1 /* 2 * Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions are met: 6 * 7 * Redistributions of source code must retain the above copyright notice, this 8 * list of conditions and the following disclaimer. 9 * 10 * Redistributions in binary form must reproduce the above copyright notice, 11 * this list of conditions and the following disclaimer in the documentation 12 * and/or other materials provided with the distribution. 13 * 14 * Neither the name of ARM nor the names of its contributors may be used 15 * to endorse or promote products derived from this software without specific 16 * prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 19 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE 22 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 28 * POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 #include <arch.h> 32 #include <arch_helpers.h> 33 #include <assert.h> 34 #include <bl_common.h> 35 #include <bl31.h> 36 #include <context.h> 37 #include <context_mgmt.h> 38 #include <cpu_data.h> 39 #include <interrupt_mgmt.h> 40 #include <platform.h> 41 #include <platform_def.h> 42 #include <runtime_svc.h> 43 #include <string.h> 44 45 46 /******************************************************************************* 47 * Context management library initialisation routine. This library is used by 48 * runtime services to share pointers to 'cpu_context' structures for the secure 49 * and non-secure states. Management of the structures and their associated 50 * memory is not done by the context management library e.g. the PSCI service 51 * manages the cpu context used for entry from and exit to the non-secure state. 52 * The Secure payload dispatcher service manages the context(s) corresponding to 53 * the secure state. It also uses this library to get access to the non-secure 54 * state cpu context pointers. 55 * Lastly, this library provides the api to make SP_EL3 point to the cpu context 56 * which will used for programming an entry into a lower EL. The same context 57 * will used to save state upon exception entry from that EL. 58 ******************************************************************************/ 59 void cm_init(void) 60 { 61 /* 62 * The context management library has only global data to intialize, but 63 * that will be done when the BSS is zeroed out 64 */ 65 } 66 67 /******************************************************************************* 68 * This function returns a pointer to the most recent 'cpu_context' structure 69 * for the CPU identified by MPIDR that was set as the context for the specified 70 * security state. NULL is returned if no such structure has been specified. 71 ******************************************************************************/ 72 void *cm_get_context_by_mpidr(uint64_t mpidr, uint32_t security_state) 73 { 74 assert(sec_state_is_valid(security_state)); 75 76 return get_cpu_data_by_mpidr(mpidr, cpu_context[security_state]); 77 } 78 79 /******************************************************************************* 80 * This function sets the pointer to the current 'cpu_context' structure for the 81 * specified security state for the CPU identified by MPIDR 82 ******************************************************************************/ 83 void cm_set_context_by_mpidr(uint64_t mpidr, void *context, uint32_t security_state) 84 { 85 assert(sec_state_is_valid(security_state)); 86 87 set_cpu_data_by_mpidr(mpidr, cpu_context[security_state], context); 88 } 89 90 /******************************************************************************* 91 * This function is used to program the context that's used for exception 92 * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for 93 * the required security state 94 ******************************************************************************/ 95 static inline void cm_set_next_context(void *context) 96 { 97 #if DEBUG 98 uint64_t sp_mode; 99 100 /* 101 * Check that this function is called with SP_EL0 as the stack 102 * pointer 103 */ 104 __asm__ volatile("mrs %0, SPSel\n" 105 : "=r" (sp_mode)); 106 107 assert(sp_mode == MODE_SP_EL0); 108 #endif 109 110 __asm__ volatile("msr spsel, #1\n" 111 "mov sp, %0\n" 112 "msr spsel, #0\n" 113 : : "r" (context)); 114 } 115 116 /******************************************************************************* 117 * The following function initializes a cpu_context for the current CPU for 118 * first use, and sets the initial entrypoint state as specified by the 119 * entry_point_info structure. 120 * 121 * The security state to initialize is determined by the SECURE attribute 122 * of the entry_point_info. The function returns a pointer to the initialized 123 * context and sets this as the next context to return to. 124 * 125 * The EE and ST attributes are used to configure the endianess and secure 126 * timer availability for the new excution context. 