Home | History | Annotate | Download | only in core
      1 /*
      2  * Copyright 2006 The Android Open Source Project
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #include "SkGeometry.h"
      9 #include "SkMatrix.h"
     10 #include "SkNx.h"
     11 
     12 static SkVector to_vector(const Sk2s& x) {
     13     SkVector vector;
     14     x.store(&vector);
     15     return vector;
     16 }
     17 
     18 ////////////////////////////////////////////////////////////////////////
     19 
     20 static int is_not_monotonic(SkScalar a, SkScalar b, SkScalar c) {
     21     SkScalar ab = a - b;
     22     SkScalar bc = b - c;
     23     if (ab < 0) {
     24         bc = -bc;
     25     }
     26     return ab == 0 || bc < 0;
     27 }
     28 
     29 ////////////////////////////////////////////////////////////////////////
     30 
     31 static bool is_unit_interval(SkScalar x) {
     32     return x > 0 && x < SK_Scalar1;
     33 }
     34 
     35 static int valid_unit_divide(SkScalar numer, SkScalar denom, SkScalar* ratio) {
     36     SkASSERT(ratio);
     37 
     38     if (numer < 0) {
     39         numer = -numer;
     40         denom = -denom;
     41     }
     42 
     43     if (denom == 0 || numer == 0 || numer >= denom) {
     44         return 0;
     45     }
     46 
     47     SkScalar r = numer / denom;
     48     if (SkScalarIsNaN(r)) {
     49         return 0;
     50     }
     51     SkASSERTF(r >= 0 && r < SK_Scalar1, "numer %f, denom %f, r %f", numer, denom, r);
     52     if (r == 0) { // catch underflow if numer <<<< denom
     53         return 0;
     54     }
     55     *ratio = r;
     56     return 1;
     57 }
     58 
     59 /** From Numerical Recipes in C.
     60 
     61     Q = -1/2 (B + sign(B) sqrt[B*B - 4*A*C])
     62     x1 = Q / A
     63     x2 = C / Q
     64 */
     65 int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]) {
     66     SkASSERT(roots);
     67 
     68     if (A == 0) {
     69         return valid_unit_divide(-C, B, roots);
     70     }
     71 
     72     SkScalar* r = roots;
     73 
     74     SkScalar R = B*B - 4*A*C;
     75     if (R < 0 || !SkScalarIsFinite(R)) {  // complex roots
     76         // if R is infinite, it's possible that it may still produce
     77         // useful results if the operation was repeated in doubles
     78         // the flipside is determining if the more precise answer
     79         // isn't useful because surrounding machinery (e.g., subtracting
     80         // the axis offset from C) already discards the extra precision
     81         // more investigation and unit tests required...
     82         return 0;
     83     }
     84     R = SkScalarSqrt(R);
     85 
     86     SkScalar Q = (B < 0) ? -(B-R)/2 : -(B+R)/2;
     87     r += valid_unit_divide(Q, A, r);
     88     r += valid_unit_divide(C, Q, r);
     89     if (r - roots == 2) {
     90         if (roots[0] > roots[1])
     91             SkTSwap<SkScalar>(roots[0], roots[1]);
     92         else if (roots[0] == roots[1])  // nearly-equal?
     93             r -= 1; // skip the double root
     94     }
     95     return (int)(r - roots);
     96 }
     97 
     98 ///////////////////////////////////////////////////////////////////////////////
     99 ///////////////////////////////////////////////////////////////////////////////
    100 
    101 void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent) {
    102     SkASSERT(src);
    103     SkASSERT(t >= 0 && t <= SK_Scalar1);
    104 
    105     if (pt) {
    106         *pt = SkEvalQuadAt(src, t);
    107     }
    108     if (tangent) {
    109         *tangent = SkEvalQuadTangentAt(src, t);
    110     }
    111 }
    112 
    113 SkPoint SkEvalQuadAt(const SkPoint src[3], SkScalar t) {
    114     return to_point(SkQuadCoeff(src).eval(t));
    115 }
    116 
    117 SkVector SkEvalQuadTangentAt(const SkPoint src[3], SkScalar t) {
    118     // The derivative equation is 2(b - a +(a - 2b +c)t). This returns a
    119     // zero tangent vector when t is 0 or 1, and the control point is equal
    120     // to the end point. In this case, use the quad end points to compute the tangent.
    121     if ((t == 0 && src[0] == src[1]) || (t == 1 && src[1] == src[2])) {
    122         return src[2] - src[0];
    123     }
    124     SkASSERT(src);
    125     SkASSERT(t >= 0 && t <= SK_Scalar1);
    126 
    127     Sk2s P0 = from_point(src[0]);
    128     Sk2s P1 = from_point(src[1]);
    129     Sk2s P2 = from_point(src[2]);
    130 
    131     Sk2s B = P1 - P0;
    132     Sk2s A = P2 - P1 - B;
    133     Sk2s T = A * Sk2s(t) + B;
    134 
    135     return to_vector(T + T);
    136 }
    137 
    138 static inline Sk2s interp(const Sk2s& v0, const Sk2s& v1, const Sk2s& t) {
    139     return v0 + (v1 - v0) * t;
    140 }
    141 
    142 void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t) {
    143     SkASSERT(t > 0 && t < SK_Scalar1);
    144 
    145     Sk2s p0 = from_point(src[0]);
    146     Sk2s p1 = from_point(src[1]);
    147     Sk2s p2 = from_point(src[2]);
    148     Sk2s tt(t);
    149 
    150     Sk2s p01 = interp(p0, p1, tt);
    151     Sk2s p12 = interp(p1, p2, tt);
    152 
    153     dst[0] = to_point(p0);
    154     dst[1] = to_point(p01);
    155     dst[2] = to_point(interp(p01, p12, tt));
    156     dst[3] = to_point(p12);
    157     dst[4] = to_point(p2);
    158 }
    159 
    160 void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]) {
    161     SkChopQuadAt(src, dst, 0.5f);
    162 }
    163 
    164 /** Quad'(t) = At + B, where
    165     A = 2(a - 2b + c)
    166     B = 2(b - a)
    167     Solve for t, only if it fits between 0 < t < 1
    168 */
    169 int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValue[1]) {
    170     /*  At + B == 0
    171         t = -B / A
    172     */
    173     return valid_unit_divide(a - b, a - b - b + c, tValue);
    174 }
    175 
    176 static inline void flatten_double_quad_extrema(SkScalar coords[14]) {
    177     coords[2] = coords[6] = coords[4];
    178 }
    179 
    180 /*  Returns 0 for 1 quad, and 1 for two quads, either way the answer is
    181  stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
    182  */
    183 int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]) {
    184     SkASSERT(src);
    185     SkASSERT(dst);
    186 
    187     SkScalar a = src[0].fY;
    188     SkScalar b = src[1].fY;
    189     SkScalar c = src[2].fY;
    190 
    191     if (is_not_monotonic(a, b, c)) {
    192         SkScalar    tValue;
    193         if (valid_unit_divide(a - b, a - b - b + c, &tValue)) {
    194             SkChopQuadAt(src, dst, tValue);
    195             flatten_double_quad_extrema(&dst[0].fY);
    196             return 1;
    197         }
    198         // if we get here, we need to force dst to be monotonic, even though
    199         // we couldn't compute a unit_divide value (probably underflow).
