1 // Copyright 2012 the V8 project authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #ifndef V8_X64_MACRO_ASSEMBLER_X64_H_ 6 #define V8_X64_MACRO_ASSEMBLER_X64_H_ 7 8 #include "src/assembler.h" 9 #include "src/bailout-reason.h" 10 #include "src/base/flags.h" 11 #include "src/frames.h" 12 #include "src/globals.h" 13 #include "src/x64/frames-x64.h" 14 15 namespace v8 { 16 namespace internal { 17 18 // Give alias names to registers for calling conventions. 19 const Register kReturnRegister0 = {Register::kCode_rax}; 20 const Register kReturnRegister1 = {Register::kCode_rdx}; 21 const Register kReturnRegister2 = {Register::kCode_r8}; 22 const Register kJSFunctionRegister = {Register::kCode_rdi}; 23 const Register kContextRegister = {Register::kCode_rsi}; 24 const Register kAllocateSizeRegister = {Register::kCode_rdx}; 25 const Register kInterpreterAccumulatorRegister = {Register::kCode_rax}; 26 const Register kInterpreterBytecodeOffsetRegister = {Register::kCode_r12}; 27 const Register kInterpreterBytecodeArrayRegister = {Register::kCode_r14}; 28 const Register kInterpreterDispatchTableRegister = {Register::kCode_r15}; 29 const Register kJavaScriptCallArgCountRegister = {Register::kCode_rax}; 30 const Register kJavaScriptCallNewTargetRegister = {Register::kCode_rdx}; 31 const Register kRuntimeCallFunctionRegister = {Register::kCode_rbx}; 32 const Register kRuntimeCallArgCountRegister = {Register::kCode_rax}; 33 34 // Default scratch register used by MacroAssembler (and other code that needs 35 // a spare register). The register isn't callee save, and not used by the 36 // function calling convention. 37 const Register kScratchRegister = {10}; // r10. 38 const XMMRegister kScratchDoubleReg = {15}; // xmm15. 39 const Register kRootRegister = {13}; // r13 (callee save). 40 // Actual value of root register is offset from the root array's start 41 // to take advantage of negitive 8-bit displacement values. 42 const int kRootRegisterBias = 128; 43 44 // Convenience for platform-independent signatures. 45 typedef Operand MemOperand; 46 47 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET }; 48 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK }; 49 enum PointersToHereCheck { 50 kPointersToHereMaybeInteresting, 51 kPointersToHereAreAlwaysInteresting 52 }; 53 54 enum class SmiOperationConstraint { 55 kPreserveSourceRegister = 1 << 0, 56 kBailoutOnNoOverflow = 1 << 1, 57 kBailoutOnOverflow = 1 << 2 58 }; 59 60 enum class ReturnAddressState { kOnStack, kNotOnStack }; 61 62 typedef base::Flags<SmiOperationConstraint> SmiOperationConstraints; 63 64 DEFINE_OPERATORS_FOR_FLAGS(SmiOperationConstraints) 65 66 #ifdef DEBUG 67 bool AreAliased(Register reg1, 68 Register reg2, 69 Register reg3 = no_reg, 70 Register reg4 = no_reg, 71 Register reg5 = no_reg, 72 Register reg6 = no_reg, 73 Register reg7 = no_reg, 74 Register reg8 = no_reg); 75 #endif 76 77 // Forward declaration. 78 class JumpTarget; 79 80 struct SmiIndex { 81 SmiIndex(Register index_register, ScaleFactor scale) 82 : reg(index_register), 83 scale(scale) {} 84 Register reg; 85 ScaleFactor scale; 86 }; 87 88 89 // MacroAssembler implements a collection of frequently used macros. 90 class MacroAssembler: public Assembler { 91 public: 92 MacroAssembler(Isolate* isolate, void* buffer, int size, 93 CodeObjectRequired create_code_object); 94 95 // Prevent the use of the RootArray during the lifetime of this 96 // scope object. 97 class NoRootArrayScope BASE_EMBEDDED { 98 public: 99 explicit NoRootArrayScope(MacroAssembler* assembler) 100 : variable_(&assembler->root_array_available_), 101 old_value_(assembler->root_array_available_) { 102 assembler->root_array_available_ = false; 103 } 104 ~NoRootArrayScope() { 105 *variable_ = old_value_; 106 } 107 private: 108 bool* variable_; 109 bool old_value_; 110 }; 111 112 // Operand pointing to an external reference. 113 // May emit code to set up the scratch register. The operand is 114 // only guaranteed to be correct as long as the scratch register 115 // isn't changed. 116 // If the operand is used more than once, use a scratch register 117 // that is guaranteed not to be clobbered. 118 Operand ExternalOperand(ExternalReference reference, 119 Register scratch = kScratchRegister); 120 // Loads and stores the value of an external reference. 121 // Special case code for load and store to take advantage of 122 // load_rax/store_rax if possible/necessary. 123 // For other operations, just use: 124 // Operand operand = ExternalOperand(extref); 125 // operation(operand, ..); 126 void Load(Register destination, ExternalReference source); 127 void Store(ExternalReference destination, Register source); 128 // Loads the address of the external reference into the destination 129 // register. 130 void LoadAddress(Register destination, ExternalReference source); 131 // Returns the size of the code generated by LoadAddress. 132 // Used by CallSize(ExternalReference) to find the size of a call. 133 int LoadAddressSize(ExternalReference source); 134 // Pushes the address of the external reference onto the stack. 135 void PushAddress(ExternalReference source); 136 137 // Operations on roots in the root-array. 138 void LoadRoot(Register destination, Heap::RootListIndex index); 139 void LoadRoot(const Operand& destination, Heap::RootListIndex index) { 140 LoadRoot(kScratchRegister, index); 141 movp(destination, kScratchRegister); 142 } 143 void StoreRoot(Register source, Heap::RootListIndex index); 144 // Load a root value where the index (or part of it) is variable. 145 // The variable_offset register is added to the fixed_offset value 146 // to get the index into the root-array. 147 void LoadRootIndexed(Register destination, 148 Register variable_offset, 149 int fixed_offset); 150 void CompareRoot(Register with, Heap::RootListIndex index); 151 void CompareRoot(const Operand& with, Heap::RootListIndex index); 152 void PushRoot(Heap::RootListIndex index); 153 154 // Compare the object in a register to a value and jump if they are equal. 155 void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal, 156 Label::Distance if_equal_distance = Label::kFar) { 157 CompareRoot(with, index); 158 j(equal, if_equal, if_equal_distance); 159 } 160 void JumpIfRoot(const Operand& with, Heap::RootListIndex index, 161 Label* if_equal, 162 Label::Distance if_equal_distance = Label::kFar) { 163 CompareRoot(with, index); 164 j(equal, if_equal, if_equal_distance); 165 } 166 167 // Compare the object in a register to a value and jump if they are not equal. 168 void JumpIfNotRoot(Register with, Heap::RootListIndex index, 169 Label* if_not_equal, 170 Label::Distance if_not_equal_distance = Label::kFar) { 171 CompareRoot(with, index); 172 j(not_equal, if_not_equal, if_not_equal_distance); 173 } 174 void JumpIfNotRoot(const Operand& with, Heap::RootListIndex index, 175 Label* if_not_equal, 176 Label::Distance if_not_equal_distance = Label::kFar) { 177 CompareRoot(with, index); 178 j(not_equal, if_not_equal, if_not_equal_distance); 179 } 180 181 // These functions do not arrange the registers in any particular order so 182 // they are not useful for calls that can cause a GC. The caller can 183 // exclude up to 3 registers that do not need to be saved and restored. 184 void PushCallerSaved(SaveFPRegsMode fp_mode, 185 Register exclusion1 = no_reg, 186 Register exclusion2 = no_reg, 187 Register exclusion3 = no_reg); 188 void PopCallerSaved(SaveFPRegsMode fp_mode, 189 Register exclusion1 = no_reg, 190 Register exclusion2 = no_reg, 191 Register exclusion3 = no_reg); 192 193 // --------------------------------------------------------------------------- 194 // GC Support 195 196 197 enum RememberedSetFinalAction { 198 kReturnAtEnd, 199 kFallThroughAtEnd 200 }; 201 202 // Record in the remembered set the fact that we have a pointer to new space 203 // at the address pointed to by the addr register. Only works if addr is not 204 // in new space. 205 void RememberedSetHelper(Register object, // Used for debug code. 206 Register addr, 207 Register scratch, 208 SaveFPRegsMode save_fp, 209 RememberedSetFinalAction and_then); 210 211 void CheckPageFlag(Register object, 212 Register scratch, 213 int mask, 214 Condition cc, 215 Label* condition_met, 216 Label::Distance condition_met_distance = Label::kFar); 217 218 // Check if object is in new space. Jumps if the object is not in new space. 219 // The register scratch can be object itself, but scratch will be clobbered. 220 void JumpIfNotInNewSpace(Register object, 221 Register scratch, 222 Label* branch, 223 Label::Distance distance = Label::kFar) { 224 InNewSpace(object, scratch, zero, branch, distance); 225 } 226 227 // Check if object is in new space. Jumps if the object is in new space. 228 // The register scratch can be object itself, but it will be clobbered. 