1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. 3 // 4 // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud (at) inria.fr> 5 // 6 // This Source Code Form is subject to the terms of the Mozilla 7 // Public License v. 2.0. If a copy of the MPL was not distributed 8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 9 10 #ifndef EIGEN_GENERAL_BLOCK_PANEL_H 11 #define EIGEN_GENERAL_BLOCK_PANEL_H 12 13 14 namespace Eigen { 15 16 namespace internal { 17 18 template<typename _LhsScalar, typename _RhsScalar, bool _ConjLhs=false, bool _ConjRhs=false> 19 class gebp_traits; 20 21 22 /** \internal \returns b if a<=0, and returns a otherwise. */ 23 inline std::ptrdiff_t manage_caching_sizes_helper(std::ptrdiff_t a, std::ptrdiff_t b) 24 { 25 return a<=0 ? b : a; 26 } 27 28 #if EIGEN_ARCH_i386_OR_x86_64 29 const std::ptrdiff_t defaultL1CacheSize = 32*1024; 30 const std::ptrdiff_t defaultL2CacheSize = 256*1024; 31 const std::ptrdiff_t defaultL3CacheSize = 2*1024*1024; 32 #else 33 const std::ptrdiff_t defaultL1CacheSize = 16*1024; 34 const std::ptrdiff_t defaultL2CacheSize = 512*1024; 35 const std::ptrdiff_t defaultL3CacheSize = 512*1024; 36 #endif 37 38 /** \internal */ 39 struct CacheSizes { 40 CacheSizes(): m_l1(-1),m_l2(-1),m_l3(-1) { 41 int l1CacheSize, l2CacheSize, l3CacheSize; 42 queryCacheSizes(l1CacheSize, l2CacheSize, l3CacheSize); 43 m_l1 = manage_caching_sizes_helper(l1CacheSize, defaultL1CacheSize); 44 m_l2 = manage_caching_sizes_helper(l2CacheSize, defaultL2CacheSize); 45 m_l3 = manage_caching_sizes_helper(l3CacheSize, defaultL3CacheSize); 46 } 47 48 std::ptrdiff_t m_l1; 49 std::ptrdiff_t m_l2; 50 std::ptrdiff_t m_l3; 51 }; 52 53 54 /** \internal */ 55 inline void manage_caching_sizes(Action action, std::ptrdiff_t* l1, std::ptrdiff_t* l2, std::ptrdiff_t* l3) 56 { 57 static CacheSizes m_cacheSizes; 58 59 if(action==SetAction) 60 { 61 // set the cpu cache size and cache all block sizes from a global cache size in byte 62 eigen_internal_assert(l1!=0 && l2!=0); 63 m_cacheSizes.m_l1 = *l1; 64 m_cacheSizes.m_l2 = *l2; 65 m_cacheSizes.m_l3 = *l3; 66 } 67 else if(action==GetAction) 68 { 69 eigen_internal_assert(l1!=0 && l2!=0); 70 *l1 = m_cacheSizes.m_l1; 71 *l2 = m_cacheSizes.m_l2; 72 *l3 = m_cacheSizes.m_l3; 73 } 74 else 75 { 76 eigen_internal_assert(false); 77 } 78 } 79 80 /* Helper for computeProductBlockingSizes. 81 * 82 * Given a m x k times k x n matrix product of scalar types \c LhsScalar and \c RhsScalar, 83 * this function computes the blocking size parameters along the respective dimensions 84 * for matrix products and related algorithms. The blocking sizes depends on various 85 * parameters: 86 * - the L1 and L2 cache sizes, 87 * - the register level blocking sizes defined by gebp_traits, 88 * - the number of scalars that fit into a packet (when vectorization is enabled). 89 * 90 * \sa setCpuCacheSizes */ 91 92 template<typename LhsScalar, typename RhsScalar, int KcFactor, typename Index> 93 void evaluateProductBlockingSizesHeuristic(Index& k, Index& m, Index& n, Index num_threads = 1) 94 { 95 typedef gebp_traits<LhsScalar,RhsScalar> Traits; 96 97 // Explanations: 98 // Let's recall that the product algorithms form mc x kc vertical panels A' on the lhs and 99 // kc x nc blocks B' on the rhs. B' has to fit into L2/L3 cache. Moreover, A' is processed 100 // per mr x kc horizontal small panels where mr is the blocking size along the m dimension 101 // at the register level. This small horizontal panel has to stay within L1 cache. 