Home | History | Annotate | Download | only in x64
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef V8_X64_MACRO_ASSEMBLER_X64_H_
      6 #define V8_X64_MACRO_ASSEMBLER_X64_H_
      7 
      8 #include "src/assembler.h"
      9 #include "src/bailout-reason.h"
     10 #include "src/base/flags.h"
     11 #include "src/frames.h"
     12 #include "src/globals.h"
     13 #include "src/x64/frames-x64.h"
     14 
     15 namespace v8 {
     16 namespace internal {
     17 
     18 // Give alias names to registers for calling conventions.
     19 const Register kReturnRegister0 = {Register::kCode_rax};
     20 const Register kReturnRegister1 = {Register::kCode_rdx};
     21 const Register kReturnRegister2 = {Register::kCode_r8};
     22 const Register kJSFunctionRegister = {Register::kCode_rdi};
     23 const Register kContextRegister = {Register::kCode_rsi};
     24 const Register kAllocateSizeRegister = {Register::kCode_rdx};
     25 const Register kInterpreterAccumulatorRegister = {Register::kCode_rax};
     26 const Register kInterpreterBytecodeOffsetRegister = {Register::kCode_r12};
     27 const Register kInterpreterBytecodeArrayRegister = {Register::kCode_r14};
     28 const Register kInterpreterDispatchTableRegister = {Register::kCode_r15};
     29 const Register kJavaScriptCallArgCountRegister = {Register::kCode_rax};
     30 const Register kJavaScriptCallNewTargetRegister = {Register::kCode_rdx};
     31 const Register kRuntimeCallFunctionRegister = {Register::kCode_rbx};
     32 const Register kRuntimeCallArgCountRegister = {Register::kCode_rax};
     33 
     34 // Default scratch register used by MacroAssembler (and other code that needs
     35 // a spare register). The register isn't callee save, and not used by the
     36 // function calling convention.
     37 const Register kScratchRegister = {10};      // r10.
     38 const XMMRegister kScratchDoubleReg = {15};  // xmm15.
     39 const Register kRootRegister = {13};         // r13 (callee save).
     40 // Actual value of root register is offset from the root array's start
     41 // to take advantage of negitive 8-bit displacement values.
     42 const int kRootRegisterBias = 128;
     43 
     44 // Convenience for platform-independent signatures.
     45 typedef Operand MemOperand;
     46 
     47 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
     48 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
     49 enum PointersToHereCheck {
     50   kPointersToHereMaybeInteresting,
     51   kPointersToHereAreAlwaysInteresting
     52 };
     53 
     54 enum class SmiOperationConstraint {
     55   kPreserveSourceRegister = 1 << 0,
     56   kBailoutOnNoOverflow = 1 << 1,
     57   kBailoutOnOverflow = 1 << 2
     58 };
     59 
     60 enum class ReturnAddressState { kOnStack, kNotOnStack };
     61 
     62 typedef base::Flags<SmiOperationConstraint> SmiOperationConstraints;
     63 
     64 DEFINE_OPERATORS_FOR_FLAGS(SmiOperationConstraints)
     65 
     66 #ifdef DEBUG
     67 bool AreAliased(Register reg1,
     68                 Register reg2,
     69                 Register reg3 = no_reg,
     70                 Register reg4 = no_reg,
     71                 Register reg5 = no_reg,
     72                 Register reg6 = no_reg,
     73                 Register reg7 = no_reg,
     74                 Register reg8 = no_reg);
     75 #endif
     76 
     77 // Forward declaration.
     78 class JumpTarget;
     79 
     80 struct SmiIndex {
     81   SmiIndex(Register index_register, ScaleFactor scale)
     82       : reg(index_register),
     83         scale(scale) {}
     84   Register reg;
     85   ScaleFactor scale;
     86 };
     87 
     88 
     89 // MacroAssembler implements a collection of frequently used macros.
     90 class MacroAssembler: public Assembler {
     91  public:
     92   MacroAssembler(Isolate* isolate, void* buffer, int size,
     93                  CodeObjectRequired create_code_object);
     94 
     95   // Prevent the use of the RootArray during the lifetime of this
     96   // scope object.
     97   class NoRootArrayScope BASE_EMBEDDED {
     98    public:
     99     explicit NoRootArrayScope(MacroAssembler* assembler)
    100         : variable_(&assembler->root_array_available_),
    101           old_value_(assembler->root_array_available_) {
    102       assembler->root_array_available_ = false;
    103     }
    104     ~NoRootArrayScope() {
    105       *variable_ = old_value_;
    106     }
    107    private:
    108     bool* variable_;
    109     bool old_value_;
    110   };
    111 
    112   // Operand pointing to an external reference.
    113   // May emit code to set up the scratch register. The operand is
    114   // only guaranteed to be correct as long as the scratch register
    115   // isn't changed.
    116   // If the operand is used more than once, use a scratch register
    117   // that is guaranteed not to be clobbered.
    118   Operand ExternalOperand(ExternalReference reference,
    119                           Register scratch = kScratchRegister);
    120   // Loads and stores the value of an external reference.
    121   // Special case code for load and store to take advantage of
    122   // load_rax/store_rax if possible/necessary.
    123   // For other operations, just use:
    124   //   Operand operand = ExternalOperand(extref);
    125   //   operation(operand, ..);
    126   void Load(Register destination, ExternalReference source);
    127   void Store(ExternalReference destination, Register source);
    128   // Loads the address of the external reference into the destination
    129   // register.
    130   void LoadAddress(Register destination, ExternalReference source);
    131   // Returns the size of the code generated by LoadAddress.
    132   // Used by CallSize(ExternalReference) to find the size of a call.
    133   int LoadAddressSize(ExternalReference source);
    134   // Pushes the address of the external reference onto the stack.
    135   void PushAddress(ExternalReference source);
    136 
    137   // Operations on roots in the root-array.
    138   void LoadRoot(Register destination, Heap::RootListIndex index);
    139   void LoadRoot(const Operand& destination, Heap::RootListIndex index) {
    140     LoadRoot(kScratchRegister, index);
    141     movp(destination, kScratchRegister);
    142   }
    143   void StoreRoot(Register source, Heap::RootListIndex index);
    144   // Load a root value where the index (or part of it) is variable.
    145   // The variable_offset register is added to the fixed_offset value
    146   // to get the index into the root-array.
    147   void LoadRootIndexed(Register destination,
    148                        Register variable_offset,
    149                        int fixed_offset);
    150   void CompareRoot(Register with, Heap::RootListIndex index);
    151   void CompareRoot(const Operand& with, Heap::RootListIndex index);
    152   void PushRoot(Heap::RootListIndex index);
    153 
    154   // Compare the object in a register to a value and jump if they are equal.
    155   void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal,
    156                   Label::Distance if_equal_distance = Label::kFar) {
    157     CompareRoot(with, index);
    158     j(equal, if_equal, if_equal_distance);
    159   }
    160   void JumpIfRoot(const Operand& with, Heap::RootListIndex index,
    161                   Label* if_equal,
    162                   Label::Distance if_equal_distance = Label::kFar) {
    163     CompareRoot(with, index);
    164     j(equal, if_equal, if_equal_distance);
    165   }
    166 
    167   // Compare the object in a register to a value and jump if they are not equal.
    168   void JumpIfNotRoot(Register with, Heap::RootListIndex index,
    169                      Label* if_not_equal,
    170                      Label::Distance if_not_equal_distance = Label::kFar) {
    171     CompareRoot(with, index);
    172     j(not_equal, if_not_equal, if_not_equal_distance);
    173   }
    174   void JumpIfNotRoot(const Operand& with, Heap::RootListIndex index,
    175                      Label* if_not_equal,
    176                      Label::Distance if_not_equal_distance = Label::kFar) {
    177     CompareRoot(with, index);
    178     j(not_equal, if_not_equal, if_not_equal_distance);
    179   }
    180 
    181   // These functions do not arrange the registers in any particular order so
    182   // they are not useful for calls that can cause a GC.  The caller can
    183   // exclude up to 3 registers that do not need to be saved and restored.
    184   void PushCallerSaved(SaveFPRegsMode fp_mode,
    185                        Register exclusion1 = no_reg,
    186                        Register exclusion2 = no_reg,
    187                        Register exclusion3 = no_reg);
    188   void PopCallerSaved(SaveFPRegsMode fp_mode,
    189                       Register exclusion1 = no_reg,
    190                       Register exclusion2 = no_reg,
    191                       Register exclusion3 = no_reg);
    192 
    193 // ---------------------------------------------------------------------------
    194 // GC Support
    195 
    196 
    197   enum RememberedSetFinalAction {
    198     kReturnAtEnd,
    199     kFallThroughAtEnd
    200   };
    201 
    202   // Record in the remembered set the fact that we have a pointer to new space
    203   // at the address pointed to by the addr register.  Only works if addr is not
    204   // in new space.
    205   void RememberedSetHelper(Register object,  // Used for debug code.
    206                            Register addr,
    207                            Register scratch,
    208                            SaveFPRegsMode save_fp,
    209                            RememberedSetFinalAction and_then);
    210 
    211   void CheckPageFlag(Register object,
    212                      Register scratch,
    213                      int mask,
    214                      Condition cc,
    215                      Label* condition_met,
    216                      Label::Distance condition_met_distance = Label::kFar);
    217 
    218   // Check if object is in new space.  Jumps if the object is not in new space.
    219   // The register scratch can be object itself, but scratch will be clobbered.
    220   void JumpIfNotInNewSpace(Register object,
    221                            Register scratch,
    222                            Label* branch,
    223                            Label::Distance distance = Label::kFar) {
    224     InNewSpace(object, scratch, zero, branch, distance);
    225   }
    226 
    227   // Check if object is in new space.  Jumps if the object is in new space.
