Home | History | Annotate | Download | only in opteed
      1 /*
      2  * Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved.
      3  *
      4  * Redistribution and use in source and binary forms, with or without
      5  * modification, are permitted provided that the following conditions are met:
      6  *
      7  * Redistributions of source code must retain the above copyright notice, this
      8  * list of conditions and the following disclaimer.
      9  *
     10  * Redistributions in binary form must reproduce the above copyright notice,
     11  * this list of conditions and the following disclaimer in the documentation
     12  * and/or other materials provided with the distribution.
     13  *
     14  * Neither the name of ARM nor the names of its contributors may be used
     15  * to endorse or promote products derived from this software without specific
     16  * prior written permission.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     19  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     21  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
     22  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     28  * POSSIBILITY OF SUCH DAMAGE.
     29  */
     30 
     31 
     32 /*******************************************************************************
     33  * This is the Secure Payload Dispatcher (SPD). The dispatcher is meant to be a
     34  * plug-in component to the Secure Monitor, registered as a runtime service. The
     35  * SPD is expected to be a functional extension of the Secure Payload (SP) that
     36  * executes in Secure EL1. The Secure Monitor will delegate all SMCs targeting
     37  * the Trusted OS/Applications range to the dispatcher. The SPD will either
     38  * handle the request locally or delegate it to the Secure Payload. It is also
     39  * responsible for initialising and maintaining communication with the SP.
     40  ******************************************************************************/
     41 #include <arch_helpers.h>
     42 #include <assert.h>
     43 #include <bl_common.h>
     44 #include <bl31.h>
     45 #include <context_mgmt.h>
     46 #include <debug.h>
     47 #include <errno.h>
     48 #include <platform.h>
     49 #include <runtime_svc.h>
     50 #include <stddef.h>
     51 #include <string.h>
     52 #include <uuid.h>
     53 #include "opteed_private.h"
     54 #include "teesmc_opteed_macros.h"
     55 #include "teesmc_opteed.h"
     56 
     57 #define OPTEE_MAGIC		0x4554504f
     58 #define OPTEE_VERSION		1
     59 #define OPTEE_ARCH_ARM32	0
     60 #define OPTEE_ARCH_ARM64	1
     61 
     62 struct optee_header {
     63 	uint32_t magic;
     64 	uint8_t version;
     65 	uint8_t arch;
     66 	uint16_t flags;
     67 	uint32_t init_size;
     68 	uint32_t init_load_addr_hi;
     69 	uint32_t init_load_addr_lo;
     70 	uint32_t init_mem_usage;
     71 	uint32_t paged_size;
     72 };
     73 
     74 /*******************************************************************************
     75  * Address of the entrypoint vector table in OPTEE. It is
     76  * initialised once on the primary core after a cold boot.
     77  ******************************************************************************/
     78 optee_vectors_t *optee_vectors;
     79 
     80 /*******************************************************************************
     81  * Array to keep track of per-cpu OPTEE state
     82  ******************************************************************************/
     83 optee_context_t opteed_sp_context[OPTEED_CORE_COUNT];
     84 uint32_t opteed_rw;
     85 
     86 
     87 
     88 static int32_t opteed_init(void);
     89 
     90 /*******************************************************************************
     91  * This function is the handler registered for S-EL1 interrupts by the
     92  * OPTEED. It validates the interrupt and upon success arranges entry into
     93  * the OPTEE at 'optee_fiq_entry()' for handling the interrupt.