102 std::ptrdiff_t l1, l2, l3; 103 manage_caching_sizes(GetAction, &l1, &l2, &l3); 104 105 if (num_threads > 1) { 106 typedef typename Traits::ResScalar ResScalar; 107 enum { 108 kdiv = KcFactor * (Traits::mr * sizeof(LhsScalar) + Traits::nr * sizeof(RhsScalar)), 109 ksub = Traits::mr * Traits::nr * sizeof(ResScalar), 110 kr = 8, 111 mr = Traits::mr, 112 nr = Traits::nr 113 }; 114 // Increasing k gives us more time to prefetch the content of the "C" 115 // registers. However once the latency is hidden there is no point in 116 // increasing the value of k, so we'll cap it at 320 (value determined 117 // experimentally). 118 const Index k_cache = (numext::mini<Index>)((l1-ksub)/kdiv, 320); 119 if (k_cache < k) { 120 k = k_cache - (k_cache % kr); 121 eigen_internal_assert(k > 0); 122 } 123 124 const Index n_cache = (l2-l1) / (nr * sizeof(RhsScalar) * k); 125 const Index n_per_thread = numext::div_ceil(n, num_threads); 126 if (n_cache <= n_per_thread) { 127 // Don't exceed the capacity of the l2 cache. 128 eigen_internal_assert(n_cache >= static_cast<Index>(nr)); 129 n = n_cache - (n_cache % nr); 130 eigen_internal_assert(n > 0); 131 } else { 132 n = (numext::mini<Index>)(n, (n_per_thread + nr - 1) - ((n_per_thread + nr - 1) % nr)); 133 } 134 135 if (l3 > l2) { 136 // l3 is shared between all cores, so we'll give each thread its own chunk of l3. 137 const Index m_cache = (l3-l2) / (sizeof(LhsScalar) * k * num_threads); 138 const Index m_per_thread = numext::div_ceil(m, num_threads); 139 if(m_cache < m_per_thread && m_cache >= static_cast<Index>(mr)) { 140 m = m_cache - (m_cache % mr); 141 eigen_internal_assert(m > 0); 142 } else { 143 m = (numext::mini<Index>)(m, (m_per_thread + mr - 1) - ((m_per_thread + mr - 1) % mr)); 144 } 145 } 146 } 147 else { 148 // In unit tests we do not want to use extra large matrices, 149 // so we reduce the cache size to check the blocking strategy is not flawed 150 #ifdef EIGEN_DEBUG_SMALL_PRODUCT_BLOCKS 151 l1 = 9*1024; 152 l2 = 32*1024; 153 l3 = 512*1024; 154 #endif 155 156 // Early return for small problems because the computation below are time consuming for small problems. 157 // Perhaps it would make more sense to consider k*n*m?? 158 // Note that for very tiny problem, this function should be bypassed anyway 159 // because we use the coefficient-based implementation for them. 160 if((numext::maxi)(k,(numext::maxi)(m,n))<48) 161 return; 162 163 typedef typename Traits::ResScalar ResScalar; 164 enum { 165 k_peeling = 8, 166 k_div = KcFactor * (Traits::mr * sizeof(LhsScalar) + Traits::nr * sizeof(RhsScalar)), 167 k_sub = Traits::mr * Traits::nr * sizeof(ResScalar) 168 }; 169 170 // ---- 1st level of blocking on L1, yields kc ---- 171 172 // Blocking on the third dimension (i.e., k) is chosen so that an horizontal panel 173 // of size mr x kc of the lhs plus a vertical panel of kc x nr of the rhs both fits within L1 cache. 174 // We also include a register-level block of the result (mx x nr). 