229 void JumpIfInNewSpace(Register object, 230 Register scratch, 231 Label* branch, 232 Label::Distance distance = Label::kFar) { 233 InNewSpace(object, scratch, not_zero, branch, distance); 234 } 235 236 // Check if an object has the black incremental marking color. Also uses rcx! 237 void JumpIfBlack(Register object, Register bitmap_scratch, 238 Register mask_scratch, Label* on_black, 239 Label::Distance on_black_distance); 240 241 // Checks the color of an object. If the object is white we jump to the 242 // incremental marker. 243 void JumpIfWhite(Register value, Register scratch1, Register scratch2, 244 Label* value_is_white, Label::Distance distance); 245 246 // Notify the garbage collector that we wrote a pointer into an object. 247 // |object| is the object being stored into, |value| is the object being 248 // stored. value and scratch registers are clobbered by the operation. 249 // The offset is the offset from the start of the object, not the offset from 250 // the tagged HeapObject pointer. For use with FieldOperand(reg, off). 251 void RecordWriteField( 252 Register object, 253 int offset, 254 Register value, 255 Register scratch, 256 SaveFPRegsMode save_fp, 257 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET, 258 SmiCheck smi_check = INLINE_SMI_CHECK, 259 PointersToHereCheck pointers_to_here_check_for_value = 260 kPointersToHereMaybeInteresting); 261 262 // As above, but the offset has the tag presubtracted. For use with 263 // Operand(reg, off). 264 void RecordWriteContextSlot( 265 Register context, 266 int offset, 267 Register value, 268 Register scratch, 269 SaveFPRegsMode save_fp, 270 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET, 271 SmiCheck smi_check = INLINE_SMI_CHECK, 272 PointersToHereCheck pointers_to_here_check_for_value = 273 kPointersToHereMaybeInteresting) { 274 RecordWriteField(context, 275 offset + kHeapObjectTag, 276 value, 277 scratch, 278 save_fp, 279 remembered_set_action, 280 smi_check, 281 pointers_to_here_check_for_value); 282 } 283 284 // Notify the garbage collector that we wrote a pointer into a fixed array. 285 // |array| is the array being stored into, |value| is the 286 // object being stored. |index| is the array index represented as a non-smi. 287 // All registers are clobbered by the operation RecordWriteArray 288 // filters out smis so it does not update the write barrier if the 289 // value is a smi. 290 void RecordWriteArray( 291 Register array, 292 Register value, 293 Register index, 294 SaveFPRegsMode save_fp, 295 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET, 296 SmiCheck smi_check = INLINE_SMI_CHECK, 297 PointersToHereCheck pointers_to_here_check_for_value = 298 kPointersToHereMaybeInteresting); 299 300 // Notify the garbage collector that we wrote a code entry into a 301 // JSFunction. Only scratch is clobbered by the operation. 302 void RecordWriteCodeEntryField(Register js_function, Register code_entry, 303 Register scratch); 304 305 void RecordWriteForMap( 306 Register object, 307 Register map, 308 Register dst, 309 SaveFPRegsMode save_fp); 310 311 // For page containing |object| mark region covering |address| 312 // dirty. |object| is the object being stored into, |value| is the 313 // object being stored. The address and value registers are clobbered by the 314 // operation. RecordWrite filters out smis so it does not update 315 // the write barrier if the value is a smi. 316 void RecordWrite( 317 Register object, 318 Register address, 319 Register value, 320 SaveFPRegsMode save_fp, 321 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET, 322 SmiCheck smi_check = INLINE_SMI_CHECK, 323 PointersToHereCheck pointers_to_here_check_for_value = 324 kPointersToHereMaybeInteresting); 325 326 // --------------------------------------------------------------------------- 327 // Debugger Support 328 329 void DebugBreak(); 330 331 // Generates function and stub prologue code. 332 void StubPrologue(StackFrame::Type type); 333 void Prologue(bool code_pre_aging); 334 335 // Enter specific kind of exit frame; either in normal or 336 // debug mode. Expects the number of arguments in register rax and 337 // sets up the number of arguments in register rdi and the pointer 338 // to the first argument in register rsi. 339 // 340 // Allocates arg_stack_space * kPointerSize memory (not GCed) on the stack 341 // accessible via StackSpaceOperand. 342 void EnterExitFrame(int arg_stack_space = 0, bool save_doubles = false, 343 StackFrame::Type frame_type = StackFrame::EXIT); 344 345 // Enter specific kind of exit frame. Allocates arg_stack_space * kPointerSize 346 // memory (not GCed) on the stack accessible via StackSpaceOperand. 347 void EnterApiExitFrame(int arg_stack_space); 348 349 // Leave the current exit frame. Expects/provides the return value in 350 // register rax:rdx (untouched) and the pointer to the first 351 // argument in register rsi (if pop_arguments == true). 352 void LeaveExitFrame(bool save_doubles = false, bool pop_arguments = true); 353 354 // Leave the current exit frame. Expects/provides the return value in 355 // register rax (untouched). 356 void LeaveApiExitFrame(bool restore_context); 357 358 // Push and pop the registers that can hold pointers. 359 void PushSafepointRegisters() { Pushad(); } 360 void PopSafepointRegisters() { Popad(); } 361 // Store the value in register src in the safepoint register stack 362 // slot for register dst. 363 void StoreToSafepointRegisterSlot(Register dst, const Immediate& imm); 364 void StoreToSafepointRegisterSlot(Register dst, Register src); 365 void LoadFromSafepointRegisterSlot(Register dst, Register src); 366 367 void InitializeRootRegister() { 368 ExternalReference roots_array_start = 369 ExternalReference::roots_array_start(isolate()); 370 Move(kRootRegister, roots_array_start); 371 addp(kRootRegister, Immediate(kRootRegisterBias)); 372 } 373 374 // --------------------------------------------------------------------------- 375 // JavaScript invokes 376 377 // Removes current frame and its arguments from the stack preserving 378 // the arguments and a return address pushed to the stack for the next call. 379 // |ra_state| defines whether return address is already pushed to stack or 380 // not. Both |callee_args_count| and |caller_args_count_reg| do not include 381 // receiver. |callee_args_count| is not modified, |caller_args_count_reg| 382 // is trashed. 383 void PrepareForTailCall(const ParameterCount& callee_args_count, 384 Register caller_args_count_reg, Register scratch0, 385 Register scratch1, ReturnAddressState ra_state); 386 387 // Invoke the JavaScript function code by either calling or jumping. 388 void InvokeFunctionCode(Register function, Register new_target, 389 const ParameterCount& expected, 390 const ParameterCount& actual, InvokeFlag flag, 391 const CallWrapper& call_wrapper); 392 393 void FloodFunctionIfStepping(Register fun, Register new_target, 394 const ParameterCount& expected, 395 const ParameterCount& actual); 396 397 // Invoke the JavaScript function in the given register. Changes the 398 // current context to the context in the function before invoking. 399 void InvokeFunction(Register function, 400 Register new_target, 401 const ParameterCount& actual, 402 InvokeFlag flag, 403 const CallWrapper& call_wrapper); 404 405 void InvokeFunction(Register function, 406 Register new_target, 407 const ParameterCount& expected, 408 const ParameterCount& actual, 409 InvokeFlag flag, 410 const CallWrapper& call_wrapper); 411 412 void InvokeFunction(Handle<JSFunction> function, 413 const ParameterCount& expected, 414 const ParameterCount& actual, 415 InvokeFlag flag, 416 const CallWrapper& call_wrapper); 417 418 // --------------------------------------------------------------------------- 419 // Smi tagging, untagging and operations on tagged smis. 420 421 // Support for constant splitting. 422 bool IsUnsafeInt(const int32_t x); 423 void SafeMove(Register dst, Smi* src); 424 void SafePush(Smi* src); 425 426 // Conversions between tagged smi values and non-tagged integer values. 427 428 // Tag an integer value. The result must be known to be a valid smi value. 429 // Only uses the low 32 bits of the src register. Sets the N and Z flags 430 // based on the value of the resulting smi. 431 void Integer32ToSmi(Register dst, Register src); 432 433 // Stores an integer32 value into a memory field that already holds a smi. 434 void Integer32ToSmiField(const Operand& dst, Register src); 435 436 // Adds constant to src and tags the result as a smi. 437 // Result must be a valid smi. 438 void Integer64PlusConstantToSmi(Register dst, Register src, int constant); 439 440 // Convert smi to 32-bit integer. I.e., not sign extended into 441 // high 32 bits of destination. 