    200         b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
    201     }
    202     dst[0].set(src[0].fX, a);
    203     dst[1].set(src[1].fX, b);
    204     dst[2].set(src[2].fX, c);
    205     return 0;
    206 }
    207 
    208 /*  Returns 0 for 1 quad, and 1 for two quads, either way the answer is
    209     stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
    210  */
    211 int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]) {
    212     SkASSERT(src);
    213     SkASSERT(dst);
    214 
    215     SkScalar a = src[0].fX;
    216     SkScalar b = src[1].fX;
    217     SkScalar c = src[2].fX;
    218 
    219     if (is_not_monotonic(a, b, c)) {
    220         SkScalar tValue;
    221         if (valid_unit_divide(a - b, a - b - b + c, &tValue)) {
    222             SkChopQuadAt(src, dst, tValue);
    223             flatten_double_quad_extrema(&dst[0].fX);
    224             return 1;
    225         }
    226         // if we get here, we need to force dst to be monotonic, even though
    227         // we couldn't compute a unit_divide value (probably underflow).
    228         b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
    229     }
    230     dst[0].set(a, src[0].fY);
    231     dst[1].set(b, src[1].fY);
    232     dst[2].set(c, src[2].fY);
    233     return 0;
    234 }
    235 
    236 //  F(t)    = a (1 - t) ^ 2 + 2 b t (1 - t) + c t ^ 2
    237 //  F'(t)   = 2 (b - a) + 2 (a - 2b + c) t
    238 //  F''(t)  = 2 (a - 2b + c)
    239 //
    240 //  A = 2 (b - a)
    241 //  B = 2 (a - 2b + c)
    242 //
    243 //  Maximum curvature for a quadratic means solving
    244 //  Fx' Fx'' + Fy' Fy'' = 0
    245 //
    246 //  t = - (Ax Bx + Ay By) / (Bx ^ 2 + By ^ 2)
    247 //
    248 SkScalar SkFindQuadMaxCurvature(const SkPoint src[3]) {
    249     SkScalar    Ax = src[1].fX - src[0].fX;
    250     SkScalar    Ay = src[1].fY - src[0].fY;
    251     SkScalar    Bx = src[0].fX - src[1].fX - src[1].fX + src[2].fX;
    252     SkScalar    By = src[0].fY - src[1].fY - src[1].fY + src[2].fY;
    253     SkScalar    t = 0;  // 0 means don't chop
    254 
    255     (void)valid_unit_divide(-(Ax * Bx + Ay * By), Bx * Bx + By * By, &t);
    256     return t;
    257 }
    258 
    259 int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]) {
    260     SkScalar t = SkFindQuadMaxCurvature(src);
    261     if (t == 0) {
    262         memcpy(dst, src, 3 * sizeof(SkPoint));
    263         return 1;
    264     } else {
    265         SkChopQuadAt(src, dst, t);
    266         return 2;
    267     }
    268 }
    269 
    270 void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]) {
    271     Sk2s scale(SkDoubleToScalar(2.0 / 3.0));
    272     Sk2s s0 = from_point(src[0]);
    273     Sk2s s1 = from_point(src[1]);
    274     Sk2s s2 = from_point(src[2]);
    275 
    276     dst[0] = src[0];
    277     dst[1] = to_point(s0 + (s1 - s0) * scale);
    278     dst[2] = to_point(s2 + (s1 - s2) * scale);
    279     dst[3] = src[2];
    280 }
    281 
    282 //////////////////////////////////////////////////////////////////////////////
    283 ///// CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS /////
    284 //////////////////////////////////////////////////////////////////////////////
    285 
    286 static SkVector eval_cubic_derivative(const SkPoint src[4], SkScalar t) {
    287     SkQuadCoeff coeff;
    288     Sk2s P0 = from_point(src[0]);
    289     Sk2s P1 = from_point(src[1]);
    290     Sk2s P2 = from_point(src[2]);
    291     Sk2s P3 = from_point(src[3]);
    292 
    293     coeff.fA = P3 + Sk2s(3) * (P1 - P2) - P0;
    294     coeff.fB = times_2(P2 - times_2(P1) + P0);
    295     coeff.fC = P1 - P0;
    296     return to_vector(coeff.eval(t));
    297 }
    298 
    299 static SkVector eval_cubic_2ndDerivative(const SkPoint src[4], SkScalar t) {
    300     Sk2s P0 = from_point(src[0]);
    301     Sk2s P1 = from_point(src[1]);
    302     Sk2s P2 = from_point(src[2]);
    303     Sk2s P3 = from_point(src[3]);
    304     Sk2s A = P3 + Sk2s(3) * (P1 - P2) - P0;
    305     Sk2s B = P2 - times_2(P1) + P0;
    306 
    307     return to_vector(A * Sk2s(t) + B);
    308 }
    309 
    310 void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* loc,
    311                    SkVector* tangent, SkVector* curvature) {
    312     SkASSERT(src);
    313     SkASSERT(t >= 0 && t <= SK_Scalar1);
    314 
    315     if (loc) {
    316         *loc = to_point(SkCubicCoeff(src).eval(t));
    317     }
    318     if (tangent) {
    319         // The derivative equation returns a zero tangent vector when t is 0 or 1, and the
    320         // adjacent control point is equal to the end point. In this case, use the
    321         // next control point or the end points to compute the tangent.
    322         if ((t == 0 && src[0] == src[1]) || (t == 1 && src[2] == src[3])) {
    323             if (t == 0) {
    324                 *tangent = src[2] - src[0];
    325             } else {
    326                 *tangent = src[3] - src[1];
    327             }
    328             if (!tangent->fX && !tangent->fY) {
    329                 *tangent = src[3] - src[0];
    330             }
    331         } else {
    332             *tangent = eval_cubic_derivative(src, t);
    333         }
    334     }
    335     if (curvature) {
    336         *curvature = eval_cubic_2ndDerivative(src, t);
    337     }
    338 }
    339 
    340 /** Cubic'(t) = At^2 + Bt + C, where
    341     A = 3(-a + 3(b - c) + d)
    342     B = 6(a - 2b + c)
    343     C = 3(b - a)
    344     Solve for t, keeping only those that fit betwee 0 < t < 1
    345 */
    346 int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d,
    347                        SkScalar tValues[2]) {
    348     // we divide A,B,C by 3 to simplify
    349     SkScalar A = d - a + 3*(b - c);
    350     SkScalar B = 2*(a - b - b + c);
    351     SkScalar C = b - a;
    352 
    353     return SkFindUnitQuadRoots(A, B, C, tValues);
    354 }
    355 
    356 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t) {
    357     SkASSERT(t > 0 && t < SK_Scalar1);
    358 
    359     Sk2s    p0 = from_point(src[0]);
    360     Sk2s    p1 = from_point(src[1]);
    361     Sk2s    p2 = from_point(src[2]);
    362     Sk2s    p3 = from_point(src[3]);
    363     Sk2s    tt(t);
    364 
    365     Sk2s    ab = interp(p0, p1, tt);
    366     Sk2s    bc = interp(p1, p2, tt);
    367     Sk2s    cd = interp(p2, p3, tt);
    368     Sk2s    abc = interp(ab, bc, tt);
    369     Sk2s    bcd = interp(bc, cd, tt);
    370     Sk2s    abcd = interp(abc, bcd, tt);
    371 
    372     dst[0] = src[0];
    373     dst[1] = to_point(ab);
    374     dst[2] = to_point(abc);
    375     dst[3] = to_point(abcd);
    376     dst[4] = to_point(bcd);
    377     dst[5] = to_point(cd);
    378     dst[6] = src[3];
    379 }
    380 
    381 /*  http://code.google.com/p/skia/issues/detail?id=32
    382 
    383     This test code would fail when we didn't check the return result of
    384     valid_unit_divide in SkChopCubicAt(... tValues[], int roots). The reason is
    385     that after the first chop, the parameters to valid_unit_divide are equal
    386     (thanks to finite float precision and rounding in the subtracts). Thus
    387     even though the 2nd tValue looks < 1.0, after we renormalize it, we end
    388     up with 1.0, hence the need to check and just return the last cubic as
    389     a degenerate clump of 4 points in the sampe place.
