Home | History | Annotate | Download | only in Hexagon
      1 //===--- RDFLiveness.cpp --------------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Computation of the liveness information from the data-flow graph.
     11 //
     12 // The main functionality of this code is to compute block live-in
     13 // information. With the live-in information in place, the placement
     14 // of kill flags can also be recalculated.
     15 //
     16 // The block live-in calculation is based on the ideas from the following
     17 // publication:
     18 //
     19 // Dibyendu Das, Ramakrishna Upadrasta, Benoit Dupont de Dinechin.
     20 // "Efficient Liveness Computation Using Merge Sets and DJ-Graphs."
     21 // ACM Transactions on Architecture and Code Optimization, Association for
     22 // Computing Machinery, 2012, ACM TACO Special Issue on "High-Performance
     23 // and Embedded Architectures and Compilers", 8 (4),
     24 // <10.1145/2086696.2086706>. <hal-00647369>
     25 //
     26 #include "RDFGraph.h"
     27 #include "RDFLiveness.h"
     28 #include "llvm/ADT/SetVector.h"
     29 #include "llvm/CodeGen/MachineBasicBlock.h"
     30 #include "llvm/CodeGen/MachineDominanceFrontier.h"
     31 #include "llvm/CodeGen/MachineDominators.h"
     32 #include "llvm/CodeGen/MachineFunction.h"
     33 #include "llvm/CodeGen/MachineRegisterInfo.h"
     34 #include "llvm/Target/TargetRegisterInfo.h"
     35 
     36 using namespace llvm;
     37 using namespace rdf;
     38 
     39 namespace llvm {
     40 namespace rdf {
     41   template<>
     42   raw_ostream &operator<< (raw_ostream &OS, const Print<Liveness::RefMap> &P) {
     43     OS << '{';
     44     for (auto I : P.Obj) {
     45       OS << ' ' << Print<RegisterRef>(I.first, P.G) << '{';
     46       for (auto J = I.second.begin(), E = I.second.end(); J != E; ) {
     47         OS << Print<NodeId>(*J, P.G);
     48         if (++J != E)
     49           OS << ',';
     50       }
     51       OS << '}';
     52     }
     53     OS << " }";
     54     return OS;
     55   }
     56 } // namespace rdf
     57 } // namespace llvm
     58 
     59 // The order in the returned sequence is the order of reaching defs in the
     60 // upward traversal: the first def is the closest to the given reference RefA,
     61 // the next one is further up, and so on.
     62 // The list ends at a reaching phi def, or when the reference from RefA is
     63 // covered by the defs in the list (see FullChain).
     64 // This function provides two modes of operation:
     65 // (1) Returning the sequence of reaching defs for a particular reference
     66 // node. This sequence will terminate at the first phi node [1].
     67 // (2) Returning a partial sequence of reaching defs, where the final goal
     68 // is to traverse past phi nodes to the actual defs arising from the code
     69 // itself.
     70 // In mode (2), the register reference for which the search was started
     71 // may be different from the reference node RefA, for which this call was
     72 // made, hence the argument RefRR, which holds the original register.
     73 // Also, some definitions may have already been encountered in a previous
     74 // call that will influence register covering. The register references
     75 // already defined are passed in through DefRRs.
     76 // In mode (1), the "continuation" considerations do not apply, and the
     77 // RefRR is the same as the register in RefA, and the set DefRRs is empty.
     78 //
     79 // [1] It is possible for multiple phi nodes to be included in the returned
     80 // sequence:
     81 //   SubA = phi ...
     82 //   SubB = phi ...
     83 //   ...  = SuperAB(rdef:SubA), SuperAB"(rdef:SubB)
     84 // However, these phi nodes are independent from one another in terms of
     85 // the data-flow.
     86 
     87 NodeList Liveness::getAllReachingDefs(RegisterRef RefRR,
     88       NodeAddr<RefNode*> RefA, bool FullChain, const RegisterSet &DefRRs) {
     89   SetVector<NodeId> DefQ;
     90   SetVector<NodeId> Owners;
     91 
     92   // The initial queue should not have reaching defs for shadows. The
     93   // whole point of a shadow is that it will have a reaching def that
     94   // is not aliased to the reaching defs of the related shadows.
     95   NodeId Start = RefA.Id;
     96   auto SNA = DFG.addr<RefNode*>(Start);
     97   if (NodeId RD = SNA.Addr->getReachingDef())
     98     DefQ.insert(RD);
     99 
    100   // Collect all the reaching defs, going up until a phi node is encountered,
    101   // or there are no more reaching defs. From this set, the actual set of
    102   // reaching defs will be selected.
    103   // The traversal upwards must go on until a covering def is encountered.
    104   // It is possible that a collection of non-covering (individually) defs
    105   // will be sufficient, but keep going until a covering one is found.
    106   for (unsigned i = 0; i < DefQ.size(); ++i) {
    107     auto TA = DFG.addr<DefNode*>(DefQ[i]);
    108     if (TA.Addr->getFlags() & NodeAttrs::PhiRef)
    109       continue;
    110     // Stop at the covering/overwriting def of the initial register reference.
    111     RegisterRef RR = TA.Addr->getRegRef();
    112     if (RAI.covers(RR, RefRR)) {
    113       uint16_t Flags = TA.Addr->getFlags();
    114       if (!(Flags & NodeAttrs::Preserving))
    115         continue;
    116     }
    117     // Get the next level of reaching defs. This will include multiple
    118     // reaching defs for shadows.