175 // (In an ideal world only the lhs panel would stay in L1) 176 // Moreover, kc has to be a multiple of 8 to be compatible with loop peeling, leading to a maximum blocking size of: 177 const Index max_kc = numext::maxi<Index>(((l1-k_sub)/k_div) & (~(k_peeling-1)),1); 178 const Index old_k = k; 179 if(k>max_kc) 180 { 181 // We are really blocking on the third dimension: 182 // -> reduce blocking size to make sure the last block is as large as possible 183 // while keeping the same number of sweeps over the result. 184 k = (k%max_kc)==0 ? max_kc 185 : max_kc - k_peeling * ((max_kc-1-(k%max_kc))/(k_peeling*(k/max_kc+1))); 186 187 eigen_internal_assert(((old_k/k) == (old_k/max_kc)) && "the number of sweeps has to remain the same"); 188 } 189 190 // ---- 2nd level of blocking on max(L2,L3), yields nc ---- 191 192 // TODO find a reliable way to get the actual amount of cache per core to use for 2nd level blocking, that is: 193 // actual_l2 = max(l2, l3/nb_core_sharing_l3) 194 // The number below is quite conservative: it is better to underestimate the cache size rather than overestimating it) 195 // For instance, it corresponds to 6MB of L3 shared among 4 cores. 196 #ifdef EIGEN_DEBUG_SMALL_PRODUCT_BLOCKS 197 const Index actual_l2 = l3; 198 #else 199 const Index actual_l2 = 1572864; // == 1.5 MB 200 #endif 201 202 // Here, nc is chosen such that a block of kc x nc of the rhs fit within half of L2. 203 // The second half is implicitly reserved to access the result and lhs coefficients. 204 // When k<max_kc, then nc can arbitrarily growth. In practice, it seems to be fruitful 205 // to limit this growth: we bound nc to growth by a factor x1.5. 206 // However, if the entire lhs block fit within L1, then we are not going to block on the rows at all, 207 // and it becomes fruitful to keep the packed rhs blocks in L1 if there is enough remaining space. 208 Index max_nc; 209 const Index lhs_bytes = m * k * sizeof(LhsScalar); 210 const Index remaining_l1 = l1- k_sub - lhs_bytes; 211 if(remaining_l1 >= Index(Traits::nr*sizeof(RhsScalar))*k) 212 { 213 // L1 blocking 214 max_nc = remaining_l1 / (k*sizeof(RhsScalar)); 215 } 216 else 217 { 218 // L2 blocking 219 max_nc = (3*actual_l2)/(2*2*max_kc*sizeof(RhsScalar)); 220 } 221 // WARNING Below, we assume that Traits::nr is a power of two. 222 Index nc = numext::mini<Index>(actual_l2/(2*k*sizeof(RhsScalar)), max_nc) & (~(Traits::nr-1)); 223 if(n>nc) 224 { 225 // We are really blocking over the columns: 226 // -> reduce blocking size to make sure the last block is as large as possible 227 // while keeping the same number of sweeps over the packed lhs. 228 // Here we allow one more sweep if this gives us a perfect match, thus the commented "-1" 229 n = (n%nc)==0 ? nc 230 : (nc - Traits::nr * ((nc/*-1*/-(n%nc))/(Traits::nr*(n/nc+1)))); 231 } 232 else if(old_k==k) 233 { 234 // So far, no blocking at all, i.e., kc==k, and nc==n. 235 // In this case, let's perform a blocking over the rows such that the packed lhs data is kept in cache L1/L2 236 // TODO: part of this blocking strategy is now implemented within the kernel itself, so the L1-based heuristic here should be obsolete. 