    390 
    391     static void test_cubic() {
    392         SkPoint src[4] = {
    393             { 556.25000, 523.03003 },
    394             { 556.23999, 522.96002 },
    395             { 556.21997, 522.89001 },
    396             { 556.21997, 522.82001 }
    397         };
    398         SkPoint dst[10];
    399         SkScalar tval[] = { 0.33333334f, 0.99999994f };
    400         SkChopCubicAt(src, dst, tval, 2);
    401     }
    402  */
    403 
    404 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[],
    405                    const SkScalar tValues[], int roots) {
    406 #ifdef SK_DEBUG
    407     {
    408         for (int i = 0; i < roots - 1; i++)
    409         {
    410             SkASSERT(is_unit_interval(tValues[i]));
    411             SkASSERT(is_unit_interval(tValues[i+1]));
    412             SkASSERT(tValues[i] < tValues[i+1]);
    413         }
    414     }
    415 #endif
    416 
    417     if (dst) {
    418         if (roots == 0) { // nothing to chop
    419             memcpy(dst, src, 4*sizeof(SkPoint));
    420         } else {
    421             SkScalar    t = tValues[0];
    422             SkPoint     tmp[4];
    423 
    424             for (int i = 0; i < roots; i++) {
    425                 SkChopCubicAt(src, dst, t);
    426                 if (i == roots - 1) {
    427                     break;
    428                 }
    429 
    430                 dst += 3;
    431                 // have src point to the remaining cubic (after the chop)
    432                 memcpy(tmp, dst, 4 * sizeof(SkPoint));
    433                 src = tmp;
    434 
    435                 // watch out in case the renormalized t isn't in range
    436                 if (!valid_unit_divide(tValues[i+1] - tValues[i],
    437                                        SK_Scalar1 - tValues[i], &t)) {
    438                     // if we can't, just create a degenerate cubic
    439                     dst[4] = dst[5] = dst[6] = src[3];
    440                     break;
    441                 }
    442             }
    443         }
    444     }
    445 }
    446 
    447 void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]) {
    448     SkChopCubicAt(src, dst, 0.5f);
    449 }
    450 
    451 static void flatten_double_cubic_extrema(SkScalar coords[14]) {
    452     coords[4] = coords[8] = coords[6];
    453 }
    454 
    455 /** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
    456     the resulting beziers are monotonic in Y. This is called by the scan
    457     converter.  Depending on what is returned, dst[] is treated as follows:
    458     0   dst[0..3] is the original cubic
    459     1   dst[0..3] and dst[3..6] are the two new cubics
    460     2   dst[0..3], dst[3..6], dst[6..9] are the three new cubics
    461     If dst == null, it is ignored and only the count is returned.
    462 */
    463 int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]) {
    464     SkScalar    tValues[2];
    465     int         roots = SkFindCubicExtrema(src[0].fY, src[1].fY, src[2].fY,
    466                                            src[3].fY, tValues);
    467 
    468     SkChopCubicAt(src, dst, tValues, roots);
    469     if (dst && roots > 0) {
    470         // we do some cleanup to ensure our Y extrema are flat
    471         flatten_double_cubic_extrema(&dst[0].fY);
    472         if (roots == 2) {
    473             flatten_double_cubic_extrema(&dst[3].fY);
    474         }
    475     }
    476     return roots;
    477 }
    478 
    479 int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]) {
    480     SkScalar    tValues[2];
    481     int         roots = SkFindCubicExtrema(src[0].fX, src[1].fX, src[2].fX,
    482                                            src[3].fX, tValues);
    483 
    484     SkChopCubicAt(src, dst, tValues, roots);
    485     if (dst && roots > 0) {
    486         // we do some cleanup to ensure our Y extrema are flat
    487         flatten_double_cubic_extrema(&dst[0].fX);
    488         if (roots == 2) {
    489             flatten_double_cubic_extrema(&dst[3].fX);
    490         }
    491     }
    492     return roots;
    493 }
    494 
    495 /** http://www.faculty.idc.ac.il/arik/quality/appendixA.html
    496 
    497     Inflection means that curvature is zero.
    498     Curvature is [F' x F''] / [F'^3]
    499     So we solve F'x X F''y - F'y X F''y == 0
    500     After some canceling of the cubic term, we get
    501     A = b - a
    502     B = c - 2b + a
    503     C = d - 3c + 3b - a
    504     (BxCy - ByCx)t^2 + (AxCy - AyCx)t + AxBy - AyBx == 0
    505 */
    506 int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[]) {
    507     SkScalar    Ax = src[1].fX - src[0].fX;
    508     SkScalar    Ay = src[1].fY - src[0].fY;
    509     SkScalar    Bx = src[2].fX - 2 * src[1].fX + src[0].fX;
    510     SkScalar    By = src[2].fY - 2 * src[1].fY + src[0].fY;
    511     SkScalar    Cx = src[3].fX + 3 * (src[1].fX - src[2].fX) - src[0].fX;
    512     SkScalar    Cy = src[3].fY + 3 * (src[1].fY - src[2].fY) - src[0].fY;
    513 
    514     return SkFindUnitQuadRoots(Bx*Cy - By*Cx,
    515                                Ax*Cy - Ay*Cx,
    516                                Ax*By - Ay*Bx,
    517                                tValues);
    518 }
    519 
    520 int SkChopCubicAtInflections(const SkPoint src[], SkPoint dst[10]) {
    521     SkScalar    tValues[2];
    522     int         count = SkFindCubicInflections(src, tValues);
    523 
    524     if (dst) {
    525         if (count == 0) {
    526             memcpy(dst, src, 4 * sizeof(SkPoint));
    527         } else {
    528             SkChopCubicAt(src, dst, tValues, count);
    529         }
    530     }
    531     return count + 1;
    532 }
    533 
    534 // See http://http.developer.nvidia.com/GPUGems3/gpugems3_ch25.html (from the book GPU Gems 3)
    535 // discr(I) = d0^2 * (3*d1^2 - 4*d0*d2)
    536 // Classification:
    537 // discr(I) > 0        Serpentine
    538 // discr(I) = 0        Cusp
    539 // discr(I) < 0        Loop
    540 // d0 = d1 = 0         Quadratic
    541 // d0 = d1 = d2 = 0    Line
    542 // p0 = p1 = p2 = p3   Point
    543 static SkCubicType classify_cubic(const SkPoint p[4], const SkScalar d[3]) {
    544     if (p[0] == p[1] && p[0] == p[2] && p[0] == p[3]) {
    545         return kPoint_SkCubicType;
    546     }
    547     const SkScalar discr = d[0] * d[0] * (3.f * d[1] * d[1] - 4.f * d[0] * d[2]);
    548     if (discr > SK_ScalarNearlyZero) {
    549         return kSerpentine_SkCubicType;
    550     } else if (discr < -SK_ScalarNearlyZero) {
    551         return kLoop_SkCubicType;
    552     } else {
    553         if (SkScalarAbs(d[0]) < SK_ScalarNearlyZero && SkScalarAbs(d[1]) < SK_ScalarNearlyZero) {
    554             return ((SkScalarAbs(d[2]) < SK_ScalarNearlyZero) ? kLine_SkCubicType
    555                                                               : kQuadratic_SkCubicType);
    556         } else {
    557             return kCusp_SkCubicType;
    558         }
    559     }
    560 }
    561 
    562 // Assumes the third component of points is 1.
