Home | History | Annotate | Download | only in TableGen
      1 //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This class wraps target description classes used by the various code
     11 // generation TableGen backends.  This makes it easier to access the data and
     12 // provides a single place that needs to check it for validity.  All of these
     13 // classes abort on error conditions.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #include "CodeGenTarget.h"
     18 #include "CodeGenIntrinsics.h"
     19 #include "CodeGenSchedule.h"
     20 #include "llvm/ADT/STLExtras.h"
     21 #include "llvm/ADT/StringExtras.h"
     22 #include "llvm/Support/CommandLine.h"
     23 #include "llvm/TableGen/Error.h"
     24 #include "llvm/TableGen/Record.h"
     25 #include <algorithm>
     26 using namespace llvm;
     27 
     28 static cl::opt<unsigned>
     29 AsmParserNum("asmparsernum", cl::init(0),
     30              cl::desc("Make -gen-asm-parser emit assembly parser #N"));
     31 
     32 static cl::opt<unsigned>
     33 AsmWriterNum("asmwriternum", cl::init(0),
     34              cl::desc("Make -gen-asm-writer emit assembly writer #N"));
     35 
     36 /// getValueType - Return the MVT::SimpleValueType that the specified TableGen
     37 /// record corresponds to.
     38 MVT::SimpleValueType llvm::getValueType(Record *Rec) {
     39   return (MVT::SimpleValueType)Rec->getValueAsInt("Value");
     40 }
     41 
     42 StringRef llvm::getName(MVT::SimpleValueType T) {
     43   switch (T) {
     44   case MVT::Other:   return "UNKNOWN";
     45   case MVT::iPTR:    return "TLI.getPointerTy()";
     46   case MVT::iPTRAny: return "TLI.getPointerTy()";
     47   default: return getEnumName(T);
     48   }
     49 }
     50 
     51 StringRef llvm::getEnumName(MVT::SimpleValueType T) {
     52   switch (T) {
     53   case MVT::Other:    return "MVT::Other";
     54   case MVT::i1:       return "MVT::i1";
     55   case MVT::i8:       return "MVT::i8";
     56   case MVT::i16:      return "MVT::i16";
     57   case MVT::i32:      return "MVT::i32";
     58   case MVT::i64:      return "MVT::i64";
     59   case MVT::i128:     return "MVT::i128";
     60   case MVT::Any:      return "MVT::Any";
     61   case MVT::iAny:     return "MVT::iAny";
     62   case MVT::fAny:     return "MVT::fAny";
     63   case MVT::vAny:     return "MVT::vAny";
     64   case MVT::f16:      return "MVT::f16";
     65   case MVT::f32:      return "MVT::f32";
     66   case MVT::f64:      return "MVT::f64";
     67   case MVT::f80:      return "MVT::f80";
     68   case MVT::f128:     return "MVT::f128";
     69   case MVT::ppcf128:  return "MVT::ppcf128";
     70   case MVT::x86mmx:   return "MVT::x86mmx";
     71   case MVT::Glue:     return "MVT::Glue";
     72   case MVT::isVoid:   return "MVT::isVoid";
     73   case MVT::v2i1:     return "MVT::v2i1";
     74   case MVT::v4i1:     return "MVT::v4i1";
     75   case MVT::v8i1:     return "MVT::v8i1";
     76   case MVT::v16i1:    return "MVT::v16i1";
     77   case MVT::v32i1:    return "MVT::v32i1";
     78   case MVT::v64i1:    return "MVT::v64i1";
     79   case MVT::v512i1:   return "MVT::v512i1";
     80   case MVT::v1024i1:  return "MVT::v1024i1";
     81   case MVT::v1i8:     return "MVT::v1i8";
     82   case MVT::v2i8:     return "MVT::v2i8";
     83   case MVT::v4i8:     return "MVT::v4i8";
     84   case MVT::v8i8:     return "MVT::v8i8";
     85   case MVT::v16i8:    return "MVT::v16i8";
     86   case MVT::v32i8:    return "MVT::v32i8";
     87   case MVT::v64i8:    return "MVT::v64i8";
     88   case MVT::v128i8:   return "MVT::v128i8";