442 void SmiToInteger32(Register dst, Register src); 443 void SmiToInteger32(Register dst, const Operand& src); 444 445 // Convert smi to 64-bit integer (sign extended if necessary). 446 void SmiToInteger64(Register dst, Register src); 447 void SmiToInteger64(Register dst, const Operand& src); 448 449 // Convert smi to double. 450 void SmiToDouble(XMMRegister dst, Register src) { 451 SmiToInteger32(kScratchRegister, src); 452 Cvtlsi2sd(dst, kScratchRegister); 453 } 454 455 // Multiply a positive smi's integer value by a power of two. 456 // Provides result as 64-bit integer value. 457 void PositiveSmiTimesPowerOfTwoToInteger64(Register dst, 458 Register src, 459 int power); 460 461 // Divide a positive smi's integer value by a power of two. 462 // Provides result as 32-bit integer value. 463 void PositiveSmiDivPowerOfTwoToInteger32(Register dst, 464 Register src, 465 int power); 466 467 // Perform the logical or of two smi values and return a smi value. 468 // If either argument is not a smi, jump to on_not_smis and retain 469 // the original values of source registers. The destination register 470 // may be changed if it's not one of the source registers. 471 void SmiOrIfSmis(Register dst, 472 Register src1, 473 Register src2, 474 Label* on_not_smis, 475 Label::Distance near_jump = Label::kFar); 476 477 478 // Simple comparison of smis. Both sides must be known smis to use these, 479 // otherwise use Cmp. 480 void SmiCompare(Register smi1, Register smi2); 481 void SmiCompare(Register dst, Smi* src); 482 void SmiCompare(Register dst, const Operand& src); 483 void SmiCompare(const Operand& dst, Register src); 484 void SmiCompare(const Operand& dst, Smi* src); 485 // Compare the int32 in src register to the value of the smi stored at dst. 486 void SmiCompareInteger32(const Operand& dst, Register src); 487 // Sets sign and zero flags depending on value of smi in register. 488 void SmiTest(Register src); 489 490 // Functions performing a check on a known or potential smi. Returns 491 // a condition that is satisfied if the check is successful. 492 493 // Is the value a tagged smi. 494 Condition CheckSmi(Register src); 495 Condition CheckSmi(const Operand& src); 496 497 // Is the value a non-negative tagged smi. 498 Condition CheckNonNegativeSmi(Register src); 499 500 // Are both values tagged smis. 501 Condition CheckBothSmi(Register first, Register second); 502 503 // Are both values non-negative tagged smis. 504 Condition CheckBothNonNegativeSmi(Register first, Register second); 505 506 // Are either value a tagged smi. 507 Condition CheckEitherSmi(Register first, 508 Register second, 509 Register scratch = kScratchRegister); 510 511 // Checks whether an 32-bit integer value is a valid for conversion 512 // to a smi. 513 Condition CheckInteger32ValidSmiValue(Register src); 514 515 // Checks whether an 32-bit unsigned integer value is a valid for 516 // conversion to a smi. 517 Condition CheckUInteger32ValidSmiValue(Register src); 518 519 // Check whether src is a Smi, and set dst to zero if it is a smi, 520 // and to one if it isn't. 521 void CheckSmiToIndicator(Register dst, Register src); 522 void CheckSmiToIndicator(Register dst, const Operand& src); 523 524 // Test-and-jump functions. Typically combines a check function 525 // above with a conditional jump. 526 527 // Jump if the value can be represented by a smi. 528 void JumpIfValidSmiValue(Register src, Label* on_valid, 529 Label::Distance near_jump = Label::kFar); 530 531 // Jump if the value cannot be represented by a smi. 532 void JumpIfNotValidSmiValue(Register src, Label* on_invalid, 533 Label::Distance near_jump = Label::kFar); 534 535 // Jump if the unsigned integer value can be represented by a smi. 536 void JumpIfUIntValidSmiValue(Register src, Label* on_valid, 537 Label::Distance near_jump = Label::kFar); 538 539 // Jump if the unsigned integer value cannot be represented by a smi. 540 void JumpIfUIntNotValidSmiValue(Register src, Label* on_invalid, 541 Label::Distance near_jump = Label::kFar); 542 543 // Jump to label if the value is a tagged smi. 544 void JumpIfSmi(Register src, 545 Label* on_smi, 546 Label::Distance near_jump = Label::kFar); 547 548 // Jump to label if the value is not a tagged smi. 549 void JumpIfNotSmi(Register src, 550 Label* on_not_smi, 551 Label::Distance near_jump = Label::kFar); 552 553 // Jump to label if the value is not a non-negative tagged smi. 554 void JumpUnlessNonNegativeSmi(Register src, 555 Label* on_not_smi, 556 Label::Distance near_jump = Label::kFar); 557 558 // Jump to label if the value, which must be a tagged smi, has value equal 559 // to the constant. 560 void JumpIfSmiEqualsConstant(Register src, 561 Smi* constant, 562 Label* on_equals, 563 Label::Distance near_jump = Label::kFar); 564 565 // Jump if either or both register are not smi values. 566 void JumpIfNotBothSmi(Register src1, 567 Register src2, 568 Label* on_not_both_smi, 569 Label::Distance near_jump = Label::kFar); 570 571 // Jump if either or both register are not non-negative smi values. 572 void JumpUnlessBothNonNegativeSmi(Register src1, Register src2, 573 Label* on_not_both_smi, 574 Label::Distance near_jump = Label::kFar); 575 576 // Operations on tagged smi values. 577 578 // Smis represent a subset of integers. The subset is always equivalent to 579 // a two's complement interpretation of a fixed number of bits. 580 581 // Add an integer constant to a tagged smi, giving a tagged smi as result. 582 // No overflow testing on the result is done. 583 void SmiAddConstant(Register dst, Register src, Smi* constant); 584 585 // Add an integer constant to a tagged smi, giving a tagged smi as result. 586 // No overflow testing on the result is done. 587 void SmiAddConstant(const Operand& dst, Smi* constant); 588 589 // Add an integer constant to a tagged smi, giving a tagged smi as result, 590 // or jumping to a label if the result cannot be represented by a smi. 591 void SmiAddConstant(Register dst, Register src, Smi* constant, 592 SmiOperationConstraints constraints, Label* bailout_label, 593 Label::Distance near_jump = Label::kFar); 594 595 // Subtract an integer constant from a tagged smi, giving a tagged smi as 596 // result. No testing on the result is done. Sets the N and Z flags 597 // based on the value of the resulting integer. 598 void SmiSubConstant(Register dst, Register src, Smi* constant); 599 600 // Subtract an integer constant from a tagged smi, giving a tagged smi as 601 // result, or jumping to a label if the result cannot be represented by a smi. 602 void SmiSubConstant(Register dst, Register src, Smi* constant, 603 SmiOperationConstraints constraints, Label* bailout_label, 604 Label::Distance near_jump = Label::kFar); 605 606 // Negating a smi can give a negative zero or too large positive value. 607 // NOTICE: This operation jumps on success, not failure! 608 void SmiNeg(Register dst, 609 Register src, 610 Label* on_smi_result, 611 Label::Distance near_jump = Label::kFar); 612 613 // Adds smi values and return the result as a smi. 614 // If dst is src1, then src1 will be destroyed if the operation is 615 // successful, otherwise kept intact. 616 void SmiAdd(Register dst, 617 Register src1, 618 Register src2, 619 Label* on_not_smi_result, 620 Label::Distance near_jump = Label::kFar); 621 void SmiAdd(Register dst, 622 Register src1, 623 const Operand& src2, 624 Label* on_not_smi_result, 625 Label::Distance near_jump = Label::kFar); 626 627 void SmiAdd(Register dst, 628 Register src1, 629 Register src2); 630 631 // Subtracts smi values and return the result as a smi. 632 // If dst is src1, then src1 will be destroyed if the operation is 633 // successful, otherwise kept intact. 634 void SmiSub(Register dst, 635 Register src1, 636 Register src2, 637 Label* on_not_smi_result, 638 Label::Distance near_jump = Label::kFar); 639 void SmiSub(Register dst, 640 Register src1, 641 const Operand& src2, 642 Label* on_not_smi_result, 643 Label::Distance near_jump = Label::kFar); 644 645 void SmiSub(Register dst, 646 Register src1, 647 Register src2); 648 649 void SmiSub(Register dst, 650 Register src1, 651 const Operand& src2); 652 653 // Multiplies smi values and return the result as a smi, 654 // if possible. 655 // If dst is src1, then src1 will be destroyed, even if 656 // the operation is unsuccessful. 657 void SmiMul(Register dst, 658 Register src1, 659 Register src2, 660 Label* on_not_smi_result, 661 Label::Distance near_jump = Label::kFar); 662 663 // Divides one smi by another and returns the quotient. 664 // Clobbers rax and rdx registers. 665 void SmiDiv(Register dst, 666 Register src1, 667 Register src2, 668 Label* on_not_smi_result, 669 Label::Distance near_jump = Label::kFar); 670 671 // Divides one smi by another and returns the remainder. 672 // Clobbers rax and rdx registers. 