    563 // Calcs p0 . (p1 x p2)
    564 static SkScalar calc_dot_cross_cubic(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2) {
    565     const SkScalar xComp = p0.fX * (p1.fY - p2.fY);
    566     const SkScalar yComp = p0.fY * (p2.fX - p1.fX);
    567     const SkScalar wComp = p1.fX * p2.fY - p1.fY * p2.fX;
    568     return (xComp + yComp + wComp);
    569 }
    570 
    571 // Calc coefficients of I(s,t) where roots of I are inflection points of curve
    572 // I(s,t) = t*(3*d0*s^2 - 3*d1*s*t + d2*t^2)
    573 // d0 = a1 - 2*a2+3*a3
    574 // d1 = -a2 + 3*a3
    575 // d2 = 3*a3
    576 // a1 = p0 . (p3 x p2)
    577 // a2 = p1 . (p0 x p3)
    578 // a3 = p2 . (p1 x p0)
    579 // Places the values of d1, d2, d3 in array d passed in
    580 static void calc_cubic_inflection_func(const SkPoint p[4], SkScalar d[3]) {
    581     SkScalar a1 = calc_dot_cross_cubic(p[0], p[3], p[2]);
    582     SkScalar a2 = calc_dot_cross_cubic(p[1], p[0], p[3]);
    583     SkScalar a3 = calc_dot_cross_cubic(p[2], p[1], p[0]);
    584 
    585     // need to scale a's or values in later calculations will grow to high
    586     SkScalar max = SkScalarAbs(a1);
    587     max = SkMaxScalar(max, SkScalarAbs(a2));
    588     max = SkMaxScalar(max, SkScalarAbs(a3));
    589     max = 1.f/max;
    590     a1 = a1 * max;
    591     a2 = a2 * max;
    592     a3 = a3 * max;
    593 
    594     d[2] = 3.f * a3;
    595     d[1] = d[2] - a2;
    596     d[0] = d[1] - a2 + a1;
    597 }
    598 
    599 SkCubicType SkClassifyCubic(const SkPoint src[4], SkScalar d[3]) {
    600     calc_cubic_inflection_func(src, d);
    601     return classify_cubic(src, d);
    602 }
    603 
    604 template <typename T> void bubble_sort(T array[], int count) {
    605     for (int i = count - 1; i > 0; --i)
    606         for (int j = i; j > 0; --j)
    607             if (array[j] < array[j-1])
    608             {
    609                 T   tmp(array[j]);
    610                 array[j] = array[j-1];
    611                 array[j-1] = tmp;
    612             }
    613 }
    614 
    615 /**
    616  *  Given an array and count, remove all pair-wise duplicates from the array,
    617  *  keeping the existing sorting, and return the new count
    618  */
    619 static int collaps_duplicates(SkScalar array[], int count) {
    620     for (int n = count; n > 1; --n) {
    621         if (array[0] == array[1]) {
    622             for (int i = 1; i < n; ++i) {
    623                 array[i - 1] = array[i];
    624             }
    625             count -= 1;
    626         } else {
    627             array += 1;
    628         }
    629     }
    630     return count;
    631 }
    632 
    633 #ifdef SK_DEBUG
    634 
    635 #define TEST_COLLAPS_ENTRY(array)   array, SK_ARRAY_COUNT(array)
    636 
    637 static void test_collaps_duplicates() {
    638     static bool gOnce;
    639     if (gOnce) { return; }
    640     gOnce = true;
    641     const SkScalar src0[] = { 0 };
    642     const SkScalar src1[] = { 0, 0 };
    643     const SkScalar src2[] = { 0, 1 };
    644     const SkScalar src3[] = { 0, 0, 0 };
    645     const SkScalar src4[] = { 0, 0, 1 };
    646     const SkScalar src5[] = { 0, 1, 1 };
    647     const SkScalar src6[] = { 0, 1, 2 };
    648     const struct {
    649         const SkScalar* fData;
    650         int fCount;
    651         int fCollapsedCount;
    652     } data[] = {
    653         { TEST_COLLAPS_ENTRY(src0), 1 },
    654         { TEST_COLLAPS_ENTRY(src1), 1 },
    655         { TEST_COLLAPS_ENTRY(src2), 2 },
    656         { TEST_COLLAPS_ENTRY(src3), 1 },
    657         { TEST_COLLAPS_ENTRY(src4), 2 },
    658         { TEST_COLLAPS_ENTRY(src5), 2 },
    659         { TEST_COLLAPS_ENTRY(src6), 3 },
    660     };
    661     for (size_t i = 0; i < SK_ARRAY_COUNT(data); ++i) {
    662         SkScalar dst[3];
    663         memcpy(dst, data[i].fData, data[i].fCount * sizeof(dst[0]));
    664         int count = collaps_duplicates(dst, data[i].fCount);
    665         SkASSERT(data[i].fCollapsedCount == count);
    666         for (int j = 1; j < count; ++j) {
    667             SkASSERT(dst[j-1] < dst[j]);
    668         }
    669     }
    670 }
    671 #endif
    672 
    673 static SkScalar SkScalarCubeRoot(SkScalar x) {
    674     return SkScalarPow(x, 0.3333333f);
    675 }
    676 
    677 /*  Solve coeff(t) == 0, returning the number of roots that
    678     lie withing 0 < t < 1.
    679     coeff[0]t^3 + coeff[1]t^2 + coeff[2]t + coeff[3]
    680 
    681     Eliminates repeated roots (so that all tValues are distinct, and are always
    682     in increasing order.