     89   case MVT::v256i8:   return "MVT::v256i8";
     90   case MVT::v1i16:    return "MVT::v1i16";
     91   case MVT::v2i16:    return "MVT::v2i16";
     92   case MVT::v4i16:    return "MVT::v4i16";
     93   case MVT::v8i16:    return "MVT::v8i16";
     94   case MVT::v16i16:   return "MVT::v16i16";
     95   case MVT::v32i16:   return "MVT::v32i16";
     96   case MVT::v64i16:   return "MVT::v64i16";
     97   case MVT::v128i16:  return "MVT::v128i16";
     98   case MVT::v1i32:    return "MVT::v1i32";
     99   case MVT::v2i32:    return "MVT::v2i32";
    100   case MVT::v4i32:    return "MVT::v4i32";
    101   case MVT::v8i32:    return "MVT::v8i32";
    102   case MVT::v16i32:   return "MVT::v16i32";
    103   case MVT::v32i32:   return "MVT::v32i32";
    104   case MVT::v64i32:   return "MVT::v64i32";
    105   case MVT::v1i64:    return "MVT::v1i64";
    106   case MVT::v2i64:    return "MVT::v2i64";
    107   case MVT::v4i64:    return "MVT::v4i64";
    108   case MVT::v8i64:    return "MVT::v8i64";
    109   case MVT::v16i64:   return "MVT::v16i64";
    110   case MVT::v32i64:   return "MVT::v32i64";
    111   case MVT::v1i128:   return "MVT::v1i128";
    112   case MVT::v2f16:    return "MVT::v2f16";
    113   case MVT::v4f16:    return "MVT::v4f16";
    114   case MVT::v8f16:    return "MVT::v8f16";
    115   case MVT::v1f32:    return "MVT::v1f32";
    116   case MVT::v2f32:    return "MVT::v2f32";
    117   case MVT::v4f32:    return "MVT::v4f32";
    118   case MVT::v8f32:    return "MVT::v8f32";
    119   case MVT::v16f32:   return "MVT::v16f32";
    120   case MVT::v1f64:    return "MVT::v1f64";
    121   case MVT::v2f64:    return "MVT::v2f64";
    122   case MVT::v4f64:    return "MVT::v4f64";
    123   case MVT::v8f64:    return "MVT::v8f64";
    124   case MVT::token:    return "MVT::token";
    125   case MVT::Metadata: return "MVT::Metadata";
    126   case MVT::iPTR:     return "MVT::iPTR";
    127   case MVT::iPTRAny:  return "MVT::iPTRAny";
    128   case MVT::Untyped:  return "MVT::Untyped";
    129   default: llvm_unreachable("ILLEGAL VALUE TYPE!");
    130   }
    131 }
    132 
    133 /// getQualifiedName - Return the name of the specified record, with a
    134 /// namespace qualifier if the record contains one.
    135 ///
    136 std::string llvm::getQualifiedName(const Record *R) {
    137   std::string Namespace;
    138   if (R->getValue("Namespace"))
    139      Namespace = R->getValueAsString("Namespace");
    140   if (Namespace.empty()) return R->getName();
    141   return Namespace + "::" + R->getName();
    142 }
    143 
    144 
    145 /// getTarget - Return the current instance of the Target class.
    146 ///
    147 CodeGenTarget::CodeGenTarget(RecordKeeper &records)
    148   : Records(records) {
    149   std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target");
    150   if (Targets.size() == 0)
    151     PrintFatalError("ERROR: No 'Target' subclasses defined!");
    152   if (Targets.size() != 1)
    153     PrintFatalError("ERROR: Multiple subclasses of Target defined!");
    154   TargetRec = Targets[0];
    155 }
    156 
    157 CodeGenTarget::~CodeGenTarget() {
    158 }
    159 
    160 const std::string &CodeGenTarget::getName() const {
    161   return TargetRec->getName();
    162 }
    163 
    164 std::string CodeGenTarget::getInstNamespace() const {
    165   for (const CodeGenInstruction *Inst : getInstructionsByEnumValue()) {
    166     // Make sure not to pick up "TargetOpcode" by accidentally getting
    167     // the namespace off the PHI instruction or something.