    228   // The register scratch can be object itself, but it will be clobbered.
    229   void JumpIfInNewSpace(Register object,
    230                         Register scratch,
    231                         Label* branch,
    232                         Label::Distance distance = Label::kFar) {
    233     InNewSpace(object, scratch, not_zero, branch, distance);
    234   }
    235 
    236   // Check if an object has the black incremental marking color.  Also uses rcx!
    237   void JumpIfBlack(Register object, Register bitmap_scratch,
    238                    Register mask_scratch, Label* on_black,
    239                    Label::Distance on_black_distance);
    240 
    241   // Checks the color of an object.  If the object is white we jump to the
    242   // incremental marker.
    243   void JumpIfWhite(Register value, Register scratch1, Register scratch2,
    244                    Label* value_is_white, Label::Distance distance);
    245 
    246   // Notify the garbage collector that we wrote a pointer into an object.
    247   // |object| is the object being stored into, |value| is the object being
    248   // stored.  value and scratch registers are clobbered by the operation.
    249   // The offset is the offset from the start of the object, not the offset from
    250   // the tagged HeapObject pointer.  For use with FieldOperand(reg, off).
    251   void RecordWriteField(
    252       Register object,
    253       int offset,
    254       Register value,
    255       Register scratch,
    256       SaveFPRegsMode save_fp,
    257       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    258       SmiCheck smi_check = INLINE_SMI_CHECK,
    259       PointersToHereCheck pointers_to_here_check_for_value =
    260           kPointersToHereMaybeInteresting);
    261 
    262   // As above, but the offset has the tag presubtracted.  For use with
    263   // Operand(reg, off).
    264   void RecordWriteContextSlot(
    265       Register context,
    266       int offset,
    267       Register value,
    268       Register scratch,
    269       SaveFPRegsMode save_fp,
    270       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    271       SmiCheck smi_check = INLINE_SMI_CHECK,
    272       PointersToHereCheck pointers_to_here_check_for_value =
    273           kPointersToHereMaybeInteresting) {
    274     RecordWriteField(context,
    275                      offset + kHeapObjectTag,
    276                      value,
    277                      scratch,
    278                      save_fp,
    279                      remembered_set_action,
    280                      smi_check,
    281                      pointers_to_here_check_for_value);
    282   }
    283 
    284   // Notify the garbage collector that we wrote a pointer into a fixed array.
    285   // |array| is the array being stored into, |value| is the
    286   // object being stored.  |index| is the array index represented as a non-smi.
    287   // All registers are clobbered by the operation RecordWriteArray
    288   // filters out smis so it does not update the write barrier if the
    289   // value is a smi.
    290   void RecordWriteArray(
    291       Register array,
    292       Register value,
    293       Register index,
    294       SaveFPRegsMode save_fp,
    295       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    296       SmiCheck smi_check = INLINE_SMI_CHECK,
    297       PointersToHereCheck pointers_to_here_check_for_value =
    298           kPointersToHereMaybeInteresting);
    299 
    300   // Notify the garbage collector that we wrote a code entry into a
    301   // JSFunction. Only scratch is clobbered by the operation.
    302   void RecordWriteCodeEntryField(Register js_function, Register code_entry,
    303                                  Register scratch);
    304 
    305   void RecordWriteForMap(
    306       Register object,
    307       Register map,
    308       Register dst,
    309       SaveFPRegsMode save_fp);
    310 
    311   // For page containing |object| mark region covering |address|
    312   // dirty. |object| is the object being stored into, |value| is the
    313   // object being stored. The address and value registers are clobbered by the
    314   // operation.  RecordWrite filters out smis so it does not update
    315   // the write barrier if the value is a smi.
    316   void RecordWrite(
    317       Register object,
    318       Register address,
    319       Register value,
    320       SaveFPRegsMode save_fp,
    321       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    322       SmiCheck smi_check = INLINE_SMI_CHECK,
    323       PointersToHereCheck pointers_to_here_check_for_value =
    324           kPointersToHereMaybeInteresting);
    325 
    326   // ---------------------------------------------------------------------------
    327   // Debugger Support
    328 
    329   void DebugBreak();
    330 
    331   // Generates function and stub prologue code.
    332   void StubPrologue(StackFrame::Type type);
    333   void Prologue(bool code_pre_aging);
    334 
    335   // Enter specific kind of exit frame; either in normal or
    336   // debug mode. Expects the number of arguments in register rax and
    337   // sets up the number of arguments in register rdi and the pointer
    338   // to the first argument in register rsi.
    339   //
    340   // Allocates arg_stack_space * kPointerSize memory (not GCed) on the stack
    341   // accessible via StackSpaceOperand.
    342   void EnterExitFrame(int arg_stack_space = 0, bool save_doubles = false,
    343                       StackFrame::Type frame_type = StackFrame::EXIT);
    344 
    345   // Enter specific kind of exit frame. Allocates arg_stack_space * kPointerSize
    346   // memory (not GCed) on the stack accessible via StackSpaceOperand.
    347   void EnterApiExitFrame(int arg_stack_space);
    348 
    349   // Leave the current exit frame. Expects/provides the return value in
    350   // register rax:rdx (untouched) and the pointer to the first
    351   // argument in register rsi (if pop_arguments == true).
    352   void LeaveExitFrame(bool save_doubles = false, bool pop_arguments = true);
    353 
    354   // Leave the current exit frame. Expects/provides the return value in
    355   // register rax (untouched).
    356   void LeaveApiExitFrame(bool restore_context);
    357 
    358   // Push and pop the registers that can hold pointers.
    359   void PushSafepointRegisters() { Pushad(); }
    360   void PopSafepointRegisters() { Popad(); }
    361   // Store the value in register src in the safepoint register stack
    362   // slot for register dst.
    363   void StoreToSafepointRegisterSlot(Register dst, const Immediate& imm);
    364   void StoreToSafepointRegisterSlot(Register dst, Register src);
    365   void LoadFromSafepointRegisterSlot(Register dst, Register src);
    366 
    367   void InitializeRootRegister() {
    368     ExternalReference roots_array_start =
    369         ExternalReference::roots_array_start(isolate());
    370     Move(kRootRegister, roots_array_start);
    371     addp(kRootRegister, Immediate(kRootRegisterBias));
    372   }
    373 
    374   // ---------------------------------------------------------------------------
    375   // JavaScript invokes
    376 
    377   // Removes current frame and its arguments from the stack preserving
    378   // the arguments and a return address pushed to the stack for the next call.
    379   // |ra_state| defines whether return address is already pushed to stack or
    380   // not. Both |callee_args_count| and |caller_args_count_reg| do not include
    381   // receiver. |callee_args_count| is not modified, |caller_args_count_reg|
    382   // is trashed.
    383   void PrepareForTailCall(const ParameterCount& callee_args_count,
    384                           Register caller_args_count_reg, Register scratch0,
    385                           Register scratch1, ReturnAddressState ra_state);
    386 
    387   // Invoke the JavaScript function code by either calling or jumping.
    388   void InvokeFunctionCode(Register function, Register new_target,
    389                           const ParameterCount& expected,
    390                           const ParameterCount& actual, InvokeFlag flag,
    391                           const CallWrapper& call_wrapper);
    392 
    393   void FloodFunctionIfStepping(Register fun, Register new_target,
    394                                const ParameterCount& expected,
    395                                const ParameterCount& actual);
    396 
    397   // Invoke the JavaScript function in the given register. Changes the
    398   // current context to the context in the function before invoking.
    399   void InvokeFunction(Register function,
    400                       Register new_target,
    401                       const ParameterCount& actual,
    402                       InvokeFlag flag,
    403                       const CallWrapper& call_wrapper);
    404 
    405   void InvokeFunction(Register function,
    406                       Register new_target,
    407                       const ParameterCount& expected,
    408                       const ParameterCount& actual,
    409                       InvokeFlag flag,
    410                       const CallWrapper& call_wrapper);
    411 
    412   void InvokeFunction(Handle<JSFunction> function,
    413                       const ParameterCount& expected,
    414                       const ParameterCount& actual,
    415                       InvokeFlag flag,
    416                       const CallWrapper& call_wrapper);
    417 
    418   // ---------------------------------------------------------------------------
    419   // Smi tagging, untagging and operations on tagged smis.
    420 
    421   // Support for constant splitting.
    422   bool IsUnsafeInt(const int32_t x);
    423   void SafeMove(Register dst, Smi* src);
    424   void SafePush(Smi* src);
    425 
    426   // Conversions between tagged smi values and non-tagged integer values.
    427 
    428   // Tag an integer value. The result must be known to be a valid smi value.
    429   // Only uses the low 32 bits of the src register. Sets the N and Z flags
    430   // based on the value of the resulting smi.
    431   void Integer32ToSmi(Register dst, Register src);
    432 
    433   // Stores an integer32 value into a memory field that already holds a smi.
    434   void Integer32ToSmiField(const Operand& dst, Register src);
    435 
    436   // Adds constant to src and tags the result as a smi.
    437   // Result must be a valid smi.
    438   void Integer64PlusConstantToSmi(Register dst, Register src, int constant);
    439 
    440   // Convert smi to 32-bit integer. I.e., not sign extended into
    441   // high 32 bits of destination.
    442   void SmiToInteger32(Register dst, Register src);
    443   void SmiToInteger32(Register dst, const Operand& src);
    444 
    445   // Convert smi to 64-bit integer (sign extended if necessary).
    446   void SmiToInteger64(Register dst, Register src);
    447   void SmiToInteger64(Register dst, const Operand& src);
    448 
    449   // Convert smi to double.
    450   void SmiToDouble(XMMRegister dst, Register src) {
    451     SmiToInteger32(kScratchRegister, src);
    452     Cvtlsi2sd(dst, kScratchRegister);
    453   }
    454 
    455   // Multiply a positive smi's integer value by a power of two.