    683 */
    684 static int solve_cubic_poly(const SkScalar coeff[4], SkScalar tValues[3]) {
    685     if (SkScalarNearlyZero(coeff[0])) {  // we're just a quadratic
    686         return SkFindUnitQuadRoots(coeff[1], coeff[2], coeff[3], tValues);
    687     }
    688 
    689     SkScalar a, b, c, Q, R;
    690 
    691     {
    692         SkASSERT(coeff[0] != 0);
    693 
    694         SkScalar inva = SkScalarInvert(coeff[0]);
    695         a = coeff[1] * inva;
    696         b = coeff[2] * inva;
    697         c = coeff[3] * inva;
    698     }
    699     Q = (a*a - b*3) / 9;
    700     R = (2*a*a*a - 9*a*b + 27*c) / 54;
    701 
    702     SkScalar Q3 = Q * Q * Q;
    703     SkScalar R2MinusQ3 = R * R - Q3;
    704     SkScalar adiv3 = a / 3;
    705 
    706     SkScalar*   roots = tValues;
    707     SkScalar    r;
    708 
    709     if (R2MinusQ3 < 0) { // we have 3 real roots
    710         // the divide/root can, due to finite precisions, be slightly outside of -1...1
    711         SkScalar theta = SkScalarACos(SkScalarPin(R / SkScalarSqrt(Q3), -1, 1));
    712         SkScalar neg2RootQ = -2 * SkScalarSqrt(Q);
    713 
    714         r = neg2RootQ * SkScalarCos(theta/3) - adiv3;
    715         if (is_unit_interval(r)) {
    716             *roots++ = r;
    717         }
    718         r = neg2RootQ * SkScalarCos((theta + 2*SK_ScalarPI)/3) - adiv3;
    719         if (is_unit_interval(r)) {
    720             *roots++ = r;
    721         }
    722         r = neg2RootQ * SkScalarCos((theta - 2*SK_ScalarPI)/3) - adiv3;
    723         if (is_unit_interval(r)) {
    724             *roots++ = r;
    725         }
    726         SkDEBUGCODE(test_collaps_duplicates();)
    727 
    728         // now sort the roots
    729         int count = (int)(roots - tValues);
    730         SkASSERT((unsigned)count <= 3);
    731         bubble_sort(tValues, count);
    732         count = collaps_duplicates(tValues, count);
    733         roots = tValues + count;    // so we compute the proper count below
    734     } else {              // we have 1 real root
    735         SkScalar A = SkScalarAbs(R) + SkScalarSqrt(R2MinusQ3);
    736         A = SkScalarCubeRoot(A);
    737         if (R > 0) {
    738             A = -A;
    739         }
    740         if (A != 0) {
    741             A += Q / A;
    742         }
    743         r = A - adiv3;
    744         if (is_unit_interval(r)) {
    745             *roots++ = r;
    746         }
    747     }
    748 
    749     return (int)(roots - tValues);
    750 }
    751 
    752 /*  Looking for F' dot F'' == 0
    753 
    754     A = b - a
    755     B = c - 2b + a
    756     C = d - 3c + 3b - a
    757 
    758     F' = 3Ct^2 + 6Bt + 3A
    759     F'' = 6Ct + 6B
    760 
    761     F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
    762 */
    763 static void formulate_F1DotF2(const SkScalar src[], SkScalar coeff[4]) {
    764     SkScalar    a = src[2] - src[0];
    765     SkScalar    b = src[4] - 2 * src[2] + src[0];
    766     SkScalar    c = src[6] + 3 * (src[2] - src[4]) - src[0];
    767 
    768     coeff[0] = c * c;
    769     coeff[1] = 3 * b * c;
    770     coeff[2] = 2 * b * b + c * a;
    771     coeff[3] = a * b;
    772 }
    773 
    774 /*  Looking for F' dot F'' == 0
    775 
    776     A = b - a
    777     B = c - 2b + a
    778     C = d - 3c + 3b - a
    779 
    780     F' = 3Ct^2 + 6Bt + 3A
    781     F'' = 6Ct + 6B
    782 
    783     F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
    784 */
    785 int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]) {
    786     SkScalar coeffX[4], coeffY[4];
    787     int      i;
    788 
    789     formulate_F1DotF2(&src[0].fX, coeffX);
    790     formulate_F1DotF2(&src[0].fY, coeffY);
    791 
    792     for (i = 0; i < 4; i++) {
    793         coeffX[i] += coeffY[i];
    794     }
    795 
    796     SkScalar    t[3];
    797     int         count = solve_cubic_poly(coeffX, t);
    798     int         maxCount = 0;
    799 
    800     // now remove extrema where the curvature is zero (mins)
    801     // !!!! need a test for this !!!!
    802     for (i = 0; i < count; i++) {
    803         // if (not_min_curvature())
    804         if (t[i] > 0 && t[i] < SK_Scalar1) {
    805             tValues[maxCount++] = t[i];
    806         }
    807     }
    808     return maxCount;
    809 }
    810 
    811 int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13],
    812                               SkScalar tValues[3]) {
    813     SkScalar    t_storage[3];
    814 
    815     if (tValues == nullptr) {
    816         tValues = t_storage;
    817     }
    818 
    819     int count = SkFindCubicMaxCurvature(src, tValues);
    820 
    821     if (dst) {
    822         if (count == 0) {
    823             memcpy(dst, src, 4 * sizeof(SkPoint));
    824         } else {
    825             SkChopCubicAt(src, dst, tValues, count);
    826         }
    827     }
    828     return count + 1;
    829 }
    830 
    831 #include "../pathops/SkPathOpsCubic.h"
    832 
    833 typedef int (SkDCubic::*InterceptProc)(double intercept, double roots[3]) const;
    834 
    835 static bool cubic_dchop_at_intercept(const SkPoint src[4], SkScalar intercept, SkPoint dst[7],
    836                                      InterceptProc method) {
    837     SkDCubic cubic;
    838     double roots[3];
    839     int count = (cubic.set(src).*method)(intercept, roots);
    840     if (count > 0) {
    841         SkDCubicPair pair = cubic.chopAt(roots[0]);
    842         for (int i = 0; i < 7; ++i) {
    843             dst[i] = pair.pts[i].asSkPoint();
    844         }
    845         return true;
    846     }
    847     return false;
    848 }
    849 
    850 bool SkChopMonoCubicAtY(SkPoint src[4], SkScalar y, SkPoint dst[7]) {
    851     return cubic_dchop_at_intercept(src, y, dst, &SkDCubic::horizontalIntersect);
    852 }
    853 
    854 bool SkChopMonoCubicAtX(SkPoint src[4], SkScalar x, SkPoint dst[7]) {
    855     return cubic_dchop_at_intercept(src, x, dst, &SkDCubic::verticalIntersect);
    856 }
    857 
    858 ///////////////////////////////////////////////////////////////////////////////
    859 //
    860 // NURB representation for conics.  Helpful explanations at:
    861 //
    862 // http://citeseerx.ist.psu.edu/viewdoc/
    863 //   download?doi=10.1.1.44.5740&rep=rep1&type=ps
    864 // and
    865 // http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/NURBS/RB-conics.html
    866 //
    867 // F = (A (1 - t)^2 + C t^2 + 2 B (1 - t) t w)
    868 //     ------------------------------------------
    869 //         ((1 - t)^2 + t^2 + 2 (1 - t) t w)
    870 //
    871 //   = {t^2 (P0 + P2 - 2 P1 w), t (-2 P0 + 2 P1 w), P0}
    872 //     ------------------------------------------------
    873 //             {t^2 (2 - 2 w), t (-2 + 2 w), 1}
    874 //
    875 
    876 // F' = 2 (C t (1 + t (-1 + w)) - A (-1 + t) (t (-1 + w) - w) + B (1 - 2 t) w)
    877 //
    878 //  t^2 : (2 P0 - 2 P2 - 2 P0 w + 2 P2 w)
    879 //  t^1 : (-2 P0 + 2 P2 + 4 P0 w - 4 P1 w)
    880 //  t^0 : -2 P0 w + 2 P1 w
    881 //
    882 //  We disregard magnitude, so we can freely ignore the denominator of F', and
    883 //  divide the numerator by 2
    884 //
    885 //    coeff[0] for t^2
    886 //    coeff[1] for t^1
    887 //    coeff[2] for t^0
    888 //
    889 static void conic_deriv_coeff(const SkScalar src[],
    890                               SkScalar w,
    891                               SkScalar coeff[3]) {
    892     const SkScalar P20 = src[4] - src[0];
    893     const SkScalar P10 = src[2] - src[0];
    894     const SkScalar wP10 = w * P10;
    895     coeff[0] = w * P20 - P20;
    896     coeff[1] = P20 - 2 * wP10;
    897     coeff[2] = wP10;
    898 }
    899 
    900 static bool conic_find_extrema(const SkScalar src[], SkScalar w, SkScalar* t) {
    901     SkScalar coeff[3];
    902     conic_deriv_coeff(src, w, coeff);
    903 
    904     SkScalar tValues[2];
    905     int roots = SkFindUnitQuadRoots(coeff[0], coeff[1], coeff[2], tValues);
    906     SkASSERT(0 == roots || 1 == roots);
    907 
    908     if (1 == roots) {
    909         *t = tValues[0];
    910         return true;
    911     }
    912     return false;
    913 }
    914 
    915 struct SkP3D {
    916     SkScalar fX, fY, fZ;
    917 
    918     void set(SkScalar x, SkScalar y, SkScalar z) {
    919         fX = x; fY = y; fZ = z;
    920     }
    921 
    922     void projectDown(SkPoint* dst) const {
    923         dst->set(fX / fZ, fY / fZ);
    924     }
    925 };
    926 
    927 // We only interpolate one dimension at a time (the first, at +0, +3, +6).