    168     if (Inst->Namespace != "TargetOpcode")
    169       return Inst->Namespace;
    170   }
    171 
    172   return "";
    173 }
    174 
    175 Record *CodeGenTarget::getInstructionSet() const {
    176   return TargetRec->getValueAsDef("InstructionSet");
    177 }
    178 
    179 
    180 /// getAsmParser - Return the AssemblyParser definition for this target.
    181 ///
    182 Record *CodeGenTarget::getAsmParser() const {
    183   std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers");
    184   if (AsmParserNum >= LI.size())
    185     PrintFatalError("Target does not have an AsmParser #" +
    186                     Twine(AsmParserNum) + "!");
    187   return LI[AsmParserNum];
    188 }
    189 
    190 /// getAsmParserVariant - Return the AssmblyParserVariant definition for
    191 /// this target.
    192 ///
    193 Record *CodeGenTarget::getAsmParserVariant(unsigned i) const {
    194   std::vector<Record*> LI =
    195     TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
    196   if (i >= LI.size())
    197     PrintFatalError("Target does not have an AsmParserVariant #" + Twine(i) +
    198                     "!");
    199   return LI[i];
    200 }
    201 
    202 /// getAsmParserVariantCount - Return the AssmblyParserVariant definition
    203 /// available for this target.
    204 ///
    205 unsigned CodeGenTarget::getAsmParserVariantCount() const {
    206   std::vector<Record*> LI =
    207     TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
    208   return LI.size();
    209 }
    210 
    211 /// getAsmWriter - Return the AssemblyWriter definition for this target.
    212 ///
    213 Record *CodeGenTarget::getAsmWriter() const {
    214   std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters");
    215   if (AsmWriterNum >= LI.size())
    216     PrintFatalError("Target does not have an AsmWriter #" +
    217                     Twine(AsmWriterNum) + "!");
    218   return LI[AsmWriterNum];
    219 }
    220 
    221 CodeGenRegBank &CodeGenTarget::getRegBank() const {
    222   if (!RegBank)
    223     RegBank = llvm::make_unique<CodeGenRegBank>(Records);
    224   return *RegBank;
    225 }
    226 
    227 void CodeGenTarget::ReadRegAltNameIndices() const {
    228   RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex");
    229   std::sort(RegAltNameIndices.begin(), RegAltNameIndices.end(), LessRecord());
    230 }
    231 
    232 /// getRegisterByName - If there is a register with the specific AsmName,
    233 /// return it.
    234 const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const {
    235   const StringMap<CodeGenRegister*> &Regs = getRegBank().getRegistersByName();
    236   StringMap<CodeGenRegister*>::const_iterator I = Regs.find(Name);
    237   if (I == Regs.end())
    238     return nullptr;
    239   return I->second;
    240 }
    241 
    242 std::vector<MVT::SimpleValueType> CodeGenTarget::
    243 getRegisterVTs(Record *R) const {
    244   const CodeGenRegister *Reg = getRegBank().getReg(R);
    245   std::vector<MVT::SimpleValueType> Result;
    246   for (const auto &RC : getRegBank().getRegClasses()) {
    247     if (RC.contains(Reg)) {
    248       ArrayRef<MVT::SimpleValueType> InVTs = RC.getValueTypes();
    249       Result.insert(Result.end(), InVTs.begin(), InVTs.end());
    250     }
    251   }
    252 
    253   // Remove duplicates.
    254   array_pod_sort(Result.begin(), Result.end());
    255   Result.erase(std::unique(Result.begin(), Result.end()), Result.end());
    256   return Result;
    257 }
    258 
    259 
    260 void CodeGenTarget::ReadLegalValueTypes() const {
    261   for (const auto &RC : getRegBank().getRegClasses())
    262     LegalValueTypes.insert(LegalValueTypes.end(), RC.VTs.begin(), RC.VTs.end());
    263 
    264   // Remove duplicates.