673 void SmiMod(Register dst, 674 Register src1, 675 Register src2, 676 Label* on_not_smi_result, 677 Label::Distance near_jump = Label::kFar); 678 679 // Bitwise operations. 680 void SmiNot(Register dst, Register src); 681 void SmiAnd(Register dst, Register src1, Register src2); 682 void SmiOr(Register dst, Register src1, Register src2); 683 void SmiXor(Register dst, Register src1, Register src2); 684 void SmiAndConstant(Register dst, Register src1, Smi* constant); 685 void SmiOrConstant(Register dst, Register src1, Smi* constant); 686 void SmiXorConstant(Register dst, Register src1, Smi* constant); 687 688 void SmiShiftLeftConstant(Register dst, 689 Register src, 690 int shift_value, 691 Label* on_not_smi_result = NULL, 692 Label::Distance near_jump = Label::kFar); 693 void SmiShiftLogicalRightConstant(Register dst, 694 Register src, 695 int shift_value, 696 Label* on_not_smi_result, 697 Label::Distance near_jump = Label::kFar); 698 void SmiShiftArithmeticRightConstant(Register dst, 699 Register src, 700 int shift_value); 701 702 // Shifts a smi value to the left, and returns the result if that is a smi. 703 // Uses and clobbers rcx, so dst may not be rcx. 704 void SmiShiftLeft(Register dst, 705 Register src1, 706 Register src2, 707 Label* on_not_smi_result = NULL, 708 Label::Distance near_jump = Label::kFar); 709 // Shifts a smi value to the right, shifting in zero bits at the top, and 710 // returns the unsigned intepretation of the result if that is a smi. 711 // Uses and clobbers rcx, so dst may not be rcx. 712 void SmiShiftLogicalRight(Register dst, 713 Register src1, 714 Register src2, 715 Label* on_not_smi_result, 716 Label::Distance near_jump = Label::kFar); 717 // Shifts a smi value to the right, sign extending the top, and 718 // returns the signed intepretation of the result. That will always 719 // be a valid smi value, since it's numerically smaller than the 720 // original. 721 // Uses and clobbers rcx, so dst may not be rcx. 722 void SmiShiftArithmeticRight(Register dst, 723 Register src1, 724 Register src2); 725 726 // Specialized operations 727 728 // Select the non-smi register of two registers where exactly one is a 729 // smi. If neither are smis, jump to the failure label. 730 void SelectNonSmi(Register dst, 731 Register src1, 732 Register src2, 733 Label* on_not_smis, 734 Label::Distance near_jump = Label::kFar); 735 736 // Converts, if necessary, a smi to a combination of number and 737 // multiplier to be used as a scaled index. 738 // The src register contains a *positive* smi value. The shift is the 739 // power of two to multiply the index value by (e.g. 740 // to index by smi-value * kPointerSize, pass the smi and kPointerSizeLog2). 741 // The returned index register may be either src or dst, depending 742 // on what is most efficient. If src and dst are different registers, 743 // src is always unchanged. 744 SmiIndex SmiToIndex(Register dst, Register src, int shift); 745 746 // Converts a positive smi to a negative index. 747 SmiIndex SmiToNegativeIndex(Register dst, Register src, int shift); 748 749 // Add the value of a smi in memory to an int32 register. 750 // Sets flags as a normal add. 751 void AddSmiField(Register dst, const Operand& src); 752 753 // Basic Smi operations. 754 void Move(Register dst, Smi* source) { 755 LoadSmiConstant(dst, source); 756 } 757 758 void Move(const Operand& dst, Smi* source) { 759 Register constant = GetSmiConstant(source); 760 movp(dst, constant); 761 } 762 763 void Push(Smi* smi); 764 765 // Save away a raw integer with pointer size on the stack as two integers 766 // masquerading as smis so that the garbage collector skips visiting them. 767 void PushRegisterAsTwoSmis(Register src, Register scratch = kScratchRegister); 768 // Reconstruct a raw integer with pointer size from two integers masquerading 769 // as smis on the top of stack. 770 void PopRegisterAsTwoSmis(Register dst, Register scratch = kScratchRegister); 771 772 void Test(const Operand& dst, Smi* source); 773 774 775 // --------------------------------------------------------------------------- 776 // String macros. 777 778 // If object is a string, its map is loaded into object_map. 779 void JumpIfNotString(Register object, 780 Register object_map, 781 Label* not_string, 782 Label::Distance near_jump = Label::kFar); 783 784 785 void JumpIfNotBothSequentialOneByteStrings( 786 Register first_object, Register second_object, Register scratch1, 787 Register scratch2, Label* on_not_both_flat_one_byte, 788 Label::Distance near_jump = Label::kFar); 789 790 // Check whether the instance type represents a flat one-byte string. Jump 791 // to the label if not. If the instance type can be scratched specify same 792 // register for both instance type and scratch. 793 void JumpIfInstanceTypeIsNotSequentialOneByte( 794 Register instance_type, Register scratch, 795 Label* on_not_flat_one_byte_string, 796 Label::Distance near_jump = Label::kFar); 797 798 void JumpIfBothInstanceTypesAreNotSequentialOneByte( 799 Register first_object_instance_type, Register second_object_instance_type, 800 Register scratch1, Register scratch2, Label* on_fail, 801 Label::Distance near_jump = Label::kFar); 802 803 void EmitSeqStringSetCharCheck(Register string, 804 Register index, 805 Register value, 806 uint32_t encoding_mask); 807 808 // Checks if the given register or operand is a unique name 809 void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name, 810 Label::Distance distance = Label::kFar); 811 void JumpIfNotUniqueNameInstanceType(Operand operand, Label* not_unique_name, 812 Label::Distance distance = Label::kFar); 813 814 // --------------------------------------------------------------------------- 815 // Macro instructions. 816 817 // Load/store with specific representation. 818 void Load(Register dst, const Operand& src, Representation r); 819 void Store(const Operand& dst, Register src, Representation r); 820 821 // Load a register with a long value as efficiently as possible. 822 void Set(Register dst, int64_t x); 823 void Set(const Operand& dst, intptr_t x); 824 825 void Cvtss2sd(XMMRegister dst, XMMRegister src); 826 void Cvtss2sd(XMMRegister dst, const Operand& src); 827 void Cvtsd2ss(XMMRegister dst, XMMRegister src); 828 void Cvtsd2ss(XMMRegister dst, const Operand& src); 829 830 // cvtsi2sd instruction only writes to the low 64-bit of dst register, which 831 // hinders register renaming and makes dependence chains longer. So we use 832 // xorpd to clear the dst register before cvtsi2sd to solve this issue. 833 void Cvtlsi2sd(XMMRegister dst, Register src); 834 void Cvtlsi2sd(XMMRegister dst, const Operand& src); 835 836 void Cvtlsi2ss(XMMRegister dst, Register src); 837 void Cvtlsi2ss(XMMRegister dst, const Operand& src); 838 void Cvtqsi2ss(XMMRegister dst, Register src); 839 void Cvtqsi2ss(XMMRegister dst, const Operand& src); 840 841 void Cvtqsi2sd(XMMRegister dst, Register src); 842 void Cvtqsi2sd(XMMRegister dst, const Operand& src); 843 844 void Cvtqui2ss(XMMRegister dst, Register src, Register tmp); 845 void Cvtqui2sd(XMMRegister dst, Register src, Register tmp); 846 847 void Cvtsd2si(Register dst, XMMRegister src); 848 849 void Cvttss2si(Register dst, XMMRegister src); 850 void Cvttss2si(Register dst, const Operand& src); 851 void Cvttsd2si(Register dst, XMMRegister src); 852 void Cvttsd2si(Register dst, const Operand& src); 853 void Cvttss2siq(Register dst, XMMRegister src); 854 void Cvttss2siq(Register dst, const Operand& src); 855 void Cvttsd2siq(Register dst, XMMRegister src); 856 void Cvttsd2siq(Register dst, const Operand& src); 857 858 // Move if the registers are not identical. 859 void Move(Register target, Register source); 860 861 // TestBit and Load SharedFunctionInfo special field. 862 void TestBitSharedFunctionInfoSpecialField(Register base, 863 int offset, 864 int bit_index); 865 void LoadSharedFunctionInfoSpecialField(Register dst, 866 Register base, 867 int offset); 868 869 // Handle support 870 void Move(Register dst, Handle<Object> source); 871 void Move(const Operand& dst, Handle<Object> source); 872 void Cmp(Register dst, Handle<Object> source); 873 void Cmp(const Operand& dst, Handle<Object> source); 874 void Cmp(Register dst, Smi* src); 875 void Cmp(const Operand& dst, Smi* src); 876 void Push(Handle<Object> source); 877 878 // Load a heap object and handle the case of new-space objects by 879 // indirecting via a global cell. 880 void MoveHeapObject(Register result, Handle<Object> object); 881 882 // Load a global cell into a register. 883 void LoadGlobalCell(Register dst, Handle<Cell> cell); 884 885 // Compare the given value and the value of weak cell. 886 void CmpWeakValue(Register value, Handle<WeakCell> cell, Register scratch); 887 888 void GetWeakValue(Register value, Handle<WeakCell> cell); 889 890 // Load the value of the weak cell in the value register. Branch to the given 891 // miss label if the weak cell was cleared. 