branch is the last (but not also the first) instruction in the chain.
    673     prev_link->SetImmPCOffsetTarget(isolate(), prev_link);
    674 
    675   } else {
    676     // The branch is in the middle of the chain.
    677     if (prev_link->IsTargetInImmPCOffsetRange(next_link)) {
    678       prev_link->SetImmPCOffsetTarget(isolate(), next_link);
    679     } else if (label_veneer != NULL) {
    680       // Use the veneer for all previous links in the chain.
    681       prev_link->SetImmPCOffsetTarget(isolate(), prev_link);
    682 
    683       end_of_chain = false;
    684       link = next_link;
    685       while (!end_of_chain) {
    686         next_link = link->ImmPCOffsetTarget();
    687         end_of_chain = (link == next_link);
    688         link->SetImmPCOffsetTarget(isolate(), label_veneer);
    689         link = next_link;
    690       }
    691     } else {
    692       // The assert below will fire.
    693       // Some other work could be attempted to fix up the chain, but it would be
    694       // rather complicated. If we crash here, we may want to consider using an
    695       // other mechanism than a chain of branches.
    696       //
    697       // Note that this situation currently should not happen, as we always call
    698       // this function with a veneer to the target label.
    699       // However this could happen with a MacroAssembler in the following state:
    700       //    [previous code]
    701       //    B(label);
    702       //    [20KB code]
    703       //    Tbz(label);   // First tbz. Pointing to unconditional branch.
    704       //    [20KB code]
    705       //    Tbz(label);   // Second tbz. Pointing to the first tbz.
    706       //    [more code]
    707       // and this function is called to remove the first tbz from the label link
    708       // chain. Since tbz has a range of +-32KB, the second tbz cannot point to
    709       // the unconditional branch.
    710       CHECK(prev_link->IsTargetInImmPCOffsetRange(next_link));
    711       UNREACHABLE();
    712     }
    713   }
    714 
    715   CheckLabelLinkChain(label);
    716 }
    717 
    718 
    719 void Assembler::bind(Label* label) {
    720   // Bind label to the address at pc_. All instructions (most likely branches)
    721   // that are linked to this label will be updated to point to the newly-bound
    722   // label.
    723 
    724   DCHECK(!label->is_near_linked());
    725   DCHECK(!label->is_bound());
    726 
    727   DeleteUnresolvedBranchInfoForLabel(label);
    728 
    729   // If the label is linked, the link chain looks something like this:
    730   //
    731   // |--I----I-------I-------L
    732   // |---------------------->| pc_offset
    733   // |-------------->|         linkoffset = label->pos()
    734   //         |<------|         link->ImmPCOffset()
    735   // |------>|                 prevlinkoffset = linkoffset + link->ImmPCOffset()
    736   //
    737   // On each iteration, the last link is updated and then removed from the
    738   // chain until only one remains. At that point, the label is bound.
    739   //
    740   // If the label is not linked, no preparation is required before binding.
    741   while (label->is_linked()) {
    742     int linkoffset = label->pos();
    743     Instruction* link = InstructionAt(linkoffset);
    744     int prevlinkoffset = linkoffset + static_cast<int>(link->ImmPCOffset());
    745 
    746     CheckLabelLinkChain(label);
    747 
    748     DCHECK(linkoffset >= 0);
    749     DCHECK(linkoffset < pc_offset());
    750     DCHECK((linkoffset > prevlinkoffset) ||
    751            (linkoffset - prevlinkoffset == kStartOfLabelLinkChain));
    752     DCHECK(prevlinkoffset >= 0);
    753 
    754     // Update the link to point to the label.
    755     if (link->IsUnresolvedInternalReference()) {
    756       // Internal references do not get patched to an instruction but directly
    757       // to an address.
    758       internal_reference_positions_.push_back(linkoffset);
    759       PatchingAssembler patcher(isolate(), link, 2);
    760       patcher.dc64(reinterpret_cast<uintptr_t>(pc_));
    761     } else {
    762       link->SetImmPCOffsetTarget(isolate(),
    763                                  reinterpret_cast<Instruction*>(pc_));
    764     }
    765 
    766     // Link the label to the previous link in the chain.
    767     if (linkoffset - prevlinkoffset == kStartOfLabelLinkChain) {
    768       // We hit kStartOfLabelLinkChain, so the chain is fully processed.
    769       label->Unuse();
    770     } else {
    771       // Update the label for the next iteration.
    772       label->link_to(prevlinkoffset);
    773     }
    774   }
    775   label->bind_to(pc_offset());
    776 
    777   DCHECK(label->is_bound());
    778   DCHECK(!label->is_linked());
    779 }
    780 
    781 
    782 int Assembler::LinkAndGetByteOffsetTo(Label* label) {
    783   DCHECK(sizeof(*pc_) == 1);
    784   CheckLabelLinkChain(label);
    785 
    786   int offset;
    787   if (label->is_bound()) {
    788     // The label is bound, so it does not need to be updated. Referring
    789     // instructions must link directly to the label as they will not be
    790     // updated.
    791     //
    792     // In this case, label->pos() returns the offset of the label from the
    793     // start of the buffer.
    794     //
    795     // Note that offset can be zero for self-referential instructions. (This
    796     // could be useful for ADR, for example.)
    797     offset = label->pos() - pc_offset();
    798     DCHECK(offset <= 0);
    799   } else {
    800     if (label->is_linked()) {
    801       // The label is linked, so the referring instruction should be added onto
    802       // the end of the label's link chain.
    803       //
    804       // In this case, label->pos() returns the offset of the last linked
    805       // instruction from the start of the buffer.
    806       offset = label->pos() - pc_offset();
    807       DCHECK(offset != kStartOfLabelLinkChain);
    808       // Note that the offset here needs to be PC-relative only so that the
    809       // first instruction in a buffer can link to an unbound label. Otherwise,
    810       // the offset would be 0 for this case, and 0 is reserved for
    811       // kStartOfLabelLinkChain.
    812     } else {
    813       // The label is unused, so it now becomes linked and the referring
    814       // instruction is at the start of the new link chain.
    815       offset = kStartOfLabelLinkChain;
    816     }
    817     // The instruction at pc is now the last link in the label's chain.
    818     label->link_to(pc_offset());
    819   }
    820 
    821   return offset;
    822 }
    823 
    824 
    825 void Assembler::DeleteUnresolvedBranchInfoForLabelTraverse(Label* label) {
    826   DCHECK(label->is_linked());
    827   CheckLabelLinkChain(label);
    828 
    829   int link_offset = label->pos();
    830   int link_pcoffset;
    831   bool end_of_chain = false;
    832 
    833   while (!end_of_chain) {
    834     Instruction * link = InstructionAt(link_offset);
    835     link_pcoffset = static_cast<int>(link->ImmPCOffset());
    836 
    837     // ADR instructions are not handled by veneers.
    838     if (link->IsImmBranch()) {
    839       int max_reachable_pc =
    840           static_cast<int>(InstructionOffset(link) +
    841                            Instruction::ImmBranchRange(link->BranchType()));
    842       typedef std::multimap<int, FarBranchInfo>::iterator unresolved_info_it;
    843       std::pair<unresolved_info_it, unresolved_info_it> range;
    844       range = unresolved_branches_.equal_range(max_reachable_pc);
    845       unresolved_info_it it;
    846       for (it = range.first; it != range.second; ++it) {
    847         if (it->second.pc_offset_ == link_offset) {
    848           unresolved_branches_.erase(it);
    849           break;
    850         }
    851       }
    852     }
    853 
    854     end_of_chain = (link_pcoffset == 0);
    855     link_offset = link_offset + link_pcoffset;
    856   }
    857 }
    858 
    859 
    860 void Assembler::DeleteUnresolvedBranchInfoForLabel(Label* label) {
    861   if (unresolved_branches_.empty()) {
    862     DCHECK(next_veneer_pool_check_ == kMaxInt);
    863     return;
    864   }
    865 
    866   if (label->is_linked()) {
    867     // Branches to this label will be resolved when the label is bound, normally
    868     // just after all the associated info has been deleted.
    869     DeleteUnresolvedBranchInfoForLabelTraverse(label);
    870   }
    871   if (unresolved_branches_.empty()) {
    872     next_veneer_pool_check_ = kMaxInt;
    873   } else {
    874     next_veneer_pool_check_ =
    875       unresolved_branches_first_limit() - kVeneerDistanceCheckMargin;
    876   }
    877 }
    878 
    879 
    880 void Assembler::StartBlockConstPool() {
    881   if (const_pool_blocked_nesting_++ == 0) {
    882     // Prevent constant pool checks happening by setting the next check to
    883     // the biggest possible offset.
    884     next_constant_pool_check_ = kMaxInt;
    885   }
    886 }
    887 
    888 
    889 void Assembler::EndBlockConstPool() {
    890   if (--const_pool_blocked_nesting_ == 0) {
    891     // Check the constant pool hasn't been blocked for too long.
    892     DCHECK(pc_offset() < constpool_.MaxPcOffset());
    893     // Two cases:
    894     //  * no_const_pool_before_ >= next_constant_pool_check_ and the emission is
    895     //    still blocked
    896     //  * no_const_pool_before_ < next_constant_pool_check_ and the next emit
    897     //    will trigger a check.
    898     next_constant_pool_check_ = no_const_pool_before_;
    899   }
    900 }
    901 
    902 
    903 bool Assembler::is_const_pool_blocked() const {
    904   return (const_pool_blocked_nesting_ > 0) ||
    905          (pc_offset() < no_const_pool_before_);
    906 }
    907 
    908 
    909 bool Assembler::IsConstantPoolAt(Instruction* instr) {
    910   // The constant pool marker is made of two instructions. These instructions
    911   // will never be emitted by the JIT, so checking for the first one is enough:
    912   // 0: ldr xzr, #<size of pool>
    913   bool result = instr->IsLdrLiteralX() && (instr->Rt() == kZeroRegCode);
    914 
    915   // It is still worth asserting the marker is complete.
    916   // 4: blr xzr
    917   DCHECK(!result || (instr->following()->IsBranchAndLinkToRegister() &&
    918                      instr->following()->Rn() == kZeroRegCode));
    919 
    920   return result;
    921 }
    922 
    923 
    924 int Assembler::ConstantPoolSizeAt(Instruction* instr) {
    925 #ifdef USE_SIMULATOR
    926   // Assembler::debug() embeds constants directly into the instruction stream.
    927   // Although this is not a genuine constant pool, treat it like one to avoid
    928   // disassembling the constants.
    929   if ((instr->Mask(ExceptionMask) == HLT) &&
    930       (instr->ImmException() == kImmExceptionIsDebug)) {
    931     const char* message =
    932         reinterpret_cast<const char*>(
    933             instr->InstructionAtOffset(kDebugMessageOffset));
    934     int size = static_cast<int>(kDebugMessageOffset + strlen(message) + 1);
    935     return RoundUp(size, kInstructionSize) / kInstructionSize;
    936   }
    937   // Same for printf support, see MacroAssembler::CallPrintf().
    938   if ((instr->Mask(ExceptionMask) == HLT) &&
    939       (instr->ImmException() == kImmExceptionIsPrintf)) {
    940     return kPrintfLength / kInstructionSize;
    941   }
    942 #endif
    943   if (IsConstantPoolAt(instr)) {
    944     return instr->ImmLLiteral();
    945   } else {
    946     return -1;
    947   }
    948 }
    949 
    950 
    951 void Assembler::EmitPoolGuard() {
    952   // We must generate only one instruction as this is used in scopes that
    953   // control the size of the code generated.
    954   Emit(BLR | Rn(xzr));
    955 }
    956 
    957 
    958 void Assembler::StartBlockVeneerPool() {
    959   ++veneer_pool_blocked_nesting_;
    960 }
    961 
    962 
    963 void Assembler::EndBlockVeneerPool() {
    964   if (--veneer_pool_blocked_nesting_ == 0) {
    965     // Check the veneer pool hasn't been blocked for too long.
    966     DCHECK(unresolved_branches_.empty() ||
    967            (pc_offset() < unresolved_branches_first_limit()));
    968   }
    969 }
    970 
    971 
    972 void Assembler::br(const Register& xn) {
    973   DCHECK(xn.Is64Bits());
    974   Emit(BR | Rn(xn));
    975 }
    976 
    977 
    978 void Assembler::blr(const Register& xn) {
    979   DCHECK(xn.Is64Bits());
    980   // The pattern 'blr xzr' is used as a guard to detect when execution falls
    981   // through the constant pool. It should not be emitted.