    265   array_pod_sort(LegalValueTypes.begin(), LegalValueTypes.end());
    266   LegalValueTypes.erase(std::unique(LegalValueTypes.begin(),
    267                                     LegalValueTypes.end()),
    268                         LegalValueTypes.end());
    269 }
    270 
    271 CodeGenSchedModels &CodeGenTarget::getSchedModels() const {
    272   if (!SchedModels)
    273     SchedModels = llvm::make_unique<CodeGenSchedModels>(Records, *this);
    274   return *SchedModels;
    275 }
    276 
    277 void CodeGenTarget::ReadInstructions() const {
    278   std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
    279   if (Insts.size() <= 2)
    280     PrintFatalError("No 'Instruction' subclasses defined!");
    281 
    282   // Parse the instructions defined in the .td file.
    283   for (unsigned i = 0, e = Insts.size(); i != e; ++i)
    284     Instructions[Insts[i]] = llvm::make_unique<CodeGenInstruction>(Insts[i]);
    285 }
    286 
    287 static const CodeGenInstruction *
    288 GetInstByName(const char *Name,
    289               const DenseMap<const Record*,
    290                              std::unique_ptr<CodeGenInstruction>> &Insts,
    291               RecordKeeper &Records) {
    292   const Record *Rec = Records.getDef(Name);
    293 
    294   const auto I = Insts.find(Rec);
    295   if (!Rec || I == Insts.end())
    296     PrintFatalError(Twine("Could not find '") + Name + "' instruction!");
    297   return I->second.get();
    298 }
    299 
    300 /// \brief Return all of the instructions defined by the target, ordered by
    301 /// their enum value.
    302 void CodeGenTarget::ComputeInstrsByEnum() const {
    303   static const char *const FixedInstrs[] = {
    304 #define HANDLE_TARGET_OPCODE(OPC, NUM) #OPC,
    305 #include "llvm/Target/TargetOpcodes.def"
    306       nullptr};
    307   const auto &Insts = getInstructions();
    308   for (const char *const *p = FixedInstrs; *p; ++p) {
    309     const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records);
    310     assert(Instr && "Missing target independent instruction");
    311     assert(Instr->Namespace == "TargetOpcode" && "Bad namespace");
    312     InstrsByEnum.push_back(Instr);
    313   }
    314   unsigned EndOfPredefines = InstrsByEnum.size();
    315 
    316   for (const auto &I : Insts) {
    317     const CodeGenInstruction *CGI = I.second.get();
    318     if (CGI->Namespace != "TargetOpcode")
    319       InstrsByEnum.push_back(CGI);
    320   }
    321 
    322   assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr");
    323 
    324   // All of the instructions are now in random order based on the map iteration.
    325   // Sort them by name.
    326   std::sort(InstrsByEnum.begin() + EndOfPredefines, InstrsByEnum.end(),
    327             [](const CodeGenInstruction *Rec1, const CodeGenInstruction *Rec2) {
    328     return Rec1->TheDef->getName() < Rec2->TheDef->getName();
    329   });
    330 }
    331 
    332 
    333 /// isLittleEndianEncoding - Return whether this target encodes its instruction
    334 /// in little-endian format, i.e. bits laid out in the order [0..n]
    335 ///
    336 bool CodeGenTarget::isLittleEndianEncoding() const {
    337   return getInstructionSet()->getValueAsBit("isLittleEndianEncoding");
    338 }
    339 
    340 /// reverseBitsForLittleEndianEncoding - For little-endian instruction bit
    341 /// encodings, reverse the bit order of all instructions.
    342 void CodeGenTarget::reverseBitsForLittleEndianEncoding() {
    343   if (!isLittleEndianEncoding())
    344     return;
    345 
    346   std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
    347   for (Record *R : Insts) {
    348     if (R->getValueAsString("Namespace") == "TargetOpcode" ||
    349         R->getValueAsBit("isPseudo"))
    350       continue;
    351 
    352     BitsInit *BI = R->getValueAsBitsInit("Inst");
    353 
    354     unsigned numBits = BI->getNumBits();
    355 
    356     SmallVector<Init *, 16> NewBits(numBits);
    357 
    358     for (unsigned bit = 0, end = numBits / 2; bit != end; ++bit) {
    359       unsigned bitSwapIdx = numBits - bit - 1;
    360       Init *OrigBit = BI->getBit(bit);
    361       Init *BitSwap = BI->getBit(bitSwapIdx);
    362       NewBits[bit]        = BitSwap;
    363       NewBits[bitSwapIdx] = OrigBit;
    364     }
    365     if (numBits % 2) {
    366       unsigned middle = (numBits + 1) / 2;
    367       NewBits[middle] = BI->getBit(middle);
    368     }
    369 
    370     BitsInit *NewBI = BitsInit::get(NewBits);
    371 
    372     // Update the bits in reversed order so that emitInstrOpBits will get the
    373     // correct endianness.