     94  ******************************************************************************/
     95 static uint64_t opteed_sel1_interrupt_handler(uint32_t id,
     96 					    uint32_t flags,
     97 					    void *handle,
     98 					    void *cookie)
     99 {
    100 	uint32_t linear_id;
    101 	uint64_t mpidr;
    102 	optee_context_t *optee_ctx;
    103 
    104 	/* Check the security state when the exception was generated */
    105 	assert(get_interrupt_src_ss(flags) == NON_SECURE);
    106 
    107 #if IMF_READ_INTERRUPT_ID
    108 	/* Check the security status of the interrupt */
    109 	assert(plat_ic_get_interrupt_type(id) == INTR_TYPE_S_EL1);
    110 #endif
    111 
    112 	/* Sanity check the pointer to this cpu's context */
    113 	mpidr = read_mpidr();
    114 	assert(handle == cm_get_context(NON_SECURE));
    115 
    116 	/* Save the non-secure context before entering the OPTEE */
    117 	cm_el1_sysregs_context_save(NON_SECURE);
    118 
    119 	/* Get a reference to this cpu's OPTEE context */
    120 	linear_id = platform_get_core_pos(mpidr);
    121 	optee_ctx = &opteed_sp_context[linear_id];
    122 	assert(&optee_ctx->cpu_ctx == cm_get_context(SECURE));
    123 
    124 	cm_set_elr_el3(SECURE, (uint64_t)&optee_vectors->fiq_entry);
    125 	cm_el1_sysregs_context_restore(SECURE);
    126 	cm_set_next_eret_context(SECURE);
    127 
    128 	/*
    129 	 * Tell the OPTEE that it has to handle an FIQ (synchronously).
    130 	 * Also the instruction in normal world where the interrupt was
    131 	 * generated is passed for debugging purposes. It is safe to
    132 	 * retrieve this address from ELR_EL3 as the secure context will
    133 	 * not take effect until el3_exit().
    134 	 */
    135 	SMC_RET1(&optee_ctx->cpu_ctx, read_elr_el3());
    136 }
    137 
    138 
    139 static int is_mem_free(uint64_t free_base, size_t free_size,
    140 		       uint64_t addr, size_t size)
    141 {
    142 	return (addr >= free_base) && (addr + size <= free_base + free_size);
    143 }
    144 
    145 /*******************************************************************************
    146  * OPTEE Dispatcher setup. The OPTEED finds out the OPTEE entrypoint and type
    147  * (aarch32/aarch64) if not already known and initialises the context for entry
    148  * into OPTEE for its initialization.
    149  ******************************************************************************/
    150 int32_t opteed_setup(void)
    151 {
    152 	entry_point_info_t *ep_info;
    153 	struct optee_header *header;
    154 	uint64_t mpidr = read_mpidr();
    155 	uint32_t linear_id;
    156 	uintptr_t init_load_addr;
    157 	size_t init_size;
    158 	size_t init_mem_usage;
    159 	uintptr_t payload_addr;
    160 	uintptr_t mem_limit;
    161 	uintptr_t paged_part;
    162 	uintptr_t paged_size;
    163 
    164 	linear_id = platform_get_core_pos(mpidr);
    165 
    166 	/*
    167 	 * Get information about the Secure Payload (BL32) image. Its
    168 	 * absence is a critical failure.  TODO: Add support to
    169 	 * conditionally include the SPD service
    170 	 */
    171 	ep_info = bl31_plat_get_next_image_ep_info(SECURE);
    172 	if (!ep_info) {
    173 		WARN("No OPTEE provided by BL2 boot loader.\n");
    174 		goto err;
    175 	}
    176 
    177 	header = (struct optee_header *)ep_info->pc;
    178 
    179 	if (header->magic != OPTEE_MAGIC || header->version != OPTEE_VERSION) {
    180 		WARN("Invalid OPTEE header.\n");
    181 		goto err;
    182 	}
    183 
    184 	if (header->arch == OPTEE_ARCH_ARM32)
    185 		opteed_rw = OPTEE_AARCH32;
    186 	else if (header->arch == OPTEE_ARCH_ARM64)
    187 		opteed_rw = OPTEE_AARCH64;
    188 	else {
    189 		WARN("Invalid OPTEE architecture (%d)\n", header->arch);
    190 		goto err;
    191 	}
    192 
    193 	init_load_addr = ((uint64_t)header->init_load_addr_hi << 32) |
    194 				header->init_load_addr_lo;
    195 	init_size = header->init_size;
    196 	init_mem_usage = header->init_mem_usage;
    197 	payload_addr = (uintptr_t)(header + 1);
    198 	paged_size = header->paged_size;
    199 
    200 	/*
    201 	 * Move OPTEE binary to the required location in memory.