    456   // Provides result as 64-bit integer value.
    457   void PositiveSmiTimesPowerOfTwoToInteger64(Register dst,
    458                                              Register src,
    459                                              int power);
    460 
    461   // Divide a positive smi's integer value by a power of two.
    462   // Provides result as 32-bit integer value.
    463   void PositiveSmiDivPowerOfTwoToInteger32(Register dst,
    464                                            Register src,
    465                                            int power);
    466 
    467   // Perform the logical or of two smi values and return a smi value.
    468   // If either argument is not a smi, jump to on_not_smis and retain
    469   // the original values of source registers. The destination register
    470   // may be changed if it's not one of the source registers.
    471   void SmiOrIfSmis(Register dst,
    472                    Register src1,
    473                    Register src2,
    474                    Label* on_not_smis,
    475                    Label::Distance near_jump = Label::kFar);
    476 
    477 
    478   // Simple comparison of smis.  Both sides must be known smis to use these,
    479   // otherwise use Cmp.
    480   void SmiCompare(Register smi1, Register smi2);
    481   void SmiCompare(Register dst, Smi* src);
    482   void SmiCompare(Register dst, const Operand& src);
    483   void SmiCompare(const Operand& dst, Register src);
    484   void SmiCompare(const Operand& dst, Smi* src);
    485   // Compare the int32 in src register to the value of the smi stored at dst.
    486   void SmiCompareInteger32(const Operand& dst, Register src);
    487   // Sets sign and zero flags depending on value of smi in register.
    488   void SmiTest(Register src);
    489 
    490   // Functions performing a check on a known or potential smi. Returns
    491   // a condition that is satisfied if the check is successful.
    492 
    493   // Is the value a tagged smi.
    494   Condition CheckSmi(Register src);
    495   Condition CheckSmi(const Operand& src);
    496 
    497   // Is the value a non-negative tagged smi.
    498   Condition CheckNonNegativeSmi(Register src);
    499 
    500   // Are both values tagged smis.
    501   Condition CheckBothSmi(Register first, Register second);
    502 
    503   // Are both values non-negative tagged smis.
    504   Condition CheckBothNonNegativeSmi(Register first, Register second);
    505 
    506   // Are either value a tagged smi.
    507   Condition CheckEitherSmi(Register first,
    508                            Register second,
    509                            Register scratch = kScratchRegister);
    510 
    511   // Checks whether an 32-bit integer value is a valid for conversion
    512   // to a smi.
    513   Condition CheckInteger32ValidSmiValue(Register src);
    514 
    515   // Checks whether an 32-bit unsigned integer value is a valid for
    516   // conversion to a smi.
    517   Condition CheckUInteger32ValidSmiValue(Register src);
    518 
    519   // Check whether src is a Smi, and set dst to zero if it is a smi,
    520   // and to one if it isn't.
    521   void CheckSmiToIndicator(Register dst, Register src);
    522   void CheckSmiToIndicator(Register dst, const Operand& src);
    523 
    524   // Test-and-jump functions. Typically combines a check function
    525   // above with a conditional jump.
    526 
    527   // Jump if the value can be represented by a smi.
    528   void JumpIfValidSmiValue(Register src, Label* on_valid,
    529                            Label::Distance near_jump = Label::kFar);
    530 
    531   // Jump if the value cannot be represented by a smi.
    532   void JumpIfNotValidSmiValue(Register src, Label* on_invalid,
    533                               Label::Distance near_jump = Label::kFar);
    534 
    535   // Jump if the unsigned integer value can be represented by a smi.
    536   void JumpIfUIntValidSmiValue(Register src, Label* on_valid,
    537                                Label::Distance near_jump = Label::kFar);
    538 
    539   // Jump if the unsigned integer value cannot be represented by a smi.
    540   void JumpIfUIntNotValidSmiValue(Register src, Label* on_invalid,
    541                                   Label::Distance near_jump = Label::kFar);
    542 
    543   // Jump to label if the value is a tagged smi.
    544   void JumpIfSmi(Register src,
    545                  Label* on_smi,
    546                  Label::Distance near_jump = Label::kFar);
    547 
    548   // Jump to label if the value is not a tagged smi.
    549   void JumpIfNotSmi(Register src,
    550                     Label* on_not_smi,
    551                     Label::Distance near_jump = Label::kFar);
    552 
    553   // Jump to label if the value is not a non-negative tagged smi.
    554   void JumpUnlessNonNegativeSmi(Register src,
    555                                 Label* on_not_smi,
    556                                 Label::Distance near_jump = Label::kFar);
    557 
    558   // Jump to label if the value, which must be a tagged smi, has value equal
    559   // to the constant.
    560   void JumpIfSmiEqualsConstant(Register src,
    561                                Smi* constant,
    562                                Label* on_equals,
    563                                Label::Distance near_jump = Label::kFar);
    564 
    565   // Jump if either or both register are not smi values.
    566   void JumpIfNotBothSmi(Register src1,
    567                         Register src2,
    568                         Label* on_not_both_smi,
    569                         Label::Distance near_jump = Label::kFar);
    570 
    571   // Jump if either or both register are not non-negative smi values.
    572   void JumpUnlessBothNonNegativeSmi(Register src1, Register src2,
    573                                     Label* on_not_both_smi,
    574                                     Label::Distance near_jump = Label::kFar);
    575 
    576   // Operations on tagged smi values.
    577 
    578   // Smis represent a subset of integers. The subset is always equivalent to
    579   // a two's complement interpretation of a fixed number of bits.
    580 
    581   // Add an integer constant to a tagged smi, giving a tagged smi as result.
    582   // No overflow testing on the result is done.
    583   void SmiAddConstant(Register dst, Register src, Smi* constant);
    584 
    585   // Add an integer constant to a tagged smi, giving a tagged smi as result.
    586   // No overflow testing on the result is done.
    587   void SmiAddConstant(const Operand& dst, Smi* constant);
    588 
    589   // Add an integer constant to a tagged smi, giving a tagged smi as result,
    590   // or jumping to a label if the result cannot be represented by a smi.
    591   void SmiAddConstant(Register dst, Register src, Smi* constant,
    592                       SmiOperationConstraints constraints, Label* bailout_label,
    593                       Label::Distance near_jump = Label::kFar);
    594 
    595   // Subtract an integer constant from a tagged smi, giving a tagged smi as
    596   // result. No testing on the result is done. Sets the N and Z flags
    597   // based on the value of the resulting integer.
    598   void SmiSubConstant(Register dst, Register src, Smi* constant);
    599 
    600   // Subtract an integer constant from a tagged smi, giving a tagged smi as
    601   // result, or jumping to a label if the result cannot be represented by a smi.
    602   void SmiSubConstant(Register dst, Register src, Smi* constant,
    603                       SmiOperationConstraints constraints, Label* bailout_label,
    604                       Label::Distance near_jump = Label::kFar);
    605 
    606   // Negating a smi can give a negative zero or too large positive value.
    607   // NOTICE: This operation jumps on success, not failure!
    608   void SmiNeg(Register dst,
    609               Register src,
    610               Label* on_smi_result,
    611               Label::Distance near_jump = Label::kFar);
    612 
    613   // Adds smi values and return the result as a smi.
    614   // If dst is src1, then src1 will be destroyed if the operation is
    615   // successful, otherwise kept intact.
    616   void SmiAdd(Register dst,
    617               Register src1,
    618               Register src2,
    619               Label* on_not_smi_result,
    620               Label::Distance near_jump = Label::kFar);
    621   void SmiAdd(Register dst,
    622               Register src1,
    623               const Operand& src2,
    624               Label* on_not_smi_result,
    625               Label::Distance near_jump = Label::kFar);
    626 
    627   void SmiAdd(Register dst,
    628               Register src1,
    629               Register src2);
    630 
    631   // Subtracts smi values and return the result as a smi.
    632   // If dst is src1, then src1 will be destroyed if the operation is
    633   // successful, otherwise kept intact.
    634   void SmiSub(Register dst,
    635               Register src1,
    636               Register src2,
    637               Label* on_not_smi_result,
    638               Label::Distance near_jump = Label::kFar);
    639   void SmiSub(Register dst,
    640               Register src1,
    641               const Operand& src2,
    642               Label* on_not_smi_result,
    643               Label::Distance near_jump = Label::kFar);
    644 
    645   void SmiSub(Register dst,
    646               Register src1,
    647               Register src2);
    648 
    649   void SmiSub(Register dst,
    650               Register src1,
    651               const Operand& src2);
    652 
    653   // Multiplies smi values and return the result as a smi,
    654   // if possible.
    655   // If dst is src1, then src1 will be destroyed, even if
    656   // the operation is unsuccessful.
    657   void SmiMul(Register dst,
    658               Register src1,
    659               Register src2,
    660               Label* on_not_smi_result,
    661               Label::Distance near_jump = Label::kFar);
    662 
    663   // Divides one smi by another and returns the quotient.
    664   // Clobbers rax and rdx registers.
    665   void SmiDiv(Register dst,
    666               Register src1,
    667               Register src2,
    668               Label* on_not_smi_result,
    669               Label::Distance near_jump = Label::kFar);
    670 
    671   // Divides one smi by another and returns the remainder.
    672   // Clobbers rax and rdx registers.
    673   void SmiMod(Register dst,
    674               Register src1,
    675               Register src2,
    676               Label* on_not_smi_result,
    677               Label::Distance near_jump = Label::kFar);
    678 
    679   // Bitwise operations.