    119     for (auto S : DFG.getRelatedRefs(TA.Addr->getOwner(DFG), TA))
    120       if (auto RD = NodeAddr<RefNode*>(S).Addr->getReachingDef())
    121         DefQ.insert(RD);
    122   }
    123 
    124   // Remove all non-phi defs that are not aliased to RefRR, and collect
    125   // the owners of the remaining defs.
    126   SetVector<NodeId> Defs;
    127   for (auto N : DefQ) {
    128     auto TA = DFG.addr<DefNode*>(N);
    129     bool IsPhi = TA.Addr->getFlags() & NodeAttrs::PhiRef;
    130     if (!IsPhi && !RAI.alias(RefRR, TA.Addr->getRegRef()))
    131       continue;
    132     Defs.insert(TA.Id);
    133     Owners.insert(TA.Addr->getOwner(DFG).Id);
    134   }
    135 
    136   // Return the MachineBasicBlock containing a given instruction.
    137   auto Block = [this] (NodeAddr<InstrNode*> IA) -> MachineBasicBlock* {
    138     if (IA.Addr->getKind() == NodeAttrs::Stmt)
    139       return NodeAddr<StmtNode*>(IA).Addr->getCode()->getParent();
    140     assert(IA.Addr->getKind() == NodeAttrs::Phi);
    141     NodeAddr<PhiNode*> PA = IA;
    142     NodeAddr<BlockNode*> BA = PA.Addr->getOwner(DFG);
    143     return BA.Addr->getCode();
    144   };
    145   // Less(A,B) iff instruction A is further down in the dominator tree than B.
    146   auto Less = [&Block,this] (NodeId A, NodeId B) -> bool {
    147     if (A == B)
    148       return false;
    149     auto OA = DFG.addr<InstrNode*>(A), OB = DFG.addr<InstrNode*>(B);
    150     MachineBasicBlock *BA = Block(OA), *BB = Block(OB);
    151     if (BA != BB)
    152       return MDT.dominates(BB, BA);
    153     // They are in the same block.
    154     bool StmtA = OA.Addr->getKind() == NodeAttrs::Stmt;
    155     bool StmtB = OB.Addr->getKind() == NodeAttrs::Stmt;
    156     if (StmtA) {
    157       if (!StmtB)   // OB is a phi and phis dominate statements.
    158         return true;
    159       auto CA = NodeAddr<StmtNode*>(OA).Addr->getCode();
    160       auto CB = NodeAddr<StmtNode*>(OB).Addr->getCode();
    161       // The order must be linear, so tie-break such equalities.
    162       if (CA == CB)
    163         return A < B;
    164       return MDT.dominates(CB, CA);
    165     } else {
    166       // OA is a phi.
    167       if (StmtB)
    168         return false;
    169       // Both are phis. There is no ordering between phis (in terms of
    170       // the data-flow), so tie-break this via node id comparison.
    171       return A < B;
    172     }
    173   };
    174 
    175   std::vector<NodeId> Tmp(Owners.begin(), Owners.end());
    176   std::sort(Tmp.begin(), Tmp.end(), Less);
    177 
    178   // The vector is a list of instructions, so that defs coming from
    179   // the same instruction don't need to be artificially ordered.
    180   // Then, when computing the initial segment, and iterating over an
    181   // instruction, pick the defs that contribute to the covering (i.e. is
    182   // not covered by previously added defs). Check the defs individually,
    183   // i.e. first check each def if is covered or not (without adding them
    184   // to the tracking set), and then add all the selected ones.
    185 
    186   // The reason for this is this example:
    187   // *d1<A>, *d2<B>, ... Assume A and B are aliased (can happen in phi nodes).
    188   // *d3<C>              If A \incl BuC, and B \incl AuC, then *d2 would be
    189   //                     covered if we added A first, and A would be covered
    190   //                     if we added B first.
    191 
    192   NodeList RDefs;
    193   RegisterSet RRs = DefRRs;
    194 
    195   auto DefInSet = [&Defs] (NodeAddr<RefNode*> TA) -> bool {
    196     return TA.Addr->getKind() == NodeAttrs::Def &&
    197            Defs.count(TA.Id);
    198   };
    199   for (auto T : Tmp) {
    200     if (!FullChain && RAI.covers(RRs, RefRR))
    201       break;
    202     auto TA = DFG.addr<InstrNode*>(T);
    203     bool IsPhi = DFG.IsCode<NodeAttrs::Phi>(TA);
    204     NodeList Ds;
    205     for (NodeAddr<DefNode*> DA : TA.Addr->members_if(DefInSet, DFG)) {
    206       auto QR = DA.Addr->getRegRef();
    207       // Add phi defs even if they are covered by subsequent defs. This is
    208       // for cases where the reached use is not covered by any of the defs
    209       // encountered so far: the phi def is needed to expose the liveness
    210       // of that use to the entry of the block.
    211       // Example:
    212       //   phi d1<R3>(,d2,), ...  Phi def d1 is covered by d2.
    213       //   d2<R3>(d1,,u3), ...
    214       //   ..., u3<D1>(d2)        This use needs to be live on entry.