892 void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss); 893 894 // Emit code that loads |parameter_index|'th parameter from the stack to 895 // the register according to the CallInterfaceDescriptor definition. 896 // |sp_to_caller_sp_offset_in_words| specifies the number of words pushed 897 // below the caller's sp (on x64 it's at least return address). 898 template <class Descriptor> 899 void LoadParameterFromStack( 900 Register reg, typename Descriptor::ParameterIndices parameter_index, 901 int sp_to_ra_offset_in_words = 1) { 902 DCHECK(Descriptor::kPassLastArgsOnStack); 903 UNIMPLEMENTED(); 904 } 905 906 // Emit code to discard a non-negative number of pointer-sized elements 907 // from the stack, clobbering only the rsp register. 908 void Drop(int stack_elements); 909 // Emit code to discard a positive number of pointer-sized elements 910 // from the stack under the return address which remains on the top, 911 // clobbering the rsp register. 912 void DropUnderReturnAddress(int stack_elements, 913 Register scratch = kScratchRegister); 914 915 void Call(Label* target) { call(target); } 916 void Push(Register src); 917 void Push(const Operand& src); 918 void PushQuad(const Operand& src); 919 void Push(Immediate value); 920 void PushImm32(int32_t imm32); 921 void Pop(Register dst); 922 void Pop(const Operand& dst); 923 void PopQuad(const Operand& dst); 924 void PushReturnAddressFrom(Register src) { pushq(src); } 925 void PopReturnAddressTo(Register dst) { popq(dst); } 926 void Move(Register dst, ExternalReference ext) { 927 movp(dst, reinterpret_cast<void*>(ext.address()), 928 RelocInfo::EXTERNAL_REFERENCE); 929 } 930 931 // Loads a pointer into a register with a relocation mode. 932 void Move(Register dst, void* ptr, RelocInfo::Mode rmode) { 933 // This method must not be used with heap object references. The stored 934 // address is not GC safe. Use the handle version instead. 935 DCHECK(rmode > RelocInfo::LAST_GCED_ENUM); 936 movp(dst, ptr, rmode); 937 } 938 939 void Move(Register dst, Handle<Object> value, RelocInfo::Mode rmode) { 940 AllowDeferredHandleDereference using_raw_address; 941 DCHECK(!RelocInfo::IsNone(rmode)); 942 DCHECK(value->IsHeapObject()); 943 movp(dst, reinterpret_cast<void*>(value.location()), rmode); 944 } 945 946 void Move(XMMRegister dst, uint32_t src); 947 void Move(XMMRegister dst, uint64_t src); 948 void Move(XMMRegister dst, float src) { Move(dst, bit_cast<uint32_t>(src)); } 949 void Move(XMMRegister dst, double src) { Move(dst, bit_cast<uint64_t>(src)); } 950 951 #define AVX_OP2_WITH_TYPE(macro_name, name, src_type) \ 952 void macro_name(XMMRegister dst, src_type src) { \ 953 if (CpuFeatures::IsSupported(AVX)) { \ 954 CpuFeatureScope scope(this, AVX); \ 955 v##name(dst, dst, src); \ 956 } else { \ 957 name(dst, src); \ 958 } \ 959 } 960 #define AVX_OP2_X(macro_name, name) \ 961 AVX_OP2_WITH_TYPE(macro_name, name, XMMRegister) 962 #define AVX_OP2_O(macro_name, name) \ 963 AVX_OP2_WITH_TYPE(macro_name, name, const Operand&) 964 #define AVX_OP2_XO(macro_name, name) \ 965 AVX_OP2_X(macro_name, name) \ 966 AVX_OP2_O(macro_name, name) 967 968 AVX_OP2_XO(Addsd, addsd) 969 AVX_OP2_XO(Subsd, subsd) 970 AVX_OP2_XO(Mulsd, mulsd) 971 AVX_OP2_XO(Divss, divss) 972 AVX_OP2_XO(Divsd, divsd) 973 AVX_OP2_XO(Andps, andps) 974 AVX_OP2_XO(Andpd, andpd) 975 AVX_OP2_XO(Orpd, orpd) 976 AVX_OP2_XO(Xorpd, xorpd) 977 AVX_OP2_XO(Cmpeqps, cmpeqps) 978 AVX_OP2_XO(Cmpltps, cmpltps) 979 AVX_OP2_XO(Cmpleps, cmpleps) 980 AVX_OP2_XO(Cmpneqps, cmpneqps) 981 AVX_OP2_XO(Cmpnltps, cmpnltps) 982 AVX_OP2_XO(Cmpnleps, cmpnleps) 983 AVX_OP2_XO(Cmpeqpd, cmpeqpd) 984 AVX_OP2_XO(Cmpltpd, cmpltpd) 985 AVX_OP2_XO(Cmplepd, cmplepd) 986 AVX_OP2_XO(Cmpneqpd, cmpneqpd) 987 AVX_OP2_XO(Cmpnltpd, cmpnltpd) 988 AVX_OP2_XO(Cmpnlepd, cmpnlepd) 989 AVX_OP2_X(Pcmpeqd, pcmpeqd) 990 AVX_OP2_WITH_TYPE(Psllq, psllq, byte) 991 AVX_OP2_WITH_TYPE(Psrlq, psrlq, byte) 992 993 #undef AVX_OP2_O 994 #undef AVX_OP2_X 995 #undef AVX_OP2_XO 996 #undef AVX_OP2_WITH_TYPE 997 998 void Movsd(XMMRegister dst, XMMRegister src); 999 void Movsd(XMMRegister dst, const Operand& src); 1000 void Movsd(const Operand& dst, XMMRegister src); 1001 void Movss(XMMRegister dst, XMMRegister src); 1002 void Movss(XMMRegister dst, const Operand& src); 1003 void Movss(const Operand& dst, XMMRegister src); 1004 1005 void Movd(XMMRegister dst, Register src); 1006 void Movd(XMMRegister dst, const Operand& src); 1007 void Movd(Register dst, XMMRegister src); 1008 void Movq(XMMRegister dst, Register src); 1009 void Movq(Register dst, XMMRegister src); 1010 1011 void Movaps(XMMRegister dst, XMMRegister src); 1012 void Movups(XMMRegister dst, XMMRegister src); 1013 void Movups(XMMRegister dst, const Operand& src); 1014 void Movups(const Operand& dst, XMMRegister src); 1015 void Movmskps(Register dst, XMMRegister src); 1016 void Movapd(XMMRegister dst, XMMRegister src); 1017 void Movupd(XMMRegister dst, const Operand& src); 1018 void Movupd(const Operand& dst, XMMRegister src); 1019 void Movmskpd(Register dst, XMMRegister src); 1020 1021 void Xorps(XMMRegister dst, XMMRegister src); 1022 void Xorps(XMMRegister dst, const Operand& src); 1023 1024 void Roundss(XMMRegister dst, XMMRegister src, RoundingMode mode); 1025 void Roundsd(XMMRegister dst, XMMRegister src, RoundingMode mode); 1026 void Sqrtsd(XMMRegister dst, XMMRegister src); 1027 void Sqrtsd(XMMRegister dst, const Operand& src); 1028 1029 void Ucomiss(XMMRegister src1, XMMRegister src2); 1030 void Ucomiss(XMMRegister src1, const Operand& src2); 1031 void Ucomisd(XMMRegister src1, XMMRegister src2); 1032 void Ucomisd(XMMRegister src1, const Operand& src2); 1033 1034 // --------------------------------------------------------------------------- 1035 // SIMD macros. 1036 void Absps(XMMRegister dst); 1037 void Negps(XMMRegister dst); 1038 void Abspd(XMMRegister dst); 1039 void Negpd(XMMRegister dst); 1040 1041 // Control Flow 1042 void Jump(Address destination, RelocInfo::Mode rmode); 1043 void Jump(ExternalReference ext); 1044 void Jump(const Operand& op); 1045 void Jump(Handle<Code> code_object, RelocInfo::Mode rmode); 1046 1047 void Call(Address destination, RelocInfo::Mode rmode); 1048 void Call(ExternalReference ext); 1049 void Call(const Operand& op); 1050 void Call(Handle<Code> code_object, 1051 RelocInfo::Mode rmode, 1052 TypeFeedbackId ast_id = TypeFeedbackId::None()); 1053 1054 // The size of the code generated for different call instructions. 1055 int CallSize(Address destination) { 1056 return kCallSequenceLength; 1057 } 1058 int CallSize(ExternalReference ext); 1059 int CallSize(Handle<Code> code_object) { 1060 // Code calls use 32-bit relative addressing. 1061 return kShortCallInstructionLength; 1062 } 1063 int CallSize(Register target) { 1064 // Opcode: REX_opt FF /2 m64 1065 return (target.high_bit() != 0) ? 3 : 2; 1066 } 1067 int CallSize(const Operand& target) { 1068 // Opcode: REX_opt FF /2 m64 1069 return (target.requires_rex() ? 2 : 1) + target.operand_size(); 1070 } 1071 1072 // Non-SSE2 instructions. 1073 void Pextrd(Register dst, XMMRegister src, int8_t imm8); 1074 void Pinsrd(XMMRegister dst, Register src, int8_t imm8); 1075 void Pinsrd(XMMRegister dst, const Operand& src, int8_t imm8); 1076 1077 void Lzcntq(Register dst, Register src); 1078 void Lzcntq(Register dst, const Operand& src); 1079 1080 void Lzcntl(Register dst, Register src); 1081 void Lzcntl(Register dst, const Operand& src); 1082 1083 void Tzcntq(Register dst, Register src); 1084 void Tzcntq(Register dst, const Operand& src); 1085 1086 void Tzcntl(Register dst, Register src); 1087 void Tzcntl(Register dst, const Operand& src); 1088 1089 void Popcntl(Register dst, Register src); 1090 void Popcntl(Register dst, const Operand& src); 1091 1092 void Popcntq(Register dst, Register src); 1093 void Popcntq(Register dst, const Operand& src); 1094 1095 // Non-x64 instructions. 1096 // Push/pop all general purpose registers. 1097 // Does not push rsp/rbp nor any of the assembler's special purpose registers 1098 // (kScratchRegister, kRootRegister). 1099 void Pushad(); 1100 void Popad(); 1101 // Sets the stack as after performing Popad, without actually loading the 1102 // registers. 1103 void Dropad(); 1104 1105 // Compare object type for heap object. 1106 // Always use unsigned comparisons: above and below, not less and greater. 1107 // Incoming register is heap_object and outgoing register is map. 1108 // They may be the same register, and may be kScratchRegister. 1109 void CmpObjectType(Register heap_object, InstanceType type, Register map); 1110 1111 // Compare instance type for map. 1112 // Always use unsigned comparisons: above and below, not less and greater. 