    680   void SmiNot(Register dst, Register src);
    681   void SmiAnd(Register dst, Register src1, Register src2);
    682   void SmiOr(Register dst, Register src1, Register src2);
    683   void SmiXor(Register dst, Register src1, Register src2);
    684   void SmiAndConstant(Register dst, Register src1, Smi* constant);
    685   void SmiOrConstant(Register dst, Register src1, Smi* constant);
    686   void SmiXorConstant(Register dst, Register src1, Smi* constant);
    687 
    688   void SmiShiftLeftConstant(Register dst,
    689                             Register src,
    690                             int shift_value,
    691                             Label* on_not_smi_result = NULL,
    692                             Label::Distance near_jump = Label::kFar);
    693   void SmiShiftLogicalRightConstant(Register dst,
    694                                     Register src,
    695                                     int shift_value,
    696                                     Label* on_not_smi_result,
    697                                     Label::Distance near_jump = Label::kFar);
    698   void SmiShiftArithmeticRightConstant(Register dst,
    699                                        Register src,
    700                                        int shift_value);
    701 
    702   // Shifts a smi value to the left, and returns the result if that is a smi.
    703   // Uses and clobbers rcx, so dst may not be rcx.
    704   void SmiShiftLeft(Register dst,
    705                     Register src1,
    706                     Register src2,
    707                     Label* on_not_smi_result = NULL,
    708                     Label::Distance near_jump = Label::kFar);
    709   // Shifts a smi value to the right, shifting in zero bits at the top, and
    710   // returns the unsigned intepretation of the result if that is a smi.
    711   // Uses and clobbers rcx, so dst may not be rcx.
    712   void SmiShiftLogicalRight(Register dst,
    713                             Register src1,
    714                             Register src2,
    715                             Label* on_not_smi_result,
    716                             Label::Distance near_jump = Label::kFar);
    717   // Shifts a smi value to the right, sign extending the top, and
    718   // returns the signed intepretation of the result. That will always
    719   // be a valid smi value, since it's numerically smaller than the
    720   // original.
    721   // Uses and clobbers rcx, so dst may not be rcx.
    722   void SmiShiftArithmeticRight(Register dst,
    723                                Register src1,
    724                                Register src2);
    725 
    726   // Specialized operations
    727 
    728   // Select the non-smi register of two registers where exactly one is a
    729   // smi. If neither are smis, jump to the failure label.
    730   void SelectNonSmi(Register dst,
    731                     Register src1,
    732                     Register src2,
    733                     Label* on_not_smis,
    734                     Label::Distance near_jump = Label::kFar);
    735 
    736   // Converts, if necessary, a smi to a combination of number and
    737   // multiplier to be used as a scaled index.
    738   // The src register contains a *positive* smi value. The shift is the
    739   // power of two to multiply the index value by (e.g.
    740   // to index by smi-value * kPointerSize, pass the smi and kPointerSizeLog2).
    741   // The returned index register may be either src or dst, depending
    742   // on what is most efficient. If src and dst are different registers,
    743   // src is always unchanged.
    744   SmiIndex SmiToIndex(Register dst, Register src, int shift);
    745 
    746   // Converts a positive smi to a negative index.
    747   SmiIndex SmiToNegativeIndex(Register dst, Register src, int shift);
    748 
    749   // Add the value of a smi in memory to an int32 register.
    750   // Sets flags as a normal add.
    751   void AddSmiField(Register dst, const Operand& src);
    752 
    753   // Basic Smi operations.
    754   void Move(Register dst, Smi* source) {
    755     LoadSmiConstant(dst, source);
    756   }
    757 
    758   void Move(const Operand& dst, Smi* source) {
    759     Register constant = GetSmiConstant(source);
    760     movp(dst, constant);
    761   }
    762 
    763   void Push(Smi* smi);
    764 
    765   // Save away a raw integer with pointer size on the stack as two integers
    766   // masquerading as smis so that the garbage collector skips visiting them.
    767   void PushRegisterAsTwoSmis(Register src, Register scratch = kScratchRegister);
    768   // Reconstruct a raw integer with pointer size from two integers masquerading
    769   // as smis on the top of stack.
    770   void PopRegisterAsTwoSmis(Register dst, Register scratch = kScratchRegister);
    771 
    772   void Test(const Operand& dst, Smi* source);
    773 
    774 
    775   // ---------------------------------------------------------------------------
    776   // String macros.
    777 
    778   // If object is a string, its map is loaded into object_map.
    779   void JumpIfNotString(Register object,
    780                        Register object_map,
    781                        Label* not_string,
    782                        Label::Distance near_jump = Label::kFar);
    783 
    784 
    785   void JumpIfNotBothSequentialOneByteStrings(
    786       Register first_object, Register second_object, Register scratch1,
    787       Register scratch2, Label* on_not_both_flat_one_byte,
    788       Label::Distance near_jump = Label::kFar);
    789 
    790   // Check whether the instance type represents a flat one-byte string. Jump
    791   // to the label if not. If the instance type can be scratched specify same
    792   // register for both instance type and scratch.
    793   void JumpIfInstanceTypeIsNotSequentialOneByte(
    794       Register instance_type, Register scratch,
    795       Label* on_not_flat_one_byte_string,
    796       Label::Distance near_jump = Label::kFar);
    797 
    798   void JumpIfBothInstanceTypesAreNotSequentialOneByte(
    799       Register first_object_instance_type, Register second_object_instance_type,
    800       Register scratch1, Register scratch2, Label* on_fail,
    801       Label::Distance near_jump = Label::kFar);
    802 
    803   void EmitSeqStringSetCharCheck(Register string,
    804                                  Register index,
    805                                  Register value,
    806                                  uint32_t encoding_mask);
    807 
    808   // Checks if the given register or operand is a unique name
    809   void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name,
    810                                        Label::Distance distance = Label::kFar);
    811   void JumpIfNotUniqueNameInstanceType(Operand operand, Label* not_unique_name,
    812                                        Label::Distance distance = Label::kFar);
    813 
    814   // ---------------------------------------------------------------------------
    815   // Macro instructions.
    816 
    817   // Load/store with specific representation.
    818   void Load(Register dst, const Operand& src, Representation r);
    819   void Store(const Operand& dst, Register src, Representation r);
    820 
    821   // Load a register with a long value as efficiently as possible.
    822   void Set(Register dst, int64_t x);
    823   void Set(const Operand& dst, intptr_t x);
    824 
    825   void Cvtss2sd(XMMRegister dst, XMMRegister src);
    826   void Cvtss2sd(XMMRegister dst, const Operand& src);
    827   void Cvtsd2ss(XMMRegister dst, XMMRegister src);
    828   void Cvtsd2ss(XMMRegister dst, const Operand& src);
    829 
    830   // cvtsi2sd instruction only writes to the low 64-bit of dst register, which
    831   // hinders register renaming and makes dependence chains longer. So we use
    832   // xorpd to clear the dst register before cvtsi2sd to solve this issue.
    833   void Cvtlsi2sd(XMMRegister dst, Register src);
    834   void Cvtlsi2sd(XMMRegister dst, const Operand& src);
    835 
    836   void Cvtlsi2ss(XMMRegister dst, Register src);
    837   void Cvtlsi2ss(XMMRegister dst, const Operand& src);
    838   void Cvtqsi2ss(XMMRegister dst, Register src);
    839   void Cvtqsi2ss(XMMRegister dst, const Operand& src);
    840 
    841   void Cvtqsi2sd(XMMRegister dst, Register src);
    842   void Cvtqsi2sd(XMMRegister dst, const Operand& src);
    843 
    844   void Cvtqui2ss(XMMRegister dst, Register src, Register tmp);
    845   void Cvtqui2sd(XMMRegister dst, Register src, Register tmp);
    846 
    847   void Cvtsd2si(Register dst, XMMRegister src);
    848 
    849   void Cvttss2si(Register dst, XMMRegister src);
    850   void Cvttss2si(Register dst, const Operand& src);
    851   void Cvttsd2si(Register dst, XMMRegister src);
    852   void Cvttsd2si(Register dst, const Operand& src);
    853   void Cvttss2siq(Register dst, XMMRegister src);
    854   void Cvttss2siq(Register dst, const Operand& src);
    855   void Cvttsd2siq(Register dst, XMMRegister src);
    856   void Cvttsd2siq(Register dst, const Operand& src);
    857 
    858   // Move if the registers are not identical.
    859   void Move(Register target, Register source);
    860 
    861   // TestBit and Load SharedFunctionInfo special field.
    862   void TestBitSharedFunctionInfoSpecialField(Register base,
    863                                              int offset,
    864                                              int bit_index);
    865   void LoadSharedFunctionInfoSpecialField(Register dst,
    866                                           Register base,
    867                                           int offset);
    868 
    869   // Handle support
    870   void Move(Register dst, Handle<Object> source);
    871   void Move(const Operand& dst, Handle<Object> source);
    872   void Cmp(Register dst, Handle<Object> source);
    873   void Cmp(const Operand& dst, Handle<Object> source);
    874   void Cmp(Register dst, Smi* src);
    875   void Cmp(const Operand& dst, Smi* src);
    876   void Push(Handle<Object> source);
    877 
    878   // Load a heap object and handle the case of new-space objects by
    879   // indirecting via a global cell.
    880   void MoveHeapObject(Register result, Handle<Object> object);
    881 
    882   // Load a global cell into a register.
    883   void LoadGlobalCell(Register dst, Handle<Cell> cell);
    884 
    885   // Compare the given value and the value of weak cell.
    886   void CmpWeakValue(Register value, Handle<WeakCell> cell, Register scratch);
    887 
    888   void GetWeakValue(Register value, Handle<WeakCell> cell);
    889 
    890   // Load the value of the weak cell in the value register. Branch to the given
    891   // miss label if the weak cell was cleared.
    892   void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
    893 
    894   // Emit code that loads |parameter_index|'th parameter from the stack to
    895   // the register according to the CallInterfaceDescriptor definition.
    896   // |sp_to_caller_sp_offset_in_words| specifies the number of words pushed
    897   // below the caller's sp (on x64 it's at least return address).