    374     R->getValue("Inst")->setValue(NewBI);
    375   }
    376 }
    377 
    378 /// guessInstructionProperties - Return true if it's OK to guess instruction
    379 /// properties instead of raising an error.
    380 ///
    381 /// This is configurable as a temporary migration aid. It will eventually be
    382 /// permanently false.
    383 bool CodeGenTarget::guessInstructionProperties() const {
    384   return getInstructionSet()->getValueAsBit("guessInstructionProperties");
    385 }
    386 
    387 //===----------------------------------------------------------------------===//
    388 // ComplexPattern implementation
    389 //
    390 ComplexPattern::ComplexPattern(Record *R) {
    391   Ty          = ::getValueType(R->getValueAsDef("Ty"));
    392   NumOperands = R->getValueAsInt("NumOperands");
    393   SelectFunc  = R->getValueAsString("SelectFunc");
    394   RootNodes   = R->getValueAsListOfDefs("RootNodes");
    395 
    396   // Parse the properties.
    397   Properties = 0;
    398   std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
    399   for (unsigned i = 0, e = PropList.size(); i != e; ++i)
    400     if (PropList[i]->getName() == "SDNPHasChain") {
    401       Properties |= 1 << SDNPHasChain;
    402     } else if (PropList[i]->getName() == "SDNPOptInGlue") {
    403       Properties |= 1 << SDNPOptInGlue;
    404     } else if (PropList[i]->getName() == "SDNPMayStore") {
    405       Properties |= 1 << SDNPMayStore;
    406     } else if (PropList[i]->getName() == "SDNPMayLoad") {
    407       Properties |= 1 << SDNPMayLoad;
    408     } else if (PropList[i]->getName() == "SDNPSideEffect") {
    409       Properties |= 1 << SDNPSideEffect;
    410     } else if (PropList[i]->getName() == "SDNPMemOperand") {
    411       Properties |= 1 << SDNPMemOperand;
    412     } else if (PropList[i]->getName() == "SDNPVariadic") {
    413       Properties |= 1 << SDNPVariadic;
    414     } else if (PropList[i]->getName() == "SDNPWantRoot") {
    415       Properties |= 1 << SDNPWantRoot;
    416     } else if (PropList[i]->getName() == "SDNPWantParent") {
    417       Properties |= 1 << SDNPWantParent;
    418     } else {
    419       PrintFatalError("Unsupported SD Node property '" +
    420                       PropList[i]->getName() + "' on ComplexPattern '" +
    421                       R->getName() + "'!");
    422     }
    423 }
    424 
    425 //===----------------------------------------------------------------------===//
    426 // CodeGenIntrinsic Implementation
    427 //===----------------------------------------------------------------------===//
    428 
    429 std::vector<CodeGenIntrinsic> llvm::LoadIntrinsics(const RecordKeeper &RC,
    430                                                    bool TargetOnly) {
    431   std::vector<Record*> Defs = RC.getAllDerivedDefinitions("Intrinsic");
    432 
    433   std::vector<CodeGenIntrinsic> Result;
    434   Result.reserve(Defs.size());
    435 
    436   for (unsigned I = 0, e = Defs.size(); I != e; ++I) {
    437     bool isTarget = Defs[I]->getValueAsBit("isTarget");
    438     if (isTarget == TargetOnly)
    439       Result.push_back(CodeGenIntrinsic(Defs[I]));
    440   }
    441   std::sort(Result.begin(), Result.end(),
    442             [](const CodeGenIntrinsic& LHS, const CodeGenIntrinsic& RHS) {
    443               return LHS.Name < RHS.Name;
    444             });
    445   return Result;
    446 }
    447 
    448 CodeGenIntrinsic::CodeGenIntrinsic(Record *R) {
    449   TheDef = R;
    450   std::string DefName = R->getName();
    451   ModRef = ReadWriteMem;
    452   isOverloaded = false;
    453   isCommutative = false;
    454   canThrow = false;
    455   isNoReturn = false;
    456   isNoDuplicate = false;
    457   isConvergent = false;
    458 
    459   if (DefName.size() <= 4 ||
    460       std::string(DefName.begin(), DefName.begin() + 4) != "int_")
    461     PrintFatalError("Intrinsic '" + DefName + "' does not start with 'int_'!");
    462 
    463   EnumName = std::string(DefName.begin()+4, DefName.end());
    464 
    465   if (R->getValue("GCCBuiltinName"))  // Ignore a missing GCCBuiltinName field.