237 Index problem_size = k*n*sizeof(LhsScalar); 238 Index actual_lm = actual_l2; 239 Index max_mc = m; 240 if(problem_size<=1024) 241 { 242 // problem is small enough to keep in L1 243 // Let's choose m such that lhs's block fit in 1/3 of L1 244 actual_lm = l1; 245 } 246 else if(l3!=0 && problem_size<=32768) 247 { 248 // we have both L2 and L3, and problem is small enough to be kept in L2 249 // Let's choose m such that lhs's block fit in 1/3 of L2 250 actual_lm = l2; 251 max_mc = (numext::mini<Index>)(576,max_mc); 252 } 253 Index mc = (numext::mini<Index>)(actual_lm/(3*k*sizeof(LhsScalar)), max_mc); 254 if (mc > Traits::mr) mc -= mc % Traits::mr; 255 else if (mc==0) return; 256 m = (m%mc)==0 ? mc 257 : (mc - Traits::mr * ((mc/*-1*/-(m%mc))/(Traits::mr*(m/mc+1)))); 258 } 259 } 260 } 261 262 template <typename Index> 263 inline bool useSpecificBlockingSizes(Index& k, Index& m, Index& n) 264 { 265 #ifdef EIGEN_TEST_SPECIFIC_BLOCKING_SIZES 266 if (EIGEN_TEST_SPECIFIC_BLOCKING_SIZES) { 267 k = numext::mini<Index>(k, EIGEN_TEST_SPECIFIC_BLOCKING_SIZE_K); 268 m = numext::mini<Index>(m, EIGEN_TEST_SPECIFIC_BLOCKING_SIZE_M); 269 n = numext::mini<Index>(n, EIGEN_TEST_SPECIFIC_BLOCKING_SIZE_N); 270 return true; 271 } 272 #else 273 EIGEN_UNUSED_VARIABLE(k) 274 EIGEN_UNUSED_VARIABLE(m) 275 EIGEN_UNUSED_VARIABLE(n) 276 #endif 277 return false; 278 } 279 280 /** \brief Computes the blocking parameters for a m x k times k x n matrix product 281 * 282 * \param[in,out] k Input: the third dimension of the product. Output: the blocking size along the same dimension. 283 * \param[in,out] m Input: the number of rows of the left hand side. Output: the blocking size along the same dimension. 284 * \param[in,out] n Input: the number of columns of the right hand side. Output: the blocking size along the same dimension. 285 * 286 * Given a m x k times k x n matrix product of scalar types \c LhsScalar and \c RhsScalar, 287 * this function computes the blocking size parameters along the respective dimensions 288 * for matrix products and related algorithms. 289 * 290 * The blocking size parameters may be evaluated: 291 * - either by a heuristic based on cache sizes; 292 * - or using fixed prescribed values (for testing purposes). 293 * 294 * \sa setCpuCacheSizes */ 295 296 template<typename LhsScalar, typename RhsScalar, int KcFactor, typename Index> 297 void computeProductBlockingSizes(Index& k, Index& m, Index& n, Index num_threads = 1) 298 { 299 if (!useSpecificBlockingSizes(k, m, n)) { 300 evaluateProductBlockingSizesHeuristic<LhsScalar, RhsScalar, KcFactor, Index>(k, m, n, num_threads); 301 } 302 } 303 304 template<typename LhsScalar, typename RhsScalar, typename Index> 305 inline void computeProductBlockingSizes(Index& k, Index& m, Index& n, Index num_threads = 1) 306 { 307 computeProductBlockingSizes<LhsScalar,RhsScalar,1,Index>(k, m, n, num_threads); 308 } 309 310 #ifdef EIGEN_HAS_SINGLE_INSTRUCTION_CJMADD 311 #define CJMADD(CJ,A,B,C,T) C = CJ.pmadd(A,B,C); 312 #else 313 314 // FIXME (a bit overkill maybe ?) 