    898   template <class Descriptor>
    899   void LoadParameterFromStack(
    900       Register reg, typename Descriptor::ParameterIndices parameter_index,
    901       int sp_to_ra_offset_in_words = 1) {
    902     DCHECK(Descriptor::kPassLastArgsOnStack);
    903     UNIMPLEMENTED();
    904   }
    905 
    906   // Emit code to discard a non-negative number of pointer-sized elements
    907   // from the stack, clobbering only the rsp register.
    908   void Drop(int stack_elements);
    909   // Emit code to discard a positive number of pointer-sized elements
    910   // from the stack under the return address which remains on the top,
    911   // clobbering the rsp register.
    912   void DropUnderReturnAddress(int stack_elements,
    913                               Register scratch = kScratchRegister);
    914 
    915   void Call(Label* target) { call(target); }
    916   void Push(Register src);
    917   void Push(const Operand& src);
    918   void PushQuad(const Operand& src);
    919   void Push(Immediate value);
    920   void PushImm32(int32_t imm32);
    921   void Pop(Register dst);
    922   void Pop(const Operand& dst);
    923   void PopQuad(const Operand& dst);
    924   void PushReturnAddressFrom(Register src) { pushq(src); }
    925   void PopReturnAddressTo(Register dst) { popq(dst); }
    926   void Move(Register dst, ExternalReference ext) {
    927     movp(dst, reinterpret_cast<void*>(ext.address()),
    928          RelocInfo::EXTERNAL_REFERENCE);
    929   }
    930 
    931   // Loads a pointer into a register with a relocation mode.
    932   void Move(Register dst, void* ptr, RelocInfo::Mode rmode) {
    933     // This method must not be used with heap object references. The stored
    934     // address is not GC safe. Use the handle version instead.
    935     DCHECK(rmode > RelocInfo::LAST_GCED_ENUM);
    936     movp(dst, ptr, rmode);
    937   }
    938 
    939   void Move(Register dst, Handle<Object> value, RelocInfo::Mode rmode) {
    940     AllowDeferredHandleDereference using_raw_address;
    941     DCHECK(!RelocInfo::IsNone(rmode));
    942     DCHECK(value->IsHeapObject());
    943     movp(dst, reinterpret_cast<void*>(value.location()), rmode);
    944   }
    945 
    946   void Move(XMMRegister dst, uint32_t src);
    947   void Move(XMMRegister dst, uint64_t src);
    948   void Move(XMMRegister dst, float src) { Move(dst, bit_cast<uint32_t>(src)); }
    949   void Move(XMMRegister dst, double src) { Move(dst, bit_cast<uint64_t>(src)); }
    950 
    951 #define AVX_OP2_WITH_TYPE(macro_name, name, src_type) \
    952   void macro_name(XMMRegister dst, src_type src) {    \
    953     if (CpuFeatures::IsSupported(AVX)) {              \
    954       CpuFeatureScope scope(this, AVX);               \
    955       v##name(dst, dst, src);                         \
    956     } else {                                          \
    957       name(dst, src);                                 \
    958     }                                                 \
    959   }
    960 #define AVX_OP2_X(macro_name, name) \
    961   AVX_OP2_WITH_TYPE(macro_name, name, XMMRegister)
    962 #define AVX_OP2_O(macro_name, name) \
    963   AVX_OP2_WITH_TYPE(macro_name, name, const Operand&)
    964 #define AVX_OP2_XO(macro_name, name) \
    965   AVX_OP2_X(macro_name, name)        \
    966   AVX_OP2_O(macro_name, name)
    967 
    968   AVX_OP2_XO(Addsd, addsd)
    969   AVX_OP2_XO(Subsd, subsd)
    970   AVX_OP2_XO(Mulsd, mulsd)
    971   AVX_OP2_XO(Divss, divss)
    972   AVX_OP2_XO(Divsd, divsd)
    973   AVX_OP2_XO(Andps, andps)
    974   AVX_OP2_XO(Andpd, andpd)
    975   AVX_OP2_XO(Orpd, orpd)
    976   AVX_OP2_XO(Xorpd, xorpd)
    977   AVX_OP2_XO(Cmpeqps, cmpeqps)
    978   AVX_OP2_XO(Cmpltps, cmpltps)
    979   AVX_OP2_XO(Cmpleps, cmpleps)
    980   AVX_OP2_XO(Cmpneqps, cmpneqps)
    981   AVX_OP2_XO(Cmpnltps, cmpnltps)
    982   AVX_OP2_XO(Cmpnleps, cmpnleps)
    983   AVX_OP2_XO(Cmpeqpd, cmpeqpd)
    984   AVX_OP2_XO(Cmpltpd, cmpltpd)
    985   AVX_OP2_XO(Cmplepd, cmplepd)
    986   AVX_OP2_XO(Cmpneqpd, cmpneqpd)
    987   AVX_OP2_XO(Cmpnltpd, cmpnltpd)
    988   AVX_OP2_XO(Cmpnlepd, cmpnlepd)
    989   AVX_OP2_X(Pcmpeqd, pcmpeqd)
    990   AVX_OP2_WITH_TYPE(Psllq, psllq, byte)
    991   AVX_OP2_WITH_TYPE(Psrlq, psrlq, byte)
    992 
    993 #undef AVX_OP2_O
    994 #undef AVX_OP2_X
    995 #undef AVX_OP2_XO
    996 #undef AVX_OP2_WITH_TYPE
    997 
    998   void Movsd(XMMRegister dst, XMMRegister src);
    999   void Movsd(XMMRegister dst, const Operand& src);
   1000   void Movsd(const Operand& dst, XMMRegister src);
   1001   void Movss(XMMRegister dst, XMMRegister src);
   1002   void Movss(XMMRegister dst, const Operand& src);
   1003   void Movss(const Operand& dst, XMMRegister src);
   1004 
   1005   void Movd(XMMRegister dst, Register src);
   1006   void Movd(XMMRegister dst, const Operand& src);
   1007   void Movd(Register dst, XMMRegister src);
   1008   void Movq(XMMRegister dst, Register src);
   1009   void Movq(Register dst, XMMRegister src);
   1010 
   1011   void Movaps(XMMRegister dst, XMMRegister src);
   1012   void Movups(XMMRegister dst, XMMRegister src);
   1013   void Movups(XMMRegister dst, const Operand& src);
   1014   void Movups(const Operand& dst, XMMRegister src);
   1015   void Movmskps(Register dst, XMMRegister src);
   1016   void Movapd(XMMRegister dst, XMMRegister src);
   1017   void Movupd(XMMRegister dst, const Operand& src);
   1018   void Movupd(const Operand& dst, XMMRegister src);
   1019   void Movmskpd(Register dst, XMMRegister src);
   1020 
   1021   void Xorps(XMMRegister dst, XMMRegister src);
   1022   void Xorps(XMMRegister dst, const Operand& src);
   1023 
   1024   void Roundss(XMMRegister dst, XMMRegister src, RoundingMode mode);
   1025   void Roundsd(XMMRegister dst, XMMRegister src, RoundingMode mode);
   1026   void Sqrtsd(XMMRegister dst, XMMRegister src);
   1027   void Sqrtsd(XMMRegister dst, const Operand& src);
   1028 
   1029   void Ucomiss(XMMRegister src1, XMMRegister src2);
   1030   void Ucomiss(XMMRegister src1, const Operand& src2);
   1031   void Ucomisd(XMMRegister src1, XMMRegister src2);
   1032   void Ucomisd(XMMRegister src1, const Operand& src2);
   1033 
   1034   // ---------------------------------------------------------------------------
   1035   // SIMD macros.
   1036   void Absps(XMMRegister dst);
   1037   void Negps(XMMRegister dst);
   1038   void Abspd(XMMRegister dst);
   1039   void Negpd(XMMRegister dst);
   1040 
   1041   // Control Flow
   1042   void Jump(Address destination, RelocInfo::Mode rmode);
   1043   void Jump(ExternalReference ext);
   1044   void Jump(const Operand& op);
   1045   void Jump(Handle<Code> code_object, RelocInfo::Mode rmode);
   1046 
   1047   void Call(Address destination, RelocInfo::Mode rmode);
   1048   void Call(ExternalReference ext);
   1049   void Call(const Operand& op);
   1050   void Call(Handle<Code> code_object,
   1051             RelocInfo::Mode rmode,
   1052             TypeFeedbackId ast_id = TypeFeedbackId::None());
   1053 
   1054   // The size of the code generated for different call instructions.
   1055   int CallSize(Address destination) {
   1056     return kCallSequenceLength;
   1057   }
   1058   int CallSize(ExternalReference ext);
   1059   int CallSize(Handle<Code> code_object) {
   1060     // Code calls use 32-bit relative addressing.
   1061     return kShortCallInstructionLength;
   1062   }
   1063   int CallSize(Register target) {
   1064     // Opcode: REX_opt FF /2 m64
   1065     return (target.high_bit() != 0) ? 3 : 2;
   1066   }
   1067   int CallSize(const Operand& target) {
   1068     // Opcode: REX_opt FF /2 m64
   1069     return (target.requires_rex() ? 2 : 1) + target.operand_size();
   1070   }
   1071 
   1072   // Non-SSE2 instructions.
   1073   void Pextrd(Register dst, XMMRegister src, int8_t imm8);
   1074   void Pinsrd(XMMRegister dst, Register src, int8_t imm8);
   1075   void Pinsrd(XMMRegister dst, const Operand& src, int8_t imm8);
   1076 
   1077   void Lzcntq(Register dst, Register src);
   1078   void Lzcntq(Register dst, const Operand& src);
   1079 
   1080   void Lzcntl(Register dst, Register src);
   1081   void Lzcntl(Register dst, const Operand& src);
   1082 
   1083   void Tzcntq(Register dst, Register src);
   1084   void Tzcntq(Register dst, const Operand& src);
   1085 
   1086   void Tzcntl(Register dst, Register src);
   1087   void Tzcntl(Register dst, const Operand& src);
   1088 
   1089   void Popcntl(Register dst, Register src);
   1090   void Popcntl(Register dst, const Operand& src);
   1091 
   1092   void Popcntq(Register dst, Register src);
   1093   void Popcntq(Register dst, const Operand& src);
   1094 
   1095   // Non-x64 instructions.