    982   DCHECK(!xn.Is(xzr));
    983   Emit(BLR | Rn(xn));
    984 }
    985 
    986 
    987 void Assembler::ret(const Register& xn) {
    988   DCHECK(xn.Is64Bits());
    989   Emit(RET | Rn(xn));
    990 }
    991 
    992 
    993 void Assembler::b(int imm26) {
    994   Emit(B | ImmUncondBranch(imm26));
    995 }
    996 
    997 
    998 void Assembler::b(Label* label) {
    999   b(LinkAndGetInstructionOffsetTo(label));
   1000 }
   1001 
   1002 
   1003 void Assembler::b(int imm19, Condition cond) {
   1004   Emit(B_cond | ImmCondBranch(imm19) | cond);
   1005 }
   1006 
   1007 
   1008 void Assembler::b(Label* label, Condition cond) {
   1009   b(LinkAndGetInstructionOffsetTo(label), cond);
   1010 }
   1011 
   1012 
   1013 void Assembler::bl(int imm26) {
   1014   Emit(BL | ImmUncondBranch(imm26));
   1015 }
   1016 
   1017 
   1018 void Assembler::bl(Label* label) {
   1019   bl(LinkAndGetInstructionOffsetTo(label));
   1020 }
   1021 
   1022 
   1023 void Assembler::cbz(const Register& rt,
   1024                     int imm19) {
   1025   Emit(SF(rt) | CBZ | ImmCmpBranch(imm19) | Rt(rt));
   1026 }
   1027 
   1028 
   1029 void Assembler::cbz(const Register& rt,
   1030                     Label* label) {
   1031   cbz(rt, LinkAndGetInstructionOffsetTo(label));
   1032 }
   1033 
   1034 
   1035 void Assembler::cbnz(const Register& rt,
   1036                      int imm19) {
   1037   Emit(SF(rt) | CBNZ | ImmCmpBranch(imm19) | Rt(rt));
   1038 }
   1039 
   1040 
   1041 void Assembler::cbnz(const Register& rt,
   1042                      Label* label) {
   1043   cbnz(rt, LinkAndGetInstructionOffsetTo(label));
   1044 }
   1045 
   1046 
   1047 void Assembler::tbz(const Register& rt,
   1048                     unsigned bit_pos,
   1049                     int imm14) {
   1050   DCHECK(rt.Is64Bits() || (rt.Is32Bits() && (bit_pos < kWRegSizeInBits)));
   1051   Emit(TBZ | ImmTestBranchBit(bit_pos) | ImmTestBranch(imm14) | Rt(rt));
   1052 }
   1053 
   1054 
   1055 void Assembler::tbz(const Register& rt,
   1056                     unsigned bit_pos,
   1057                     Label* label) {
   1058   tbz(rt, bit_pos, LinkAndGetInstructionOffsetTo(label));
   1059 }
   1060 
   1061 
   1062 void Assembler::tbnz(const Register& rt,
   1063                      unsigned bit_pos,
   1064                      int imm14) {
   1065   DCHECK(rt.Is64Bits() || (rt.Is32Bits() && (bit_pos < kWRegSizeInBits)));
   1066   Emit(TBNZ | ImmTestBranchBit(bit_pos) | ImmTestBranch(imm14) | Rt(rt));
   1067 }
   1068 
   1069 
   1070 void Assembler::tbnz(const Register& rt,
   1071                      unsigned bit_pos,
   1072                      Label* label) {
   1073   tbnz(rt, bit_pos, LinkAndGetInstructionOffsetTo(label));
   1074 }
   1075 
   1076 
   1077 void Assembler::adr(const Register& rd, int imm21) {
   1078   DCHECK(rd.Is64Bits());
   1079   Emit(ADR | ImmPCRelAddress(imm21) | Rd(rd));
   1080 }
   1081 
   1082 
   1083 void Assembler::adr(const Register& rd, Label* label) {
   1084   adr(rd, LinkAndGetByteOffsetTo(label));
   1085 }
   1086 
   1087 
   1088 void Assembler::add(const Register& rd,
   1089                     const Register& rn,
   1090                     const Operand& operand) {
   1091   AddSub(rd, rn, operand, LeaveFlags, ADD);
   1092 }
   1093 
   1094 
   1095 void Assembler::adds(const Register& rd,
   1096                      const Register& rn,
   1097                      const Operand& operand) {
   1098   AddSub(rd, rn, operand, SetFlags, ADD);
   1099 }
   1100 
   1101 
   1102 void Assembler::cmn(const Register& rn,
   1103                     const Operand& operand) {
   1104   Register zr = AppropriateZeroRegFor(rn);
   1105   adds(zr, rn, operand);
   1106 }
   1107 
   1108 
   1109 void Assembler::sub(const Register& rd,
   1110                     const Register& rn,
   1111                     const Operand& operand) {
   1112   AddSub(rd, rn, operand, LeaveFlags, SUB);
   1113 }
   1114 
   1115 
   1116 void Assembler::subs(const Register& rd,
   1117                      const Register& rn,
   1118                      const Operand& operand) {
   1119   AddSub(rd, rn, operand, SetFlags, SUB);
   1120 }
   1121 
   1122 
   1123 void Assembler::cmp(const Register& rn, const Operand& operand) {
   1124   Register zr = AppropriateZeroRegFor(rn);
   1125   subs(zr, rn, operand);
   1126 }
   1127 
   1128 
   1129 void Assembler::neg(const Register& rd, const Operand& operand) {
   1130   Register zr = AppropriateZeroRegFor(rd);
   1131   sub(rd, zr, operand);
   1132 }
   1133 
   1134 
   1135 void Assembler::negs(const Register& rd, const Operand& operand) {
   1136   Register zr = AppropriateZeroRegFor(rd);
   1137   subs(rd, zr, operand);
   1138 }
   1139 
   1140 
   1141 void Assembler::adc(const Register& rd,
   1142                     const Register& rn,
   1143                     const Operand& operand) {
   1144   AddSubWithCarry(rd, rn, operand, LeaveFlags, ADC);
   1145 }
   1146 
   1147 
   1148 void Assembler::adcs(const Register& rd,
   1149                      const Register& rn,
   1150                      const Operand& operand) {
   1151   AddSubWithCarry(rd, rn, operand, SetFlags, ADC);
   1152 }
   1153 
   1154 
   1155 void Assembler::sbc(const Register& rd,
   1156                     const Register& rn,
   1157                     const Operand& operand) {
   1158   AddSubWithCarry(rd, rn, operand, LeaveFlags, SBC);
   1159 }
   1160 
   1161 
   1162 void Assembler::sbcs(const Register& rd,
   1163                      const Register& rn,
   1164                      const Operand& operand) {
   1165   AddSubWithCarry(rd, rn, operand, SetFlags, SBC);
   1166 }
   1167 
   1168 
   1169 void Assembler::ngc(const Register& rd, const Operand& operand) {
   1170   Register zr = AppropriateZeroRegFor(rd);
   1171   sbc(rd, zr, operand);
   1172 }
   1173 
   1174 
   1175 void Assembler::ngcs(const Register& rd, const Operand& operand) {
   1176   Register zr = AppropriateZeroRegFor(rd);
   1177   sbcs(rd, zr, operand);
   1178 }
   1179 
   1180 
   1181 // Logical instructions.
   1182 void Assembler::and_(const Register& rd,
   1183                      const Register& rn,
   1184                      const Operand& operand) {
   1185   Logical(rd, rn, operand, AND);
   1186 }
   1187 
   1188 
   1189 void Assembler::ands(const Register& rd,
   1190                      const Register& rn,
   1191                      const Operand& operand) {
   1192   Logical(rd, rn, operand, ANDS);
   1193 }
   1194 
   1195 
   1196 void Assembler::tst(const Register& rn,
   1197                     const Operand& operand) {
   1198   ands(AppropriateZeroRegFor(rn), rn, operand);
   1199 }
   1200 
   1201 
   1202 void Assembler::bic(const Register& rd,
   1203                     const Register& rn,
   1204                     const Operand& operand) {
   1205   Logical(rd, rn, operand, BIC);
   1206 }
   1207 
   1208 
   1209 void Assembler::bics(const Register& rd,
   1210                      const Register& rn,
   1211                      const Operand& operand) {
   1212   Logical(rd, rn, operand, BICS);
   1213 }
   1214 
   1215 
   1216 void Assembler::orr(const Register& rd,
   1217                     const Register& rn,
   1218                     const Operand& operand) {
   1219   Logical(rd, rn, operand, ORR);
   1220 }
   1221 
   1222 
   1223 void Assembler::orn(const Register& rd,
   1224                     const Register& rn,
   1225                     const Operand& operand) {
   1226   Logical(rd, rn, operand, ORN);
   1227 }
   1228 
   1229 
   1230 void Assembler::eor(const Register& rd,
   1231                     const Register& rn,
   1232                     const Operand& operand) {
   1233   Logical(rd, rn, operand, EOR);
   1234 }
   1235 
   1236 
   1237 void Assembler::eon(const Register& rd,
   1238                     const Register& rn,
   1239                     const Operand& operand) {
   1240   Logical(rd, rn, operand, EON);
   1241 }
   1242 
   1243 
   1244 void Assembler::lslv(const Register& rd,
   1245                      const Register& rn,
   1246                      const Register& rm) {
   1247   DCHECK(rd.SizeInBits() == rn.SizeInBits());
   1248   DCHECK(rd.SizeInBits() == rm.SizeInBits());
   1249   Emit(SF(rd) | LSLV | Rm(rm) | Rn(rn) | Rd(rd));
   1250 }
   1251 
   1252 
   1253 void Assembler::lsrv(const Register& rd,
   1254                      const Register& rn,
   1255                      const Register& rm) {
   1256   DCHECK(rd.SizeInBits() == rn.SizeInBits());
   1257   DCHECK(rd.SizeInBits() == rm.SizeInBits());
   1258   Emit(SF(rd) | LSRV | Rm(rm) | Rn(rn) | Rd(rd));
   1259 }
   1260 
   1261 
   1262 void Assembler::asrv(const Register& rd,
   1263                      const Register& rn,
   1264                      const Register& rm) {
   1265   DCHECK(rd.SizeInBits() == rn.SizeInBits());
   1266   DCHECK(rd.SizeInBits() == rm.SizeInBits());
   1267   Emit(SF(rd) | ASRV | Rm(rm) | Rn(rn) | Rd(rd));
   1268 }
   1269 
   1270 
   1271 void Assembler::rorv(const Register& rd,
   1272                      const Register& rn,
   1273                      const Register& rm) {
   1274   DCHECK(rd.SizeInBits() == rn.SizeInBits());
   1275   DCHECK(rd.SizeInBits() == rm.SizeInBits());
   1276   Emit(SF(rd) | RORV | Rm(rm) | Rn(rn) | Rd(rd));
   1277 }
   1278 
   1279 
   1280 // Bitfield operations.
   1281 void Assembler::bfm(const Register& rd, const Register& rn, int immr,
   1282                     int imms) {
   1283   DCHECK(rd.SizeInBits() == rn.SizeInBits());
   1284   Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
   1285   Emit(SF(rd) | BFM | N |
   1286        ImmR(immr, rd.SizeInBits()) |
   1287        ImmS(imms, rn.SizeInBits()) |
   1288        Rn(rn) | Rd(rd));
   1289 }
   1290 
   1291 
   1292 void Assembler::sbfm(const Register& rd, const Register& rn, int immr,
   1293                      int imms) {
   1294   DCHECK(rd.Is64Bits() || rn.Is32Bits());
   1295   Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
   1296   Emit(SF(rd) | SBFM | N |
   1297        ImmR(immr, rd.SizeInBits()) |
   1298        ImmS(imms, rn.SizeInBits()) |
   1299        Rn(rn) | Rd(rd));
   1300 }
   1301 
   1302 
   1303 void Assembler::ubfm(const Register& rd, const Register& rn, int immr,
   1304                      int imms) {
   1305   DCHECK(rd.SizeInBits() == rn.SizeInBits());
   1306   Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
   1307   Emit(SF(rd) | UBFM | N |
   1308        ImmR(immr, rd.SizeInBits()) |
   1309        ImmS(imms, rn.SizeInBits()) |
   1310        Rn(rn) | Rd(rd));
   1311 }
   1312 
   1313 
   1314 void Assembler::extr(const Register& rd, const Register& rn, const Register& rm,
   1315                      int lsb) {
   1316   DCHECK(rd.SizeInBits() == rn.SizeInBits());
   1317   DCHECK(rd.SizeInBits() == rm.SizeInBits());
   1318   Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
   1319   Emit(SF(rd) | EXTR | N | Rm(rm) |
   1320        ImmS(lsb, rn.SizeInBits()) | Rn(rn) | Rd(rd));
   1321 }
   1322 
   1323 
   1324 void Assembler::csel(const Register& rd,
   1325                      const Register& rn,
   1326                      const Register& rm,
   1327                      Condition cond) {
   1328   ConditionalSelect(rd, rn, rm, cond, CSEL);
   1329 }
   1330 
   1331 
   1332 void Assembler::csinc(const Register& rd,
   1333                       const Register& rn,
   1334                       const Register& rm,
   1335                       Condition cond) {
   1336   ConditionalSelect(rd, rn, rm, cond, CSINC);
   1337 }
   1338 
   1339 
   1340 void Assembler::csinv(const Register& rd,
   1341                       const Register& rn,
   1342                       const Register& rm,
   1343                       Condition cond) {
   1344   ConditionalSelect(rd, rn, rm, cond, CSINV);
   1345 }
   1346 
   1347 
   1348 void Assembler::csneg(const Register& rd,
   1349                       const Register& rn,
   1350                       const Register& rm,
   1351                       Condition cond) {