    466     GCCBuiltinName = R->getValueAsString("GCCBuiltinName");
    467   if (R->getValue("MSBuiltinName"))   // Ignore a missing MSBuiltinName field.
    468     MSBuiltinName = R->getValueAsString("MSBuiltinName");
    469 
    470   TargetPrefix = R->getValueAsString("TargetPrefix");
    471   Name = R->getValueAsString("LLVMName");
    472 
    473   if (Name == "") {
    474     // If an explicit name isn't specified, derive one from the DefName.
    475     Name = "llvm.";
    476 
    477     for (unsigned i = 0, e = EnumName.size(); i != e; ++i)
    478       Name += (EnumName[i] == '_') ? '.' : EnumName[i];
    479   } else {
    480     // Verify it starts with "llvm.".
    481     if (Name.size() <= 5 ||
    482         std::string(Name.begin(), Name.begin() + 5) != "llvm.")
    483       PrintFatalError("Intrinsic '" + DefName + "'s name does not start with 'llvm.'!");
    484   }
    485 
    486   // If TargetPrefix is specified, make sure that Name starts with
    487   // "llvm.<targetprefix>.".
    488   if (!TargetPrefix.empty()) {
    489     if (Name.size() < 6+TargetPrefix.size() ||
    490         std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size())
    491         != (TargetPrefix + "."))
    492       PrintFatalError("Intrinsic '" + DefName + "' does not start with 'llvm." +
    493         TargetPrefix + ".'!");
    494   }
    495 
    496   // Parse the list of return types.
    497   std::vector<MVT::SimpleValueType> OverloadedVTs;
    498   ListInit *TypeList = R->getValueAsListInit("RetTypes");
    499   for (unsigned i = 0, e = TypeList->size(); i != e; ++i) {
    500     Record *TyEl = TypeList->getElementAsRecord(i);
    501     assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
    502     MVT::SimpleValueType VT;
    503     if (TyEl->isSubClassOf("LLVMMatchType")) {
    504       unsigned MatchTy = TyEl->getValueAsInt("Number");
    505       assert(MatchTy < OverloadedVTs.size() &&
    506              "Invalid matching number!");
    507       VT = OverloadedVTs[MatchTy];
    508       // It only makes sense to use the extended and truncated vector element
    509       // variants with iAny types; otherwise, if the intrinsic is not
    510       // overloaded, all the types can be specified directly.
    511       assert(((!TyEl->isSubClassOf("LLVMExtendedType") &&
    512                !TyEl->isSubClassOf("LLVMTruncatedType")) ||
    513               VT == MVT::iAny || VT == MVT::vAny) &&
    514              "Expected iAny or vAny type");
    515     } else {
    516       VT = getValueType(TyEl->getValueAsDef("VT"));
    517     }
    518     if (MVT(VT).isOverloaded()) {
    519       OverloadedVTs.push_back(VT);
    520       isOverloaded = true;
    521     }
    522 
    523     // Reject invalid types.
    524     if (VT == MVT::isVoid)
    525       PrintFatalError("Intrinsic '" + DefName + " has void in result type list!");
    526 
    527     IS.RetVTs.push_back(VT);
    528     IS.RetTypeDefs.push_back(TyEl);
    529   }
    530 
    531   // Parse the list of parameter types.