1113 void CmpInstanceType(Register map, InstanceType type); 1114 1115 // Check if a map for a JSObject indicates that the object can have both smi 1116 // and HeapObject elements. Jump to the specified label if it does not. 1117 void CheckFastObjectElements(Register map, 1118 Label* fail, 1119 Label::Distance distance = Label::kFar); 1120 1121 // Check if a map for a JSObject indicates that the object has fast smi only 1122 // elements. Jump to the specified label if it does not. 1123 void CheckFastSmiElements(Register map, 1124 Label* fail, 1125 Label::Distance distance = Label::kFar); 1126 1127 // Check to see if maybe_number can be stored as a double in 1128 // FastDoubleElements. If it can, store it at the index specified by index in 1129 // the FastDoubleElements array elements, otherwise jump to fail. Note that 1130 // index must not be smi-tagged. 1131 void StoreNumberToDoubleElements(Register maybe_number, 1132 Register elements, 1133 Register index, 1134 XMMRegister xmm_scratch, 1135 Label* fail, 1136 int elements_offset = 0); 1137 1138 // Compare an object's map with the specified map. 1139 void CompareMap(Register obj, Handle<Map> map); 1140 1141 // Check if the map of an object is equal to a specified map and branch to 1142 // label if not. Skip the smi check if not required (object is known to be a 1143 // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match 1144 // against maps that are ElementsKind transition maps of the specified map. 1145 void CheckMap(Register obj, 1146 Handle<Map> map, 1147 Label* fail, 1148 SmiCheckType smi_check_type); 1149 1150 // Check if the map of an object is equal to a specified weak map and branch 1151 // to a specified target if equal. Skip the smi check if not required 1152 // (object is known to be a heap object) 1153 void DispatchWeakMap(Register obj, Register scratch1, Register scratch2, 1154 Handle<WeakCell> cell, Handle<Code> success, 1155 SmiCheckType smi_check_type); 1156 1157 // Check if the object in register heap_object is a string. Afterwards the 1158 // register map contains the object map and the register instance_type 1159 // contains the instance_type. The registers map and instance_type can be the 1160 // same in which case it contains the instance type afterwards. Either of the 1161 // registers map and instance_type can be the same as heap_object. 1162 Condition IsObjectStringType(Register heap_object, 1163 Register map, 1164 Register instance_type); 1165 1166 // Check if the object in register heap_object is a name. Afterwards the 1167 // register map contains the object map and the register instance_type 1168 // contains the instance_type. The registers map and instance_type can be the 1169 // same in which case it contains the instance type afterwards. Either of the 1170 // registers map and instance_type can be the same as heap_object. 1171 Condition IsObjectNameType(Register heap_object, 1172 Register map, 1173 Register instance_type); 1174 1175 // FCmp compares and pops the two values on top of the FPU stack. 1176 // The flag results are similar to integer cmp, but requires unsigned 1177 // jcc instructions (je, ja, jae, jb, jbe, je, and jz). 1178 void FCmp(); 1179 1180 void ClampUint8(Register reg); 1181 1182 void ClampDoubleToUint8(XMMRegister input_reg, 1183 XMMRegister temp_xmm_reg, 1184 Register result_reg); 1185 1186 void SlowTruncateToI(Register result_reg, Register input_reg, 1187 int offset = HeapNumber::kValueOffset - kHeapObjectTag); 1188 1189 void TruncateHeapNumberToI(Register result_reg, Register input_reg); 1190 void TruncateDoubleToI(Register result_reg, XMMRegister input_reg); 1191 1192 void DoubleToI(Register result_reg, XMMRegister input_reg, 1193 XMMRegister scratch, MinusZeroMode minus_zero_mode, 1194 Label* lost_precision, Label* is_nan, Label* minus_zero, 1195 Label::Distance dst = Label::kFar); 1196 1197 void LoadUint32(XMMRegister dst, Register src); 1198 1199 void LoadInstanceDescriptors(Register map, Register descriptors); 1200 void EnumLength(Register dst, Register map); 1201 void NumberOfOwnDescriptors(Register dst, Register map); 1202 void LoadAccessor(Register dst, Register holder, int accessor_index, 1203 AccessorComponent accessor); 1204 1205 template<typename Field> 1206 void DecodeField(Register reg) { 1207 static const int shift = Field::kShift; 1208 static const int mask = Field::kMask >> Field::kShift; 1209 if (shift != 0) { 1210 shrp(reg, Immediate(shift)); 1211 } 1212 andp(reg, Immediate(mask)); 1213 } 1214 1215 template<typename Field> 1216 void DecodeFieldToSmi(Register reg) { 1217 if (SmiValuesAre32Bits()) { 1218 andp(reg, Immediate(Field::kMask)); 1219 shlp(reg, Immediate(kSmiShift - Field::kShift)); 1220 } else { 1221 static const int shift = Field::kShift; 1222 static const int mask = (Field::kMask >> Field::kShift) << kSmiTagSize; 1223 DCHECK(SmiValuesAre31Bits()); 1224 DCHECK(kSmiShift == kSmiTagSize); 1225 DCHECK((mask & 0x80000000u) == 0); 1226 if (shift < kSmiShift) { 1227 shlp(reg, Immediate(kSmiShift - shift)); 1228 } else if (shift > kSmiShift) { 1229 sarp(reg, Immediate(shift - kSmiShift)); 1230 } 1231 andp(reg, Immediate(mask)); 1232 } 1233 } 1234 1235 // Abort execution if argument is not a number, enabled via --debug-code. 1236 void AssertNumber(Register object); 1237 void AssertNotNumber(Register object); 1238 1239 // Abort execution if argument is a smi, enabled via --debug-code. 1240 void AssertNotSmi(Register object); 1241 1242 // Abort execution if argument is not a smi, enabled via --debug-code. 1243 void AssertSmi(Register object); 1244 void AssertSmi(const Operand& object); 1245 1246 // Abort execution if a 64 bit register containing a 32 bit payload does not 1247 // have zeros in the top 32 bits, enabled via --debug-code. 1248 void AssertZeroExtended(Register reg); 1249 1250 // Abort execution if argument is not a string, enabled via --debug-code. 1251 void AssertString(Register object); 1252 1253 // Abort execution if argument is not a name, enabled via --debug-code. 1254 void AssertName(Register object); 1255 1256 // Abort execution if argument is not a JSFunction, enabled via --debug-code. 1257 void AssertFunction(Register object); 1258 1259 // Abort execution if argument is not a JSBoundFunction, 1260 // enabled via --debug-code. 1261 void AssertBoundFunction(Register object); 1262 1263 // Abort execution if argument is not a JSGeneratorObject, 1264 // enabled via --debug-code. 1265 void AssertGeneratorObject(Register object); 1266 1267 // Abort execution if argument is not a JSReceiver, enabled via --debug-code. 1268 void AssertReceiver(Register object); 1269 1270 // Abort execution if argument is not undefined or an AllocationSite, enabled 1271 // via --debug-code. 1272 void AssertUndefinedOrAllocationSite(Register object); 1273 1274 // Abort execution if argument is not the root value with the given index, 1275 // enabled via --debug-code. 1276 void AssertRootValue(Register src, 1277 Heap::RootListIndex root_value_index, 1278 BailoutReason reason); 1279 1280 // --------------------------------------------------------------------------- 1281 // Exception handling 1282 1283 // Push a new stack handler and link it into stack handler chain. 1284 void PushStackHandler(); 1285 1286 // Unlink the stack handler on top of the stack from the stack handler chain. 1287 void PopStackHandler(); 1288 1289 // --------------------------------------------------------------------------- 1290 // Inline caching support 1291 1292 void GetNumberHash(Register r0, Register scratch); 1293 1294 // --------------------------------------------------------------------------- 1295 // Allocation support 1296 1297 // Allocate an object in new space or old space. If the given space 1298 // is exhausted control continues at the gc_required label. The allocated 1299 // object is returned in result and end of the new object is returned in 1300 // result_end. The register scratch can be passed as no_reg in which case 1301 // an additional object reference will be added to the reloc info. The 1302 // returned pointers in result and result_end have not yet been tagged as 1303 // heap objects. If result_contains_top_on_entry is true the content of 1304 // result is known to be the allocation top on entry (could be result_end 1305 // from a previous call). If result_contains_top_on_entry is true scratch 1306 // should be no_reg as it is never used. 1307 void Allocate(int object_size, 1308 Register result, 1309 Register result_end, 1310 Register scratch, 1311 Label* gc_required, 1312 AllocationFlags flags); 1313 1314 void Allocate(int header_size, 1315 ScaleFactor element_size, 1316 Register element_count, 1317 Register result, 1318 Register result_end, 1319 Register scratch, 1320 Label* gc_required, 1321 AllocationFlags flags); 1322 1323 void Allocate(Register object_size, 1324 Register result, 1325 Register result_end, 1326 Register scratch, 1327 Label* gc_required, 1328 AllocationFlags flags); 1329 1330 // FastAllocate is right now only used for folded allocations. It just 1331 // increments the top pointer without checking against limit. This can only 1332 // be done if it was proved earlier that the allocation will succeed. 