    928 static void p3d_interp(const SkScalar src[7], SkScalar dst[7], SkScalar t) {
    929     SkScalar ab = SkScalarInterp(src[0], src[3], t);
    930     SkScalar bc = SkScalarInterp(src[3], src[6], t);
    931     dst[0] = ab;
    932     dst[3] = SkScalarInterp(ab, bc, t);
    933     dst[6] = bc;
    934 }
    935 
    936 static void ratquad_mapTo3D(const SkPoint src[3], SkScalar w, SkP3D dst[]) {
    937     dst[0].set(src[0].fX * 1, src[0].fY * 1, 1);
    938     dst[1].set(src[1].fX * w, src[1].fY * w, w);
    939     dst[2].set(src[2].fX * 1, src[2].fY * 1, 1);
    940 }
    941 
    942 // return false if infinity or NaN is generated; caller must check
    943 bool SkConic::chopAt(SkScalar t, SkConic dst[2]) const {
    944     SkP3D tmp[3], tmp2[3];
    945 
    946     ratquad_mapTo3D(fPts, fW, tmp);
    947 
    948     p3d_interp(&tmp[0].fX, &tmp2[0].fX, t);
    949     p3d_interp(&tmp[0].fY, &tmp2[0].fY, t);
    950     p3d_interp(&tmp[0].fZ, &tmp2[0].fZ, t);
    951 
    952     dst[0].fPts[0] = fPts[0];
    953     tmp2[0].projectDown(&dst[0].fPts[1]);
    954     tmp2[1].projectDown(&dst[0].fPts[2]); dst[1].fPts[0] = dst[0].fPts[2];
    955     tmp2[2].projectDown(&dst[1].fPts[1]);
    956     dst[1].fPts[2] = fPts[2];
    957 
    958     // to put in "standard form", where w0 and w2 are both 1, we compute the
    959     // new w1 as sqrt(w1*w1/w0*w2)
    960     // or
    961     // w1 /= sqrt(w0*w2)
    962     //
    963     // However, in our case, we know that for dst[0]:
    964     //     w0 == 1, and for dst[1], w2 == 1
    965     //
    966     SkScalar root = SkScalarSqrt(tmp2[1].fZ);
    967     dst[0].fW = tmp2[0].fZ / root;
    968     dst[1].fW = tmp2[2].fZ / root;
    969     SkASSERT(sizeof(dst[0]) == sizeof(SkScalar) * 7);
    970     SkASSERT(0 == offsetof(SkConic, fPts[0].fX));
    971     return SkScalarsAreFinite(&dst[0].fPts[0].fX, 7 * 2);
    972 }
    973 
    974 void SkConic::chopAt(SkScalar t1, SkScalar t2, SkConic* dst) const {
    975     if (0 == t1 || 1 == t2) {
    976         if (0 == t1 && 1 == t2) {
    977             *dst = *this;
    978             return;
    979         } else {
    980             SkConic pair[2];
    981             if (this->chopAt(t1 ? t1 : t2, pair)) {
    982                 *dst = pair[SkToBool(t1)];
    983                 return;
    984             }
    985         }
    986     }
    987     SkConicCoeff coeff(*this);
    988     Sk2s tt1(t1);
    989     Sk2s aXY = coeff.fNumer.eval(tt1);
    990     Sk2s aZZ = coeff.fDenom.eval(tt1);
    991     Sk2s midTT((t1 + t2) / 2);
    992     Sk2s dXY = coeff.fNumer.eval(midTT);
    993     Sk2s dZZ = coeff.fDenom.eval(midTT);
    994     Sk2s tt2(t2);
    995     Sk2s cXY = coeff.fNumer.eval(tt2);
    996     Sk2s cZZ = coeff.fDenom.eval(tt2);
    997     Sk2s bXY = times_2(dXY) - (aXY + cXY) * Sk2s(0.5f);
    998     Sk2s bZZ = times_2(dZZ) - (aZZ + cZZ) * Sk2s(0.5f);
    999     dst->fPts[0] = to_point(aXY / aZZ);
   1000     dst->fPts[1] = to_point(bXY / bZZ);
   1001     dst->fPts[2] = to_point(cXY / cZZ);
   1002     Sk2s ww = bZZ / (aZZ * cZZ).sqrt();
   1003     dst->fW = ww[0];
   1004 }
   1005 
   1006 SkPoint SkConic::evalAt(SkScalar t) const {
   1007     return to_point(SkConicCoeff(*this).eval(t));
   1008 }
   1009 
   1010 SkVector SkConic::evalTangentAt(SkScalar t) const {
   1011     // The derivative equation returns a zero tangent vector when t is 0 or 1,
   1012     // and the control point is equal to the end point.
   1013     // In this case, use the conic endpoints to compute the tangent.
   1014     if ((t == 0 && fPts[0] == fPts[1]) || (t == 1 && fPts[1] == fPts[2])) {
   1015         return fPts[2] - fPts[0];
   1016     }
   1017     Sk2s p0 = from_point(fPts[0]);
   1018     Sk2s p1 = from_point(fPts[1]);
   1019     Sk2s p2 = from_point(fPts[2]);
   1020     Sk2s ww(fW);
   1021 
   1022     Sk2s p20 = p2 - p0;
   1023     Sk2s p10 = p1 - p0;
   1024 
   1025     Sk2s C = ww * p10;
   1026     Sk2s A = ww * p20 - p20;
   1027     Sk2s B = p20 - C - C;
   1028 
   1029     return to_vector(SkQuadCoeff(A, B, C).eval(t));
   1030 }
   1031 
   1032 void SkConic::evalAt(SkScalar t, SkPoint* pt, SkVector* tangent) const {
   1033     SkASSERT(t >= 0 && t <= SK_Scalar1);
   1034 
   1035     if (pt) {
   1036         *pt = this->evalAt(t);
   1037     }
   1038     if (tangent) {
   1039         *tangent = this->evalTangentAt(t);
   1040     }
   1041 }
   1042 
   1043 static SkScalar subdivide_w_value(SkScalar w) {
   1044     return SkScalarSqrt(SK_ScalarHalf + w * SK_ScalarHalf);
   1045 }
   1046 
   1047 void SkConic::chop(SkConic * SK_RESTRICT dst) const {
   1048     Sk2s scale = Sk2s(SkScalarInvert(SK_Scalar1 + fW));
   1049     SkScalar newW = subdivide_w_value(fW);
   1050 
   1051     Sk2s p0 = from_point(fPts[0]);
   1052     Sk2s p1 = from_point(fPts[1]);
   1053     Sk2s p2 = from_point(fPts[2]);
   1054     Sk2s ww(fW);
   1055 
   1056     Sk2s wp1 = ww * p1;
   1057     Sk2s m = (p0 + times_2(wp1) + p2) * scale * Sk2s(0.5f);
   1058 
   1059     dst[0].fPts[0] = fPts[0];
   1060     dst[0].fPts[1] = to_point((p0 + wp1) * scale);
   1061     dst[0].fPts[2] = dst[1].fPts[0] = to_point(m);
   1062     dst[1].fPts[1] = to_point((wp1 + p2) * scale);
   1063     dst[1].fPts[2] = fPts[2];
   1064 
   1065     dst[0].fW = dst[1].fW = newW;
   1066 }
   1067 
   1068 /*
   1069  *  "High order approximation of conic sections by quadratic splines"
   1070  *      by Michael Floater, 1993
   1071  */
   1072 #define AS_QUAD_ERROR_SETUP                                         \
   1073     SkScalar a = fW - 1;                                            \
   1074     SkScalar k = a / (4 * (2 + a));                                 \
   1075     SkScalar x = k * (fPts[0].fX - 2 * fPts[1].fX + fPts[2].fX);    \
   1076     SkScalar y = k * (fPts[0].fY - 2 * fPts[1].fY + fPts[2].fY);
   1077 
   1078 void SkConic::computeAsQuadError(SkVector* err) const {
   1079     AS_QUAD_ERROR_SETUP
   1080     err->set(x, y);
   1081 }
   1082 
   1083 bool SkConic::asQuadTol(SkScalar tol) const {
   1084     AS_QUAD_ERROR_SETUP
   1085     return (x * x + y * y) <= tol * tol;
   1086 }
   1087 
   1088 // Limit the number of suggested quads to approximate a conic
   1089 #define kMaxConicToQuadPOW2     5
   1090 
   1091 int SkConic::computeQuadPOW2(SkScalar tol) const {
   1092     if (tol < 0 || !SkScalarIsFinite(tol)) {
   1093         return 0;
   1094     }
   1095 
   1096     AS_QUAD_ERROR_SETUP
   1097 
   1098     SkScalar error = SkScalarSqrt(x * x + y * y);
   1099     int pow2;
   1100     for (pow2 = 0; pow2 < kMaxConicToQuadPOW2; ++pow2) {
   1101         if (error <= tol) {
   1102             break;
   1103         }
   1104         error *= 0.25f;
   1105     }
   1106     // float version -- using ceil gives the same results as the above.