    215       if (FullChain || IsPhi || !RAI.covers(RRs, QR))
    216         Ds.push_back(DA);
    217     }
    218     RDefs.insert(RDefs.end(), Ds.begin(), Ds.end());
    219     for (NodeAddr<DefNode*> DA : Ds) {
    220       // When collecting a full chain of definitions, do not consider phi
    221       // defs to actually define a register.
    222       uint16_t Flags = DA.Addr->getFlags();
    223       if (!FullChain || !(Flags & NodeAttrs::PhiRef))
    224         if (!(Flags & NodeAttrs::Preserving))
    225           RRs.insert(DA.Addr->getRegRef());
    226     }
    227   }
    228 
    229   return RDefs;
    230 }
    231 
    232 
    233 static const RegisterSet NoRegs;
    234 
    235 NodeList Liveness::getAllReachingDefs(NodeAddr<RefNode*> RefA) {
    236   return getAllReachingDefs(RefA.Addr->getRegRef(), RefA, false, NoRegs);
    237 }
    238 
    239 
    240 NodeSet Liveness::getAllReachingDefsRec(RegisterRef RefRR,
    241       NodeAddr<RefNode*> RefA, NodeSet &Visited, const NodeSet &Defs) {
    242   // Collect all defined registers. Do not consider phis to be defining
    243   // anything, only collect "real" definitions.
    244   RegisterSet DefRRs;
    245   for (const auto D : Defs) {
    246     const auto DA = DFG.addr<const DefNode*>(D);
    247     if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef))
    248       DefRRs.insert(DA.Addr->getRegRef());
    249   }
    250 
    251   auto RDs = getAllReachingDefs(RefRR, RefA, true, DefRRs);
    252   if (RDs.empty())
    253     return Defs;
    254 
    255   // Make a copy of the preexisting definitions and add the newly found ones.
    256   NodeSet TmpDefs = Defs;
    257   for (auto R : RDs)
    258     TmpDefs.insert(R.Id);
    259 
    260   NodeSet Result = Defs;
    261 
    262   for (NodeAddr<DefNode*> DA : RDs) {
    263     Result.insert(DA.Id);
    264     if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef))
    265       continue;
    266     NodeAddr<PhiNode*> PA = DA.Addr->getOwner(DFG);
    267     if (Visited.count(PA.Id))
    268       continue;
    269     Visited.insert(PA.Id);
    270     // Go over all phi uses and get the reaching defs for each use.
    271     for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) {
    272       const auto &T = getAllReachingDefsRec(RefRR, U, Visited, TmpDefs);
    273       Result.insert(T.begin(), T.end());
    274     }
    275   }
    276 
    277   return Result;
    278 }
    279 
    280 
    281 NodeSet Liveness::getAllReachedUses(RegisterRef RefRR,
    282       NodeAddr<DefNode*> DefA, const RegisterSet &DefRRs) {
    283   NodeSet Uses;
    284 
    285   // If the original register is already covered by all the intervening
    286   // defs, no more uses can be reached.
    287   if (RAI.covers(DefRRs, RefRR))
    288     return Uses;
    289 
    290   // Add all directly reached uses.
    291   NodeId U = DefA.Addr->getReachedUse();
    292   while (U != 0) {
    293     auto UA = DFG.addr<UseNode*>(U);
    294     auto UR = UA.Addr->getRegRef();
    295     if (RAI.alias(RefRR, UR) && !RAI.covers(DefRRs, UR))
    296       Uses.insert(U);
    297     U = UA.Addr->getSibling();
    298   }
    299 
    300   // Traverse all reached defs.
    301   for (NodeId D = DefA.Addr->getReachedDef(), NextD; D != 0; D = NextD) {
    302     auto DA = DFG.addr<DefNode*>(D);
    303     NextD = DA.Addr->getSibling();
    304     auto DR = DA.Addr->getRegRef();
    305     // If this def is already covered, it cannot reach anything new.
    306     // Similarly, skip it if it is not aliased to the interesting register.
    307     if (RAI.covers(DefRRs, DR) || !RAI.alias(RefRR, DR))
    308       continue;
    309     NodeSet T;
    310     if (DA.Addr->getFlags() & NodeAttrs::Preserving) {
    311       // If it is a preserving def, do not update the set of intervening defs.
    312       T = getAllReachedUses(RefRR, DA, DefRRs);
    313     } else {
    314       RegisterSet NewDefRRs = DefRRs;
    315       NewDefRRs.insert(DR);
    316       T = getAllReachedUses(RefRR, DA, NewDefRRs);
    317     }
    318     Uses.insert(T.begin(), T.end());
    319   }
    320   return Uses;
    321 }
    322 
    323 
    324 void Liveness::computePhiInfo() {
    325   RealUseMap.clear();
    326 
    327   NodeList Phis;
    328   NodeAddr<FuncNode*> FA = DFG.getFunc();
    329   auto Blocks = FA.Addr->members(DFG);
    330   for (NodeAddr<BlockNode*> BA : Blocks) {
    331     auto Ps = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG);
    332     Phis.insert(Phis.end(), Ps.begin(), Ps.end());
    333   }
    334 
    335   // phi use -> (map: reaching phi -> set of registers defined in between)
    336   std::map<NodeId,std::map<NodeId,RegisterSet>> PhiUp;
    337   std::vector<NodeId> PhiUQ;  // Work list of phis for upward propagation.
