Home | History | Annotate | Download | only in bl31
      1 /*
      2  * Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved.
      3  *
      4  * Redistribution and use in source and binary forms, with or without
      5  * modification, are permitted provided that the following conditions are met:
      6  *
      7  * Redistributions of source code must retain the above copyright notice, this
      8  * list of conditions and the following disclaimer.
      9  *
     10  * Redistributions in binary form must reproduce the above copyright notice,
     11  * this list of conditions and the following disclaimer in the documentation
     12  * and/or other materials provided with the distribution.
     13  *
     14  * Neither the name of ARM nor the names of its contributors may be used
     15  * to endorse or promote products derived from this software without specific
     16  * prior written permission.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     19  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     21  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
     22  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     28  * POSSIBILITY OF SUCH DAMAGE.
     29  */
     30 
     31 #include <arch.h>
     32 #include <arch_helpers.h>
     33 #include <assert.h>
     34 #include <bl_common.h>
     35 #include <bl31.h>
     36 #include <context.h>
     37 #include <context_mgmt.h>
     38 #include <cpu_data.h>
     39 #include <interrupt_mgmt.h>
     40 #include <platform.h>
     41 #include <platform_def.h>
     42 #include <runtime_svc.h>
     43 #include <string.h>
     44 
     45 
     46 /*******************************************************************************
     47  * Context management library initialisation routine. This library is used by
     48  * runtime services to share pointers to 'cpu_context' structures for the secure
     49  * and non-secure states. Management of the structures and their associated
     50  * memory is not done by the context management library e.g. the PSCI service
     51  * manages the cpu context used for entry from and exit to the non-secure state.
     52  * The Secure payload dispatcher service manages the context(s) corresponding to
     53  * the secure state. It also uses this library to get access to the non-secure
     54  * state cpu context pointers.
     55  * Lastly, this library provides the api to make SP_EL3 point to the cpu context
     56  * which will used for programming an entry into a lower EL. The same context
     57  * will used to save state upon exception entry from that EL.
     58  ******************************************************************************/
     59 void cm_init(void)
     60 {
     61 	/*
     62 	 * The context management library has only global data to intialize, but
     63 	 * that will be done when the BSS is zeroed out
     64 	 */
     65 }
     66 
     67 /*******************************************************************************
     68  * This function returns a pointer to the most recent 'cpu_context' structure
     69  * for the CPU identified by MPIDR that was set as the context for the specified
     70  * security state. NULL is returned if no such structure has been specified.
     71  ******************************************************************************/
     72 void *cm_get_context_by_mpidr(uint64_t mpidr, uint32_t security_state)
     73 {
     74 	assert(sec_state_is_valid(security_state));
     75 
     76 	return get_cpu_data_by_mpidr(mpidr, cpu_context[security_state]);
     77 }
     78 
     79 /*******************************************************************************
     80  * This function sets the pointer to the current 'cpu_context' structure for the
     81  * specified security state for the CPU identified by MPIDR
     82  ******************************************************************************/
     83 void cm_set_context_by_mpidr(uint64_t mpidr, void *context, uint32_t security_state)
     84 {
     85 	assert(sec_state_is_valid(security_state));
     86 
     87 	set_cpu_data_by_mpidr(mpidr, cpu_context[security_state], context);
     88 }
     89 
     90 /*******************************************************************************
     91  * This function is used to program the context that's used for exception
     92  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
     93  * the required security state
     94  ******************************************************************************/
     95 static inline void cm_set_next_context(void *context)
     96 {
     97 #if DEBUG
     98 	uint64_t sp_mode;
     99 
    100 	/*
    101 	 * Check that this function is called with SP_EL0 as the stack
    102 	 * pointer
    103 	 */
    104 	__asm__ volatile("mrs	%0, SPSel\n"
    105 			 : "=r" (sp_mode));
    106 
    107 	assert(sp_mode == MODE_SP_EL0);
    108 #endif
    109 
    110 	__asm__ volatile("msr	spsel, #1\n"
    111 			 "mov	sp, %0\n"
    112 			 "msr	spsel, #0\n"
    113 			 : : "r" (context));
    114 }
    115 
    116 /*******************************************************************************
    117  * The following function initializes a cpu_context for the current CPU for
    118  * first use, and sets the initial entrypoint state as specified by the
    119  * entry_point_info structure.
    120  *
    121  * The security state to initialize is determined by the SECURE attribute
    122  * of the entry_point_info. The function returns a pointer to the initialized
    123  * context and sets this as the next context to return to.
    124  *
    125  * The EE and ST attributes are used to configure the endianess and secure
    126  * timer availability for the new excution context.
    127  *
    128  * To prepare the register state for entry call cm_prepare_el3_exit() and
    129  * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
    130  * cm_e1_sysreg_context_restore().