   1096   // Push/pop all general purpose registers.
   1097   // Does not push rsp/rbp nor any of the assembler's special purpose registers
   1098   // (kScratchRegister, kRootRegister).
   1099   void Pushad();
   1100   void Popad();
   1101   // Sets the stack as after performing Popad, without actually loading the
   1102   // registers.
   1103   void Dropad();
   1104 
   1105   // Compare object type for heap object.
   1106   // Always use unsigned comparisons: above and below, not less and greater.
   1107   // Incoming register is heap_object and outgoing register is map.
   1108   // They may be the same register, and may be kScratchRegister.
   1109   void CmpObjectType(Register heap_object, InstanceType type, Register map);
   1110 
   1111   // Compare instance type for map.
   1112   // Always use unsigned comparisons: above and below, not less and greater.
   1113   void CmpInstanceType(Register map, InstanceType type);
   1114 
   1115   // Check if a map for a JSObject indicates that the object can have both smi
   1116   // and HeapObject elements.  Jump to the specified label if it does not.
   1117   void CheckFastObjectElements(Register map,
   1118                                Label* fail,
   1119                                Label::Distance distance = Label::kFar);
   1120 
   1121   // Check if a map for a JSObject indicates that the object has fast smi only
   1122   // elements.  Jump to the specified label if it does not.
   1123   void CheckFastSmiElements(Register map,
   1124                             Label* fail,
   1125                             Label::Distance distance = Label::kFar);
   1126 
   1127   // Check to see if maybe_number can be stored as a double in
   1128   // FastDoubleElements. If it can, store it at the index specified by index in
   1129   // the FastDoubleElements array elements, otherwise jump to fail.  Note that
   1130   // index must not be smi-tagged.
   1131   void StoreNumberToDoubleElements(Register maybe_number,
   1132                                    Register elements,
   1133                                    Register index,
   1134                                    XMMRegister xmm_scratch,
   1135                                    Label* fail,
   1136                                    int elements_offset = 0);
   1137 
   1138   // Compare an object's map with the specified map.
   1139   void CompareMap(Register obj, Handle<Map> map);
   1140 
   1141   // Check if the map of an object is equal to a specified map and branch to
   1142   // label if not. Skip the smi check if not required (object is known to be a
   1143   // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
   1144   // against maps that are ElementsKind transition maps of the specified map.
   1145   void CheckMap(Register obj,
   1146                 Handle<Map> map,
   1147                 Label* fail,
   1148                 SmiCheckType smi_check_type);
   1149 
   1150   // Check if the map of an object is equal to a specified weak map and branch
   1151   // to a specified target if equal. Skip the smi check if not required
   1152   // (object is known to be a heap object)
   1153   void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
   1154                        Handle<WeakCell> cell, Handle<Code> success,
   1155                        SmiCheckType smi_check_type);
   1156 
   1157   // Check if the object in register heap_object is a string. Afterwards the
   1158   // register map contains the object map and the register instance_type
   1159   // contains the instance_type. The registers map and instance_type can be the
   1160   // same in which case it contains the instance type afterwards. Either of the
   1161   // registers map and instance_type can be the same as heap_object.
   1162   Condition IsObjectStringType(Register heap_object,
   1163                                Register map,
   1164                                Register instance_type);
   1165 
   1166   // Check if the object in register heap_object is a name. Afterwards the
   1167   // register map contains the object map and the register instance_type
   1168   // contains the instance_type. The registers map and instance_type can be the
   1169   // same in which case it contains the instance type afterwards. Either of the
   1170   // registers map and instance_type can be the same as heap_object.
   1171   Condition IsObjectNameType(Register heap_object,
   1172                              Register map,
   1173                              Register instance_type);
   1174 
   1175   // FCmp compares and pops the two values on top of the FPU stack.
   1176   // The flag results are similar to integer cmp, but requires unsigned
   1177   // jcc instructions (je, ja, jae, jb, jbe, je, and jz).
   1178   void FCmp();
   1179 
   1180   void ClampUint8(Register reg);
   1181 
   1182   void ClampDoubleToUint8(XMMRegister input_reg,
   1183                           XMMRegister temp_xmm_reg,
   1184                           Register result_reg);
   1185 
   1186   void SlowTruncateToI(Register result_reg, Register input_reg,
   1187       int offset = HeapNumber::kValueOffset - kHeapObjectTag);
   1188 
   1189   void TruncateHeapNumberToI(Register result_reg, Register input_reg);
   1190   void TruncateDoubleToI(Register result_reg, XMMRegister input_reg);
   1191 
   1192   void DoubleToI(Register result_reg, XMMRegister input_reg,
   1193                  XMMRegister scratch, MinusZeroMode minus_zero_mode,
   1194                  Label* lost_precision, Label* is_nan, Label* minus_zero,
   1195                  Label::Distance dst = Label::kFar);
   1196 
   1197   void LoadUint32(XMMRegister dst, Register src);
   1198 
   1199   void LoadInstanceDescriptors(Register map, Register descriptors);
   1200   void EnumLength(Register dst, Register map);
   1201   void NumberOfOwnDescriptors(Register dst, Register map);
   1202   void LoadAccessor(Register dst, Register holder, int accessor_index,
   1203                     AccessorComponent accessor);
   1204 
   1205   template<typename Field>
   1206   void DecodeField(Register reg) {
   1207     static const int shift = Field::kShift;
   1208     static const int mask = Field::kMask >> Field::kShift;
   1209     if (shift != 0) {
   1210       shrp(reg, Immediate(shift));
   1211     }
   1212     andp(reg, Immediate(mask));
   1213   }
   1214 
   1215   template<typename Field>
   1216   void DecodeFieldToSmi(Register reg) {
   1217     if (SmiValuesAre32Bits()) {
   1218       andp(reg, Immediate(Field::kMask));
   1219       shlp(reg, Immediate(kSmiShift - Field::kShift));
   1220     } else {
   1221       static const int shift = Field::kShift;
   1222       static const int mask = (Field::kMask >> Field::kShift) << kSmiTagSize;
   1223       DCHECK(SmiValuesAre31Bits());
   1224       DCHECK(kSmiShift == kSmiTagSize);
   1225       DCHECK((mask & 0x80000000u) == 0);
   1226       if (shift < kSmiShift) {
   1227         shlp(reg, Immediate(kSmiShift - shift));
   1228       } else if (shift > kSmiShift) {
   1229         sarp(reg, Immediate(shift - kSmiShift));
   1230       }
   1231       andp(reg, Immediate(mask));
   1232     }
   1233   }
   1234 
   1235   // Abort execution if argument is not a number, enabled via --debug-code.
   1236   void AssertNumber(Register object);
   1237   void AssertNotNumber(Register object);
   1238 
   1239   // Abort execution if argument is a smi, enabled via --debug-code.
   1240   void AssertNotSmi(Register object);
   1241 
   1242   // Abort execution if argument is not a smi, enabled via --debug-code.
   1243   void AssertSmi(Register object);
   1244   void AssertSmi(const Operand& object);
   1245 
   1246   // Abort execution if a 64 bit register containing a 32 bit payload does not
   1247   // have zeros in the top 32 bits, enabled via --debug-code.
   1248   void AssertZeroExtended(Register reg);
   1249 
   1250   // Abort execution if argument is not a string, enabled via --debug-code.
   1251   void AssertString(Register object);
   1252 
   1253   // Abort execution if argument is not a name, enabled via --debug-code.
   1254   void AssertName(Register object);
   1255 
   1256   // Abort execution if argument is not a JSFunction, enabled via --debug-code.
   1257   void AssertFunction(Register object);
   1258 
   1259   // Abort execution if argument is not a JSBoundFunction,
   1260   // enabled via --debug-code.
   1261   void AssertBoundFunction(Register object);
   1262 
   1263   // Abort execution if argument is not a JSGeneratorObject,
   1264   // enabled via --debug-code.
   1265   void AssertGeneratorObject(Register object);
   1266 
   1267   // Abort execution if argument is not a JSReceiver, enabled via --debug-code.
   1268   void AssertReceiver(Register object);
   1269 
   1270   // Abort execution if argument is not undefined or an AllocationSite, enabled
   1271   // via --debug-code.
   1272   void AssertUndefinedOrAllocationSite(Register object);
   1273 
   1274   // Abort execution if argument is not the root value with the given index,
   1275   // enabled via --debug-code.
   1276   void AssertRootValue(Register src,
   1277                        Heap::RootListIndex root_value_index,
   1278                        BailoutReason reason);
   1279 
   1280   // ---------------------------------------------------------------------------
   1281   // Exception handling
   1282 
   1283   // Push a new stack handler and link it into stack handler chain.
   1284   void PushStackHandler();
   1285 
   1286   // Unlink the stack handler on top of the stack from the stack handler chain.
   1287   void PopStackHandler();
   1288 
   1289   // ---------------------------------------------------------------------------
   1290   // Inline caching support
   1291 
   1292   void GetNumberHash(Register r0, Register scratch);
   1293 
   1294   // ---------------------------------------------------------------------------
   1295   // Allocation support
   1296 
   1297   // Allocate an object in new space or old space. If the given space
   1298   // is exhausted control continues at the gc_required label. The allocated
   1299   // object is returned in result and end of the new object is returned in
   1300   // result_end. The register scratch can be passed as no_reg in which case
   1301   // an additional object reference will be added to the reloc info. The
   1302   // returned pointers in result and result_end have not yet been tagged as
   1303   // heap objects. If result_contains_top_on_entry is true the content of
   1304   // result is known to be the allocation top on entry (could be result_end
   1305   // from a previous call). If result_contains_top_on_entry is true scratch
   1306   // should be no_reg as it is never used.