    338 
    339   // Go over all phis.
    340   for (NodeAddr<PhiNode*> PhiA : Phis) {
    341     // Go over all defs and collect the reached uses that are non-phi uses
    342     // (i.e. the "real uses").
    343     auto &RealUses = RealUseMap[PhiA.Id];
    344     auto PhiRefs = PhiA.Addr->members(DFG);
    345 
    346     // Have a work queue of defs whose reached uses need to be found.
    347     // For each def, add to the queue all reached (non-phi) defs.
    348     SetVector<NodeId> DefQ;
    349     NodeSet PhiDefs;
    350     for (auto R : PhiRefs) {
    351       if (!DFG.IsRef<NodeAttrs::Def>(R))
    352         continue;
    353       DefQ.insert(R.Id);
    354       PhiDefs.insert(R.Id);
    355     }
    356     for (unsigned i = 0; i < DefQ.size(); ++i) {
    357       NodeAddr<DefNode*> DA = DFG.addr<DefNode*>(DefQ[i]);
    358       NodeId UN = DA.Addr->getReachedUse();
    359       while (UN != 0) {
    360         NodeAddr<UseNode*> A = DFG.addr<UseNode*>(UN);
    361         if (!(A.Addr->getFlags() & NodeAttrs::PhiRef))
    362           RealUses[getRestrictedRegRef(A)].insert(A.Id);
    363         UN = A.Addr->getSibling();
    364       }
    365       NodeId DN = DA.Addr->getReachedDef();
    366       while (DN != 0) {
    367         NodeAddr<DefNode*> A = DFG.addr<DefNode*>(DN);
    368         for (auto T : DFG.getRelatedRefs(A.Addr->getOwner(DFG), A)) {
    369           uint16_t Flags = NodeAddr<DefNode*>(T).Addr->getFlags();
    370           // Must traverse the reached-def chain. Consider:
    371           //   def(D0) -> def(R0) -> def(R0) -> use(D0)
    372           // The reachable use of D0 passes through a def of R0.
    373           if (!(Flags & NodeAttrs::PhiRef))
    374             DefQ.insert(T.Id);
    375         }
    376         DN = A.Addr->getSibling();
    377       }
    378     }
    379     // Filter out these uses that appear to be reachable, but really
    380     // are not. For example:
    381     //
    382     // R1:0 =          d1
    383     //      = R1:0     u2     Reached by d1.
    384     //   R0 =          d3
    385     //      = R1:0     u4     Still reached by d1: indirectly through
    386     //                        the def d3.
    387     //   R1 =          d5
    388     //      = R1:0     u6     Not reached by d1 (covered collectively
    389     //                        by d3 and d5), but following reached
    390     //                        defs and uses from d1 will lead here.
    391     auto HasDef = [&PhiDefs] (NodeAddr<DefNode*> DA) -> bool {
    392       return PhiDefs.count(DA.Id);
    393     };
    394     for (auto UI = RealUses.begin(), UE = RealUses.end(); UI != UE; ) {
    395       // For each reached register UI->first, there is a set UI->second, of
    396       // uses of it. For each such use, check if it is reached by this phi,
    397       // i.e. check if the set of its reaching uses intersects the set of
    398       // this phi's defs.
    399       auto &Uses = UI->second;
    400       for (auto I = Uses.begin(), E = Uses.end(); I != E; ) {
    401         auto UA = DFG.addr<UseNode*>(*I);
    402         NodeList RDs = getAllReachingDefs(UI->first, UA);
    403         if (std::any_of(RDs.begin(), RDs.end(), HasDef))
    404           ++I;
    405         else
    406           I = Uses.erase(I);
    407       }
    408       if (Uses.empty())
    409         UI = RealUses.erase(UI);
    410       else
    411         ++UI;
    412     }
    413 
    414     // If this phi reaches some "real" uses, add it to the queue for upward
    415     // propagation.
    416     if (!RealUses.empty())
    417       PhiUQ.push_back(PhiA.Id);
    418 
    419     // Go over all phi uses and check if the reaching def is another phi.
    420     // Collect the phis that are among the reaching defs of these uses.
    421     // While traversing the list of reaching defs for each phi use, collect
    422     // the set of registers defined between this phi (Phi) and the owner phi
    423     // of the reaching def.
    424     for (auto I : PhiRefs) {
    425       if (!DFG.IsRef<NodeAttrs::Use>(I))
    426         continue;
    427       NodeAddr<UseNode*> UA = I;
    428       auto &UpMap = PhiUp[UA.Id];
    429       RegisterSet DefRRs;
    430       for (NodeAddr<DefNode*> DA : getAllReachingDefs(UA)) {
    431         if (DA.Addr->getFlags() & NodeAttrs::PhiRef)
    432           UpMap[DA.Addr->getOwner(DFG).Id] = DefRRs;
    433         else
    434           DefRRs.insert(DA.Addr->getRegRef());
    435       }
    436     }
    437   }
    438 
    439   if (Trace) {
    440     dbgs() << "Phi-up-to-phi map:\n";
    441     for (auto I : PhiUp) {
    442       dbgs() << "phi " << Print<NodeId>(I.first, DFG) << " -> {";
    443       for (auto R : I.second)
    444         dbgs() << ' ' << Print<NodeId>(R.first, DFG)
    445                << Print<RegisterSet>(R.second, DFG);
    446       dbgs() << " }\n";
    447     }
    448   }
    449 
    450   // Propagate the reached registers up in the phi chain.