    131  ******************************************************************************/
    132 void cm_init_context(uint64_t mpidr, const entry_point_info_t *ep)
    133 {
    134 	uint32_t security_state;
    135 	cpu_context_t *ctx;
    136 	uint32_t scr_el3;
    137 	el3_state_t *state;
    138 	gp_regs_t *gp_regs;
    139 	unsigned long sctlr_elx;
    140 
    141 	security_state = GET_SECURITY_STATE(ep->h.attr);
    142 	ctx = cm_get_context_by_mpidr(mpidr, security_state);
    143 	assert(ctx);
    144 
    145 	/* Clear any residual register values from the context */
    146 	memset(ctx, 0, sizeof(*ctx));
    147 
    148 	/*
    149 	 * Base the context SCR on the current value, adjust for entry point
    150 	 * specific requirements and set trap bits from the IMF
    151 	 * TODO: provide the base/global SCR bits using another mechanism?
    152 	 */
    153 	scr_el3 = read_scr();
    154 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
    155 			SCR_ST_BIT | SCR_HCE_BIT);
    156 
    157 	if (security_state != SECURE)
    158 		scr_el3 |= SCR_NS_BIT;
    159 
    160 	if (GET_RW(ep->spsr) == MODE_RW_64)
    161 		scr_el3 |= SCR_RW_BIT;
    162 
    163 	if (EP_GET_ST(ep->h.attr))
    164 		scr_el3 |= SCR_ST_BIT;
    165 
    166 	scr_el3 |= get_scr_el3_from_routing_model(security_state);
    167 
    168 	/*
    169 	 * Set up SCTLR_ELx for the target exception level:
    170 	 * EE bit is taken from the entrpoint attributes
    171 	 * M, C and I bits must be zero (as required by PSCI specification)
    172 	 *
    173 	 * The target exception level is based on the spsr mode requested.
    174 	 * If execution is requested to EL2 or hyp mode, HVC is enabled
    175 	 * via SCR_EL3.HCE.
    176 	 *
    177 	 * Always compute the SCTLR_EL1 value and save in the cpu_context
    178 	 * - the EL2 registers are set up by cm_preapre_ns_entry() as they
    179 	 * are not part of the stored cpu_context
    180 	 *
    181 	 * TODO: In debug builds the spsr should be validated and checked
    182 	 * against the CPU support, security state, endianess and pc
    183 	 */
    184 	sctlr_elx = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0;
    185 	if (GET_RW(ep->spsr) == MODE_RW_64)
    186 		sctlr_elx |= SCTLR_EL1_RES1;
    187 	else
    188 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1;
    189 	write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
    190 
    191 	if ((GET_RW(ep->spsr) == MODE_RW_64
    192 	     && GET_EL(ep->spsr) == MODE_EL2)
    193 	    || (GET_RW(ep->spsr) != MODE_RW_64
    194 		&& GET_M32(ep->spsr) == MODE32_hyp)) {
    195 		scr_el3 |= SCR_HCE_BIT;
    196 	}
    197 
    198 	/* Populate EL3 state so that we've the right context before doing ERET */
    199 	state = get_el3state_ctx(ctx);
    200 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
    201 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
    202 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
    203 
    204 	/*
    205 	 * Store the X0-X7 value from the entrypoint into the context
    206 	 * Use memcpy as we are in control of the layout of the structures
    207 	 */
    208 	gp_regs = get_gpregs_ctx(ctx);
    209 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
    210 }
    211 
    212 /*******************************************************************************
    213  * Prepare the CPU system registers for first entry into secure or normal world
    214  *
    215  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
    216  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
    217  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
    218  * For all entries, the EL1 registers are initialized from the cpu_context
    219  ******************************************************************************/
    220 void cm_prepare_el3_exit(uint32_t security_state)
    221 {
    222 	uint32_t sctlr_elx, scr_el3, cptr_el2;
    223 	cpu_context_t *ctx = cm_get_context(security_state);
    224 
    225 	assert(ctx);
    226 
    227 	if (security_state == NON_SECURE) {
    228 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
    229 		if (scr_el3 & SCR_HCE_BIT) {
    230 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
    231 			sctlr_elx = read_ctx_reg(get_sysregs_ctx(ctx),
    232 						 CTX_SCTLR_EL1);
    233 			sctlr_elx &= ~SCTLR_EE_BIT;
    234 			sctlr_elx |= SCTLR_EL2_RES1;
    235 			write_sctlr_el2(sctlr_elx);
    236 		} else if (read_id_aa64pfr0_el1() &
    237 			   (ID_AA64PFR0_ELX_MASK << ID_AA64PFR0_EL2_SHIFT)) {
    238 			/* EL2 present but unused, need to disable safely */
    239 
    240 			/* HCR_EL2 = 0, except RW bit set to match SCR_EL3 */
    241 			write_hcr_el2((scr_el3 & SCR_RW_BIT) ? HCR_RW_BIT : 0);
    242 
    243 			/* SCTLR_EL2 : can be ignored when bypassing */
    244 
    245 			/* CPTR_EL2 : disable all traps TCPAC, TTA, TFP */
    246 			cptr_el2 = read_cptr_el2();
    247 			cptr_el2 &= ~(TCPAC_BIT | TTA_BIT | TFP_BIT);
    248 			write_cptr_el2(cptr_el2);
    249 
    250 			/* Enable EL1 access to timer */
    251 			write_cnthctl_el2(EL1PCEN_BIT | EL1PCTEN_BIT);
    252 
    253 			/* Reset CNTVOFF_EL2 */
    254 			write_cntvoff_el2(0);
    255 
    256 			/* Set VPIDR, VMPIDR to match MIDR, MPIDR */
    257 			write_vpidr_el2(read_midr_el1());
    258 			write_vmpidr_el2(read_mpidr_el1());
    259 		}
    260 	}
    261 
    262 	el1_sysregs_context_restore(get_sysregs_ctx(ctx));
    263 
    264 	cm_set_next_context(ctx);
    265 }
    266 
    267 /*******************************************************************************
    268  * The next four functions are used by runtime services to save and restore
    269  * EL1 context on the 'cpu_context' structure for the specified security
    270  * state.