1333 void FastAllocate(int object_size, Register result, Register result_end, 1334 AllocationFlags flags); 1335 1336 void FastAllocate(Register object_size, Register result, Register result_end, 1337 AllocationFlags flags); 1338 1339 // Allocate a heap number in new space with undefined value. Returns 1340 // tagged pointer in result register, or jumps to gc_required if new 1341 // space is full. 1342 void AllocateHeapNumber(Register result, 1343 Register scratch, 1344 Label* gc_required, 1345 MutableMode mode = IMMUTABLE); 1346 1347 // Allocate a sequential string. All the header fields of the string object 1348 // are initialized. 1349 void AllocateTwoByteString(Register result, 1350 Register length, 1351 Register scratch1, 1352 Register scratch2, 1353 Register scratch3, 1354 Label* gc_required); 1355 void AllocateOneByteString(Register result, Register length, 1356 Register scratch1, Register scratch2, 1357 Register scratch3, Label* gc_required); 1358 1359 // Allocate a raw cons string object. Only the map field of the result is 1360 // initialized. 1361 void AllocateTwoByteConsString(Register result, 1362 Register scratch1, 1363 Register scratch2, 1364 Label* gc_required); 1365 void AllocateOneByteConsString(Register result, Register scratch1, 1366 Register scratch2, Label* gc_required); 1367 1368 // Allocate a raw sliced string object. Only the map field of the result is 1369 // initialized. 1370 void AllocateTwoByteSlicedString(Register result, 1371 Register scratch1, 1372 Register scratch2, 1373 Label* gc_required); 1374 void AllocateOneByteSlicedString(Register result, Register scratch1, 1375 Register scratch2, Label* gc_required); 1376 1377 // Allocate and initialize a JSValue wrapper with the specified {constructor} 1378 // and {value}. 1379 void AllocateJSValue(Register result, Register constructor, Register value, 1380 Register scratch, Label* gc_required); 1381 1382 // --------------------------------------------------------------------------- 1383 // Support functions. 1384 1385 // Check if result is zero and op is negative. 1386 void NegativeZeroTest(Register result, Register op, Label* then_label); 1387 1388 // Check if result is zero and op is negative in code using jump targets. 1389 void NegativeZeroTest(CodeGenerator* cgen, 1390 Register result, 1391 Register op, 1392 JumpTarget* then_target); 1393 1394 // Check if result is zero and any of op1 and op2 are negative. 1395 // Register scratch is destroyed, and it must be different from op2. 1396 void NegativeZeroTest(Register result, Register op1, Register op2, 1397 Register scratch, Label* then_label); 1398 1399 // Machine code version of Map::GetConstructor(). 1400 // |temp| holds |result|'s map when done. 1401 void GetMapConstructor(Register result, Register map, Register temp); 1402 1403 // Try to get function prototype of a function and puts the value in 1404 // the result register. Checks that the function really is a 1405 // function and jumps to the miss label if the fast checks fail. The 1406 // function register will be untouched; the other register may be 1407 // clobbered. 1408 void TryGetFunctionPrototype(Register function, Register result, Label* miss); 1409 1410 // Find the function context up the context chain. 1411 void LoadContext(Register dst, int context_chain_length); 1412 1413 // Load the global object from the current context. 1414 void LoadGlobalObject(Register dst) { 1415 LoadNativeContextSlot(Context::EXTENSION_INDEX, dst); 1416 } 1417 1418 // Load the global proxy from the current context. 1419 void LoadGlobalProxy(Register dst) { 1420 LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst); 1421 } 1422 1423 // Conditionally load the cached Array transitioned map of type 1424 // transitioned_kind from the native context if the map in register 1425 // map_in_out is the cached Array map in the native context of 1426 // expected_kind. 1427 void LoadTransitionedArrayMapConditional( 1428 ElementsKind expected_kind, 1429 ElementsKind transitioned_kind, 1430 Register map_in_out, 1431 Register scratch, 1432 Label* no_map_match); 1433 1434 // Load the native context slot with the current index. 1435 void LoadNativeContextSlot(int index, Register dst); 1436 1437 // Load the initial map from the global function. The registers 1438 // function and map can be the same. 1439 void LoadGlobalFunctionInitialMap(Register function, Register map); 1440 1441 // --------------------------------------------------------------------------- 1442 // Runtime calls 1443 1444 // Call a code stub. 1445 void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None()); 1446 1447 // Tail call a code stub (jump). 1448 void TailCallStub(CodeStub* stub); 1449 1450 // Return from a code stub after popping its arguments. 1451 void StubReturn(int argc); 1452 1453 // Call a runtime routine. 1454 void CallRuntime(const Runtime::Function* f, 1455 int num_arguments, 1456 SaveFPRegsMode save_doubles = kDontSaveFPRegs); 1457 1458 // Call a runtime function and save the value of XMM registers. 1459 void CallRuntimeSaveDoubles(Runtime::FunctionId fid) { 1460 const Runtime::Function* function = Runtime::FunctionForId(fid); 1461 CallRuntime(function, function->nargs, kSaveFPRegs); 1462 } 1463 1464 // Convenience function: Same as above, but takes the fid instead. 1465 void CallRuntime(Runtime::FunctionId fid, 1466 SaveFPRegsMode save_doubles = kDontSaveFPRegs) { 1467 const Runtime::Function* function = Runtime::FunctionForId(fid); 1468 CallRuntime(function, function->nargs, save_doubles); 1469 } 1470 1471 // Convenience function: Same as above, but takes the fid instead. 1472 void CallRuntime(Runtime::FunctionId fid, int num_arguments, 1473 SaveFPRegsMode save_doubles = kDontSaveFPRegs) { 1474 CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles); 1475 } 1476 1477 // Convenience function: call an external reference. 1478 void CallExternalReference(const ExternalReference& ext, 1479 int num_arguments); 1480 1481 // Convenience function: tail call a runtime routine (jump) 1482 void TailCallRuntime(Runtime::FunctionId fid); 1483 1484 // Jump to a runtime routines 1485 void JumpToExternalReference(const ExternalReference& ext, 1486 bool builtin_exit_frame = false); 1487 1488 // Before calling a C-function from generated code, align arguments on stack. 1489 // After aligning the frame, arguments must be stored in rsp[0], rsp[8], 1490 // etc., not pushed. The argument count assumes all arguments are word sized. 1491 // The number of slots reserved for arguments depends on platform. On Windows 1492 // stack slots are reserved for the arguments passed in registers. On other 1493 // platforms stack slots are only reserved for the arguments actually passed 1494 // on the stack. 1495 void PrepareCallCFunction(int num_arguments); 1496 1497 // Calls a C function and cleans up the space for arguments allocated 1498 // by PrepareCallCFunction. The called function is not allowed to trigger a 1499 // garbage collection, since that might move the code and invalidate the 1500 // return address (unless this is somehow accounted for by the called 1501 // function). 1502 void CallCFunction(ExternalReference function, int num_arguments); 1503 void CallCFunction(Register function, int num_arguments); 1504 1505 // Calculate the number of stack slots to reserve for arguments when calling a 1506 // C function. 1507 int ArgumentStackSlotsForCFunctionCall(int num_arguments); 1508 1509 // --------------------------------------------------------------------------- 1510 // Utilities 1511 1512 void Ret(); 1513 1514 // Return and drop arguments from stack, where the number of arguments 1515 // may be bigger than 2^16 - 1. Requires a scratch register. 1516 void Ret(int bytes_dropped, Register scratch); 1517 1518 Handle<Object> CodeObject() { 1519 DCHECK(!code_object_.is_null()); 1520 return code_object_; 1521 } 1522 1523 // Initialize fields with filler values. Fields starting at |current_address| 1524 // not including |end_address| are overwritten with the value in |filler|. At 1525 // the end the loop, |current_address| takes the value of |end_address|. 1526 void InitializeFieldsWithFiller(Register current_address, 1527 Register end_address, Register filler); 1528 1529 1530 // Emit code for a truncating division by a constant. The dividend register is 1531 // unchanged, the result is in rdx, and rax gets clobbered. 