   1107     if (false) {
   1108         SkScalar err = SkScalarSqrt(x * x + y * y);
   1109         if (err <= tol) {
   1110             return 0;
   1111         }
   1112         SkScalar tol2 = tol * tol;
   1113         if (tol2 == 0) {
   1114             return kMaxConicToQuadPOW2;
   1115         }
   1116         SkScalar fpow2 = SkScalarLog2((x * x + y * y) / tol2) * 0.25f;
   1117         int altPow2 = SkScalarCeilToInt(fpow2);
   1118         if (altPow2 != pow2) {
   1119             SkDebugf("pow2 %d altPow2 %d fbits %g err %g tol %g\n", pow2, altPow2, fpow2, err, tol);
   1120         }
   1121         pow2 = altPow2;
   1122     }
   1123     return pow2;
   1124 }
   1125 
   1126 // This was originally developed and tested for pathops: see SkOpTypes.h
   1127 // returns true if (a <= b <= c) || (a >= b >= c)
   1128 static bool between(SkScalar a, SkScalar b, SkScalar c) {
   1129     return (a - b) * (c - b) <= 0;
   1130 }
   1131 
   1132 static SkPoint* subdivide(const SkConic& src, SkPoint pts[], int level) {
   1133     SkASSERT(level >= 0);
   1134 
   1135     if (0 == level) {
   1136         memcpy(pts, &src.fPts[1], 2 * sizeof(SkPoint));
   1137         return pts + 2;
   1138     } else {
   1139         SkConic dst[2];
   1140         src.chop(dst);
   1141         const SkScalar startY = src.fPts[0].fY;
   1142         const SkScalar endY = src.fPts[2].fY;
   1143         if (between(startY, src.fPts[1].fY, endY)) {
   1144             // If the input is monotonic and the output is not, the scan converter hangs.
   1145             // Ensure that the chopped conics maintain their y-order.
   1146             SkScalar midY = dst[0].fPts[2].fY;
   1147             if (!between(startY, midY, endY)) {
   1148                 // If the computed midpoint is outside the ends, move it to the closer one.
   1149                 SkScalar closerY = SkTAbs(midY - startY) < SkTAbs(midY - endY) ? startY : endY;
   1150                 dst[0].fPts[2].fY = dst[1].fPts[0].fY = closerY;
   1151             }
   1152             if (!between(startY, dst[0].fPts[1].fY, dst[0].fPts[2].fY)) {
   1153                 // If the 1st control is not between the start and end, put it at the start.
   1154                 // This also reduces the quad to a line.
   1155                 dst[0].fPts[1].fY = startY;
   1156             }
   1157             if (!between(dst[1].fPts[0].fY, dst[1].fPts[1].fY, endY)) {
   1158                 // If the 2nd control is not between the start and end, put it at the end.
   1159                 // This also reduces the quad to a line.
   1160                 dst[1].fPts[1].fY = endY;
   1161             }
   1162             // Verify that all five points are in order.
   1163             SkASSERT(between(startY, dst[0].fPts[1].fY, dst[0].fPts[2].fY));
   1164             SkASSERT(between(dst[0].fPts[1].fY, dst[0].fPts[2].fY, dst[1].fPts[1].fY));
   1165             SkASSERT(between(dst[0].fPts[2].fY, dst[1].fPts[1].fY, endY));
   1166         }
   1167         --level;
   1168         pts = subdivide(dst[0], pts, level);
   1169         return subdivide(dst[1], pts, level);
   1170     }
   1171 }
   1172 
   1173 int SkConic::chopIntoQuadsPOW2(SkPoint pts[], int pow2) const {
   1174     SkASSERT(pow2 >= 0);
   1175     *pts = fPts[0];
   1176     SkDEBUGCODE(SkPoint* endPts);
   1177     if (pow2 == kMaxConicToQuadPOW2) {  // If an extreme weight generates many quads ...
   1178         SkConic dst[2];
   1179         this->chop(dst);
   1180         // check to see if the first chop generates a pair of lines
   1181         if (dst[0].fPts[1].equalsWithinTolerance(dst[0].fPts[2])
   1182                 && dst[1].fPts[0].equalsWithinTolerance(dst[1].fPts[1])) {
   1183             pts[1] = pts[2] = pts[3] = dst[0].fPts[1];  // set ctrl == end to make lines
   1184             pts[4] = dst[1].fPts[2];
   1185             pow2 = 1;
   1186             SkDEBUGCODE(endPts = &pts[5]);
   1187             goto commonFinitePtCheck;
   1188         }
   1189     }
   1190     SkDEBUGCODE(endPts = ) subdivide(*this, pts + 1, pow2);
   1191 commonFinitePtCheck:
   1192     const int quadCount = 1 << pow2;
   1193     const int ptCount = 2 * quadCount + 1;
   1194     SkASSERT(endPts - pts == ptCount);
   1195     if (!SkPointsAreFinite(pts, ptCount)) {
   1196         // if we generated a non-finite, pin ourselves to the middle of the hull,
   1197         // as our first and last are already on the first/last pts of the hull.