    451   //
    452   // The following type of situation needs careful handling:
    453   //
    454   //   phi d1<R1:0>  (1)
    455   //        |
    456   //   ... d2<R1>
    457   //        |
    458   //   phi u3<R1:0>  (2)
    459   //        |
    460   //   ... u4<R1>
    461   //
    462   // The phi node (2) defines a register pair R1:0, and reaches a "real"
    463   // use u4 of just R1. The same phi node is also known to reach (upwards)
    464   // the phi node (1). However, the use u4 is not reached by phi (1),
    465   // because of the intervening definition d2 of R1. The data flow between
    466   // phis (1) and (2) is restricted to R1:0 minus R1, i.e. R0.
    467   //
    468   // When propagating uses up the phi chains, get the all reaching defs
    469   // for a given phi use, and traverse the list until the propagated ref
    470   // is covered, or until or until reaching the final phi. Only assume
    471   // that the reference reaches the phi in the latter case.
    472 
    473   for (unsigned i = 0; i < PhiUQ.size(); ++i) {
    474     auto PA = DFG.addr<PhiNode*>(PhiUQ[i]);
    475     auto &RealUses = RealUseMap[PA.Id];
    476     for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) {
    477       NodeAddr<UseNode*> UA = U;
    478       auto &UpPhis = PhiUp[UA.Id];
    479       for (auto UP : UpPhis) {
    480         bool Changed = false;
    481         auto &MidDefs = UP.second;
    482         // Collect the set UpReached of uses that are reached by the current
    483         // phi PA, and are not covered by any intervening def between PA and
    484         // the upward phi UP.
    485         RegisterSet UpReached;
    486         for (auto T : RealUses) {
    487           if (!isRestricted(PA, UA, T.first))
    488             continue;
    489           if (!RAI.covers(MidDefs, T.first))
    490             UpReached.insert(T.first);
    491         }
    492         if (UpReached.empty())
    493           continue;
    494         // Update the set PRUs of real uses reached by the upward phi UP with
    495         // the actual set of uses (UpReached) that the UP phi reaches.
    496         auto &PRUs = RealUseMap[UP.first];
    497         for (auto R : UpReached) {
    498           unsigned Z = PRUs[R].size();
    499           PRUs[R].insert(RealUses[R].begin(), RealUses[R].end());
    500           Changed |= (PRUs[R].size() != Z);
    501         }
    502         if (Changed)
    503           PhiUQ.push_back(UP.first);
    504       }
    505     }
    506   }
    507 
    508   if (Trace) {
    509     dbgs() << "Real use map:\n";
    510     for (auto I : RealUseMap) {
    511       dbgs() << "phi " << Print<NodeId>(I.first, DFG);
    512       NodeAddr<PhiNode*> PA = DFG.addr<PhiNode*>(I.first);
    513       NodeList Ds = PA.Addr->members_if(DFG.IsRef<NodeAttrs::Def>, DFG);
    514       if (!Ds.empty()) {
    515         RegisterRef RR = NodeAddr<DefNode*>(Ds[0]).Addr->getRegRef();
    516         dbgs() << '<' << Print<RegisterRef>(RR, DFG) << '>';
    517       } else {
    518         dbgs() << "<noreg>";
    519       }
    520       dbgs() << " -> " << Print<RefMap>(I.second, DFG) << '\n';
    521     }
    522   }
    523 }
    524 
    525 
    526 void Liveness::computeLiveIns() {
    527   // Populate the node-to-block map. This speeds up the calculations
    528   // significantly.
    529   NBMap.clear();
    530   for (NodeAddr<BlockNode*> BA : DFG.getFunc().Addr->members(DFG)) {
    531     MachineBasicBlock *BB = BA.Addr->getCode();
    532     for (NodeAddr<InstrNode*> IA : BA.Addr->members(DFG)) {
    533       for (NodeAddr<RefNode*> RA : IA.Addr->members(DFG))
    534         NBMap.insert(std::make_pair(RA.Id, BB));
    535       NBMap.insert(std::make_pair(IA.Id, BB));
    536     }
    537   }
    538 
    539   MachineFunction &MF = DFG.getMF();
    540 
    541   // Compute IDF first, then the inverse.
    542   decltype(IIDF) IDF;
    543   for (auto &B : MF) {
    544     auto F1 = MDF.find(&B);
    545     if (F1 == MDF.end())
    546       continue;
    547     SetVector<MachineBasicBlock*> IDFB(F1->second.begin(), F1->second.end());
    548     for (unsigned i = 0; i < IDFB.size(); ++i) {
    549       auto F2 = MDF.find(IDFB[i]);
    550       if (F2 != MDF.end())
    551         IDFB.insert(F2->second.begin(), F2->second.end());
    552     }
    553     // Add B to the IDF(B). This will put B in the IIDF(B).
    554     IDFB.insert(&B);
    555     IDF[&B].insert(IDFB.begin(), IDFB.end());
    556   }
    557 
    558   for (auto I : IDF)
    559     for (auto S : I.second)
    560       IIDF[S].insert(I.first);
    561 
    562   computePhiInfo();
    563 
    564   NodeAddr<FuncNode*> FA = DFG.getFunc();
    565   auto Blocks = FA.Addr->members(DFG);
    566 
    567   // Build the phi live-on-entry map.