    532   TypeList = R->getValueAsListInit("ParamTypes");
    533   for (unsigned i = 0, e = TypeList->size(); i != e; ++i) {
    534     Record *TyEl = TypeList->getElementAsRecord(i);
    535     assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
    536     MVT::SimpleValueType VT;
    537     if (TyEl->isSubClassOf("LLVMMatchType")) {
    538       unsigned MatchTy = TyEl->getValueAsInt("Number");
    539       assert(MatchTy < OverloadedVTs.size() &&
    540              "Invalid matching number!");
    541       VT = OverloadedVTs[MatchTy];
    542       // It only makes sense to use the extended and truncated vector element
    543       // variants with iAny types; otherwise, if the intrinsic is not
    544       // overloaded, all the types can be specified directly.
    545       assert(((!TyEl->isSubClassOf("LLVMExtendedType") &&
    546                !TyEl->isSubClassOf("LLVMTruncatedType") &&
    547                !TyEl->isSubClassOf("LLVMVectorSameWidth") &&
    548                !TyEl->isSubClassOf("LLVMPointerToElt")) ||
    549               VT == MVT::iAny || VT == MVT::vAny) &&
    550              "Expected iAny or vAny type");
    551     } else
    552       VT = getValueType(TyEl->getValueAsDef("VT"));
    553 
    554     if (MVT(VT).isOverloaded()) {
    555       OverloadedVTs.push_back(VT);
    556       isOverloaded = true;
    557     }
    558 
    559     // Reject invalid types.
    560     if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/)
    561       PrintFatalError("Intrinsic '" + DefName + " has void in result type list!");
    562 
    563     IS.ParamVTs.push_back(VT);
    564     IS.ParamTypeDefs.push_back(TyEl);
    565   }
    566 
    567   // Parse the intrinsic properties.
    568   ListInit *PropList = R->getValueAsListInit("IntrProperties");
    569   for (unsigned i = 0, e = PropList->size(); i != e; ++i) {
    570     Record *Property = PropList->getElementAsRecord(i);
    571     assert(Property->isSubClassOf("IntrinsicProperty") &&
    572            "Expected a property!");
    573 
    574     if (Property->getName() == "IntrNoMem")
    575       ModRef = NoMem;
    576     else if (Property->getName() == "IntrReadMem")
    577       ModRef = ModRefBehavior(ModRef & ~MR_Mod);
    578     else if (Property->getName() == "IntrWriteMem")
    579       ModRef = ModRefBehavior(ModRef & ~MR_Ref);
    580     else if (Property->getName() == "IntrArgMemOnly")
    581       ModRef = ModRefBehavior(ModRef & ~MR_Anywhere);
    582     else if (Property->getName() == "Commutative")
    583       isCommutative = true;
    584     else if (Property->getName() == "Throws")
    585       canThrow = true;
    586     else if (Property->getName() == "IntrNoDuplicate")
    587       isNoDuplicate = true;
    588     else if (Property->getName() == "IntrConvergent")
    589       isConvergent = true;
    590     else if (Property->getName() == "IntrNoReturn")
    591       isNoReturn = true;
    592     else if (Property->isSubClassOf("NoCapture")) {
    593       unsigned ArgNo = Property->getValueAsInt("ArgNo");
    594       ArgumentAttributes.push_back(std::make_pair(ArgNo, NoCapture));
    595     } else if (Property->isSubClassOf("Returned")) {
    596       unsigned ArgNo = Property->getValueAsInt("ArgNo");
    597       ArgumentAttributes.push_back(std::make_pair(ArgNo, Returned));
    598     } else if (Property->isSubClassOf("ReadOnly")) {
    599       unsigned ArgNo = Property->getValueAsInt("ArgNo");
    600       ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadOnly));
    601     } else if (Property->isSubClassOf("WriteOnly")) {
    602       unsigned ArgNo = Property->getValueAsInt("ArgNo");
    603       ArgumentAttributes.push_back(std::make_pair(ArgNo, WriteOnly));
    604     } else if (Property->isSubClassOf("ReadNone")) {
    605       unsigned ArgNo = Property->getValueAsInt("ArgNo");
    606       ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadNone));
    607     } else
    608       llvm_unreachable("Unknown property!");
    609   }
    610 
    611   // Sort the argument attributes for later benefit.
    612   std::sort(ArgumentAttributes.begin(), ArgumentAttributes.end());
    613 }
    614