1 /* 2 * Copyright 2013 The Android Open Source Project 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions are met: 6 * * Redistributions of source code must retain the above copyright 7 * notice, this list of conditions and the following disclaimer. 8 * * Redistributions in binary form must reproduce the above copyright 9 * notice, this list of conditions and the following disclaimer in the 10 * documentation and/or other materials provided with the distribution. 11 * * Neither the name of Google Inc. nor the names of its contributors may 12 * be used to endorse or promote products derived from this software 13 * without specific prior written permission. 14 * 15 * THIS SOFTWARE IS PROVIDED BY Google Inc. ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 17 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 18 * EVENT SHALL Google Inc. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 20 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; 21 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 22 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 23 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 24 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 // This is an implementation of the P256 elliptic curve group. It's written to 28 // be portable 32-bit, although it's still constant-time. 29 // 30 // WARNING: Implementing these functions in a constant-time manner is far from 31 // obvious. Be careful when touching this code. 32 // 33 // See http://www.imperialviolet.org/2010/12/04/ecc.html ([1]) for background. 34 35 #include <assert.h> 36 #include <stdint.h> 37 #include <string.h> 38 #include <stdio.h> 39 40 #include "constrainedcrypto/p256.h" 41 42 const p256_int SECP256r1_n = // curve order 43 {{0xfc632551, 0xf3b9cac2, 0xa7179e84, 0xbce6faad, -1, -1, 0, -1}}; 44 45 const p256_int SECP256r1_p = // curve field size 46 {{-1, -1, -1, 0, 0, 0, 1, -1 }}; 47 48 const p256_int SECP256r1_b = // curve b 49 {{0x27d2604b, 0x3bce3c3e, 0xcc53b0f6, 0x651d06b0, 50 0x769886bc, 0xb3ebbd55, 0xaa3a93e7, 0x5ac635d8}}; 51 52 void p256_init(p256_int* a) { 53 memset(a, 0, sizeof(*a)); 54 } 55 56 void p256_clear(p256_int* a) { p256_init(a); } 57 58 int p256_get_bit(const p256_int* scalar, int bit) { 59 return (P256_DIGIT(scalar, bit / P256_BITSPERDIGIT) 60 >> (bit & (P256_BITSPERDIGIT - 1))) & 1; 61 } 62 63 int p256_is_zero(const p256_int* a) { 64 int i, result = 0; 65 for (i = 0; i < P256_NDIGITS; ++i) result |= P256_DIGIT(a, i); 66 return !result; 67 } 68 69 // top, c[] += a[] * b 70 // Returns new top 71 static p256_digit mulAdd(const p256_int* a, 72 p256_digit b, 73 p256_digit top, 74 p256_digit* c) { 75 int i; 76 p256_ddigit carry = 0; 77 78 for (i = 0; i < P256_NDIGITS; ++i) { 79 carry += *c; 80 carry += (p256_ddigit)P256_DIGIT(a, i) * b; 81 *c++ = (p256_digit)carry; 82 carry >>= P256_BITSPERDIGIT; 83 } 84 return top + (p256_digit)carry; 85 } 86 87 // top, c[] -= top_a, a[] 88 static p256_digit subTop(p256_digit top_a, 89 const p256_digit* a, 90 p256_digit top_c, 91 p256_digit* c) { 92 int i; 93 p256_sddigit borrow = 0; 94 95 for (i = 0; i < P256_NDIGITS; ++i) { 96 borrow += *c; 97 borrow -= *a++; 98 *c++ = (p256_digit)borrow; 99 borrow >>= P256_BITSPERDIGIT; 100 } 101 borrow += top_c; 102 borrow -= top_a; 103 top_c = (p256_digit)borrow; 104 assert((borrow >> P256_BITSPERDIGIT) == 0); 105 return top_c; 106 } 107 108 // top, c[] -= MOD[] & mask (0 or -1) 109 // returns new top. 110 static p256_digit subM(const p256_int* MOD, 111 p256_digit top, 112 p256_digit* c, 113 p256_digit mask) { 114 int i; 115 p256_sddigit borrow = 0; 116 for (i = 0; i < P256_NDIGITS; ++i) { 117 borrow += *c; 118 borrow -= P256_DIGIT(MOD, i) & mask; 119 *c++ = (p256_digit)borrow; 120 borrow >>= P256_BITSPERDIGIT; 121 } 122 return top + (p256_digit)borrow; 123 } 124 125 // top, c[] += MOD[] & mask (0 or -1) 126 // returns new top. 127 static p256_digit addM(const p256_int* MOD, 128 p256_digit top, 129 p256_digit* c, 130 p256_digit mask) { 131 int i; 132 p256_ddigit carry = 0; 133 for (i = 0; i < P256_NDIGITS; ++i) { 134 carry += *c; 135 carry += P256_DIGIT(MOD, i) & mask; 136 *c++ = (p256_digit)carry; 137 carry >>= P256_BITSPERDIGIT; 138 } 139 return top + (p256_digit)carry; 140 } 141 142 // c = a * b mod MOD. c can be a and/or b. 143 void p256_modmul(const p256_int* MOD, 144 const p256_int* a, 145 const p256_digit top_b, 146 const p256_int* b, 147 p256_int* c) { 148 p256_digit tmp[P256_NDIGITS * 2 + 1] = { 0 }; 149 p256_digit top = 0; 150 int i; 151 152 // Multiply/add into tmp. 153 for (i = 0; i < P256_NDIGITS; ++i) { 154 if (i) tmp[i + P256_NDIGITS - 1] = top; 155 top = mulAdd(a, P256_DIGIT(b, i), 0, tmp + i); 156 } 157 158 // Multiply/add top digit 159 tmp[i + P256_NDIGITS - 1] = top; 160 top = mulAdd(a, top_b, 0, tmp + i); 161 162 // Reduce tmp, digit by digit. 163 for (; i >= 0; --i) { 164 p256_digit reducer[P256_NDIGITS] = { 0 }; 165 p256_digit top_reducer; 166 167 // top can be any value at this point. 168 // Guestimate reducer as top * MOD, since msw of MOD is -1. 169 top_reducer = mulAdd(MOD, top, 0, reducer); 170 171 // Subtract reducer from top | tmp. 172 top = subTop(top_reducer, reducer, top, tmp + i); 173 174 // top is now either 0 or 1. Make it 0, fixed-timing. 175 assert(top <= 1); 176 177 top = subM(MOD, top, tmp + i, ~(top - 1)); 178 179 assert(top == 0); 180 181 // We have now reduced the top digit off tmp. Fetch new top digit. 182 top = tmp[i + P256_NDIGITS - 1]; 183 } 184 185 // tmp might still be larger than MOD, yet same bit length. 186 // Make sure it is less, fixed-timing. 187 addM(MOD, 0, tmp, subM(MOD, 0, tmp, -1)); 188 189 memcpy(c, tmp, P256_NBYTES); 190 } 191 int p256_is_odd(const p256_int* a) { return P256_DIGIT(a, 0) & 1; } 192 int p256_is_even(const p256_int* a) { return !(P256_DIGIT(a, 0) & 1); } 193 194 p256_digit p256_shl(const p256_int* a, int n, p256_int* b) { 195 int i; 196 p256_digit top = P256_DIGIT(a, P256_NDIGITS - 1); 197 198 n %= P256_BITSPERDIGIT; 199 for (i = P256_NDIGITS - 1; i > 0; --i) { 200 p256_digit accu = (P256_DIGIT(a, i) << n); 201 accu |= (P256_DIGIT(a, i - 1) >> (P256_BITSPERDIGIT - n)); 202 P256_DIGIT(b, i) = accu; 203 } 204 P256_DIGIT(b, i) = (P256_DIGIT(a, i) << n); 205 206 top = (p256_digit)((((p256_ddigit)top) << n) >> P256_BITSPERDIGIT); 207 208 return top; 209 } 210 211 void p256_shr(const p256_int* a, int n, p256_int* b) { 212 int i; 213 214 n %= P256_BITSPERDIGIT; 215 for (i = 0; i < P256_NDIGITS - 1; ++i) { 216 p256_digit accu = (P256_DIGIT(a, i) >> n); 217 accu |= (P256_DIGIT(a, i + 1) << (P256_BITSPERDIGIT - n)); 218 P256_DIGIT(b, i) = accu; 219 } 220 P256_DIGIT(b, i) = (P256_DIGIT(a, i) >> n); 221 } 222 223 static void p256_shr1(const p256_int* a, int highbit, p256_int* b) { 224 int i; 225 226 for (i = 0; i < P256_NDIGITS - 1; ++i) { 227 p256_digit accu = (P256_DIGIT(a, i) >> 1); 228 accu |= (P256_DIGIT(a, i + 1) << (P256_BITSPERDIGIT - 1)); 229 P256_DIGIT(b, i) = accu; 230 } 231 P256_DIGIT(b, i) = (P256_DIGIT(a, i) >> 1) | 232 (highbit << (P256_BITSPERDIGIT - 1)); 233 } 234 235 // Return -1, 0, 1 for a < b, a == b or a > b respectively. 236 int p256_cmp(const p256_int* a, const p256_int* b) { 237 int i; 238 p256_sddigit borrow = 0; 239 p256_digit notzero = 0; 240 241 for (i = 0; i < P256_NDIGITS; ++i) { 242 borrow += (p256_sddigit)P256_DIGIT(a, i) - P256_DIGIT(b, i); 243 // Track whether any result digit is ever not zero. 244 // Relies on !!