    568   for (NodeAddr<BlockNode*> BA : Blocks) {
    569     MachineBasicBlock *MB = BA.Addr->getCode();
    570     auto &LON = PhiLON[MB];
    571     for (auto P : BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG))
    572       for (auto S : RealUseMap[P.Id])
    573         LON[S.first].insert(S.second.begin(), S.second.end());
    574   }
    575 
    576   if (Trace) {
    577     dbgs() << "Phi live-on-entry map:\n";
    578     for (auto I : PhiLON)
    579       dbgs() << "block #" << I.first->getNumber() << " -> "
    580              << Print<RefMap>(I.second, DFG) << '\n';
    581   }
    582 
    583   // Build the phi live-on-exit map. Each phi node has some set of reached
    584   // "real" uses. Propagate this set backwards into the block predecessors
    585   // through the reaching defs of the corresponding phi uses.
    586   for (NodeAddr<BlockNode*> BA : Blocks) {
    587     auto Phis = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG);
    588     for (NodeAddr<PhiNode*> PA : Phis) {
    589       auto &RUs = RealUseMap[PA.Id];
    590       if (RUs.empty())
    591         continue;
    592 
    593       for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) {
    594         NodeAddr<PhiUseNode*> UA = U;
    595         if (UA.Addr->getReachingDef() == 0)
    596           continue;
    597 
    598         // Mark all reached "real" uses of P as live on exit in the
    599         // predecessor.
    600         // Remap all the RUs so that they have a correct reaching def.
    601         auto PrA = DFG.addr<BlockNode*>(UA.Addr->getPredecessor());
    602         auto &LOX = PhiLOX[PrA.Addr->getCode()];
    603         for (auto R : RUs) {
    604           RegisterRef RR = R.first;
    605           if (!isRestricted(PA, UA, RR))
    606             RR = getRestrictedRegRef(UA);
    607           // The restricted ref may be different from the ref that was
    608           // accessed in the "real use". This means that this phi use
    609           // is not the one that carries this reference, so skip it.
    610           if (!RAI.alias(R.first, RR))
    611             continue;
    612           for (auto D : getAllReachingDefs(RR, UA))
    613             LOX[RR].insert(D.Id);
    614         }
    615       }  // for U : phi uses
    616     }  // for P : Phis
    617   }  // for B : Blocks
    618 
    619   if (Trace) {
    620     dbgs() << "Phi live-on-exit map:\n";
    621     for (auto I : PhiLOX)
    622       dbgs() << "block #" << I.first->getNumber() << " -> "
    623              << Print<RefMap>(I.second, DFG) << '\n';
    624   }
    625 
    626   RefMap LiveIn;
    627   traverse(&MF.front(), LiveIn);
    628 
    629   // Add function live-ins to the live-in set of the function entry block.
    630   auto &EntryIn = LiveMap[&MF.front()];
    631   for (auto I = MRI.livein_begin(), E = MRI.livein_end(); I != E; ++I)
    632     EntryIn.insert({I->first,0});
    633 
    634   if (Trace) {
    635     // Dump the liveness map
    636     for (auto &B : MF) {
    637       BitVector LV(TRI.getNumRegs());
    638       for (auto I = B.livein_begin(), E = B.livein_end(); I != E; ++I)
    639         LV.set(I->PhysReg);
    640       dbgs() << "BB#" << B.getNumber() << "\t rec = {";
    641       for (int x = LV.find_first(); x >= 0; x = LV.find_next(x))
    642         dbgs() << ' ' << Print<RegisterRef>({unsigned(x),0}, DFG);
    643       dbgs() << " }\n";
    644       dbgs() << "\tcomp = " << Print<RegisterSet>(LiveMap[&B], DFG) << '\n';
    645     }
    646   }
    647 }
    648 
    649 
    650 void Liveness::resetLiveIns() {
    651   for (auto &B : DFG.getMF()) {
    652     // Remove all live-ins.
    653     std::vector<unsigned> T;
    654     for (auto I = B.livein_begin(), E = B.livein_end(); I != E; ++I)
    655       T.push_back(I->PhysReg);
    656     for (auto I : T)
    657       B.removeLiveIn(I);
    658     // Add the newly computed live-ins.
    659     auto &LiveIns = LiveMap[&B];
    660     for (auto I : LiveIns) {
    661       assert(I.Sub == 0);
    662       B.addLiveIn(I.Reg);
    663     }
    664   }
    665 }
    666 
    667 
    668 void Liveness::resetKills() {
    669   for (auto &B : DFG.getMF())
    670     resetKills(&B);
    671 }
    672 
    673 
    674 void Liveness::resetKills(MachineBasicBlock *B) {
    675   auto CopyLiveIns = [] (MachineBasicBlock *B, BitVector &LV) -> void {
    676     for (auto I = B->livein_begin(), E = B->livein_end(); I != E; ++I)
    677       LV.set(I->PhysReg);
    678   };
    679 
    680   BitVector LiveIn(TRI.getNumRegs()), Live(TRI.getNumRegs());
    681   CopyLiveIns(B, LiveIn);
    682   for (auto SI : B->successors())
    683     CopyLiveIns(SI, Live);
    684 
    685   for (auto I = B->rbegin(), E = B->rend(); I != E; ++I) {
    686     MachineInstr *MI = &*I;
    687     if (MI->isDebugValue())
    688       continue;
    689 
    690     MI->clearKillInfo();
    691     for (auto &Op : MI->operands()) {
    692       // An implicit def of a super-register may not necessarily start a
    693       // live range of it, since an implicit use could be used to keep parts
    694       // of it live. Instead of analyzing the implicit operands, ignore
    695       // implicit defs.