   1352   ConditionalSelect(rd, rn, rm, cond, CSNEG);
   1353 }
   1354 
   1355 
   1356 void Assembler::cset(const Register &rd, Condition cond) {
   1357   DCHECK((cond != al) && (cond != nv));
   1358   Register zr = AppropriateZeroRegFor(rd);
   1359   csinc(rd, zr, zr, NegateCondition(cond));
   1360 }
   1361 
   1362 
   1363 void Assembler::csetm(const Register &rd, Condition cond) {
   1364   DCHECK((cond != al) && (cond != nv));
   1365   Register zr = AppropriateZeroRegFor(rd);
   1366   csinv(rd, zr, zr, NegateCondition(cond));
   1367 }
   1368 
   1369 
   1370 void Assembler::cinc(const Register &rd, const Register &rn, Condition cond) {
   1371   DCHECK((cond != al) && (cond != nv));
   1372   csinc(rd, rn, rn, NegateCondition(cond));
   1373 }
   1374 
   1375 
   1376 void Assembler::cinv(const Register &rd, const Register &rn, Condition cond) {
   1377   DCHECK((cond != al) && (cond != nv));
   1378   csinv(rd, rn, rn, NegateCondition(cond));
   1379 }
   1380 
   1381 
   1382 void Assembler::cneg(const Register &rd, const Register &rn, Condition cond) {
   1383   DCHECK((cond != al) && (cond != nv));
   1384   csneg(rd, rn, rn, NegateCondition(cond));
   1385 }
   1386 
   1387 
   1388 void Assembler::ConditionalSelect(const Register& rd,
   1389                                   const Register& rn,
   1390                                   const Register& rm,
   1391                                   Condition cond,
   1392                                   ConditionalSelectOp op) {
   1393   DCHECK(rd.SizeInBits() == rn.SizeInBits());
   1394   DCHECK(rd.SizeInBits() == rm.SizeInBits());
   1395   Emit(SF(rd) | op | Rm(rm) | Cond(cond) | Rn(rn) | Rd(rd));
   1396 }
   1397 
   1398 
   1399 void Assembler::ccmn(const Register& rn,
   1400                      const Operand& operand,
   1401                      StatusFlags nzcv,
   1402                      Condition cond) {
   1403   ConditionalCompare(rn, operand, nzcv, cond, CCMN);
   1404 }
   1405 
   1406 
   1407 void Assembler::ccmp(const Register& rn,
   1408                      const Operand& operand,
   1409                      StatusFlags nzcv,
   1410                      Condition cond) {
   1411   ConditionalCompare(rn, operand, nzcv, cond, CCMP);
   1412 }
   1413 
   1414 
   1415 void Assembler::DataProcessing3Source(const Register& rd,
   1416                                       const Register& rn,
   1417                                       const Register& rm,
   1418                                       const Register& ra,
   1419                                       DataProcessing3SourceOp op) {
   1420   Emit(SF(rd) | op | Rm(rm) | Ra(ra) | Rn(rn) | Rd(rd));
   1421 }
   1422 
   1423 
   1424 void Assembler::mul(const Register& rd,
   1425                     const Register& rn,
   1426                     const Register& rm) {
   1427   DCHECK(AreSameSizeAndType(rd, rn, rm));
   1428   Register zr = AppropriateZeroRegFor(rn);
   1429   DataProcessing3Source(rd, rn, rm, zr, MADD);
   1430 }
   1431 
   1432 
   1433 void Assembler::madd(const Register& rd,
   1434                      const Register& rn,
   1435                      const Register& rm,
   1436                      const Register& ra) {
   1437   DCHECK(AreSameSizeAndType(rd, rn, rm, ra));
   1438   DataProcessing3Source(rd, rn, rm, ra, MADD);
   1439 }
   1440 
   1441 
   1442 void Assembler::mneg(const Register& rd,
   1443                      const Register& rn,
   1444                      const Register& rm) {
   1445   DCHECK(AreSameSizeAndType(rd, rn, rm));
   1446   Register zr = AppropriateZeroRegFor(rn);
   1447   DataProcessing3Source(rd, rn, rm, zr, MSUB);
   1448 }
   1449 
   1450 
   1451 void Assembler::msub(const Register& rd,
   1452                      const Register& rn,
   1453                      const Register& rm,
   1454                      const Register& ra) {
   1455   DCHECK(AreSameSizeAndType(rd, rn, rm, ra));
   1456   DataProcessing3Source(rd, rn, rm, ra, MSUB);
   1457 }
   1458 
   1459 
   1460 void Assembler::smaddl(const Register& rd,
   1461                        const Register& rn,
   1462                        const Register& rm,
   1463                        const Register& ra) {
   1464   DCHECK(rd.Is64Bits() && ra.Is64Bits());
   1465   DCHECK(rn.Is32Bits() && rm.Is32Bits());
   1466   DataProcessing3Source(rd, rn, rm, ra, SMADDL_x);
   1467 }
   1468 
   1469 
   1470 void Assembler::smsubl(const Register& rd,
   1471                        const Register& rn,
   1472                        const Register& rm,
   1473                        const Register& ra) {
   1474   DCHECK(rd.Is64Bits() && ra.Is64Bits());
   1475   DCHECK(rn.Is32Bits() && rm.Is32Bits());
   1476   DataProcessing3Source(rd, rn, rm, ra, SMSUBL_x);
   1477 }
   1478 
   1479 
   1480 void Assembler::umaddl(const Register& rd,
   1481                        const Register& rn,
   1482                        const Register& rm,
   1483                        const Register& ra) {
   1484   DCHECK(rd.Is64Bits() && ra.Is64Bits());
   1485   DCHECK(rn.Is32Bits() && rm.Is32Bits());
   1486   DataProcessing3Source(rd, rn, rm, ra, UMADDL_x);
   1487 }
   1488 
   1489 
   1490 void Assembler::umsubl(const Register& rd,
   1491                        const Register& rn,
   1492                        const Register& rm,
   1493                        const Register& ra) {
   1494   DCHECK(rd.Is64Bits() && ra.Is64Bits());
   1495   DCHECK(rn.Is32Bits() && rm.Is32Bits());
   1496   DataProcessing3Source(rd, rn, rm, ra, UMSUBL_x);
   1497 }
   1498 
   1499 
   1500 void Assembler::smull(const Register& rd,
   1501                       const Register& rn,
   1502                       const Register& rm) {
   1503   DCHECK(rd.Is64Bits());
   1504   DCHECK(rn.Is32Bits() && rm.Is32Bits());
   1505   DataProcessing3Source(rd, rn, rm, xzr, SMADDL_x);
   1506 }
   1507 
   1508 
   1509 void Assembler::smulh(const Register& rd,
   1510                       const Register& rn,
   1511                       const Register& rm) {
   1512   DCHECK(AreSameSizeAndType(rd, rn, rm));
   1513   DataProcessing3Source(rd, rn, rm, xzr, SMULH_x);
   1514 }
   1515 
   1516 
   1517 void Assembler::sdiv(const Register& rd,
   1518                      const Register& rn,
   1519                      const Register& rm) {
   1520   DCHECK(rd.SizeInBits() == rn.SizeInBits());
   1521   DCHECK(rd.SizeInBits() == rm.SizeInBits());
   1522   Emit(SF(rd) | SDIV | Rm(rm) | Rn(rn) | Rd(rd));
   1523 }
   1524 
   1525 
   1526 void Assembler::udiv(const Register& rd,
   1527                      const Register& rn,
   1528                      const Register& rm) {
   1529   DCHECK(rd.SizeInBits() == rn.SizeInBits());
   1530   DCHECK(rd.SizeInBits() == rm.SizeInBits());
   1531   Emit(SF(rd) | UDIV | Rm(rm) | Rn(rn) | Rd(rd));
   1532 }
   1533 
   1534 
   1535 void Assembler::rbit(const Register& rd,
   1536                      const Register& rn) {
   1537   DataProcessing1Source(rd, rn, RBIT);
   1538 }
   1539 
   1540 
   1541 void Assembler::rev16(const Register& rd,
   1542                       const Register& rn) {
   1543   DataProcessing1Source(rd, rn, REV16);
   1544 }
   1545 
   1546 
   1547 void Assembler::rev32(const Register& rd,
   1548                       const Register& rn) {
   1549   DCHECK(rd.Is64Bits());
   1550   DataProcessing1Source(rd, rn, REV);
   1551 }
   1552 
   1553 
   1554 void Assembler::rev(const Register& rd,
   1555                     const Register& rn) {
   1556   DataProcessing1Source(rd, rn, rd.Is64Bits() ? REV_x : REV_w);
   1557 }
   1558 
   1559 
   1560 void Assembler::clz(const Register& rd,
   1561                     const Register& rn) {
   1562   DataProcessing1Source(rd, rn, CLZ);
   1563 }
   1564 
   1565 
   1566 void Assembler::cls(const Register& rd,
   1567                     const Register& rn) {
   1568   DataProcessing1Source(rd, rn, CLS);
   1569 }
   1570 
   1571 
   1572 void Assembler::ldp(const CPURegister& rt,
   1573                     const CPURegister& rt2,
   1574                     const MemOperand& src) {
   1575   LoadStorePair(rt, rt2, src, LoadPairOpFor(rt, rt2));
   1576 }
   1577 
   1578 
   1579 void Assembler::stp(const CPURegister& rt,
   1580                     const CPURegister& rt2,
   1581                     const MemOperand& dst) {
   1582   LoadStorePair(rt, rt2, dst, StorePairOpFor(rt, rt2));
   1583 }
   1584 
   1585 
   1586 void Assembler::ldpsw(const Register& rt,
   1587                       const Register& rt2,
   1588                       const MemOperand& src) {
   1589   DCHECK(rt.Is64Bits());
   1590   LoadStorePair(rt, rt2, src, LDPSW_x);
   1591 }
   1592 
   1593 
   1594 void Assembler::LoadStorePair(const CPURegister& rt,
   1595                               const CPURegister& rt2,
   1596                               const MemOperand& addr,
   1597                               LoadStorePairOp op) {
   1598   // 'rt' and 'rt2' can only be aliased for stores.
   1599   DCHECK(((op & LoadStorePairLBit) == 0) || !rt.Is(rt2));
   1600   DCHECK(AreSameSizeAndType(rt, rt2));
   1601   DCHECK(IsImmLSPair(addr.offset(), CalcLSPairDataSize(op)));
   1602   int offset = static_cast<int>(addr.offset());
   1603 
   1604   Instr memop = op | Rt(rt) | Rt2(rt2) | RnSP(addr.base()) |
   1605                 ImmLSPair(offset, CalcLSPairDataSize(op));
   1606 
   1607   Instr addrmodeop;
   1608   if (addr.IsImmediateOffset()) {
   1609     addrmodeop = LoadStorePairOffsetFixed;
   1610   } else {
   1611     // Pre-index and post-index modes.
   1612     DCHECK(!rt.Is(addr.base()));
   1613     DCHECK(!rt2.Is(addr.base()));
   1614     DCHECK(addr.offset() != 0);
   1615     if (addr.IsPreIndex()) {
   1616       addrmodeop = LoadStorePairPreIndexFixed;
   1617     } else {
   1618       DCHECK(addr.IsPostIndex());
   1619       addrmodeop = LoadStorePairPostIndexFixed;
   1620     }
   1621   }
   1622   Emit(addrmodeop | memop);
   1623 }
   1624 
   1625 
   1626 // Memory instructions.
   1627 void Assembler::ldrb(const Register& rt, const MemOperand& src) {
   1628   LoadStore(rt, src, LDRB_w);
   1629 }
   1630 
   1631 
   1632 void Assembler::strb(const Register& rt, const MemOperand& dst) {
   1633   LoadStore(rt, dst, STRB_w);
   1634 }
   1635 
   1636 
   1637 void Assembler::ldrsb(const Register& rt, const MemOperand& src) {
   1638   LoadStore(rt, src, rt.Is64Bits() ? LDRSB_x : LDRSB_w);
   1639 }
   1640 
   1641 
   1642 void Assembler::ldrh(const Register& rt, const MemOperand& src) {
   1643   LoadStore(rt, src, LDRH_w);
   1644 }
   1645 
   1646 
   1647 void Assembler::strh(const Register& rt, const MemOperand& dst) {
   1648   LoadStore(rt, dst, STRH_w);
   1649 }
   1650 
   1651 
   1652 void Assembler::ldrsh(const Register& rt, const MemOperand& src) {
   1653   LoadStore(rt, src, rt.Is64Bits() ? LDRSH_x : LDRSH_w);
   1654 }
   1655 
   1656 
   1657 void Assembler::ldr(const CPURegister& rt, const MemOperand& src) {
   1658   LoadStore(rt, src, LoadOpFor(rt));
   1659 }
   1660 
   1661 
   1662 void Assembler::str(const CPURegister& rt, const MemOperand& src) {
   1663   LoadStore(rt, src, StoreOpFor(rt));
   1664 }
   1665 
   1666 
   1667 void Assembler::ldrsw(const Register& rt, const MemOperand& src) {
   1668   DCHECK(rt.Is64Bits());
   1669   LoadStore(rt, src, LDRSW_x);
   1670 }
   1671 
   1672 
   1673 void Assembler::ldr_pcrel(const CPURegister& rt, int imm19) {
   1674   // The pattern 'ldr xzr, #offset' is used to indicate the beginning of a
   1675   // constant pool. It should not be emitted.
   1676   DCHECK(!rt.IsZero());
   1677   Emit(LoadLiteralOpFor(rt) | ImmLLiteral(imm19) | Rt(rt));
   1678 }
   1679 
   1680 
   1681 void Assembler::ldr(const CPURegister& rt, const Immediate& imm) {
   1682   // Currently we only support 64-bit literals.
   1683   DCHECK(rt.Is64Bits());
   1684 
   1685   RecordRelocInfo(imm.rmode(), imm.value());
   1686   BlockConstPoolFor(1);
   1687   // The load will be patched when the constpool is emitted, patching code
   1688   // expect a load literal with offset 0.