    202 	 *
    203 	 * There's two ways OPTEE can be running in memory:
    204 	 * 1. A memory large enough to keep the entire OPTEE binary
    205 	 *    (DRAM currently)
    206 	 * 2. A part of OPTEE in a smaller (and more secure) memory
    207 	 *    (SRAM currently). This is achieved with demand paging
    208 	 *    of read-only data/code against a backing store in some
    209 	 *    larger memory (DRAM currently).
    210 	 *
    211 	 * In either case dictates init_load_addr in the OPTEE
    212 	 * header the address where what's after the header
    213 	 * (payload) should be residing when started. init_size in
    214 	 * the header tells how much of the payload that need to be
    215 	 * copied. init_mem_usage tells how much runtime memory in
    216 	 * total is needed by OPTEE.
    217 	 *
    218 	 * In alternative 2 there's additional data after
    219 	 * init_size, this is the rest of OPTEE which is demand
    220 	 * paged into memory.  A pointer to that data is supplied
    221 	 * to OPTEE when initializing.
    222 	 *
    223 	 * Alternative 1 only uses DRAM when executing OPTEE while
    224 	 * alternative 2 uses both SRAM and DRAM to execute.
    225 	 *
    226 	 * All data written which is later read by OPTEE must be flushed
    227 	 * out to memory since OPTEE starts with MMU turned off and caches
    228 	 * disabled.
    229 	 */
    230 	if (is_mem_free(BL32_SRAM_BASE,
    231 			 BL32_SRAM_LIMIT - BL32_SRAM_BASE,
    232 			 init_load_addr, init_mem_usage)) {
    233 		/* Running in SRAM, paging some code against DRAM */
    234 		memcpy((void *)init_load_addr, (void *)payload_addr,
    235 		       init_size);
    236 		flush_dcache_range(init_load_addr, init_size);
    237 		paged_part = payload_addr + init_size;
    238 		mem_limit = BL32_SRAM_LIMIT;
    239 	} else if (is_mem_free(BL32_DRAM_BASE,
    240 			       BL32_DRAM_LIMIT - BL32_DRAM_BASE,
    241 			       init_load_addr, init_mem_usage)) {
    242 		/*
    243 		 * Running in DRAM.
    244 		 *
    245 		 * The paged part normally empty, but if it isn't,
    246 		 * move it to the end of DRAM before moving the
    247 		 * init part in place.
    248 		 */
    249 		paged_part = BL32_DRAM_LIMIT - paged_size;
    250 		if (paged_size) {
    251 			if (!is_mem_free(BL32_DRAM_BASE,
    252 					 BL32_DRAM_LIMIT - BL32_DRAM_BASE,
    253 					 init_load_addr,
    254 					 init_mem_usage + paged_size)) {
    255 				WARN("Failed to reserve memory 0x%lx - 0x%lx\n",
    256 				      init_load_addr,
    257 				      init_load_addr + init_mem_usage +
    258 					paged_size);
    259 				goto err;
    260 			}
    261 
    262 			memcpy((void *)paged_part,
    263 				(void *)(payload_addr + init_size),
    264 				paged_size);
    265 			flush_dcache_range(paged_part, paged_size);
    266 		}
    267 
    268 		memmove((void *)init_load_addr, (void *)payload_addr,
    269 			init_size);
    270 		flush_dcache_range(init_load_addr, init_size);
    271 		mem_limit = BL32_DRAM_LIMIT;
    272 	} else {
    273 		WARN("Failed to reserve memory 0x%lx - 0x%lx\n",
    274 			init_load_addr, init_load_addr + init_mem_usage);
    275 		goto err;
    276 	}
    277 
    278 
    279 	opteed_init_optee_ep_state(ep_info, opteed_rw, init_load_addr,
    280 				   paged_part, mem_limit,
    281 				   &opteed_sp_context[linear_id]);
    282 
    283 	/*
    284 	 * All OPTEED initialization done. Now register our init function with
    285 	 * BL31 for deferred invocation
    286 	 */
    287 	bl31_register_bl32_init(&opteed_init);
    288 
    289 	return 0;
    290 
    291 err:
    292 	WARN("Booting device without OPTEE initialization.\n");
    293 	WARN("SMC`s destined for OPTEE will return SMC_UNK\n");
    294 	return 1;
    295 }
    296 
    297 /*******************************************************************************
    298  * This function passes control to the OPTEE image (BL32) for the first time
    299  * on the primary cpu after a cold boot. It assumes that a valid secure
    300  * context has already been created by opteed_setup() which can be directly
    301  * used.  It also assumes that a valid non-secure context has been
    302  * initialised by PSCI so it does not need to save and restore any
    303  * non-secure state. This function performs a synchronous entry into
    304  * OPTEE. OPTEE passes control back to this routine through a SMC.