   1198         for (int i = 1; i < ptCount - 1; ++i) {
   1199             pts[i] = fPts[1];
   1200         }
   1201     }
   1202     return 1 << pow2;
   1203 }
   1204 
   1205 bool SkConic::findXExtrema(SkScalar* t) const {
   1206     return conic_find_extrema(&fPts[0].fX, fW, t);
   1207 }
   1208 
   1209 bool SkConic::findYExtrema(SkScalar* t) const {
   1210     return conic_find_extrema(&fPts[0].fY, fW, t);
   1211 }
   1212 
   1213 bool SkConic::chopAtXExtrema(SkConic dst[2]) const {
   1214     SkScalar t;
   1215     if (this->findXExtrema(&t)) {
   1216         if (!this->chopAt(t, dst)) {
   1217             // if chop can't return finite values, don't chop
   1218             return false;
   1219         }
   1220         // now clean-up the middle, since we know t was meant to be at
   1221         // an X-extrema
   1222         SkScalar value = dst[0].fPts[2].fX;
   1223         dst[0].fPts[1].fX = value;
   1224         dst[1].fPts[0].fX = value;
   1225         dst[1].fPts[1].fX = value;
   1226         return true;
   1227     }
   1228     return false;
   1229 }
   1230 
   1231 bool SkConic::chopAtYExtrema(SkConic dst[2]) const {
   1232     SkScalar t;
   1233     if (this->findYExtrema(&t)) {
   1234         if (!this->chopAt(t, dst)) {
   1235             // if chop can't return finite values, don't chop
   1236             return false;
   1237         }
   1238         // now clean-up the middle, since we know t was meant to be at
   1239         // an Y-extrema
   1240         SkScalar value = dst[0].fPts[2].fY;
   1241         dst[0].fPts[1].fY = value;
   1242         dst[1].fPts[0].fY = value;
   1243         dst[1].fPts[1].fY = value;
   1244         return true;
   1245     }
   1246     return false;
   1247 }
   1248 
   1249 void SkConic::computeTightBounds(SkRect* bounds) const {
   1250     SkPoint pts[4];
   1251     pts[0] = fPts[0];
   1252     pts[1] = fPts[2];
   1253     int count = 2;
   1254 
   1255     SkScalar t;
   1256     if (this->findXExtrema(&t)) {
   1257         this->evalAt(t, &pts[count++]);
   1258     }
   1259     if (this->findYExtrema(&t)) {
   1260         this->evalAt(t, &pts[count++]);
   1261     }
   1262     bounds->set(pts, count);
   1263 }
   1264 
   1265 void SkConic::computeFastBounds(SkRect* bounds) const {
   1266     bounds->set(fPts, 3);
   1267 }
   1268 
   1269 #if 0  // unimplemented
   1270 bool SkConic::findMaxCurvature(SkScalar* t) const {
   1271     // TODO: Implement me
   1272     return false;
   1273 }
   1274 #endif
   1275 
   1276 SkScalar SkConic::TransformW(const SkPoint pts[], SkScalar w,
   1277                              const SkMatrix& matrix) {
   1278     if (!matrix.hasPerspective()) {
   1279         return w;
   1280     }
   1281 
   1282     SkP3D src[3], dst[3];
   1283 
   1284     ratquad_mapTo3D(pts, w, src);
   1285 
   1286     matrix.mapHomogeneousPoints(&dst[0].fX, &src[0].fX, 3);
   1287 
   1288     // w' = sqrt(w1*w1/w0*w2)
   1289     SkScalar w0 = dst[0].fZ;
   1290     SkScalar w1 = dst[1].fZ;
   1291     SkScalar w2 = dst[2].fZ;
   1292     w = SkScalarSqrt((w1 * w1) / (w0 * w2));
   1293     return w;
   1294 }
   1295 
   1296 int SkConic::BuildUnitArc(const SkVector& uStart, const SkVector& uStop, SkRotationDirection dir,
   1297                           const SkMatrix* userMatrix, SkConic dst[kMaxConicsForArc]) {
   1298     // rotate by x,y so that uStart is (1.0)
   1299     SkScalar x = SkPoint::DotProduct(uStart, uStop);
   1300     SkScalar y = SkPoint::CrossProduct(uStart, uStop);
   1301 
   1302     SkScalar absY = SkScalarAbs(y);
   1303 
   1304     // check for (effectively) coincident vectors
   1305     // this can happen if our angle is nearly 0 or nearly 180 (y == 0)
   1306     // ... we use the dot-prod to distinguish between 0 and 180 (x > 0)
   1307     if (absY <= SK_ScalarNearlyZero && x > 0 && ((y >= 0 && kCW_SkRotationDirection == dir) ||
   1308                                                  (y <= 0 && kCCW_SkRotationDirection == dir))) {
   1309         return 0;
   1310     }
   1311 
   1312     if (dir == kCCW_SkRotationDirection) {
   1313         y = -y;
   1314     }
   1315 
   1316     // We decide to use 1-conic per quadrant of a circle. What quadrant does [xy] lie in?
   1317     //      0 == [0  .. 90)
   1318     //      1 == [90 ..180)
   1319     //      2 == [180..270)
   1320     //      3 == [270..360)
   1321     //
   1322     int quadrant = 0;
   1323     if (0 == y) {
   1324         quadrant = 2;        // 180
   1325         SkASSERT(SkScalarAbs(x + SK_Scalar1) <= SK_ScalarNearlyZero);
   1326     } else if (0 == x) {
   1327         SkASSERT(absY - SK_Scalar1 <= SK_ScalarNearlyZero);
   1328         quadrant = y > 0 ? 1 : 3; // 90 : 270
   1329     } else {
   1330         if (y < 0) {
   1331             quadrant += 2;
   1332         }
   1333         if ((x < 0) != (y < 0)) {
   1334             quadrant += 1;
   1335         }
   1336     }
   1337 
   1338     const SkPoint quadrantPts[] = {
   1339         { 1, 0 }, { 1, 1 }, { 0, 1 }, { -1, 1 }, { -1, 0 }, { -1, -1 }, { 0, -1 }, { 1, -1 }
   1340     };
   1341     const SkScalar quadrantWeight = SK_ScalarRoot2Over2;
   1342 
   1343     int conicCount = quadrant;
   1344     for (int i = 0; i < conicCount; ++i) {
   1345         dst[i].set(&quadrantPts[i * 2], quadrantWeight);
   1346     }
   1347 
   1348     // Now compute any remaing (sub-90-degree) arc for the last conic
   1349     const SkPoint finalP = { x, y };
   1350     const SkPoint& lastQ = quadrantPts[quadrant * 2];  // will already be a unit-vector
   1351     const SkScalar dot = SkVector::DotProduct(lastQ, finalP);
   1352     SkASSERT(0 <= dot && dot <= SK_Scalar1 + SK_ScalarNearlyZero);
   1353 
   1354     if (dot < 1) {
   1355         SkVector offCurve = { lastQ.x() + x, lastQ.y() + y };
   1356         // compute the bisector vector, and then rescale to be the off-curve point.
   1357         // we compute its length from cos(theta/2) = length / 1, using half-angle identity we get
   1358         // length = sqrt(2 / (1 + cos(theta)). We already have cos() when to computed the dot.
   1359         // This is nice, since our computed weight is cos(theta/2) as well!
   1360         //
   1361         const SkScalar cosThetaOver2 = SkScalarSqrt((1 + dot) / 2);
   1362         offCurve.setLength(SkScalarInvert(cosThetaOver2));
   1363         if (!lastQ.equalsWithinTolerance(offCurve)) {
   1364             dst[conicCount].set(lastQ, offCurve, finalP, cosThetaOver2);
   1365             conicCount += 1;
   1366         }
   1367     }
   1368 
   1369     // now handle counter-clockwise and the initial unitStart rotation
   1370     SkMatrix    matrix;
   1371     matrix.setSinCos(uStart.fY, uStart.fX);
   1372     if (dir == kCCW_SkRotationDirection) {
   1373         matrix.preScale(SK_Scalar1, -SK_Scalar1);
   1374     }
   1375     if (userMatrix) {
   1376         matrix.postConcat(*userMatrix);
   1377     }
   1378     for (int i = 0; i < conicCount; ++i) {
   1379         matrix.mapPoints(dst[i].fPts, 3);
   1380     }
   1381     return conicCount;
   1382 }
   1383