   1689   ldr_pcrel(rt, 0);
   1690 }
   1691 
   1692 void Assembler::ldar(const Register& rt, const Register& rn) {
   1693   DCHECK(rn.Is64Bits());
   1694   LoadStoreAcquireReleaseOp op = rt.Is32Bits() ? LDAR_w : LDAR_x;
   1695   Emit(op | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
   1696 }
   1697 
   1698 void Assembler::ldaxr(const Register& rt, const Register& rn) {
   1699   DCHECK(rn.Is64Bits());
   1700   LoadStoreAcquireReleaseOp op = rt.Is32Bits() ? LDAXR_w : LDAXR_x;
   1701   Emit(op | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
   1702 }
   1703 
   1704 void Assembler::stlr(const Register& rt, const Register& rn) {
   1705   DCHECK(rn.Is64Bits());
   1706   LoadStoreAcquireReleaseOp op = rt.Is32Bits() ? STLR_w : STLR_x;
   1707   Emit(op | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
   1708 }
   1709 
   1710 void Assembler::stlxr(const Register& rs, const Register& rt,
   1711                       const Register& rn) {
   1712   DCHECK(rs.Is32Bits());
   1713   DCHECK(rn.Is64Bits());
   1714   LoadStoreAcquireReleaseOp op = rt.Is32Bits() ? STLXR_w : STLXR_x;
   1715   Emit(op | Rs(rs) | Rt2(x31) | Rn(rn) | Rt(rt));
   1716 }
   1717 
   1718 void Assembler::ldarb(const Register& rt, const Register& rn) {
   1719   DCHECK(rt.Is32Bits());
   1720   DCHECK(rn.Is64Bits());
   1721   Emit(LDAR_b | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
   1722 }
   1723 
   1724 void Assembler::ldaxrb(const Register& rt, const Register& rn) {
   1725   DCHECK(rt.Is32Bits());
   1726   DCHECK(rn.Is64Bits());
   1727   Emit(LDAXR_b | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
   1728 }
   1729 
   1730 void Assembler::stlrb(const Register& rt, const Register& rn) {
   1731   DCHECK(rt.Is32Bits());
   1732   DCHECK(rn.Is64Bits());
   1733   Emit(STLR_b | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
   1734 }
   1735 
   1736 void Assembler::stlxrb(const Register& rs, const Register& rt,
   1737                        const Register& rn) {
   1738   DCHECK(rs.Is32Bits());
   1739   DCHECK(rt.Is32Bits());
   1740   DCHECK(rn.Is64Bits());
   1741   Emit(STLXR_b | Rs(rs) | Rt2(x31) | Rn(rn) | Rt(rt));
   1742 }
   1743 
   1744 void Assembler::ldarh(const Register& rt, const Register& rn) {
   1745   DCHECK(rt.Is32Bits());
   1746   DCHECK(rn.Is64Bits());
   1747   Emit(LDAR_h | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
   1748 }
   1749 
   1750 void Assembler::ldaxrh(const Register& rt, const Register& rn) {
   1751   DCHECK(rt.Is32Bits());
   1752   DCHECK(rn.Is64Bits());
   1753   Emit(LDAXR_h | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
   1754 }
   1755 
   1756 void Assembler::stlrh(const Register& rt, const Register& rn) {
   1757   DCHECK(rt.Is32Bits());
   1758   DCHECK(rn.Is64Bits());
   1759   Emit(STLR_h | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
   1760 }
   1761 
   1762 void Assembler::stlxrh(const Register& rs, const Register& rt,
   1763                        const Register& rn) {
   1764   DCHECK(rs.Is32Bits());
   1765   DCHECK(rt.Is32Bits());
   1766   DCHECK(rn.Is64Bits());
   1767   Emit(STLXR_h | Rs(rs) | Rt2(x31) | Rn(rn) | Rt(rt));
   1768 }
   1769 
   1770 void Assembler::mov(const Register& rd, const Register& rm) {
   1771   // Moves involving the stack pointer are encoded as add immediate with
   1772   // second operand of zero. Otherwise, orr with first operand zr is
   1773   // used.
   1774   if (rd.IsSP() || rm.IsSP()) {
   1775     add(rd, rm, 0);
   1776   } else {
   1777     orr(rd, AppropriateZeroRegFor(rd), rm);
   1778   }
   1779 }
   1780 
   1781 
   1782 void Assembler::mvn(const Register& rd, const Operand& operand) {
   1783   orn(rd, AppropriateZeroRegFor(rd), operand);
   1784 }
   1785 
   1786 
   1787 void Assembler::mrs(const Register& rt, SystemRegister sysreg) {
   1788   DCHECK(rt.Is64Bits());
   1789   Emit(MRS | ImmSystemRegister(sysreg) | Rt(rt));
   1790 }
   1791 
   1792 
   1793 void Assembler::msr(SystemRegister sysreg, const Register& rt) {
   1794   DCHECK(rt.Is64Bits());
   1795   Emit(MSR | Rt(rt) | ImmSystemRegister(sysreg));
   1796 }
   1797 
   1798 
   1799 void Assembler::hint(SystemHint code) {
   1800   Emit(HINT | ImmHint(code) | Rt(xzr));
   1801 }
   1802 
   1803 
   1804 void Assembler::dmb(BarrierDomain domain, BarrierType type) {
   1805   Emit(DMB | ImmBarrierDomain(domain) | ImmBarrierType(type));
   1806 }
   1807 
   1808 
   1809 void Assembler::dsb(BarrierDomain domain, BarrierType type) {
   1810   Emit(DSB | ImmBarrierDomain(domain) | ImmBarrierType(type));
   1811 }
   1812 
   1813 
   1814 void Assembler::isb() {
   1815   Emit(ISB | ImmBarrierDomain(FullSystem) | ImmBarrierType(BarrierAll));
   1816 }
   1817 
   1818 
   1819 void Assembler::fmov(FPRegister fd, double imm) {
   1820   DCHECK(fd.Is64Bits());
   1821   DCHECK(IsImmFP64(imm));
   1822   Emit(FMOV_d_imm | Rd(fd) | ImmFP64(imm));
   1823 }
   1824 
   1825 
   1826 void Assembler::fmov(FPRegister fd, float imm) {
   1827   DCHECK(fd.Is32Bits());
   1828   DCHECK(IsImmFP32(imm));
   1829   Emit(FMOV_s_imm | Rd(fd) | ImmFP32(imm));
   1830 }
   1831 
   1832 
   1833 void Assembler::fmov(Register rd, FPRegister fn) {
   1834   DCHECK(rd.SizeInBits() == fn.SizeInBits());
   1835   FPIntegerConvertOp op = rd.Is32Bits() ? FMOV_ws : FMOV_xd;
   1836   Emit(op | Rd(rd) | Rn(fn));
   1837 }
   1838 
   1839 
   1840 void Assembler::fmov(FPRegister fd, Register rn) {
   1841   DCHECK(fd.SizeInBits() == rn.SizeInBits());
   1842   FPIntegerConvertOp op = fd.Is32Bits() ? FMOV_sw : FMOV_dx;
   1843   Emit(op | Rd(fd) | Rn(rn));
   1844 }
   1845 
   1846 
   1847 void Assembler::fmov(FPRegister fd, FPRegister fn) {
   1848   DCHECK(fd.SizeInBits() == fn.SizeInBits());
   1849   Emit(FPType(fd) | FMOV | Rd(fd) | Rn(fn));
   1850 }
   1851 
   1852 
   1853 void Assembler::fadd(const FPRegister& fd,
   1854                      const FPRegister& fn,
   1855                      const FPRegister& fm) {
   1856   FPDataProcessing2Source(fd, fn, fm, FADD);
   1857 }
   1858 
   1859 
   1860 void Assembler::fsub(const FPRegister& fd,
   1861                      const FPRegister& fn,
   1862                      const FPRegister& fm) {
   1863   FPDataProcessing2Source(fd, fn, fm, FSUB);
   1864 }
   1865 
   1866 
   1867 void Assembler::fmul(const FPRegister& fd,
   1868                      const FPRegister& fn,
   1869                      const FPRegister& fm) {
   1870   FPDataProcessing2Source(fd, fn, fm, FMUL);
   1871 }
   1872 
   1873 
   1874 void Assembler::fmadd(const FPRegister& fd,
   1875                       const FPRegister& fn,
   1876                       const FPRegister& fm,
   1877                       const FPRegister& fa) {
   1878   FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FMADD_s : FMADD_d);
   1879 }
   1880 
   1881 
   1882 void Assembler::fmsub(const FPRegister& fd,
   1883                       const FPRegister& fn,
   1884                       const FPRegister& fm,
   1885                       const FPRegister& fa) {
   1886   FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FMSUB_s : FMSUB_d);
   1887 }
   1888 
   1889 
   1890 void Assembler::fnmadd(const FPRegister& fd,
   1891                        const FPRegister& fn,
   1892                        const FPRegister& fm,
   1893                        const FPRegister& fa) {
   1894   FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FNMADD_s : FNMADD_d);
   1895 }
   1896 
   1897 
   1898 void Assembler::fnmsub(const FPRegister& fd,
   1899                        const FPRegister& fn,
   1900                        const FPRegister& fm,
   1901                        const FPRegister& fa) {
   1902   FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FNMSUB_s : FNMSUB_d);
   1903 }
   1904 
   1905 
   1906 void Assembler::fdiv(const FPRegister& fd,
   1907                      const FPRegister& fn,
   1908                      const FPRegister& fm) {
   1909   FPDataProcessing2Source(fd, fn, fm, FDIV);
   1910 }
   1911 
   1912 
   1913 void Assembler::fmax(const FPRegister& fd,
   1914                      const FPRegister& fn,
   1915                      const FPRegister& fm) {
   1916   FPDataProcessing2Source(fd, fn, fm, FMAX);
   1917 }
   1918 
   1919 
   1920 void Assembler::fmaxnm(const FPRegister& fd,
   1921                        const FPRegister& fn,
   1922                        const FPRegister& fm) {
   1923   FPDataProcessing2Source(fd, fn, fm, FMAXNM);
   1924 }
   1925 
   1926 
   1927 void Assembler::fmin(const FPRegister& fd,
   1928                      const FPRegister& fn,
   1929                      const FPRegister& fm) {
   1930   FPDataProcessing2Source(fd, fn, fm, FMIN);
   1931 }
   1932 
   1933 
   1934 void Assembler::fminnm(const FPRegister& fd,
   1935                        const FPRegister& fn,
   1936                        const FPRegister& fm) {
   1937   FPDataProcessing2Source(fd, fn, fm, FMINNM);
   1938 }
   1939 
   1940 
   1941 void Assembler::fabs(const FPRegister& fd,
   1942                      const FPRegister& fn) {
   1943   DCHECK(fd.SizeInBits() == fn.SizeInBits());
   1944   FPDataProcessing1Source(fd, fn, FABS);
   1945 }
   1946 
   1947 
   1948 void Assembler::fneg(const FPRegister& fd,
   1949                      const FPRegister& fn) {
   1950   DCHECK(fd.SizeInBits() == fn.SizeInBits());
   1951   FPDataProcessing1Source(fd, fn, FNEG);
   1952 }
   1953 
   1954 
   1955 void Assembler::fsqrt(const FPRegister& fd,
   1956                       const FPRegister& fn) {
   1957   DCHECK(fd.SizeInBits() == fn.SizeInBits());
   1958   FPDataProcessing1Source(fd, fn, FSQRT);
   1959 }
   1960 
   1961 
   1962 void Assembler::frinta(const FPRegister& fd,
   1963                        const FPRegister& fn) {
   1964   DCHECK(fd.SizeInBits() == fn.SizeInBits());
   1965   FPDataProcessing1Source(fd, fn, FRINTA);
   1966 }
   1967 
   1968 
   1969 void Assembler::frintm(const FPRegister& fd,
   1970                        const FPRegister& fn) {
   1971   DCHECK(fd.SizeInBits() == fn.SizeInBits());
   1972   FPDataProcessing1Source(fd, fn, FRINTM);
   1973 }
   1974 
   1975 
   1976 void Assembler::frintn(const FPRegister& fd,
   1977                        const FPRegister& fn) {
   1978   DCHECK(fd.SizeInBits() == fn.SizeInBits());
   1979   FPDataProcessing1Source(fd, fn, FRINTN);
   1980 }
   1981 
   1982 
   1983 void Assembler::frintp(const FPRegister& fd, const FPRegister& fn) {
   1984   DCHECK(fd.SizeInBits() == fn.SizeInBits());
   1985   FPDataProcessing1Source(fd, fn, FRINTP);
   1986 }
   1987 
   1988 
   1989 void Assembler::frintz(const FPRegister& fd,
   1990                        const FPRegister& fn) {
   1991   DCHECK(fd.SizeInBits() == fn.SizeInBits());
   1992   FPDataProcessing1Source(fd, fn, FRINTZ);
   1993 }
   1994 
   1995 
   1996 void Assembler::fcmp(const FPRegister& fn,
   1997                      const FPRegister& fm) {
   1998   DCHECK(fn.SizeInBits() == fm.SizeInBits());
   1999   Emit(FPType(fn) | FCMP | Rm(fm) | Rn(fn));
   2000 }
   2001 
   2002 
   2003 void Assembler::fcmp(const FPRegister& fn,
   2004                      double value) {
   2005   USE(value);
   2006   // Although the fcmp instruction can strictly only take an immediate value of
   2007   // +0.0, we don't need to check for -0.0 because the sign of 0.0 doesn't
   2008   // affect the result of the comparison.
   2009   DCHECK(value == 0.0);
   2010   Emit(FPType(fn) | FCMP_zero | Rn(fn));
   2011 }
   2012 
   2013 
   2014 void Assembler::fccmp(const FPRegister& fn,
   2015                       const FPRegister& fm,
   2016                       StatusFlags nzcv,
   2017                       Condition cond) {
   2018   DCHECK(fn.SizeInBits() == fm.SizeInBits());
   2019   Emit(FPType(fn) | FCCMP | Rm(fm) | Cond(cond) | Rn(fn) | Nzcv(nzcv));
   2020 }
   2021 
   2022 
   2023 void Assembler::fcsel(const FPRegister& fd,
   2024                       const FPRegister& fn,
   2025                       const FPRegister& fm,
   2026                       Condition cond) {
   2027   DCHECK(fd.SizeInBits() == fn.SizeInBits());
   2028   DCHECK(fd.SizeInBits() == fm.SizeInBits());
   2029   Emit(FPType(fd) | FCSEL | Rm(fm) | Cond(cond) | Rn(fn) | Rd(fd));
   2030 }
   2031 
   2032 
   2033 void Assembler::FPConvertToInt(const Register& rd,
   2034                                const FPRegister& fn,
   2035                                FPIntegerConvertOp op) {
   2036   Emit(SF(rd) | FPType(fn) | op | Rn(fn) | Rd(rd));
   2037 }
   2038 
   2039 
   2040 void Assembler::fcvt(const FPRegister& fd,
   2041                      const FPRegister& fn) {
   2042   if (fd.Is64Bits()) {
   2043     // Convert float to double.