   1307   void Allocate(int object_size,
   1308                 Register result,
   1309                 Register result_end,
   1310                 Register scratch,
   1311                 Label* gc_required,
   1312                 AllocationFlags flags);
   1313 
   1314   void Allocate(int header_size,
   1315                 ScaleFactor element_size,
   1316                 Register element_count,
   1317                 Register result,
   1318                 Register result_end,
   1319                 Register scratch,
   1320                 Label* gc_required,
   1321                 AllocationFlags flags);
   1322 
   1323   void Allocate(Register object_size,
   1324                 Register result,
   1325                 Register result_end,
   1326                 Register scratch,
   1327                 Label* gc_required,
   1328                 AllocationFlags flags);
   1329 
   1330   // FastAllocate is right now only used for folded allocations. It just
   1331   // increments the top pointer without checking against limit. This can only
   1332   // be done if it was proved earlier that the allocation will succeed.
   1333   void FastAllocate(int object_size, Register result, Register result_end,
   1334                     AllocationFlags flags);
   1335 
   1336   void FastAllocate(Register object_size, Register result, Register result_end,
   1337                     AllocationFlags flags);
   1338 
   1339   // Allocate a heap number in new space with undefined value. Returns
   1340   // tagged pointer in result register, or jumps to gc_required if new
   1341   // space is full.
   1342   void AllocateHeapNumber(Register result,
   1343                           Register scratch,
   1344                           Label* gc_required,
   1345                           MutableMode mode = IMMUTABLE);
   1346 
   1347   // Allocate a sequential string. All the header fields of the string object
   1348   // are initialized.
   1349   void AllocateTwoByteString(Register result,
   1350                              Register length,
   1351                              Register scratch1,
   1352                              Register scratch2,
   1353                              Register scratch3,
   1354                              Label* gc_required);
   1355   void AllocateOneByteString(Register result, Register length,
   1356                              Register scratch1, Register scratch2,
   1357                              Register scratch3, Label* gc_required);
   1358 
   1359   // Allocate a raw cons string object. Only the map field of the result is
   1360   // initialized.
   1361   void AllocateTwoByteConsString(Register result,
   1362                           Register scratch1,
   1363                           Register scratch2,
   1364                           Label* gc_required);
   1365   void AllocateOneByteConsString(Register result, Register scratch1,
   1366                                  Register scratch2, Label* gc_required);
   1367 
   1368   // Allocate a raw sliced string object. Only the map field of the result is
   1369   // initialized.
   1370   void AllocateTwoByteSlicedString(Register result,
   1371                             Register scratch1,
   1372                             Register scratch2,
   1373                             Label* gc_required);
   1374   void AllocateOneByteSlicedString(Register result, Register scratch1,
   1375                                    Register scratch2, Label* gc_required);
   1376 
   1377   // Allocate and initialize a JSValue wrapper with the specified {constructor}
   1378   // and {value}.
   1379   void AllocateJSValue(Register result, Register constructor, Register value,
   1380                        Register scratch, Label* gc_required);
   1381 
   1382   // ---------------------------------------------------------------------------
   1383   // Support functions.
   1384 
   1385   // Check if result is zero and op is negative.
   1386   void NegativeZeroTest(Register result, Register op, Label* then_label);
   1387 
   1388   // Check if result is zero and op is negative in code using jump targets.
   1389   void NegativeZeroTest(CodeGenerator* cgen,
   1390                         Register result,
   1391                         Register op,
   1392                         JumpTarget* then_target);
   1393 
   1394   // Check if result is zero and any of op1 and op2 are negative.
   1395   // Register scratch is destroyed, and it must be different from op2.
   1396   void NegativeZeroTest(Register result, Register op1, Register op2,
   1397                         Register scratch, Label* then_label);
   1398 
   1399   // Machine code version of Map::GetConstructor().
   1400   // |temp| holds |result|'s map when done.
   1401   void GetMapConstructor(Register result, Register map, Register temp);
   1402 
   1403   // Try to get function prototype of a function and puts the value in
   1404   // the result register. Checks that the function really is a
   1405   // function and jumps to the miss label if the fast checks fail. The
   1406   // function register will be untouched; the other register may be
   1407   // clobbered.
   1408   void TryGetFunctionPrototype(Register function, Register result, Label* miss);
   1409 
   1410   // Find the function context up the context chain.
   1411   void LoadContext(Register dst, int context_chain_length);
   1412 
   1413   // Load the global object from the current context.
   1414   void LoadGlobalObject(Register dst) {
   1415     LoadNativeContextSlot(Context::EXTENSION_INDEX, dst);
   1416   }
   1417 
   1418   // Load the global proxy from the current context.
   1419   void LoadGlobalProxy(Register dst) {
   1420     LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst);
   1421   }
   1422 
   1423   // Conditionally load the cached Array transitioned map of type
   1424   // transitioned_kind from the native context if the map in register
   1425   // map_in_out is the cached Array map in the native context of
   1426   // expected_kind.
   1427   void LoadTransitionedArrayMapConditional(
   1428       ElementsKind expected_kind,
   1429       ElementsKind transitioned_kind,
   1430       Register map_in_out,
   1431       Register scratch,
   1432       Label* no_map_match);
   1433 
   1434   // Load the native context slot with the current index.
   1435   void LoadNativeContextSlot(int index, Register dst);
   1436 
   1437   // Load the initial map from the global function. The registers
   1438   // function and map can be the same.
   1439   void LoadGlobalFunctionInitialMap(Register function, Register map);
   1440 
   1441   // ---------------------------------------------------------------------------
   1442   // Runtime calls
   1443 
   1444   // Call a code stub.
   1445   void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None());
   1446 
   1447   // Tail call a code stub (jump).
   1448   void TailCallStub(CodeStub* stub);
   1449 
   1450   // Return from a code stub after popping its arguments.
   1451   void StubReturn(int argc);
   1452 
   1453   // Call a runtime routine.
   1454   void CallRuntime(const Runtime::Function* f,
   1455                    int num_arguments,
   1456                    SaveFPRegsMode save_doubles = kDontSaveFPRegs);
   1457 
   1458   // Call a runtime function and save the value of XMM registers.
   1459   void CallRuntimeSaveDoubles(Runtime::FunctionId fid) {
   1460     const Runtime::Function* function = Runtime::FunctionForId(fid);
   1461     CallRuntime(function, function->nargs, kSaveFPRegs);
   1462   }
   1463 
   1464   // Convenience function: Same as above, but takes the fid instead.
   1465   void CallRuntime(Runtime::FunctionId fid,
   1466                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
   1467     const Runtime::Function* function = Runtime::FunctionForId(fid);
   1468     CallRuntime(function, function->nargs, save_doubles);
   1469   }
   1470 
   1471   // Convenience function: Same as above, but takes the fid instead.
   1472   void CallRuntime(Runtime::FunctionId fid, int num_arguments,
   1473                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
   1474     CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
   1475   }
   1476 
   1477   // Convenience function: call an external reference.
   1478   void CallExternalReference(const ExternalReference& ext,
   1479                              int num_arguments);
   1480 
   1481   // Convenience function: tail call a runtime routine (jump)
   1482   void TailCallRuntime(Runtime::FunctionId fid);
   1483 
   1484   // Jump to a runtime routines
   1485   void JumpToExternalReference(const ExternalReference& ext,
   1486                                bool builtin_exit_frame = false);
   1487 
   1488   // Before calling a C-function from generated code, align arguments on stack.
   1489   // After aligning the frame, arguments must be stored in rsp[0], rsp[8],
   1490   // etc., not pushed. The argument count assumes all arguments are word sized.
   1491   // The number of slots reserved for arguments depends on platform. On Windows
   1492   // stack slots are reserved for the arguments passed in registers. On other
   1493   // platforms stack slots are only reserved for the arguments actually passed
   1494   // on the stack.
   1495   void PrepareCallCFunction(int num_arguments);
   1496 
   1497   // Calls a C function and cleans up the space for arguments allocated
   1498   // by PrepareCallCFunction. The called function is not allowed to trigger a
   1499   // garbage collection, since that might move the code and invalidate the
   1500   // return address (unless this is somehow accounted for by the called
   1501   // function).
   1502   void CallCFunction(ExternalReference function, int num_arguments);
   1503   void CallCFunction(Register function, int num_arguments);
   1504 
   1505   // Calculate the number of stack slots to reserve for arguments when calling a
   1506   // C function.
   1507   int ArgumentStackSlotsForCFunctionCall(int num_arguments);
   1508 
   1509   // ---------------------------------------------------------------------------
   1510   // Utilities
   1511 
   1512   void Ret();
   1513 
   1514   // Return and drop arguments from stack, where the number of arguments
   1515   // may be bigger than 2^16 - 1.  Requires a scratch register.
   1516   void Ret(int bytes_dropped, Register scratch);
   1517 
   1518   Handle<Object> CodeObject() {
   1519     DCHECK(!code_object_.is_null());
   1520     return code_object_;
   1521   }
   1522 
   1523   // Initialize fields with filler values.  Fields starting at |current_address|
   1524   // not including |end_address| are overwritten with the value in |filler|.  At
   1525   // the end the loop, |current_address| takes the value of |end_address|.
   1526   void InitializeFieldsWithFiller(Register current_address,
   1527                                   Register end_address, Register filler);
   1528 
   1529 
   1530   // Emit code for a truncating division by a constant. The dividend register is
   1531   // unchanged, the result is in rdx, and rax gets clobbered.