    696       if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
    697         continue;
    698       unsigned R = Op.getReg();
    699       if (!TargetRegisterInfo::isPhysicalRegister(R))
    700         continue;
    701       for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR)
    702         Live.reset(*SR);
    703     }
    704     for (auto &Op : MI->operands()) {
    705       if (!Op.isReg() || !Op.isUse())
    706         continue;
    707       unsigned R = Op.getReg();
    708       if (!TargetRegisterInfo::isPhysicalRegister(R))
    709         continue;
    710       bool IsLive = false;
    711       for (MCRegAliasIterator AR(R, &TRI, true); AR.isValid(); ++AR) {
    712         if (!Live[*AR])
    713           continue;
    714         IsLive = true;
    715         break;
    716       }
    717       if (IsLive)
    718         continue;
    719       Op.setIsKill(true);
    720       for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR)
    721         Live.set(*SR);
    722     }
    723   }
    724 }
    725 
    726 
    727 // For shadows, determine if RR is aliased to a reaching def of any other
    728 // shadow associated with RA. If it is not, then RR is "restricted" to RA,
    729 // and so it can be considered a value specific to RA. This is important
    730 // for accurately determining values associated with phi uses.
    731 // For non-shadows, this function returns "true".
    732 bool Liveness::isRestricted(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA,
    733       RegisterRef RR) const {
    734   NodeId Start = RA.Id;
    735   for (NodeAddr<RefNode*> TA = DFG.getNextShadow(IA, RA);
    736        TA.Id != 0 && TA.Id != Start; TA = DFG.getNextShadow(IA, TA)) {
    737     NodeId RD = TA.Addr->getReachingDef();
    738     if (RD == 0)
    739       continue;
    740     if (RAI.alias(RR, DFG.addr<DefNode*>(RD).Addr->getRegRef()))
    741       return false;
    742   }
    743   return true;
    744 }
    745 
    746 
    747 RegisterRef Liveness::getRestrictedRegRef(NodeAddr<RefNode*> RA) const {
    748   assert(DFG.IsRef<NodeAttrs::Use>(RA));
    749   if (RA.Addr->getFlags() & NodeAttrs::Shadow) {
    750     NodeId RD = RA.Addr->getReachingDef();
    751     assert(RD);
    752     RA = DFG.addr<DefNode*>(RD);
    753   }
    754   return RA.Addr->getRegRef();
    755 }
    756 
    757 
    758 unsigned Liveness::getPhysReg(RegisterRef RR) const {
    759   if (!TargetRegisterInfo::isPhysicalRegister(RR.Reg))
    760     return 0;
    761   return RR.Sub ? TRI.getSubReg(RR.Reg, RR.Sub) : RR.Reg;
    762 }
    763 
    764 
    765 // Helper function to obtain the basic block containing the reaching def
    766 // of the given use.
    767 MachineBasicBlock *Liveness::getBlockWithRef(NodeId RN) const {
    768   auto F = NBMap.find(RN);
    769   if (F != NBMap.end())
    770     return F->second;
    771   llvm_unreachable("Node id not in map");
    772 }
    773 
    774 
    775 void Liveness::traverse(MachineBasicBlock *B, RefMap &LiveIn) {
    776   // The LiveIn map, for each (physical) register, contains the set of live
    777   // reaching defs of that register that are live on entry to the associated
    778   // block.
    779 
    780   // The summary of the traversal algorithm:
    781   //
    782   // R is live-in in B, if there exists a U(R), such that rdef(R) dom B
    783   // and (U \in IDF(B) or B dom U).
    784   //
    785   // for (C : children) {
    786   //   LU = {}
    787   //   traverse(C, LU)
    788   //   LiveUses += LU
    789   // }
    790   //
    791   // LiveUses -= Defs(B);
    792   // LiveUses += UpwardExposedUses(B);
    793   // for (C : IIDF[B])
    794   //   for (U : LiveUses)
    795   //     if (Rdef(U) dom C)
    796   //       C.addLiveIn(U)
    797   //
    798 
    799   // Go up the dominator tree (depth-first).
    800   MachineDomTreeNode *N = MDT.getNode(B);
    801   for (auto I : *N) {
    802     RefMap L;
    803     MachineBasicBlock *SB = I->getBlock();
    804     traverse(SB, L);
    805 
    806     for (auto S : L)
    807       LiveIn[S.first].insert(S.second.begin(), S.second.end());
    808   }
    809 
    810   if (Trace) {
    811     dbgs() << LLVM_FUNCTION_NAME << " in BB#" << B->getNumber()
    812            << " after recursion into";
    813     for (auto I : *N)
    814       dbgs() << ' ' << I->getBlock()->getNumber();
    815     dbgs() << "\n  LiveIn: " << Print<RefMap>(LiveIn, DFG);
    816     dbgs() << "\n  Local:  " << Print<RegisterSet>(LiveMap[B], DFG) << '\n';
    817   }
    818 
    819   // Add phi uses that are live on exit from this block.