    305  ******************************************************************************/
    306 static int32_t opteed_init(void)
    307 {
    308 	uint64_t mpidr = read_mpidr();
    309 	uint32_t linear_id = platform_get_core_pos(mpidr);
    310 	optee_context_t *optee_ctx = &opteed_sp_context[linear_id];
    311 	entry_point_info_t *optee_entry_point;
    312 	uint64_t rc;
    313 
    314 	/*
    315 	 * Get information about the OPTEE (BL32) image. Its
    316 	 * absence is a critical failure.
    317 	 */
    318 	optee_entry_point = bl31_plat_get_next_image_ep_info(SECURE);
    319 	assert(optee_entry_point);
    320 
    321 	cm_init_context(mpidr, optee_entry_point);
    322 
    323 	/*
    324 	 * Arrange for an entry into OPTEE. It will be returned via
    325 	 * OPTEE_ENTRY_DONE case
    326 	 */
    327 	rc = opteed_synchronous_sp_entry(optee_ctx);
    328 	assert(rc != 0);
    329 
    330 	return rc;
    331 }
    332 
    333 
    334 /*******************************************************************************
    335  * This function is responsible for handling all SMCs in the Trusted OS/App
    336  * range from the non-secure state as defined in the SMC Calling Convention
    337  * Document. It is also responsible for communicating with the Secure
    338  * payload to delegate work and return results back to the non-secure
    339  * state. Lastly it will also return any information that OPTEE needs to do
    340  * the work assigned to it.
    341  ******************************************************************************/
    342 uint64_t opteed_smc_handler(uint32_t smc_fid,
    343 			 uint64_t x1,
    344 			 uint64_t x2,
    345 			 uint64_t x3,
    346 			 uint64_t x4,
    347 			 void *cookie,
    348 			 void *handle,
    349 			 uint64_t flags)
    350 {
    351 	cpu_context_t *ns_cpu_context;
    352 	unsigned long mpidr = read_mpidr();
    353 	uint32_t linear_id = platform_get_core_pos(mpidr);
    354 	optee_context_t *optee_ctx = &opteed_sp_context[linear_id];
    355 	uint64_t rc;
    356 
    357 	/*
    358 	 * Determine which security state this SMC originated from
    359 	 */
    360 
    361 	if (is_caller_non_secure(flags)) {
    362 		gp_regs_t *sec_gpregs = get_gpregs_ctx(&optee_ctx->cpu_ctx);
    363 		gp_regs_t *ns_gpregs = get_gpregs_ctx(handle);
    364 
    365 		/*
    366 		 * This is a fresh request from the non-secure client.
    367 		 * The parameters are in x1 and x2. Figure out which
    368 		 * registers need to be preserved, save the non-secure
    369 		 * state and send the request to the secure payload.
    370 		 */
    371 		assert(handle == cm_get_context(NON_SECURE));
    372 
    373 		cm_el1_sysregs_context_save(NON_SECURE);
    374 
    375 		/*
    376 		 * We are done stashing the non-secure context. Ask the
    377 		 * OPTEE to do the work now.