   1532   void TruncatingDiv(Register dividend, int32_t divisor);
   1533 
   1534   // ---------------------------------------------------------------------------
   1535   // StatsCounter support
   1536 
   1537   void SetCounter(StatsCounter* counter, int value);
   1538   void IncrementCounter(StatsCounter* counter, int value);
   1539   void DecrementCounter(StatsCounter* counter, int value);
   1540 
   1541 
   1542   // ---------------------------------------------------------------------------
   1543   // Debugging
   1544 
   1545   // Calls Abort(msg) if the condition cc is not satisfied.
   1546   // Use --debug_code to enable.
   1547   void Assert(Condition cc, BailoutReason reason);
   1548 
   1549   void AssertFastElements(Register elements);
   1550 
   1551   // Like Assert(), but always enabled.
   1552   void Check(Condition cc, BailoutReason reason);
   1553 
   1554   // Print a message to stdout and abort execution.
   1555   void Abort(BailoutReason msg);
   1556 
   1557   // Check that the stack is aligned.
   1558   void CheckStackAlignment();
   1559 
   1560   // Verify restrictions about code generated in stubs.
   1561   void set_generating_stub(bool value) { generating_stub_ = value; }
   1562   bool generating_stub() { return generating_stub_; }
   1563   void set_has_frame(bool value) { has_frame_ = value; }
   1564   bool has_frame() { return has_frame_; }
   1565   inline bool AllowThisStubCall(CodeStub* stub);
   1566 
   1567   static int SafepointRegisterStackIndex(Register reg) {
   1568     return SafepointRegisterStackIndex(reg.code());
   1569   }
   1570 
   1571   // Load the type feedback vector from a JavaScript frame.
   1572   void EmitLoadTypeFeedbackVector(Register vector);
   1573 
   1574   // Activation support.
   1575   void EnterFrame(StackFrame::Type type);
   1576   void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg);
   1577   void LeaveFrame(StackFrame::Type type);
   1578 
   1579   void EnterBuiltinFrame(Register context, Register target, Register argc);
   1580   void LeaveBuiltinFrame(Register context, Register target, Register argc);
   1581 
   1582   // Expects object in rax and returns map with validated enum cache
   1583   // in rax.  Assumes that any other register can be used as a scratch.
   1584   void CheckEnumCache(Label* call_runtime);
   1585 
   1586   // AllocationMemento support. Arrays may have an associated
   1587   // AllocationMemento object that can be checked for in order to pretransition
   1588   // to another type.
   1589   // On entry, receiver_reg should point to the array object.
   1590   // scratch_reg gets clobbered.
   1591   // If allocation info is present, condition flags are set to equal.
   1592   void TestJSArrayForAllocationMemento(Register receiver_reg,
   1593                                        Register scratch_reg,
   1594                                        Label* no_memento_found);
   1595 
   1596   void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
   1597                                          Register scratch_reg,
   1598                                          Label* memento_found) {
   1599     Label no_memento_found;
   1600     TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
   1601                                     &no_memento_found);
   1602     j(equal, memento_found);
   1603     bind(&no_memento_found);
   1604   }
   1605 
   1606   // Jumps to found label if a prototype map has dictionary elements.
   1607   void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
   1608                                         Register scratch1, Label* found);
   1609 
   1610  private:
   1611   // Order general registers are pushed by Pushad.
   1612   // rax, rcx, rdx, rbx, rsi, rdi, r8, r9, r11, r12, r14, r15.
   1613   static const int kSafepointPushRegisterIndices[Register::kNumRegisters];
   1614   static const int kNumSafepointSavedRegisters = 12;
   1615   static const int kSmiShift = kSmiTagSize + kSmiShiftSize;
   1616 
   1617   bool generating_stub_;
   1618   bool has_frame_;
   1619   bool root_array_available_;
   1620 
   1621   // Returns a register holding the smi value. The register MUST NOT be
   1622   // modified. It may be the "smi 1 constant" register.
   1623   Register GetSmiConstant(Smi* value);
   1624 
   1625   int64_t RootRegisterDelta(ExternalReference other);
   1626 
   1627   // Moves the smi value to the destination register.
   1628   void LoadSmiConstant(Register dst, Smi* value);
   1629 
   1630   // This handle will be patched with the code object on installation.
   1631   Handle<Object> code_object_;
   1632 
   1633   // Helper functions for generating invokes.
   1634   void InvokePrologue(const ParameterCount& expected,
   1635                       const ParameterCount& actual,
   1636                       Label* done,
   1637                       bool* definitely_mismatches,
   1638                       InvokeFlag flag,
   1639                       Label::Distance near_jump,
   1640                       const CallWrapper& call_wrapper);
   1641 
   1642   void EnterExitFramePrologue(bool save_rax, StackFrame::Type frame_type);
   1643 
   1644   // Allocates arg_stack_space * kPointerSize memory (not GCed) on the stack
   1645   // accessible via StackSpaceOperand.
   1646   void EnterExitFrameEpilogue(int arg_stack_space, bool save_doubles);
   1647 
   1648   void LeaveExitFrameEpilogue(bool restore_context);
   1649 
   1650   // Allocation support helpers.
   1651   // Loads the top of new-space into the result register.
   1652   // Otherwise the address of the new-space top is loaded into scratch (if
   1653   // scratch is valid), and the new-space top is loaded into result.
   1654   void LoadAllocationTopHelper(Register result,
   1655                                Register scratch,
   1656                                AllocationFlags flags);
   1657 
   1658   void MakeSureDoubleAlignedHelper(Register result,
   1659                                    Register scratch,
   1660                                    Label* gc_required,
   1661                                    AllocationFlags flags);
   1662 
   1663   // Update allocation top with value in result_end register.
   1664   // If scratch is valid, it contains the address of the allocation top.
   1665   void UpdateAllocationTopHelper(Register result_end,
   1666                                  Register scratch,
   1667                                  AllocationFlags flags);
   1668 
   1669   // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
   1670   void InNewSpace(Register object,
   1671                   Register scratch,
   1672                   Condition cc,
   1673                   Label* branch,
   1674                   Label::Distance distance = Label::kFar);
   1675 
   1676   // Helper for finding the mark bits for an address.  Afterwards, the
   1677   // bitmap register points at the word with the mark bits and the mask
   1678   // the position of the first bit.  Uses rcx as scratch and leaves addr_reg
   1679   // unchanged.
   1680   inline void GetMarkBits(Register addr_reg,
   1681                           Register bitmap_reg,
   1682                           Register mask_reg);
   1683 
   1684   // Compute memory operands for safepoint stack slots.
   1685   Operand SafepointRegisterSlot(Register reg);
   1686   static int SafepointRegisterStackIndex(int reg_code) {
   1687     return kNumSafepointRegisters - kSafepointPushRegisterIndices[reg_code] - 1;
   1688   }
   1689 
   1690   // Needs access to SafepointRegisterStackIndex for compiled frame
   1691   // traversal.
   1692   friend class StandardFrame;
   1693 };
   1694 
   1695 
   1696 // The code patcher is used to patch (typically) small parts of code e.g. for
   1697 // debugging and other types of instrumentation. When using the code patcher
   1698 // the exact number of bytes specified must be emitted. Is not legal to emit
   1699 // relocation information. If any of these constraints are violated it causes
   1700 // an assertion.
   1701 class CodePatcher {
   1702  public:
   1703   CodePatcher(Isolate* isolate, byte* address, int size);
   1704   ~CodePatcher();
   1705 
   1706   // Macro assembler to emit code.
   1707   MacroAssembler* masm() { return &masm_; }
   1708 
   1709  private:
   1710   byte* address_;  // The address of the code being patched.
   1711   int size_;  // Number of bytes of the expected patch size.
   1712   MacroAssembler masm_;  // Macro assembler used to generate the code.
   1713 };
   1714 
   1715 
   1716 // -----------------------------------------------------------------------------
   1717 // Static helper functions.
   1718 
   1719 // Generate an Operand for loading a field from an object.
   1720 inline Operand FieldOperand(Register object, int offset) {
   1721   return Operand(object, offset - kHeapObjectTag);
   1722 }
   1723 
   1724 
   1725 // Generate an Operand for loading an indexed field from an object.
   1726 inline Operand FieldOperand(Register object,
   1727                             Register index,
   1728                             ScaleFactor scale,
   1729                             int offset) {
   1730   return Operand(object, index, scale, offset - kHeapObjectTag);
   1731 }
   1732 
   1733 
   1734 inline Operand ContextOperand(Register context, int index) {
   1735   return Operand(context, Context::SlotOffset(index));
   1736 }
   1737 
   1738 
   1739 inline Operand ContextOperand(Register context, Register index) {
   1740   return Operand(context, index, times_pointer_size, Context::SlotOffset(0));
   1741 }
   1742 
   1743 
   1744 inline Operand NativeContextOperand() {
   1745   return ContextOperand(rsi, Context::NATIVE_CONTEXT_INDEX);
   1746 }
   1747 
   1748 
   1749 // Provides access to exit frame stack space (not GCed).
   1750 inline Operand StackSpaceOperand(int index) {
   1751 #ifdef _WIN64
   1752   const int kShaddowSpace = 4;
   1753   return Operand(rsp, (index + kShaddowSpace) * kPointerSize);
   1754 #else
   1755   return Operand(rsp, index * kPointerSize);
   1756 #endif
   1757 }
   1758 
   1759 
   1760 inline Operand StackOperandForReturnAddress(int32_t disp) {
   1761   return Operand(rsp, disp);
   1762 }
   1763 
   1764 #define ACCESS_MASM(masm) masm->
   1765 
   1766 }  // namespace internal
   1767 }  // namespace v8
   1768 
   1769 #endif  // V8_X64_MACRO_ASSEMBLER_X64_H_
   1770