   2044     DCHECK(fn.Is32Bits());
   2045     FPDataProcessing1Source(fd, fn, FCVT_ds);
   2046   } else {
   2047     // Convert double to float.
   2048     DCHECK(fn.Is64Bits());
   2049     FPDataProcessing1Source(fd, fn, FCVT_sd);
   2050   }
   2051 }
   2052 
   2053 
   2054 void Assembler::fcvtau(const Register& rd, const FPRegister& fn) {
   2055   FPConvertToInt(rd, fn, FCVTAU);
   2056 }
   2057 
   2058 
   2059 void Assembler::fcvtas(const Register& rd, const FPRegister& fn) {
   2060   FPConvertToInt(rd, fn, FCVTAS);
   2061 }
   2062 
   2063 
   2064 void Assembler::fcvtmu(const Register& rd, const FPRegister& fn) {
   2065   FPConvertToInt(rd, fn, FCVTMU);
   2066 }
   2067 
   2068 
   2069 void Assembler::fcvtms(const Register& rd, const FPRegister& fn) {
   2070   FPConvertToInt(rd, fn, FCVTMS);
   2071 }
   2072 
   2073 
   2074 void Assembler::fcvtnu(const Register& rd, const FPRegister& fn) {
   2075   FPConvertToInt(rd, fn, FCVTNU);
   2076 }
   2077 
   2078 
   2079 void Assembler::fcvtns(const Register& rd, const FPRegister& fn) {
   2080   FPConvertToInt(rd, fn, FCVTNS);
   2081 }
   2082 
   2083 
   2084 void Assembler::fcvtzu(const Register& rd, const FPRegister& fn) {
   2085   FPConvertToInt(rd, fn, FCVTZU);
   2086 }
   2087 
   2088 
   2089 void Assembler::fcvtzs(const Register& rd, const FPRegister& fn) {
   2090   FPConvertToInt(rd, fn, FCVTZS);
   2091 }
   2092 
   2093 
   2094 void Assembler::scvtf(const FPRegister& fd,
   2095                       const Register& rn,
   2096                       unsigned fbits) {
   2097   if (fbits == 0) {
   2098     Emit(SF(rn) | FPType(fd) | SCVTF | Rn(rn) | Rd(fd));
   2099   } else {
   2100     Emit(SF(rn) | FPType(fd) | SCVTF_fixed | FPScale(64 - fbits) | Rn(rn) |
   2101          Rd(fd));
   2102   }
   2103 }
   2104 
   2105 
   2106 void Assembler::ucvtf(const FPRegister& fd,
   2107                       const Register& rn,
   2108                       unsigned fbits) {
   2109   if (fbits == 0) {
   2110     Emit(SF(rn) | FPType(fd) | UCVTF | Rn(rn) | Rd(fd));
   2111   } else {
   2112     Emit(SF(rn) | FPType(fd) | UCVTF_fixed | FPScale(64 - fbits) | Rn(rn) |
   2113          Rd(fd));
   2114   }
   2115 }
   2116 
   2117 
   2118 void Assembler::dcptr(Label* label) {
   2119   RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
   2120   if (label->is_bound()) {
   2121     // The label is bound, so it does not need to be updated and the internal
   2122     // reference should be emitted.
   2123     //
   2124     // In this case, label->pos() returns the offset of the label from the
   2125     // start of the buffer.
   2126     internal_reference_positions_.push_back(pc_offset());
   2127     dc64(reinterpret_cast<uintptr_t>(buffer_ + label->pos()));
   2128   } else {
   2129     int32_t offset;
   2130     if (label->is_linked()) {
   2131       // The label is linked, so the internal reference should be added
   2132       // onto the end of the label's link chain.
   2133       //
   2134       // In this case, label->pos() returns the offset of the last linked
   2135       // instruction from the start of the buffer.
   2136       offset = label->pos() - pc_offset();
   2137       DCHECK(offset != kStartOfLabelLinkChain);
   2138     } else {
   2139       // The label is unused, so it now becomes linked and the internal
   2140       // reference is at the start of the new link chain.
   2141       offset = kStartOfLabelLinkChain;
   2142     }
   2143     // The instruction at pc is now the last link in the label's chain.
   2144     label->link_to(pc_offset());
   2145 
   2146     // Traditionally the offset to the previous instruction in the chain is
   2147     // encoded in the instruction payload (e.g. branch range) but internal
   2148     // references are not instructions so while unbound they are encoded as
   2149     // two consecutive brk instructions. The two 16-bit immediates are used
   2150     // to encode the offset.
   2151     offset >>= kInstructionSizeLog2;
   2152     DCHECK(is_int32(offset));
   2153     uint32_t high16 = unsigned_bitextract_32(31, 16, offset);
   2154     uint32_t low16 = unsigned_bitextract_32(15, 0, offset);
   2155 
   2156     brk(high16);
   2157     brk(low16);
   2158   }
   2159 }
   2160 
   2161 
   2162 // Note:
   2163 // Below, a difference in case for the same letter indicates a
   2164 // negated bit.
   2165 // If b is 1, then B is 0.
   2166 Instr Assembler::ImmFP32(float imm) {
   2167   DCHECK(IsImmFP32(imm));
   2168   // bits: aBbb.bbbc.defg.h000.0000.0000.0000.0000
   2169   uint32_t bits = float_to_rawbits(imm);
   2170   // bit7: a000.0000
   2171   uint32_t bit7 = ((bits >> 31) & 0x1) << 7;
   2172   // bit6: 0b00.0000
   2173   uint32_t bit6 = ((bits >> 29) & 0x1) << 6;
   2174   // bit5_to_0: 00cd.efgh
   2175   uint32_t bit5_to_0 = (bits >> 19) & 0x3f;
   2176 
   2177   return (bit7 | bit6 | bit5_to_0) << ImmFP_offset;
   2178 }
   2179 
   2180 
   2181 Instr Assembler::ImmFP64(double imm) {
   2182   DCHECK(IsImmFP64(imm));
   2183   // bits: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
   2184   //       0000.0000.0000.0000.0000.0000.0000.0000
   2185   uint64_t bits = double_to_rawbits(imm);
   2186   // bit7: a000.0000
   2187   uint64_t bit7 = ((bits >> 63) & 0x1) << 7;
   2188   // bit6: 0b00.0000
   2189   uint64_t bit6 = ((bits >> 61) & 0x1) << 6;
   2190   // bit5_to_0: 00cd.efgh
   2191   uint64_t bit5_to_0 = (bits >> 48) & 0x3f;
   2192 
   2193   return static_cast<Instr>((bit7 | bit6 | bit5_to_0) << ImmFP_offset);
   2194 }
   2195 
   2196 
   2197 // Code generation helpers.
   2198 void Assembler::MoveWide(const Register& rd,
   2199                          uint64_t imm,
   2200                          int shift,
   2201                          MoveWideImmediateOp mov_op) {
   2202   // Ignore the top 32 bits of an immediate if we're moving to a W register.
   2203   if (rd.Is32Bits()) {
   2204     // Check that the top 32 bits are zero (a positive 32-bit number) or top
   2205     // 33 bits are one (a negative 32-bit number, sign extended to 64 bits).
   2206     DCHECK(((imm >> kWRegSizeInBits) == 0) ||
   2207            ((imm >> (kWRegSizeInBits - 1)) == 0x1ffffffff));
   2208     imm &= kWRegMask;
   2209   }
   2210 
   2211   if (shift >= 0) {
   2212     // Explicit shift specified.
   2213     DCHECK((shift == 0) || (shift == 16) || (shift == 32) || (shift == 48));
   2214     DCHECK(rd.Is64Bits() || (shift == 0) || (shift == 16));
   2215     shift /= 16;
   2216   } else {
   2217     // Calculate a new immediate and shift combination to encode the immediate
   2218     // argument.
   2219     shift = 0;
   2220     if ((imm & ~0xffffUL) == 0) {
   2221       // Nothing to do.
   2222     } else if ((imm & ~(0xffffUL << 16)) == 0) {
   2223       imm >>= 16;
   2224       shift = 1;
   2225     } else if ((imm & ~(0xffffUL << 32)) == 0) {
   2226       DCHECK(rd.Is64Bits());
   2227       imm >>= 32;
   2228       shift = 2;
   2229     } else if ((imm & ~(0xffffUL << 48)) == 0) {
   2230       DCHECK(rd.Is64Bits());
   2231       imm >>= 48;
   2232       shift = 3;
   2233     }
   2234   }
   2235 
   2236   DCHECK(is_uint16(imm));
   2237 
   2238   Emit(SF(rd) | MoveWideImmediateFixed | mov_op | Rd(rd) |
   2239        ImmMoveWide(static_cast<int>(imm)) | ShiftMoveWide(shift));
   2240 }
   2241 
   2242 
   2243 void Assembler::AddSub(const Register& rd,
   2244                        const Register& rn,
   2245                        const Operand& operand,
   2246                        FlagsUpdate S,
   2247                        AddSubOp op) {
   2248   DCHECK(rd.SizeInBits() == rn.SizeInBits());
   2249   DCHECK(!operand.NeedsRelocation(this));
   2250   if (operand.IsImmediate()) {
   2251     int64_t immediate = operand.ImmediateValue();
   2252     DCHECK(IsImmAddSub(immediate));
   2253     Instr dest_reg = (S == SetFlags) ? Rd(rd) : RdSP(rd);
   2254     Emit(SF(rd) | AddSubImmediateFixed | op | Flags(S) |
   2255          ImmAddSub(static_cast<int>(immediate)) | dest_reg | RnSP(rn));
   2256   } else if (operand.IsShiftedRegister()) {
   2257     DCHECK(operand.reg().SizeInBits() == rd.SizeInBits());
   2258     DCHECK(operand.shift() != ROR);
   2259 
   2260     // For instructions of the form:
   2261     //   add/sub   wsp, <Wn>, <Wm> [, LSL #0-3 ]
   2262     //   add/sub   <Wd>, wsp, <Wm> [, LSL #0-3 ]
   2263     //   add/sub   wsp, wsp, <Wm> [, LSL #0-3 ]
   2264     //   adds/subs <Wd>, wsp, <Wm> [, LSL #0-3 ]
   2265     // or their 64-bit register equivalents, convert the operand from shifted to
   2266     // extended register mode, and emit an add/sub extended instruction.
   2267     if (rn.IsSP() || rd.IsSP()) {
   2268       DCHECK(!(rd.IsSP() && (S == SetFlags)));
   2269       DataProcExtendedRegister(rd, rn, operand.ToExtendedRegister(), S,
   2270                                AddSubExtendedFixed | op);
   2271     } else {
   2272       DataProcShiftedRegister(rd, rn, operand, S, AddSubShiftedFixed | op);
   2273     }
   2274   } else {
   2275     DCHECK(operand.IsExtendedRegister());
   2276     DataProcExtendedRegister(rd, rn, operand, S, AddSubExtendedFixed | op);
   2277   }
   2278 }
   2279 
   2280 
   2281 void Assembler::AddSubWithCarry(const Register& rd,
   2282                                 const Register& rn,
   2283                                 const Operand& operand,
   2284                                 FlagsUpdate S,
   2285                                 AddSubWithCarryOp op) {
   2286   DCHECK(rd.SizeInBits() == rn.SizeInBits());
   2287   DCHECK(rd.SizeInBits() == operand.reg().SizeInBits());
   2288   DCHECK(operand.IsShiftedRegister() && (operand.shift_amount() == 0));
   2289   DCHECK(!operand.NeedsRelocation(this));
   2290   Emit(SF(rd) | op | Flags(S) | Rm(operand.reg()) | Rn(rn) | Rd(rd));
   2291 }
   2292 
   2293 
   2294 void Assembler::hlt(int code) {
   2295   DCHECK(is_uint16(code));
   2296   Emit(HLT | ImmException(code));
   2297 }
   2298 
   2299 
   2300 void Assembler::brk(int code) {
   2301   DCHECK(is_uint16(code));
   2302   Emit(BRK | ImmException(code));
   2303 }
   2304 
   2305 
   2306 void Assembler::EmitStringData(const char* string) {
   2307   size_t len = strlen(string) + 1;
   2308   DCHECK(RoundUp(len, kInstructionSize) <= static_cast<size_t>(kGap));
   2309   EmitData(string, static_cast<int>(len));
   2310   // Pad with NULL characters until pc_ is aligned.
   2311   const char pad[] = {'\0', '\0', '\0', '\0'};
   2312   STATIC_ASSERT(sizeof(pad) == kInstructionSize);
   2313   EmitData(pad, RoundUp(pc_offset(), kInstructionSize) - pc_offset());
   2314 }
   2315 
   2316 
   2317 void Assembler::debug(const char* message, uint32_t code, Instr params) {
   2318 #ifdef USE_SIMULATOR
   2319   // Don't generate simulator specific code if we are building a snapshot, which
   2320   // might be run on real hardware.
   2321   if (!serializer_enabled()) {
   2322     // The arguments to the debug marker need to be contiguous in memory, so
   2323     // make sure we don't try to emit pools.
   2324     BlockPoolsScope scope(this);
   2325 
   2326     Label start;
   2327     bind(&start);
   2328 
   2329     // Refer to instructions-arm64.h for a description of the marker and its
   2330     // arguments.