    378 		 */
    379 
    380 		/*
    381 		 * Verify if there is a valid context to use, copy the
    382 		 * operation type and parameters to the secure context
    383 		 * and jump to the fast smc entry point in the secure
    384 		 * payload. Entry into S-EL1 will take place upon exit
    385 		 * from this function.
    386 		 */
    387 		assert(&optee_ctx->cpu_ctx == cm_get_context(SECURE));
    388 
    389 		/* Set appropriate entry for SMC.
    390 		 * We expect OPTEE to manage the PSTATE.I and PSTATE.F
    391 		 * flags as appropriate.
    392 		 */
    393 		if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_FAST) {
    394 			cm_set_elr_el3(SECURE, (uint64_t)
    395 					&optee_vectors->fast_smc_entry);
    396 		} else {
    397 			cm_set_elr_el3(SECURE, (uint64_t)
    398 					&optee_vectors->std_smc_entry);
    399 		}
    400 
    401 		cm_el1_sysregs_context_restore(SECURE);
    402 		cm_set_next_eret_context(SECURE);
    403 
    404 		/* Propagate X4-X7 */
    405 		write_ctx_reg(sec_gpregs, CTX_GPREG_X4,
    406 			      read_ctx_reg(ns_gpregs, CTX_GPREG_X4));
    407 		write_ctx_reg(sec_gpregs, CTX_GPREG_X5,
    408 			      read_ctx_reg(ns_gpregs, CTX_GPREG_X5));
    409 		write_ctx_reg(sec_gpregs, CTX_GPREG_X6,
    410 			      read_ctx_reg(ns_gpregs, CTX_GPREG_X6));
    411 		write_ctx_reg(sec_gpregs, CTX_GPREG_X7,
    412 			      read_ctx_reg(ns_gpregs, CTX_GPREG_X7));
    413 
    414 		SMC_RET4(&optee_ctx->cpu_ctx, smc_fid, x1, x2, x3);
    415 	}
    416 
    417 	/*
    418 	 * Returning from OPTEE
    419 	 */
    420 
    421 	switch (smc_fid) {
    422 	/*
    423 	 * OPTEE has finished initialising itself after a cold boot
    424 	 */
    425 	case TEESMC_OPTEED_RETURN_ENTRY_DONE:
    426 		/*
    427 		 * Stash the OPTEE entry points information. This is done
    428 		 * only once on the primary cpu
    429 		 */
    430 		assert(optee_vectors == NULL);
    431 		optee_vectors = (optee_vectors_t *) x1;
    432 
    433 		if (optee_vectors) {
    434 			set_optee_pstate(optee_ctx->state, OPTEE_PSTATE_ON);
    435 
    436 			/*
    437 			 * OPTEE has been successfully initialized.
    438 			 * Register power management hooks with PSCI
    439 			 */
    440 			psci_register_spd_pm_hook(&opteed_pm);
    441 
    442 			/*
    443 			 * Register an interrupt handler for S-EL1 interrupts
    444 			 * when generated during code executing in the
    445 			 * non-secure state.
    446 			 */
    447 			flags = 0;
    448 			set_interrupt_rm_flag(flags, NON_SECURE);
    449 			rc = register_interrupt_type_handler(INTR_TYPE_S_EL1,
    450 						opteed_sel1_interrupt_handler,
    451 						flags);
    452 			if (rc)
    453 				panic();
    454 		}
    455 
    456 		/*
    457 		 * OPTEE reports completion. The OPTEED must have initiated
    458 		 * the original request through a synchronous entry into
    459 		 * OPTEE. Jump back to the original C runtime context.
    460 		 */
    461 		opteed_synchronous_sp_exit(optee_ctx, x1);
    462 
    463 
    464 	/*
    465 	 * These function IDs is used only by OP-TEE to indicate it has
    466 	 * finished:
    467 	 * 1. turning itself on in response to an earlier psci
    468 	 *    cpu_on request
    469 	 * 2. resuming itself after an earlier psci cpu_suspend
    470 	 *    request.