127 * 128 * To prepare the register state for entry call cm_prepare_el3_exit() and 129 * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to 130 * cm_e1_sysreg_context_restore(). 131 ******************************************************************************/ 132 void cm_init_context(uint64_t mpidr, const entry_point_info_t *ep) 133 { 134 uint32_t security_state; 135 cpu_context_t *ctx; 136 uint32_t scr_el3; 137 el3_state_t *state; 138 gp_regs_t *gp_regs; 139 unsigned long sctlr_elx; 140 141 security_state = GET_SECURITY_STATE(ep->h.attr); 142 ctx = cm_get_context_by_mpidr(mpidr, security_state); 143 assert(ctx); 144 145 /* Clear any residual register values from the context */ 146 memset(ctx, 0, sizeof(*ctx)); 147 148 /* 149 * Base the context SCR on the current value, adjust for entry point 150 * specific requirements and set trap bits from the IMF 151 * TODO: provide the base/global SCR bits using another mechanism? 152 */ 153 scr_el3 = read_scr(); 154 scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT | 155 SCR_ST_BIT | SCR_HCE_BIT); 156 157 if (security_state != SECURE) 158 scr_el3 |= SCR_NS_BIT; 159 160 if (GET_RW(ep->spsr) == MODE_RW_64) 161 scr_el3 |= SCR_RW_BIT; 162 163 if (EP_GET_ST(ep->h.attr)) 164 scr_el3 |= SCR_ST_BIT; 165 166 scr_el3 |= get_scr_el3_from_routing_model(security_state); 167 168 /* 169 * Set up SCTLR_ELx for the target exception level: 170 * EE bit is taken from the entrpoint attributes 171 * M, C and I bits must be zero (as required by PSCI specification) 172 * 173 * The target exception level is based on the spsr mode requested. 174 * If execution is requested to EL2 or hyp mode, HVC is enabled 175 * via SCR_EL3.HCE. 176 * 177 * Always compute the SCTLR_EL1 value and save in the cpu_context 178 * - the EL2 registers are set up by cm_preapre_ns_entry() as they 179 * are not part of the stored cpu_context 180 * 181 * TODO: In debug builds the spsr should be validated and checked 182 * against the CPU support, security state, endianess and pc 183 */ 184 sctlr_elx = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0; 185 if (GET_RW(ep->spsr) == MODE_RW_64) 186 sctlr_elx |= SCTLR_EL1_RES1; 187 else 188 sctlr_elx |= SCTLR_AARCH32_EL1_RES1; 189 write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx); 190 191 if ((GET_RW(ep->spsr) == MODE_RW_64 192 && GET_EL(ep->spsr) == MODE_EL2) 193 || (GET_RW(ep->spsr) != MODE_RW_64 194 && GET_M32(ep->spsr) == MODE32_hyp)) { 195 scr_el3 |= SCR_HCE_BIT; 196 } 197 198 /* Populate EL3 state so that we've the right context before doing ERET */ 199 state = get_el3state_ctx(ctx); 200 write_ctx_reg(state, CTX_SCR_EL3, scr_el3); 201 write_ctx_reg(state, CTX_ELR_EL3, ep->pc); 202 write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr); 203 204 /* 205 * Store the X0-X7 value from the entrypoint into the context 206 * Use memcpy as we are in control of the layout of the structures 207 */ 208 gp_regs = get_gpregs_ctx(ctx); 209 memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t)); 210 } 211 212 /******************************************************************************* 213 * Prepare the CPU system registers for first entry into secure or normal world 214 * 215 * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized 216 * If execution is requested to non-secure EL1 or svc mode, and the CPU supports 217 * EL2 then EL2 is disabled by configuring all necessary EL2 registers. 218 * For all entries, the EL1 registers are initialized from the cpu_context 219 ******************************************************************************/ 220 void cm_prepare_el3_exit(uint32_t security_state) 221 { 222 uint32_t sctlr_elx, scr_el3, cptr_el2; 223 cpu_context_t *ctx = cm_get_context(security_state); 224 225 assert(ctx); 226 227 if (security_state == NON_SECURE) { 228 scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3); 229 if (scr_el3 & SCR_HCE_BIT) { 230 /* Use SCTLR_EL1.EE value to initialise sctlr_el2 */ 231 sctlr_elx = read_ctx_reg(get_sysregs_ctx(ctx), 232 CTX_SCTLR_EL1); 233 sctlr_elx &= ~SCTLR_EE_BIT; 234 sctlr_elx |= SCTLR_EL2_RES1; 235 write_sctlr_el2(sctlr_elx); 236 } else if (read_id_aa64pfr0_el1() & 237 (ID_AA64PFR0_ELX_MASK << ID_AA64PFR0_EL2_SHIFT)) { 238 /* EL2 present but unused, need to disable safely */ 239 240 /* HCR_EL2 = 0, except RW bit set to match SCR_EL3 */ 241 write_hcr_el2((scr_el3 & SCR_RW_BIT) ? HCR_RW_BIT : 0); 242 243 /* SCTLR_EL2 : can be ignored when bypassing */ 244 245 /* CPTR_EL2 : disable all traps TCPAC, TTA, TFP */ 246 cptr_el2 = read_cptr_el2(); 247 cptr_el2 &= ~(TCPAC_BIT | TTA_BIT | TFP_BIT); 248 write_cptr_el2(cptr_el2); 249 250 /* Enable EL1 access to timer */ 251 write_cnthctl_el2(EL1PCEN_BIT | EL1PCTEN_BIT); 252 253 /* Reset CNTVOFF_EL2 */ 254 write_cntvoff_el2(0); 255 256 /* Set VPIDR, VMPIDR to match MIDR, MPIDR */ 257 write_vpidr_el2(read_midr_el1()); 258 write_vmpidr_el2(read_mpidr_el1()); 259 } 260 } 261 262 el1_sysregs_context_restore(get_sysregs_ctx(ctx)); 263 264 cm_set_next_context(ctx); 265 } 266 267 /******************************************************************************* 268 * The next four functions are used by runtime services to save and restore 269 * EL1 context on the 'cpu_context' structure for the specified security 270 * state. 