   2331     hlt(kImmExceptionIsDebug);
   2332     DCHECK(SizeOfCodeGeneratedSince(&start) == kDebugCodeOffset);
   2333     dc32(code);
   2334     DCHECK(SizeOfCodeGeneratedSince(&start) == kDebugParamsOffset);
   2335     dc32(params);
   2336     DCHECK(SizeOfCodeGeneratedSince(&start) == kDebugMessageOffset);
   2337     EmitStringData(message);
   2338     hlt(kImmExceptionIsUnreachable);
   2339 
   2340     return;
   2341   }
   2342   // Fall through if Serializer is enabled.
   2343 #endif
   2344 
   2345   if (params & BREAK) {
   2346     hlt(kImmExceptionIsDebug);
   2347   }
   2348 }
   2349 
   2350 
   2351 void Assembler::Logical(const Register& rd,
   2352                         const Register& rn,
   2353                         const Operand& operand,
   2354                         LogicalOp op) {
   2355   DCHECK(rd.SizeInBits() == rn.SizeInBits());
   2356   DCHECK(!operand.NeedsRelocation(this));
   2357   if (operand.IsImmediate()) {
   2358     int64_t immediate = operand.ImmediateValue();
   2359     unsigned reg_size = rd.SizeInBits();
   2360 
   2361     DCHECK(immediate != 0);
   2362     DCHECK(immediate != -1);
   2363     DCHECK(rd.Is64Bits() || is_uint32(immediate));
   2364 
   2365     // If the operation is NOT, invert the operation and immediate.
   2366     if ((op & NOT) == NOT) {
   2367       op = static_cast<LogicalOp>(op & ~NOT);
   2368       immediate = rd.Is64Bits() ? ~immediate : (~immediate & kWRegMask);
   2369     }
   2370 
   2371     unsigned n, imm_s, imm_r;
   2372     if (IsImmLogical(immediate, reg_size, &n, &imm_s, &imm_r)) {
   2373       // Immediate can be encoded in the instruction.
   2374       LogicalImmediate(rd, rn, n, imm_s, imm_r, op);
   2375     } else {
   2376       // This case is handled in the macro assembler.
   2377       UNREACHABLE();
   2378     }
   2379   } else {
   2380     DCHECK(operand.IsShiftedRegister());
   2381     DCHECK(operand.reg().SizeInBits() == rd.SizeInBits());
   2382     Instr dp_op = static_cast<Instr>(op | LogicalShiftedFixed);
   2383     DataProcShiftedRegister(rd, rn, operand, LeaveFlags, dp_op);
   2384   }
   2385 }
   2386 
   2387 
   2388 void Assembler::LogicalImmediate(const Register& rd,
   2389                                  const Register& rn,
   2390                                  unsigned n,
   2391                                  unsigned imm_s,
   2392                                  unsigned imm_r,
   2393                                  LogicalOp op) {
   2394   unsigned reg_size = rd.SizeInBits();
   2395   Instr dest_reg = (op == ANDS) ? Rd(rd) : RdSP(rd);
   2396   Emit(SF(rd) | LogicalImmediateFixed | op | BitN(n, reg_size) |
   2397        ImmSetBits(imm_s, reg_size) | ImmRotate(imm_r, reg_size) | dest_reg |
   2398        Rn(rn));
   2399 }
   2400 
   2401 
   2402 void Assembler::ConditionalCompare(const Register& rn,
   2403                                    const Operand& operand,
   2404                                    StatusFlags nzcv,
   2405                                    Condition cond,
   2406                                    ConditionalCompareOp op) {
   2407   Instr ccmpop;
   2408   DCHECK(!operand.NeedsRelocation(this));
   2409   if (operand.IsImmediate()) {
   2410     int64_t immediate = operand.ImmediateValue();
   2411     DCHECK(IsImmConditionalCompare(immediate));
   2412     ccmpop = ConditionalCompareImmediateFixed | op |
   2413              ImmCondCmp(static_cast<unsigned>(immediate));
   2414   } else {
   2415     DCHECK(operand.IsShiftedRegister() && (operand.shift_amount() == 0));
   2416     ccmpop = ConditionalCompareRegisterFixed | op | Rm(operand.reg());
   2417   }
   2418   Emit(SF(rn) | ccmpop | Cond(cond) | Rn(rn) | Nzcv(nzcv));
   2419 }
   2420 
   2421 
   2422 void Assembler::DataProcessing1Source(const Register& rd,
   2423                                       const Register& rn,
   2424                                       DataProcessing1SourceOp op) {
   2425   DCHECK(rd.SizeInBits() == rn.SizeInBits());
   2426   Emit(SF(rn) | op | Rn(rn) | Rd(rd));
   2427 }
   2428 
   2429 
   2430 void Assembler::FPDataProcessing1Source(const FPRegister& fd,
   2431                                         const FPRegister& fn,
   2432                                         FPDataProcessing1SourceOp op) {
   2433   Emit(FPType(fn) | op | Rn(fn) | Rd(fd));
   2434 }
   2435 
   2436 
   2437 void Assembler::FPDataProcessing2Source(const FPRegister& fd,
   2438                                         const FPRegister& fn,
   2439                                         const FPRegister& fm,
   2440                                         FPDataProcessing2SourceOp op) {
   2441   DCHECK(fd.SizeInBits() == fn.SizeInBits());
   2442   DCHECK(fd.SizeInBits() == fm.SizeInBits());
   2443   Emit(FPType(fd) | op | Rm(fm) | Rn(fn) | Rd(fd));
   2444 }
   2445 
   2446 
   2447 void Assembler::FPDataProcessing3Source(const FPRegister& fd,
   2448                                         const FPRegister& fn,
   2449                                         const FPRegister& fm,
   2450                                         const FPRegister& fa,
   2451                                         FPDataProcessing3SourceOp op) {
   2452   DCHECK(AreSameSizeAndType(fd, fn, fm, fa));
   2453   Emit(FPType(fd) | op | Rm(fm) | Rn(fn) | Rd(fd) | Ra(fa));
   2454 }
   2455 
   2456 
   2457 void Assembler::EmitShift(const Register& rd,
   2458                           const Register& rn,
   2459                           Shift shift,
   2460                           unsigned shift_amount) {
   2461   switch (shift) {
   2462     case LSL:
   2463       lsl(rd, rn, shift_amount);
   2464       break;
   2465     case LSR:
   2466       lsr(rd, rn, shift_amount);
   2467       break;
   2468     case ASR:
   2469       asr(rd, rn, shift_amount);
   2470       break;
   2471     case ROR:
   2472       ror(rd, rn, shift_amount);
   2473       break;
   2474     default:
   2475       UNREACHABLE();
   2476   }
   2477 }
   2478 
   2479 
   2480 void Assembler::EmitExtendShift(const Register& rd,
   2481                                 const Register& rn,
   2482                                 Extend extend,
   2483                                 unsigned left_shift) {
   2484   DCHECK(rd.SizeInBits() >= rn.SizeInBits());
   2485   unsigned reg_size = rd.SizeInBits();
   2486   // Use the correct size of register.
   2487   Register rn_ = Register::Create(rn.code(), rd.SizeInBits());
   2488   // Bits extracted are high_bit:0.
   2489   unsigned high_bit = (8 << (extend & 0x3)) - 1;
   2490   // Number of bits left in the result that are not introduced by the shift.
   2491   unsigned non_shift_bits = (reg_size - left_shift) & (reg_size - 1);
   2492 
   2493   if ((non_shift_bits > high_bit) || (non_shift_bits == 0)) {
   2494     switch (extend) {
   2495       case UXTB:
   2496       case UXTH:
   2497       case UXTW: ubfm(rd, rn_, non_shift_bits, high_bit); break;
   2498       case SXTB:
   2499       case SXTH:
   2500       case SXTW: sbfm(rd, rn_, non_shift_bits, high_bit); break;
   2501       case UXTX:
   2502       case SXTX: {
   2503         DCHECK(rn.SizeInBits() == kXRegSizeInBits);
   2504         // Nothing to extend. Just shift.
   2505         lsl(rd, rn_, left_shift);
   2506         break;
   2507       }
   2508       default: UNREACHABLE();
   2509     }
   2510   } else {
   2511     // No need to extend as the extended bits would be shifted away.
   2512     lsl(rd, rn_, left_shift);
   2513   }
   2514 }
   2515 
   2516 
   2517 void Assembler::DataProcShiftedRegister(const Register& rd,
   2518                                         const Register& rn,
   2519                                         const Operand& operand,
   2520                                         FlagsUpdate S,
   2521                                         Instr op) {
   2522   DCHECK(operand.IsShiftedRegister());
   2523   DCHECK(rn.Is64Bits() || (rn.Is32Bits() && is_uint5(operand.shift_amount())));
   2524   DCHECK(!operand.NeedsRelocation(this));
   2525   Emit(SF(rd) | op | Flags(S) |
   2526        ShiftDP(operand.shift()) | ImmDPShift(operand.shift_amount()) |
   2527        Rm(operand.reg()) | Rn(rn) | Rd(rd));
   2528 }
   2529 
   2530 
   2531 void Assembler::DataProcExtendedRegister(const Register& rd,
   2532                                          const Register& rn,
   2533                                          const Operand& operand,
   2534                                          FlagsUpdate S,
   2535                                          Instr op) {
   2536   DCHECK(!operand.NeedsRelocation(this));
   2537   Instr dest_reg = (S == SetFlags) ? Rd(rd) : RdSP(rd);
   2538   Emit(SF(rd) | op | Flags(S) | Rm(operand.reg()) |
   2539        ExtendMode(operand.extend()) | ImmExtendShift(operand.shift_amount()) |
   2540        dest_reg | RnSP(rn));
   2541 }
   2542 
   2543 
   2544 bool Assembler::IsImmAddSub(int64_t immediate) {
   2545   return is_uint12(immediate) ||
   2546          (is_uint12(immediate >> 12) && ((immediate & 0xfff) == 0));
   2547 }
   2548 
   2549 void Assembler::LoadStore(const CPURegister& rt,
   2550                           const MemOperand& addr,
   2551                           LoadStoreOp op) {
   2552   Instr memop = op | Rt(rt) | RnSP(addr.base());
   2553 
   2554   if (addr.IsImmediateOffset()) {
   2555     LSDataSize size = CalcLSDataSize(op);
   2556     if (IsImmLSScaled(addr.offset(), size)) {
   2557       int offset = static_cast<int>(addr.offset());
   2558       // Use the scaled addressing mode.
   2559       Emit(LoadStoreUnsignedOffsetFixed | memop |
   2560            ImmLSUnsigned(offset >> size));
   2561     } else if (IsImmLSUnscaled(addr.offset())) {
   2562       int offset = static_cast<int>(addr.offset());
   2563       // Use the unscaled addressing mode.
   2564       Emit(LoadStoreUnscaledOffsetFixed | memop | ImmLS(offset));
   2565     } else {
   2566       // This case is handled in the macro assembler.
   2567       UNREACHABLE();
   2568     }
   2569   } else if (addr.IsRegisterOffset()) {
   2570     Extend ext = addr.extend();
   2571     Shift shift = addr.shift();
   2572     unsigned shift_amount = addr.shift_amount();
   2573 
   2574     // LSL is encoded in the option field as UXTX.
   2575     if (shift == LSL) {
   2576       ext = UXTX;
   2577     }
   2578 
   2579     // Shifts are encoded in one bit, indicating a left shift by the memory
   2580     // access size.
   2581     DCHECK((shift_amount == 0) ||
   2582            (shift_amount == static_cast<unsigned>(CalcLSDataSize(op))));
   2583     Emit(LoadStoreRegisterOffsetFixed | memop | Rm(addr.regoffset()) |
   2584          ExtendMode(ext) | ImmShiftLS((shift_amount > 0) ? 1 : 0));
   2585   } else {
   2586     // Pre-index and post-index modes.
   2587     DCHECK(!rt.Is(addr.base()));
   2588     if (IsImmLSUnscaled(addr.offset())) {
   2589       int offset = static_cast<int>(addr.offset());
   2590       if (addr.IsPreIndex()) {
   2591         Emit(LoadStorePreIndexFixed | memop | ImmLS(offset));
   2592       } else {
   2593         DCHECK(addr.IsPostIndex());
   2594         Emit(LoadStorePostIndexFixed | memop | ImmLS(offset));
   2595       }
   2596     } else {
   2597       // This case is handled in the macro assembler.
   2598       UNREACHABLE();
   2599     }
   2600   }
   2601 }
   2602 
   2603 
   2604 bool Assembler::IsImmLSUnscaled(int64_t offset) {
   2605   return is_int9(offset);
   2606 }
   2607 
   2608 
   2609 bool Assembler::IsImmLSScaled(int64_t offset, LSDataSize size) {
   2610   bool offset_is_size_multiple = (((offset >> size) << size) == offset);
   2611   return offset_is_size_multiple && is_uint12(offset >> size);
   2612 }
   2613 
   2614 
   2615 bool Assembler::IsImmLSPair(int64_t offset, LSDataSize size) {
   2616   bool offset_is_size_multiple = (((offset >> size) << size) == offset);
   2617   return offset_is_size_multiple && is_int7(offset >> size);
   2618 }
   2619 
   2620 
   2621 bool Assembler::IsImmLLiteral(int64_t offset) {
   2622   int inst_size = static_cast<int>(kInstructionSizeLog2);
   2623   bool offset_is_inst_multiple =
   2624       (((offset >> inst_size) << inst_size) == offset);
   2625   return offset_is_inst_multiple && is_intn(offset, ImmLLiteral_width);
   2626 }
   2627 
   2628 
   2629 // Test if a given value can be encoded in the immediate field of a logical
   2630 // instruction.
   2631 // If it can be encoded, the function returns true, and values pointed to by n,
   2632 // imm_s and imm_r are updated with immediates encoded in the format required
   2633 // by the corresponding fields in the logical instruction.