    820   RefMap &PUs = PhiLOX[B];
    821   for (auto S : PUs)
    822     LiveIn[S.first].insert(S.second.begin(), S.second.end());
    823 
    824   if (Trace) {
    825     dbgs() << "after LOX\n";
    826     dbgs() << "  LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
    827     dbgs() << "  Local:  " << Print<RegisterSet>(LiveMap[B], DFG) << '\n';
    828   }
    829 
    830   // Stop tracking all uses defined in this block: erase those records
    831   // where the reaching def is located in B and which cover all reached
    832   // uses.
    833   auto Copy = LiveIn;
    834   LiveIn.clear();
    835 
    836   for (auto I : Copy) {
    837     auto &Defs = LiveIn[I.first];
    838     NodeSet Rest;
    839     for (auto R : I.second) {
    840       auto DA = DFG.addr<DefNode*>(R);
    841       RegisterRef DDR = DA.Addr->getRegRef();
    842       NodeAddr<InstrNode*> IA = DA.Addr->getOwner(DFG);
    843       NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG);
    844       // Defs from a different block need to be preserved. Defs from this
    845       // block will need to be processed further, except for phi defs, the
    846       // liveness of which is handled through the PhiLON/PhiLOX maps.
    847       if (B != BA.Addr->getCode())
    848         Defs.insert(R);
    849       else {
    850         bool IsPreserving = DA.Addr->getFlags() & NodeAttrs::Preserving;
    851         if (IA.Addr->getKind() != NodeAttrs::Phi && !IsPreserving) {
    852           bool Covering = RAI.covers(DDR, I.first);
    853           NodeId U = DA.Addr->getReachedUse();
    854           while (U && Covering) {
    855             auto DUA = DFG.addr<UseNode*>(U);
    856             RegisterRef Q = DUA.Addr->getRegRef();
    857             Covering = RAI.covers(DA.Addr->getRegRef(), Q);
    858             U = DUA.Addr->getSibling();
    859           }
    860           if (!Covering)
    861             Rest.insert(R);
    862         }
    863       }
    864     }
    865 
    866     // Non-covering defs from B.
    867     for (auto R : Rest) {
    868       auto DA = DFG.addr<DefNode*>(R);
    869       RegisterRef DRR = DA.Addr->getRegRef();
    870       RegisterSet RRs;
    871       for (NodeAddr<DefNode*> TA : getAllReachingDefs(DA)) {
    872         NodeAddr<InstrNode*> IA = TA.Addr->getOwner(DFG);
    873         NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG);
    874         // Preserving defs do not count towards covering.
    875         if (!(TA.Addr->getFlags() & NodeAttrs::Preserving))
    876           RRs.insert(TA.Addr->getRegRef());
    877         if (BA.Addr->getCode() == B)
    878           continue;
    879         if (RAI.covers(RRs, DRR))
    880           break;
    881         Defs.insert(TA.Id);
    882       }
    883     }
    884   }
    885 
    886   emptify(LiveIn);
    887 
    888   if (Trace) {
    889     dbgs() << "after defs in block\n";
    890     dbgs() << "  LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
    891     dbgs() << "  Local:  " << Print<RegisterSet>(LiveMap[B], DFG) << '\n';
    892   }
    893 
    894   // Scan the block for upward-exposed uses and add them to the tracking set.
    895   for (auto I : DFG.getFunc().Addr->findBlock(B, DFG).Addr->members(DFG)) {
    896     NodeAddr<InstrNode*> IA = I;
    897     if (IA.Addr->getKind() != NodeAttrs::Stmt)
    898       continue;
    899     for (NodeAddr<UseNode*> UA : IA.Addr->members_if(DFG.IsUse, DFG)) {
    900       RegisterRef RR = UA.Addr->getRegRef();
    901       for (auto D : getAllReachingDefs(UA))
    902         if (getBlockWithRef(D.Id) != B)
    903           LiveIn[RR].insert(D.Id);
    904     }
    905   }
    906 
    907   if (Trace) {
    908     dbgs() << "after uses in block\n";
    909     dbgs() << "  LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
    910     dbgs() << "  Local:  " << Print<RegisterSet>(LiveMap[B], DFG) << '\n';
    911   }
    912 
    913   // Phi uses should not be propagated up the dominator tree, since they
    914   // are not dominated by their corresponding reaching defs.
    915   auto &Local = LiveMap[B];
    916   auto &LON = PhiLON[B];
    917   for (auto R : LON)
    918     Local.insert(R.first);
    919 
    920   if (Trace) {
    921     dbgs() << "after phi uses in block\n";
    922     dbgs() << "  LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
    923     dbgs() << "  Local:  " << Print<RegisterSet>(Local, DFG) << '\n';
    924   }
    925 
    926   for (auto C : IIDF[B]) {
    927     auto &LiveC = LiveMap[C];
    928     for (auto S : LiveIn)
    929       for (auto R : S.second)
    930         if (MDT.properlyDominates(getBlockWithRef(R), C))
    931           LiveC.insert(S.first);
    932   }
    933 }
    934 
    935 
    936 void Liveness::emptify(RefMap &M) {
    937   for (auto I = M.begin(), E = M.end(); I != E; )
    938     I = I->second.empty() ? M.erase(I) : std::next(I);
    939 }
    940 
    941