271 ******************************************************************************/ 272 void cm_el1_sysregs_context_save(uint32_t security_state) 273 { 274 cpu_context_t *ctx; 275 276 ctx = cm_get_context(security_state); 277 assert(ctx); 278 279 el1_sysregs_context_save(get_sysregs_ctx(ctx)); 280 } 281 282 void cm_el1_sysregs_context_restore(uint32_t security_state) 283 { 284 cpu_context_t *ctx; 285 286 ctx = cm_get_context(security_state); 287 assert(ctx); 288 289 el1_sysregs_context_restore(get_sysregs_ctx(ctx)); 290 } 291 292 /******************************************************************************* 293 * This function populates ELR_EL3 member of 'cpu_context' pertaining to the 294 * given security state with the given entrypoint 295 ******************************************************************************/ 296 void cm_set_elr_el3(uint32_t security_state, uint64_t entrypoint) 297 { 298 cpu_context_t *ctx; 299 el3_state_t *state; 300 301 ctx = cm_get_context(security_state); 302 assert(ctx); 303 304 /* Populate EL3 state so that ERET jumps to the correct entry */ 305 state = get_el3state_ctx(ctx); 306 write_ctx_reg(state, CTX_ELR_EL3, entrypoint); 307 } 308 309 /******************************************************************************* 310 * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context' 311 * pertaining to the given security state 312 ******************************************************************************/ 313 void cm_set_elr_spsr_el3(uint32_t security_state, 314 uint64_t entrypoint, uint32_t spsr) 315 { 316 cpu_context_t *ctx; 317 el3_state_t *state; 318 319 ctx = cm_get_context(security_state); 320 assert(ctx); 321 322 /* Populate EL3 state so that ERET jumps to the correct entry */ 323 state = get_el3state_ctx(ctx); 324 write_ctx_reg(state, CTX_ELR_EL3, entrypoint); 325 write_ctx_reg(state, CTX_SPSR_EL3, spsr); 326 } 327 328 /******************************************************************************* 329 * This function updates a single bit in the SCR_EL3 member of the 'cpu_context' 330 * pertaining to the given security state using the value and bit position 331 * specified in the parameters. It preserves all other bits. 332 ******************************************************************************/ 333 void cm_write_scr_el3_bit(uint32_t security_state, 334 uint32_t bit_pos, 335 uint32_t value) 336 { 337 cpu_context_t *ctx; 338 el3_state_t *state; 339 uint32_t scr_el3; 340 341 ctx = cm_get_context(security_state); 342 assert(ctx); 343 344 /* Ensure that the bit position is a valid one */ 345 assert((1 << bit_pos) & SCR_VALID_BIT_MASK); 346 347 /* Ensure that the 'value' is only a bit wide */ 348 assert(value <= 1); 349 350 /* 351 * Get the SCR_EL3 value from the cpu context, clear the desired bit 352 * and set it to its new value. 353 */ 354 state = get_el3state_ctx(ctx); 355 scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); 356 scr_el3 &= ~(1 << bit_pos); 357 scr_el3 |= value << bit_pos; 358 write_ctx_reg(state, CTX_SCR_EL3, scr_el3); 359 } 360 361 /******************************************************************************* 362 * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the 363 * given security state. 364 ******************************************************************************/ 365 uint32_t cm_get_scr_el3(uint32_t security_state) 366 { 367 cpu_context_t *ctx; 368 el3_state_t *state; 369 370 ctx = cm_get_context(security_state); 371 assert(ctx); 372 373 /* Populate EL3 state so that ERET jumps to the correct entry */ 374 state = get_el3state_ctx(ctx); 375 return read_ctx_reg(state, CTX_SCR_EL3); 376 } 377 378 /******************************************************************************* 379 * This function is used to program the context that's used for exception 380 * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for 381 * the required security state 382 ******************************************************************************/ 383 void cm_set_next_eret_context(uint32_t security_state) 384 { 385 cpu_context_t *ctx; 386 387 ctx = cm_get_context(security_state); 388 assert(ctx); 389 390 cm_set_next_context(ctx); 391 } 392