   2634 // If it can not be encoded, the function returns false, and the values pointed
   2635 // to by n, imm_s and imm_r are undefined.
   2636 bool Assembler::IsImmLogical(uint64_t value,
   2637                              unsigned width,
   2638                              unsigned* n,
   2639                              unsigned* imm_s,
   2640                              unsigned* imm_r) {
   2641   DCHECK((n != NULL) && (imm_s != NULL) && (imm_r != NULL));
   2642   DCHECK((width == kWRegSizeInBits) || (width == kXRegSizeInBits));
   2643 
   2644   bool negate = false;
   2645 
   2646   // Logical immediates are encoded using parameters n, imm_s and imm_r using
   2647   // the following table:
   2648   //
   2649   //    N   imms    immr    size        S             R
   2650   //    1  ssssss  rrrrrr    64    UInt(ssssss)  UInt(rrrrrr)
   2651   //    0  0sssss  xrrrrr    32    UInt(sssss)   UInt(rrrrr)
   2652   //    0  10ssss  xxrrrr    16    UInt(ssss)    UInt(rrrr)
   2653   //    0  110sss  xxxrrr     8    UInt(sss)     UInt(rrr)
   2654   //    0  1110ss  xxxxrr     4    UInt(ss)      UInt(rr)
   2655   //    0  11110s  xxxxxr     2    UInt(s)       UInt(r)
   2656   // (s bits must not be all set)
   2657   //
   2658   // A pattern is constructed of size bits, where the least significant S+1 bits
   2659   // are set. The pattern is rotated right by R, and repeated across a 32 or
   2660   // 64-bit value, depending on destination register width.
   2661   //
   2662   // Put another way: the basic format of a logical immediate is a single
   2663   // contiguous stretch of 1 bits, repeated across the whole word at intervals
   2664   // given by a power of 2. To identify them quickly, we first locate the
   2665   // lowest stretch of 1 bits, then the next 1 bit above that; that combination
   2666   // is different for every logical immediate, so it gives us all the
   2667   // information we need to identify the only logical immediate that our input
   2668   // could be, and then we simply check if that's the value we actually have.
   2669   //
   2670   // (The rotation parameter does give the possibility of the stretch of 1 bits
   2671   // going 'round the end' of the word. To deal with that, we observe that in
   2672   // any situation where that happens the bitwise NOT of the value is also a
   2673   // valid logical immediate. So we simply invert the input whenever its low bit
   2674   // is set, and then we know that the rotated case can't arise.)
   2675 
   2676   if (value & 1) {
   2677     // If the low bit is 1, negate the value, and set a flag to remember that we
   2678     // did (so that we can adjust the return values appropriately).
   2679     negate = true;
   2680     value = ~value;
   2681   }
   2682 
   2683   if (width == kWRegSizeInBits) {
   2684     // To handle 32-bit logical immediates, the very easiest thing is to repeat
   2685     // the input value twice to make a 64-bit word. The correct encoding of that
   2686     // as a logical immediate will also be the correct encoding of the 32-bit
   2687     // value.
   2688 
   2689     // The most-significant 32 bits may not be zero (ie. negate is true) so
   2690     // shift the value left before duplicating it.
   2691     value <<= kWRegSizeInBits;
   2692     value |= value >> kWRegSizeInBits;
   2693   }
   2694 
   2695   // The basic analysis idea: imagine our input word looks like this.
   2696   //
   2697   //    0011111000111110001111100011111000111110001111100011111000111110
   2698   //                                                          c  b    a
   2699   //                                                          |<--d-->|
   2700   //
   2701   // We find the lowest set bit (as an actual power-of-2 value, not its index)
   2702   // and call it a. Then we add a to our original number, which wipes out the
   2703   // bottommost stretch of set bits and replaces it with a 1 carried into the
   2704   // next zero bit. Then we look for the new lowest set bit, which is in
   2705   // position b, and subtract it, so now our number is just like the original
   2706   // but with the lowest stretch of set bits completely gone. Now we find the
   2707   // lowest set bit again, which is position c in the diagram above. Then we'll
   2708   // measure the distance d between bit positions a and c (using CLZ), and that
   2709   // tells us that the only valid logical immediate that could possibly be equal
   2710   // to this number is the one in which a stretch of bits running from a to just
   2711   // below b is replicated every d bits.
   2712   uint64_t a = LargestPowerOf2Divisor(value);
   2713   uint64_t value_plus_a = value + a;
   2714   uint64_t b = LargestPowerOf2Divisor(value_plus_a);
   2715   uint64_t value_plus_a_minus_b = value_plus_a - b;
   2716   uint64_t c = LargestPowerOf2Divisor(value_plus_a_minus_b);
   2717 
   2718   int d, clz_a, out_n;
   2719   uint64_t mask;
   2720 
   2721   if (c != 0) {
   2722     // The general case, in which there is more than one stretch of set bits.
   2723     // Compute the repeat distance d, and set up a bitmask covering the basic
   2724     // unit of repetition (i.e. a word with the bottom d bits set). Also, in all
   2725     // of these cases the N bit of the output will be zero.
   2726     clz_a = CountLeadingZeros(a, kXRegSizeInBits);
   2727     int clz_c = CountLeadingZeros(c, kXRegSizeInBits);
   2728     d = clz_a - clz_c;
   2729     mask = ((V8_UINT64_C(1) << d) - 1);
   2730     out_n = 0;
   2731   } else {
   2732     // Handle degenerate cases.
   2733     //
   2734     // If any of those 'find lowest set bit' operations didn't find a set bit at
   2735     // all, then the word will have been zero thereafter, so in particular the
   2736     // last lowest_set_bit operation will have returned zero. So we can test for
   2737     // all the special case conditions in one go by seeing if c is zero.
   2738     if (a == 0) {
   2739       // The input was zero (or all 1 bits, which will come to here too after we
   2740       // inverted it at the start of the function), for which we just return
   2741       // false.
   2742       return false;
   2743     } else {
   2744       // Otherwise, if c was zero but a was not, then there's just one stretch
   2745       // of set bits in our word, meaning that we have the trivial case of
   2746       // d == 64 and only one 'repetition'. Set up all the same variables as in
   2747       // the general case above, and set the N bit in the output.
   2748       clz_a = CountLeadingZeros(a, kXRegSizeInBits);
   2749       d = 64;
   2750       mask = ~V8_UINT64_C(0);
   2751       out_n = 1;
   2752     }
   2753   }
   2754 
   2755   // If the repeat period d is not a power of two, it can't be encoded.
   2756   if (!IS_POWER_OF_TWO(d)) {
   2757     return false;
   2758   }
   2759 
   2760   if (((b - a) & ~mask) != 0) {
   2761     // If the bit stretch (b - a) does not fit within the mask derived from the
   2762     // repeat period, then fail.
   2763     return false;
   2764   }
   2765 
   2766   // The only possible option is b - a repeated every d bits. Now we're going to
   2767   // actually construct the valid logical immediate derived from that
   2768   // specification, and see if it equals our original input.
   2769   //
   2770   // To repeat a value every d bits, we multiply it by a number of the form
   2771   // (1 + 2^d + 2^(2d) + ...), i.e. 0x0001000100010001 or similar. These can
   2772   // be derived using a table lookup on CLZ(d).
   2773   static const uint64_t multipliers[] = {
   2774     0x0000000000000001UL,
   2775     0x0000000100000001UL,
   2776     0x0001000100010001UL,
   2777     0x0101010101010101UL,
   2778     0x1111111111111111UL,
   2779     0x5555555555555555UL,
   2780   };
   2781   int multiplier_idx = CountLeadingZeros(d, kXRegSizeInBits) - 57;
   2782   // Ensure that the index to the multipliers array is within bounds.
   2783   DCHECK((multiplier_idx >= 0) &&
   2784          (static_cast<size_t>(multiplier_idx) < arraysize(multipliers)));
   2785   uint64_t multiplier = multipliers[multiplier_idx];
   2786   uint64_t candidate = (b - a) * multiplier;
   2787 
   2788   if (value != candidate) {
   2789     // The candidate pattern doesn't match our input value, so fail.
   2790     return false;
   2791   }
   2792 
   2793   // We have a match! This is a valid logical immediate, so now we have to
   2794   // construct the bits and pieces of the instruction encoding that generates
   2795   // it.
   2796 
   2797   // Count the set bits in our basic stretch. The special case of clz(0) == -1
   2798   // makes the answer come out right for stretches that reach the very top of
   2799   // the word (e.g. numbers like 0xffffc00000000000).
   2800   int clz_b = (b == 0) ? -1 : CountLeadingZeros(b, kXRegSizeInBits);
   2801   int s = clz_a - clz_b;
   2802 
   2803   // Decide how many bits to rotate right by, to put the low bit of that basic
   2804   // stretch in position a.
   2805   int r;
   2806   if (negate) {
   2807     // If we inverted the input right at the start of this function, here's
   2808     // where we compensate: the number of set bits becomes the number of clear
   2809     // bits, and the rotation count is based on position b rather than position
   2810     // a (since b is the location of the 'lowest' 1 bit after inversion).
   2811     s = d - s;
   2812     r = (clz_b + 1) & (d - 1);
   2813   } else {
   2814     r = (clz_a + 1) & (d - 1);
   2815   }
   2816 
   2817   // Now we're done, except for having to encode the S output in such a way that
   2818   // it gives both the number of set bits and the length of the repeated
   2819   // segment. The s field is encoded like this:
   2820   //
   2821   //     imms    size        S
   2822   //    ssssss    64    UInt(ssssss)
   2823   //    0sssss    32    UInt(sssss)
   2824   //    10ssss    16    UInt(ssss)
   2825   //    110sss     8    UInt(sss)
   2826   //    1110ss     4    UInt(ss)
   2827   //    11110s     2    UInt(s)
   2828   //
   2829   // So we 'or' (-d << 1) with our computed s to form imms.
   2830   *n = out_n;
   2831   *imm_s = ((-d << 1) | (s - 1)) & 0x3f;
   2832   *imm_r = r;
   2833 
   2834   return true;
   2835 }
   2836 
   2837 
   2838 bool Assembler::IsImmConditionalCompare(int64_t immediate) {
   2839   return is_uint5(immediate);
   2840 }
   2841 
   2842 
   2843 bool Assembler::IsImmFP32(float imm) {
   2844   // Valid values will have the form:
   2845   // aBbb.bbbc.defg.h000.0000.0000.0000.0000
   2846   uint32_t bits = float_to_rawbits(imm);
   2847   // bits[19..0] are cleared.
   2848   if ((bits & 0x7ffff) != 0) {
   2849     return false;
   2850   }
   2851 
   2852   // bits[29..25] are all set or all cleared.
   2853   uint32_t b_pattern = (bits >> 16) & 0x3e00;
   2854   if (b_pattern != 0 && b_pattern != 0x3e00) {
   2855     return false;
   2856   }
   2857 
   2858   // bit[30] and bit[29] are opposite.
   2859   if (((bits ^ (bits << 1)) & 0x40000000) == 0) {
   2860     return false;
   2861   }
   2862 
   2863   return true;
   2864 }
   2865 
   2866 
   2867 bool Assembler::IsImmFP64(double imm) {
   2868   // Valid values will have the form:
   2869   // aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
   2870   // 0000.0000.0000.0000.0000.0000.0000.0000
   2871   uint64_t bits = double_to_rawbits(imm);
   2872   // bits[47..0] are cleared.
   2873   if ((bits & 0xffffffffffffL) != 0) {
   2874     return false;
   2875   }
   2876 
   2877   // bits[61..54] are all set or all cleared.
   2878   uint32_t b_pattern = (bits >> 48) & 0x3fc0;
   2879   if (b_pattern != 0 && b_pattern != 0x3fc0) {
   2880     return false;
   2881   }
   2882 
   2883   // bit[62] and bit[61] are opposite.
   2884   if (((bits ^ (bits << 1)) & 0x4000000000000000L) == 0) {
   2885     return false;
   2886   }
   2887 
   2888   return true;
   2889 }
   2890 
   2891 
   2892 void Assembler::GrowBuffer() {
   2893   if (!own_buffer_) FATAL("external code buffer is too small");
   2894 
   2895   // Compute new buffer size.
   2896   CodeDesc desc;  // the new buffer
   2897   if (buffer_size_ < 1 * MB) {
   2898     desc.buffer_size = 2 * buffer_size_;
   2899   } else {
   2900     desc.buffer_size = buffer_size_ + 1 * MB;
   2901   }
   2902   CHECK_GT(desc.buffer_size, 0);  // No overflow.
   2903 
   2904   byte* buffer = reinterpret_cast<byte*>(buffer_);
   2905 
   2906   // Set up new buffer.
   2907   desc.buffer = NewArray<byte>(desc.buffer_size);
   2908   desc.origin = this;
   2909 
   2910   desc.instr_size = pc_offset();
   2911   desc.reloc_size =
   2912       static_cast<int>((buffer + buffer_size_) - reloc_info_writer.pos());
   2913 
   2914   // Copy the data.
   2915   intptr_t pc_delta = desc.buffer - buffer;
   2916   intptr_t rc_delta = (desc.buffer + desc.buffer_size) -
   2917                       (buffer + buffer_size_);
   2918   memmove(desc.buffer, buffer, desc.instr_size);
   2919   memmove(reloc_info_writer.pos() + rc_delta,
   2920           reloc_info_writer.pos(), desc.reloc_size);
   2921 
   2922   // Switch buffers.