1532 void TruncatingDiv(Register dividend, int32_t divisor); 1533 1534 // --------------------------------------------------------------------------- 1535 // StatsCounter support 1536 1537 void SetCounter(StatsCounter* counter, int value); 1538 void IncrementCounter(StatsCounter* counter, int value); 1539 void DecrementCounter(StatsCounter* counter, int value); 1540 1541 1542 // --------------------------------------------------------------------------- 1543 // Debugging 1544 1545 // Calls Abort(msg) if the condition cc is not satisfied. 1546 // Use --debug_code to enable. 1547 void Assert(Condition cc, BailoutReason reason); 1548 1549 void AssertFastElements(Register elements); 1550 1551 // Like Assert(), but always enabled. 1552 void Check(Condition cc, BailoutReason reason); 1553 1554 // Print a message to stdout and abort execution. 1555 void Abort(BailoutReason msg); 1556 1557 // Check that the stack is aligned. 1558 void CheckStackAlignment(); 1559 1560 // Verify restrictions about code generated in stubs. 1561 void set_generating_stub(bool value) { generating_stub_ = value; } 1562 bool generating_stub() { return generating_stub_; } 1563 void set_has_frame(bool value) { has_frame_ = value; } 1564 bool has_frame() { return has_frame_; } 1565 inline bool AllowThisStubCall(CodeStub* stub); 1566 1567 static int SafepointRegisterStackIndex(Register reg) { 1568 return SafepointRegisterStackIndex(reg.code()); 1569 } 1570 1571 // Load the type feedback vector from a JavaScript frame. 1572 void EmitLoadTypeFeedbackVector(Register vector); 1573 1574 // Activation support. 1575 void EnterFrame(StackFrame::Type type); 1576 void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg); 1577 void LeaveFrame(StackFrame::Type type); 1578 1579 void EnterBuiltinFrame(Register context, Register target, Register argc); 1580 void LeaveBuiltinFrame(Register context, Register target, Register argc); 1581 1582 // Expects object in rax and returns map with validated enum cache 1583 // in rax. Assumes that any other register can be used as a scratch. 1584 void CheckEnumCache(Label* call_runtime); 1585 1586 // AllocationMemento support. Arrays may have an associated 1587 // AllocationMemento object that can be checked for in order to pretransition 1588 // to another type. 1589 // On entry, receiver_reg should point to the array object. 1590 // scratch_reg gets clobbered. 1591 // If allocation info is present, condition flags are set to equal. 1592 void TestJSArrayForAllocationMemento(Register receiver_reg, 1593 Register scratch_reg, 1594 Label* no_memento_found); 1595 1596 void JumpIfJSArrayHasAllocationMemento(Register receiver_reg, 1597 Register scratch_reg, 1598 Label* memento_found) { 1599 Label no_memento_found; 1600 TestJSArrayForAllocationMemento(receiver_reg, scratch_reg, 1601 &no_memento_found); 1602 j(equal, memento_found); 1603 bind(&no_memento_found); 1604 } 1605 1606 // Jumps to found label if a prototype map has dictionary elements. 1607 void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0, 1608 Register scratch1, Label* found); 1609 1610 private: 1611 // Order general registers are pushed by Pushad. 1612 // rax, rcx, rdx, rbx, rsi, rdi, r8, r9, r11, r12, r14, r15. 1613 static const int kSafepointPushRegisterIndices[Register::kNumRegisters]; 1614 static const int kNumSafepointSavedRegisters = 12; 1615 static const int kSmiShift = kSmiTagSize + kSmiShiftSize; 1616 1617 bool generating_stub_; 1618 bool has_frame_; 1619 bool root_array_available_; 1620 1621 // Returns a register holding the smi value. The register MUST NOT be 1622 // modified. It may be the "smi 1 constant" register. 1623 Register GetSmiConstant(Smi* value); 1624 1625 int64_t RootRegisterDelta(ExternalReference other); 1626 1627 // Moves the smi value to the destination register. 1628 void LoadSmiConstant(Register dst, Smi* value); 1629 1630 // This handle will be patched with the code object on installation. 1631 Handle<Object> code_object_; 1632 1633 // Helper functions for generating invokes. 1634 void InvokePrologue(const ParameterCount& expected, 1635 const ParameterCount& actual, 1636 Label* done, 1637 bool* definitely_mismatches, 1638 InvokeFlag flag, 1639 Label::Distance near_jump, 1640 const CallWrapper& call_wrapper); 1641 1642 void EnterExitFramePrologue(bool save_rax, StackFrame::Type frame_type); 1643 1644 // Allocates arg_stack_space * kPointerSize memory (not GCed) on the stack 1645 // accessible via StackSpaceOperand. 1646 void EnterExitFrameEpilogue(int arg_stack_space, bool save_doubles); 1647 1648 void LeaveExitFrameEpilogue(bool restore_context); 1649 1650 // Allocation support helpers. 1651 // Loads the top of new-space into the result register. 1652 // Otherwise the address of the new-space top is loaded into scratch (if 1653 // scratch is valid), and the new-space top is loaded into result. 1654 void LoadAllocationTopHelper(Register result, 1655 Register scratch, 1656 AllocationFlags flags); 1657 1658 void MakeSureDoubleAlignedHelper(Register result, 1659 Register scratch, 1660 Label* gc_required, 1661 AllocationFlags flags); 1662 1663 // Update allocation top with value in result_end register. 1664 // If scratch is valid, it contains the address of the allocation top. 1665 void UpdateAllocationTopHelper(Register result_end, 1666 Register scratch, 1667 AllocationFlags flags); 1668 1669 // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace. 1670 void InNewSpace(Register object, 1671 Register scratch, 1672 Condition cc, 1673 Label* branch, 1674 Label::Distance distance = Label::kFar); 1675 1676 // Helper for finding the mark bits for an address. Afterwards, the 1677 // bitmap register points at the word with the mark bits and the mask 1678 // the position of the first bit. Uses rcx as scratch and leaves addr_reg 1679 // unchanged. 1680 inline void GetMarkBits(Register addr_reg, 1681 Register bitmap_reg, 1682 Register mask_reg); 1683 1684 // Compute memory operands for safepoint stack slots. 1685 Operand SafepointRegisterSlot(Register reg); 1686 static int SafepointRegisterStackIndex(int reg_code) { 1687 return kNumSafepointRegisters - kSafepointPushRegisterIndices[reg_code] - 1; 1688 } 1689 1690 // Needs access to SafepointRegisterStackIndex for compiled frame 1691 // traversal. 1692 friend class StandardFrame; 1693 }; 1694 1695 1696 // The code patcher is used to patch (typically) small parts of code e.g. for 1697 // debugging and other types of instrumentation. When using the code patcher 1698 // the exact number of bytes specified must be emitted. Is not legal to emit 1699 // relocation information. If any of these constraints are violated it causes 1700 // an assertion. 1701 class CodePatcher { 1702 public: 1703 CodePatcher(Isolate* isolate, byte* address, int size); 1704 ~CodePatcher(); 1705 1706 // Macro assembler to emit code. 1707 MacroAssembler* masm() { return &masm_; } 1708 1709 private: 1710 byte* address_; // The address of the code being patched. 1711 int size_; // Number of bytes of the expected patch size. 1712 MacroAssembler masm_; // Macro assembler used to generate the code. 1713 }; 1714 1715 1716 // ----------------------------------------------------------------------------- 1717 // Static helper functions. 1718 1719 // Generate an Operand for loading a field from an object. 1720 inline Operand FieldOperand(Register object, int offset) { 1721 return Operand(object, offset - kHeapObjectTag); 1722 } 1723 1724 1725 // Generate an Operand for loading an indexed field from an object. 1726 inline Operand FieldOperand(Register object, 1727 Register index, 1728 ScaleFactor scale, 1729 int offset) { 1730 return Operand(object, index, scale, offset - kHeapObjectTag); 1731 } 1732 1733 1734 inline Operand ContextOperand(Register context, int index) { 1735 return Operand(context, Context::SlotOffset(index)); 1736 } 1737 1738 1739 inline Operand ContextOperand(Register context, Register index) { 1740 return Operand(context, index, times_pointer_size, Context::SlotOffset(0)); 1741 } 1742 1743 1744 inline Operand NativeContextOperand() { 1745 return ContextOperand(rsi, Context::NATIVE_CONTEXT_INDEX); 1746 } 1747 1748 1749 // Provides access to exit frame stack space (not GCed). 1750 inline Operand StackSpaceOperand(int index) { 1751 #ifdef _WIN64 1752 const int kShaddowSpace = 4; 1753 return Operand(rsp, (index + kShaddowSpace) * kPointerSize); 1754 #else 1755 return Operand(rsp, index * kPointerSize); 1756 #endif 1757 } 1758 1759 1760 inline Operand StackOperandForReturnAddress(int32_t disp) { 1761 return Operand(rsp, disp); 1762 } 1763 1764 #define ACCESS_MASM(masm) masm-> 1765 1766 } // namespace internal 1767 } // namespace v8 1768 1769 #endif // V8_X64_MACRO_ASSEMBLER_X64_H_ 1770