    471 	 */
    472 	case TEESMC_OPTEED_RETURN_ON_DONE:
    473 	case TEESMC_OPTEED_RETURN_RESUME_DONE:
    474 
    475 
    476 	/*
    477 	 * These function IDs is used only by the SP to indicate it has
    478 	 * finished:
    479 	 * 1. suspending itself after an earlier psci cpu_suspend
    480 	 *    request.
    481 	 * 2. turning itself off in response to an earlier psci
    482 	 *    cpu_off request.
    483 	 */
    484 	case TEESMC_OPTEED_RETURN_OFF_DONE:
    485 	case TEESMC_OPTEED_RETURN_SUSPEND_DONE:
    486 	case TEESMC_OPTEED_RETURN_SYSTEM_OFF_DONE:
    487 	case TEESMC_OPTEED_RETURN_SYSTEM_RESET_DONE:
    488 
    489 		/*
    490 		 * OPTEE reports completion. The OPTEED must have initiated the
    491 		 * original request through a synchronous entry into OPTEE.
    492 		 * Jump back to the original C runtime context, and pass x1 as
    493 		 * return value to the caller
    494 		 */
    495 		opteed_synchronous_sp_exit(optee_ctx, x1);
    496 
    497 	/*
    498 	 * OPTEE is returning from a call or being preempted from a call, in
    499 	 * either case execution should resume in the normal world.
    500 	 */
    501 	case TEESMC_OPTEED_RETURN_CALL_DONE:
    502 		/*
    503 		 * This is the result from the secure client of an
    504 		 * earlier request. The results are in x0-x3. Copy it
    505 		 * into the non-secure context, save the secure state
    506 		 * and return to the non-secure state.
    507 		 */
    508 		assert(handle == cm_get_context(SECURE));
    509 		cm_el1_sysregs_context_save(SECURE);
    510 
    511 		/* Get a reference to the non-secure context */
    512 		ns_cpu_context = cm_get_context(NON_SECURE);
    513 		assert(ns_cpu_context);
    514 
    515 		/* Restore non-secure state */
    516 		cm_el1_sysregs_context_restore(NON_SECURE);
    517 		cm_set_next_eret_context(NON_SECURE);
    518 
    519 		SMC_RET4(ns_cpu_context, x1, x2, x3, x4);
    520 
    521 	/*
    522 	 * OPTEE has finished handling a S-EL1 FIQ interrupt. Execution
    523 	 * should resume in the normal world.
    524 	 */
    525 	case TEESMC_OPTEED_RETURN_FIQ_DONE:
    526 		/* Get a reference to the non-secure context */
    527 		ns_cpu_context = cm_get_context(NON_SECURE);
    528 		assert(ns_cpu_context);
    529 
    530 		/*
    531 		 * Restore non-secure state. There is no need to save the
    532 		 * secure system register context since OPTEE was supposed
    533 		 * to preserve it during S-EL1 interrupt handling.
    534 		 */
    535 		cm_el1_sysregs_context_restore(NON_SECURE);
    536 		cm_set_next_eret_context(NON_SECURE);
    537 
    538 		SMC_RET0((uint64_t) ns_cpu_context);
    539 
    540 	default:
    541 		panic();
    542 	}
    543 }
    544 
    545 /* Define an OPTEED runtime service descriptor for fast SMC calls */
    546 DECLARE_RT_SVC(
    547 	opteed_fast,
    548 
    549 	OEN_TOS_START,
    550 	OEN_TOS_END,
    551 	SMC_TYPE_FAST,
    552 	opteed_setup,
    553 	opteed_smc_handler
    554 );
    555 
    556 /* Define an OPTEED runtime service descriptor for standard SMC calls */
    557 DECLARE_RT_SVC(
    558 	opteed_std,
    559 
    560 	OEN_TOS_START,
    561 	OEN_TOS_END,
    562 	SMC_TYPE_STD,
    563 	NULL,
    564 	opteed_smc_handler
    565 );
    566