   2923   DeleteArray(buffer_);
   2924   buffer_ = desc.buffer;
   2925   buffer_size_ = desc.buffer_size;
   2926   pc_ = reinterpret_cast<byte*>(pc_) + pc_delta;
   2927   reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
   2928                                reloc_info_writer.last_pc() + pc_delta);
   2929 
   2930   // None of our relocation types are pc relative pointing outside the code
   2931   // buffer nor pc absolute pointing inside the code buffer, so there is no need
   2932   // to relocate any emitted relocation entries.
   2933 
   2934   // Relocate internal references.
   2935   for (auto pos : internal_reference_positions_) {
   2936     intptr_t* p = reinterpret_cast<intptr_t*>(buffer_ + pos);
   2937     *p += pc_delta;
   2938   }
   2939 
   2940   // Pending relocation entries are also relative, no need to relocate.
   2941 }
   2942 
   2943 
   2944 void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
   2945   // We do not try to reuse pool constants.
   2946   RelocInfo rinfo(isolate(), reinterpret_cast<byte*>(pc_), rmode, data, NULL);
   2947   if (((rmode >= RelocInfo::COMMENT) &&
   2948        (rmode <= RelocInfo::DEBUG_BREAK_SLOT_AT_TAIL_CALL)) ||
   2949       (rmode == RelocInfo::INTERNAL_REFERENCE) ||
   2950       (rmode == RelocInfo::CONST_POOL) || (rmode == RelocInfo::VENEER_POOL) ||
   2951       (rmode == RelocInfo::DEOPT_SCRIPT_OFFSET) ||
   2952       (rmode == RelocInfo::DEOPT_INLINING_ID) ||
   2953       (rmode == RelocInfo::DEOPT_REASON) || (rmode == RelocInfo::DEOPT_ID) ||
   2954       (rmode == RelocInfo::GENERATOR_CONTINUATION)) {
   2955     // Adjust code for new modes.
   2956     DCHECK(RelocInfo::IsDebugBreakSlot(rmode) || RelocInfo::IsComment(rmode) ||
   2957            RelocInfo::IsDeoptReason(rmode) || RelocInfo::IsDeoptId(rmode) ||
   2958            RelocInfo::IsDeoptPosition(rmode) ||
   2959            RelocInfo::IsInternalReference(rmode) ||
   2960            RelocInfo::IsConstPool(rmode) || RelocInfo::IsVeneerPool(rmode) ||
   2961            RelocInfo::IsGeneratorContinuation(rmode));
   2962     // These modes do not need an entry in the constant pool.
   2963   } else {
   2964     constpool_.RecordEntry(data, rmode);
   2965     // Make sure the constant pool is not emitted in place of the next
   2966     // instruction for which we just recorded relocation info.
   2967     BlockConstPoolFor(1);
   2968   }
   2969 
   2970   if (!RelocInfo::IsNone(rmode)) {
   2971     // Don't record external references unless the heap will be serialized.
   2972     if (rmode == RelocInfo::EXTERNAL_REFERENCE &&
   2973         !serializer_enabled() && !emit_debug_code()) {
   2974       return;
   2975     }
   2976     DCHECK(buffer_space() >= kMaxRelocSize);  // too late to grow buffer here
   2977     if (rmode == RelocInfo::CODE_TARGET_WITH_ID) {
   2978       RelocInfo reloc_info_with_ast_id(isolate(), reinterpret_cast<byte*>(pc_),
   2979                                        rmode, RecordedAstId().ToInt(), NULL);
   2980       ClearRecordedAstId();
   2981       reloc_info_writer.Write(&reloc_info_with_ast_id);
   2982     } else {
   2983       reloc_info_writer.Write(&rinfo);
   2984     }
   2985   }
   2986 }
   2987 
   2988 
   2989 void Assembler::BlockConstPoolFor(int instructions) {
   2990   int pc_limit = pc_offset() + instructions * kInstructionSize;
   2991   if (no_const_pool_before_ < pc_limit) {
   2992     no_const_pool_before_ = pc_limit;
   2993     // Make sure the pool won't be blocked for too long.
   2994     DCHECK(pc_limit < constpool_.MaxPcOffset());
   2995   }
   2996 
   2997   if (next_constant_pool_check_ < no_const_pool_before_) {
   2998     next_constant_pool_check_ = no_const_pool_before_;
   2999   }
   3000 }
   3001 
   3002 
   3003 void Assembler::CheckConstPool(bool force_emit, bool require_jump) {
   3004   // Some short sequence of instruction mustn't be broken up by constant pool
   3005   // emission, such sequences are protected by calls to BlockConstPoolFor and
   3006   // BlockConstPoolScope.
   3007   if (is_const_pool_blocked()) {
   3008     // Something is wrong if emission is forced and blocked at the same time.
   3009     DCHECK(!force_emit);
   3010     return;
   3011   }
   3012 
   3013   // There is nothing to do if there are no pending constant pool entries.
   3014   if (constpool_.IsEmpty())  {
   3015     // Calculate the offset of the next check.
   3016     SetNextConstPoolCheckIn(kCheckConstPoolInterval);
   3017     return;
   3018   }
   3019 
   3020   // We emit a constant pool when:
   3021   //  * requested to do so by parameter force_emit (e.g. after each function).
   3022   //  * the distance to the first instruction accessing the constant pool is
   3023   //    kApproxMaxDistToConstPool or more.
   3024   //  * the number of entries in the pool is kApproxMaxPoolEntryCount or more.
   3025   int dist = constpool_.DistanceToFirstUse();
   3026   int count = constpool_.EntryCount();
   3027   if (!force_emit &&
   3028       (dist < kApproxMaxDistToConstPool) &&
   3029       (count < kApproxMaxPoolEntryCount)) {
   3030     return;
   3031   }
   3032 
   3033 
   3034   // Emit veneers for branches that would go out of range during emission of the
   3035   // constant pool.
   3036   int worst_case_size = constpool_.WorstCaseSize();
   3037   CheckVeneerPool(false, require_jump,
   3038                   kVeneerDistanceMargin + worst_case_size);
   3039 
   3040   // Check that the code buffer is large enough before emitting the constant
   3041   // pool (this includes the gap to the relocation information).
   3042   int needed_space = worst_case_size + kGap + 1 * kInstructionSize;
   3043   while (buffer_space() <= needed_space) {
   3044     GrowBuffer();
   3045   }
   3046 
   3047   Label size_check;
   3048   bind(&size_check);
   3049   constpool_.Emit(require_jump);
   3050   DCHECK(SizeOfCodeGeneratedSince(&size_check) <=
   3051          static_cast<unsigned>(worst_case_size));
   3052 
   3053   // Since a constant pool was just emitted, move the check offset forward by
   3054   // the standard interval.
   3055   SetNextConstPoolCheckIn(kCheckConstPoolInterval);
   3056 }
   3057 
   3058 
   3059 bool Assembler::ShouldEmitVeneer(int max_reachable_pc, int margin) {
   3060   // Account for the branch around the veneers and the guard.
   3061   int protection_offset = 2 * kInstructionSize;
   3062   return pc_offset() > max_reachable_pc - margin - protection_offset -
   3063     static_cast<int>(unresolved_branches_.size() * kMaxVeneerCodeSize);
   3064 }
   3065 
   3066 
   3067 void Assembler::RecordVeneerPool(int location_offset, int size) {
   3068   RelocInfo rinfo(isolate(), buffer_ + location_offset, RelocInfo::VENEER_POOL,
   3069                   static_cast<intptr_t>(size), NULL);
   3070   reloc_info_writer.Write(&rinfo);
   3071 }
   3072 
   3073 
   3074 void Assembler::EmitVeneers(bool force_emit, bool need_protection, int margin) {
   3075   BlockPoolsScope scope(this);
   3076   RecordComment("[ Veneers");
   3077 
   3078   // The exact size of the veneer pool must be recorded (see the comment at the
   3079   // declaration site of RecordConstPool()), but computing the number of
   3080   // veneers that will be generated is not obvious. So instead we remember the
   3081   // current position and will record the size after the pool has been
   3082   // generated.
   3083   Label size_check;
   3084   bind(&size_check);
   3085   int veneer_pool_relocinfo_loc = pc_offset();
   3086 
   3087   Label end;
   3088   if (need_protection) {
   3089     b(&end);
   3090   }
   3091 
   3092   EmitVeneersGuard();
   3093 
   3094   Label veneer_size_check;
   3095 
   3096   std::multimap<int, FarBranchInfo>::iterator it, it_to_delete;
   3097 
   3098   it = unresolved_branches_.begin();
   3099   while (it != unresolved_branches_.end()) {
   3100     if (force_emit || ShouldEmitVeneer(it->first, margin)) {
   3101       Instruction* branch = InstructionAt(it->second.pc_offset_);
   3102       Label* label = it->second.label_;
   3103 
   3104 #ifdef DEBUG
   3105       bind(&veneer_size_check);
   3106 #endif
   3107       // Patch the branch to point to the current position, and emit a branch
   3108       // to the label.
   3109       Instruction* veneer = reinterpret_cast<Instruction*>(pc_);
   3110       RemoveBranchFromLabelLinkChain(branch, label, veneer);
   3111       branch->SetImmPCOffsetTarget(isolate(), veneer);
   3112       b(label);
   3113 #ifdef DEBUG
   3114       DCHECK(SizeOfCodeGeneratedSince(&veneer_size_check) <=
   3115              static_cast<uint64_t>(kMaxVeneerCodeSize));
   3116       veneer_size_check.Unuse();
   3117 #endif
   3118 
   3119       it_to_delete = it++;
   3120       unresolved_branches_.erase(it_to_delete);
   3121     } else {
   3122       ++it;
   3123     }
   3124   }
   3125 
   3126   // Record the veneer pool size.
   3127   int pool_size = static_cast<int>(SizeOfCodeGeneratedSince(&size_check));
   3128   RecordVeneerPool(veneer_pool_relocinfo_loc, pool_size);
   3129 
   3130   if (unresolved_branches_.empty()) {
   3131     next_veneer_pool_check_ = kMaxInt;
   3132   } else {
   3133     next_veneer_pool_check_ =
   3134       unresolved_branches_first_limit() - kVeneerDistanceCheckMargin;
   3135   }
   3136 
   3137   bind(&end);
   3138 
   3139   RecordComment("]");
   3140 }
   3141 
   3142 
   3143 void Assembler::CheckVeneerPool(bool force_emit, bool require_jump,
   3144                                 int margin) {
   3145   // There is nothing to do if there are no pending veneer pool entries.
   3146   if (unresolved_branches_.empty())  {
   3147     DCHECK(next_veneer_pool_check_ == kMaxInt);
   3148     return;
   3149   }
   3150 
   3151   DCHECK(pc_offset() < unresolved_branches_first_limit());
   3152 
   3153   // Some short sequence of instruction mustn't be broken up by veneer pool
   3154   // emission, such sequences are protected by calls to BlockVeneerPoolFor and
   3155   // BlockVeneerPoolScope.
   3156   if (is_veneer_pool_blocked()) {
   3157     DCHECK(!force_emit);
   3158     return;
   3159   }
   3160 
   3161   if (!require_jump) {
   3162     // Prefer emitting veneers protected by an existing instruction.
   3163     margin *= kVeneerNoProtectionFactor;
   3164   }
   3165   if (force_emit || ShouldEmitVeneers(margin)) {
   3166     EmitVeneers(force_emit, require_jump, margin);
   3167   } else {
   3168     next_veneer_pool_check_ =
   3169       unresolved_branches_first_limit() - kVeneerDistanceCheckMargin;
   3170   }
   3171 }
   3172 
   3173 
   3174 int Assembler::buffer_space() const {
   3175   return static_cast<int>(reloc_info_writer.pos() -
   3176                           reinterpret_cast<byte*>(pc_));
   3177 }
   3178 
   3179 
   3180 void Assembler::RecordConstPool(int size) {
   3181   // We only need this for debugger support, to correctly compute offsets in the
   3182   // code.
   3183   RecordRelocInfo(RelocInfo::CONST_POOL, static_cast<intptr_t>(size));
   3184 }
   3185 
   3186 
   3187 void PatchingAssembler::PatchAdrFar(int64_t target_offset) {
   3188   // The code at the current instruction should be:
   3189   //   adr  rd, 0
   3190   //   nop  (adr_far)
   3191   //   nop  (adr_far)
   3192   //   movz scratch, 0
   3193 
   3194   // Verify the expected code.
   3195   Instruction* expected_adr = InstructionAt(0);
   3196   CHECK(expected_adr->IsAdr() && (expected_adr->ImmPCRel() == 0));
   3197   int rd_code = expected_adr->Rd();
   3198   for (int i = 0; i < kAdrFarPatchableNNops; ++i) {
   3199     CHECK(InstructionAt((i + 1) * kInstructionSize)->IsNop(ADR_FAR_NOP));
   3200   }
   3201   Instruction* expected_movz =
   3202       InstructionAt((kAdrFarPatchableNInstrs - 1) * kInstructionSize);
   3203   CHECK(expected_movz->IsMovz() &&
   3204         (expected_movz->ImmMoveWide() == 0) &&
   3205         (expected_movz->ShiftMoveWide() == 0));
   3206   int scratch_code = expected_movz->Rd();
   3207 
   3208   // Patch to load the correct address.
   3209   Register rd = Register::XRegFromCode(rd_code);
   3210   Register scratch = Register::XRegFromCode(scratch_code);
   3211   // Addresses are only 48 bits.
   3212   adr(rd, target_offset & 0xFFFF);
   3213   movz(scratch, (target_offset >> 16) & 0xFFFF, 16);
   3214   movk(scratch, (target_offset >> 32) & 0xFFFF, 32);
   3215   DCHECK((target_offset >> 48) == 0);
   3216   add(rd, rd, scratch);
   3217 }
   3218 
   3219 
   3220 }  // namespace internal
   3221 }  // namespace v8
   3222 
   3223 #endif  // V8_TARGET_ARCH_ARM64
   3224