    271  ******************************************************************************/
    272 void cm_el1_sysregs_context_save(uint32_t security_state)
    273 {
    274 	cpu_context_t *ctx;
    275 
    276 	ctx = cm_get_context(security_state);
    277 	assert(ctx);
    278 
    279 	el1_sysregs_context_save(get_sysregs_ctx(ctx));
    280 }
    281 
    282 void cm_el1_sysregs_context_restore(uint32_t security_state)
    283 {
    284 	cpu_context_t *ctx;
    285 
    286 	ctx = cm_get_context(security_state);
    287 	assert(ctx);
    288 
    289 	el1_sysregs_context_restore(get_sysregs_ctx(ctx));
    290 }
    291 
    292 /*******************************************************************************
    293  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
    294  * given security state with the given entrypoint
    295  ******************************************************************************/
    296 void cm_set_elr_el3(uint32_t security_state, uint64_t entrypoint)
    297 {
    298 	cpu_context_t *ctx;
    299 	el3_state_t *state;
    300 
    301 	ctx = cm_get_context(security_state);
    302 	assert(ctx);
    303 
    304 	/* Populate EL3 state so that ERET jumps to the correct entry */
    305 	state = get_el3state_ctx(ctx);
    306 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
    307 }
    308 
    309 /*******************************************************************************
    310  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
    311  * pertaining to the given security state
    312  ******************************************************************************/
    313 void cm_set_elr_spsr_el3(uint32_t security_state,
    314 			 uint64_t entrypoint, uint32_t spsr)
    315 {
    316 	cpu_context_t *ctx;
    317 	el3_state_t *state;
    318 
    319 	ctx = cm_get_context(security_state);
    320 	assert(ctx);
    321 
    322 	/* Populate EL3 state so that ERET jumps to the correct entry */
    323 	state = get_el3state_ctx(ctx);
    324 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
    325 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
    326 }
    327 
    328 /*******************************************************************************
    329  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
    330  * pertaining to the given security state using the value and bit position
    331  * specified in the parameters. It preserves all other bits.
    332  ******************************************************************************/
    333 void cm_write_scr_el3_bit(uint32_t security_state,
    334 			  uint32_t bit_pos,
    335 			  uint32_t value)
    336 {
    337 	cpu_context_t *ctx;
    338 	el3_state_t *state;
    339 	uint32_t scr_el3;
    340 
    341 	ctx = cm_get_context(security_state);
    342 	assert(ctx);
    343 
    344 	/* Ensure that the bit position is a valid one */
    345 	assert((1 << bit_pos) & SCR_VALID_BIT_MASK);
    346 
    347 	/* Ensure that the 'value' is only a bit wide */
    348 	assert(value <= 1);
    349 
    350 	/*
    351 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
    352 	 * and set it to its new value.
    353 	 */
    354 	state = get_el3state_ctx(ctx);
    355 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
    356 	scr_el3 &= ~(1 << bit_pos);
    357 	scr_el3 |= value << bit_pos;
    358 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
    359 }
    360 
    361 /*******************************************************************************
    362  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
    363  * given security state.
    364  ******************************************************************************/
    365 uint32_t cm_get_scr_el3(uint32_t security_state)
    366 {
    367 	cpu_context_t *ctx;
    368 	el3_state_t *state;
    369 
    370 	ctx = cm_get_context(security_state);
    371 	assert(ctx);
    372 
    373 	/* Populate EL3 state so that ERET jumps to the correct entry */
    374 	state = get_el3state_ctx(ctx);
    375 	return read_ctx_reg(state, CTX_SCR_EL3);
    376 }
    377 
    378 /*******************************************************************************
    379  * This function is used to program the context that's used for exception
    380  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
    381  * the required security state
    382  ******************************************************************************/
    383 void cm_set_next_eret_context(uint32_t security_state)
    384 {
    385 	cpu_context_t *ctx;
    386 
    387 	ctx = cm_get_context(security_state);
    388 	assert(ctx);
    389 
    390 	cm_set_next_context(ctx);
    391 }
    392