(non-zero) evaluating to 1, e.g., !!(-1) evaluating to 1. 245 notzero |= !!((p256_digit)borrow); 246 borrow >>= P256_BITSPERDIGIT; 247 } 248 return (int)borrow | notzero; 249 } 250 251 // c = a - b. Returns borrow: 0 or -1. 252 int p256_sub(const p256_int* a, const p256_int* b, p256_int* c) { 253 int i; 254 p256_sddigit borrow = 0; 255 256 for (i = 0; i < P256_NDIGITS; ++i) { 257 borrow += (p256_sddigit)P256_DIGIT(a, i) - P256_DIGIT(b, i); 258 if (c) P256_DIGIT(c, i) = (p256_digit)borrow; 259 borrow >>= P256_BITSPERDIGIT; 260 } 261 return (int)borrow; 262 } 263 264 // c = a + b. Returns carry: 0 or 1. 265 int p256_add(const p256_int* a, const p256_int* b, p256_int* c) { 266 int i; 267 p256_ddigit carry = 0; 268 269 for (i = 0; i < P256_NDIGITS; ++i) { 270 carry += (p256_ddigit)P256_DIGIT(a, i) + P256_DIGIT(b, i); 271 if (c) P256_DIGIT(c, i) = (p256_digit)carry; 272 carry >>= P256_BITSPERDIGIT; 273 } 274 return (int)carry; 275 } 276 277 // b = a + d. Returns carry, 0 or 1. 278 int p256_add_d(const p256_int* a, p256_digit d, p256_int* b) { 279 int i; 280 p256_ddigit carry = d; 281 282 for (i = 0; i < P256_NDIGITS; ++i) { 283 carry += (p256_ddigit)P256_DIGIT(a, i); 284 if (b) P256_DIGIT(b, i) = (p256_digit)carry; 285 carry >>= P256_BITSPERDIGIT; 286 } 287 return (int)carry; 288 } 289 290 // b = 1/a mod MOD, binary euclid. 291 void p256_modinv_vartime(const p256_int* MOD, 292 const p256_int* a, 293 p256_int* b) { 294 p256_int R = P256_ZERO; 295 p256_int S = P256_ONE; 296 p256_int U = *MOD; 297 p256_int V = *a; 298 299 for (;;) { 300 if (p256_is_even(&U)) { 301 p256_shr1(&U, 0, &U); 302 if (p256_is_even(&R)) { 303 p256_shr1(&R, 0, &R); 304 } else { 305 // R = (R+MOD)/2 306 p256_shr1(&R, p256_add(&R, MOD, &R), &R); 307 } 308 } else if (p256_is_even(&V)) { 309 p256_shr1(&V, 0, &V); 310 if (p256_is_even(&S)) { 311 p256_shr1(&S, 0, &S); 312 } else { 313 // S = (S+MOD)/2 314 p256_shr1(&S, p256_add(&S, MOD, &S) , &S); 315 } 316 } else { // U,V both odd. 317 if (!p256_sub(&V, &U, NULL)) { 318 p256_sub(&V, &U, &V); 319 if (p256_sub(&S, &R, &S)) p256_add(&S, MOD, &S); 320 if (p256_is_zero(&V)) break; // done. 321 } else { 322 p256_sub(&U, &V, &U); 323 if (p256_sub(&R, &S, &R)) p256_add(&R, MOD, &R); 324 } 325 } 326 } 327 328 p256_mod(MOD, &R, b); 329 } 330 331 void p256_mod(const p256_int* MOD, 332 const p256_int* in, 333 p256_int* out) { 334 if (out != in) *out = *in; 335 addM(MOD, 0, P256_DIGITS(out), subM(MOD, 0, P256_DIGITS(out), -1)); 336 } 337 338 // Verify y^2 == x^3 - 3x + b mod p 339 // and 0 < x < p and 0 < y < p 340 int p256_is_valid_point(const p256_int* x, const p256_int* y) { 341 p256_int y2, x3; 342 343 if (p256_cmp(&SECP256r1_p, x) <= 0 || 344 p256_cmp(&SECP256r1_p, y) <= 0 || 345 p256_is_zero(x) || 346 p256_is_zero(y)) return 0; 347 348 p256_modmul(&SECP256r1_p, y, 0, y, &y2); // y^2 349 350 p256_modmul(&SECP256r1_p, x, 0, x, &x3); // x^2 351 p256_modmul(&SECP256r1_p, x, 0, &x3, &x3); // x^3 352 if (p256_sub(&x3, x, &x3)) p256_add(&x3, &SECP256r1_p, &x3); // x^3 - x 353 if (p256_sub(&x3, x, &x3)) p256_add(&x3, &SECP256r1_p, &x3); // x^3 - 2x 354 if (p256_sub(&x3, x, &x3)) p256_add(&x3, &SECP256r1_p, &x3); // x^3 - 3x 355 if (p256_add(&x3, &SECP256r1_b, &x3)) // x^3 - 3x + b 356 p256_sub(&x3, &SECP256r1_p, &x3); 357 358 return p256_cmp(&y2, &x3) == 0; 359 } 360 361 void p256_from_bin(const uint8_t src[P256_NBYTES], p256_int* dst) { 362 int i; 363 const uint8_t* p = &src[0]; 364 365 for (i = P256_NDIGITS - 1; i >= 0; --i) { 366 P256_DIGIT(dst, i) = 367 (p[0] << 24) | 368 (p[1] << 16) | 369 (p[2] << 8) | 370 p[3]; 371 p += 4; 372 } 373 } 374