315 316 template<typename CJ, typename A, typename B, typename C, typename T> struct gebp_madd_selector { 317 EIGEN_ALWAYS_INLINE static void run(const CJ& cj, A& a, B& b, C& c, T& /*t*/) 318 { 319 c = cj.pmadd(a,b,c); 320 } 321 }; 322 323 template<typename CJ, typename T> struct gebp_madd_selector<CJ,T,T,T,T> { 324 EIGEN_ALWAYS_INLINE static void run(const CJ& cj, T& a, T& b, T& c, T& t) 325 { 326 t = b; t = cj.pmul(a,t); c = padd(c,t); 327 } 328 }; 329 330 template<typename CJ, typename A, typename B, typename C, typename T> 331 EIGEN_STRONG_INLINE void gebp_madd(const CJ& cj, A& a, B& b, C& c, T& t) 332 { 333 gebp_madd_selector<CJ,A,B,C,T>::run(cj,a,b,c,t); 334 } 335 336 #define CJMADD(CJ,A,B,C,T) gebp_madd(CJ,A,B,C,T); 337 // #define CJMADD(CJ,A,B,C,T) T = B; T = CJ.pmul(A,T); C = padd(C,T); 338 #endif 339 340 /* Vectorization logic 341 * real*real: unpack rhs to constant packets, ... 342 * 343 * cd*cd : unpack rhs to (b_r,b_r), (b_i,b_i), mul to get (a_r b_r,a_i b_r) (a_r b_i,a_i b_i), 344 * storing each res packet into two packets (2x2), 345 * at the end combine them: swap the second and addsub them 346 * cf*cf : same but with 2x4 blocks 347 * cplx*real : unpack rhs to constant packets, ... 348 * real*cplx : load lhs as (a0,a0,a1,a1), and mul as usual 349 */ 350 template<typename _LhsScalar, typename _RhsScalar, bool _ConjLhs, bool _ConjRhs> 351 class gebp_traits 352 { 353 public: 354 typedef _LhsScalar LhsScalar; 355 typedef _RhsScalar RhsScalar; 356 typedef typename ScalarBinaryOpTraits<LhsScalar, RhsScalar>::ReturnType ResScalar; 357 358 enum { 359 ConjLhs = _ConjLhs, 360 ConjRhs = _ConjRhs, 361 Vectorizable = packet_traits<LhsScalar>::Vectorizable && packet_traits<RhsScalar>::Vectorizable, 362 LhsPacketSize = Vectorizable ? packet_traits<LhsScalar>::size : 1, 363 RhsPacketSize = Vectorizable ? packet_traits<RhsScalar>::size : 1, 364 ResPacketSize = Vectorizable ? packet_traits<ResScalar>::size : 1, 365 366 NumberOfRegisters = EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS, 367 368 // register block size along the N direction must be 1 or 4 369 nr = 4, 370 371 // register block size along the M direction (currently, this one cannot be modified) 372 default_mr = (EIGEN_PLAIN_ENUM_MIN(16,NumberOfRegisters)/2/nr)*LhsPacketSize, 373 #if defined(EIGEN_HAS_SINGLE_INSTRUCTION_MADD) && !defined(EIGEN_VECTORIZE_ALTIVEC) && !defined(EIGEN_VECTORIZE_VSX) 374 // we assume 16 registers 375 // See bug 992, if the scalar type is not vectorizable but that EIGEN_HAS_SINGLE_INSTRUCTION_MADD is defined, 376 // then using 3*LhsPacketSize triggers non-implemented paths in syrk. 377 mr = Vectorizable ? 3*LhsPacketSize : default_mr, 378 #else 379 mr = default_mr, 380 #endif 381 382 LhsProgress = LhsPacketSize, 383 RhsProgress = 1 384 }; 385 386 typedef typename packet_traits<LhsScalar>::type _LhsPacket; 387 typedef typename packet_traits<RhsScalar>::type _RhsPacket; 388 typedef typename packet_traits<ResScalar>::type _ResPacket; 389 390 typedef typename conditional<Vectorizable,_LhsPacket,LhsScalar>::type LhsPacket; 391 typedef typename conditional<Vectorizable,_RhsPacket,RhsScalar>::type RhsPacket; 392 typedef typename conditional<Vectorizable,_ResPacket,ResScalar>::type ResPacket; 393 394 typedef ResPacket AccPacket; 395 396 EIGEN_STRONG_INLINE void initAcc(AccPacket& p) 397 { 398 p = pset1<ResPacket>(ResScalar(0)); 399 } 400 401 EIGEN_STRONG_INLINE void broadcastRhs(const RhsScalar* b, RhsPacket& b0, RhsPacket& b1, RhsPacket& b2, RhsPacket& b3) 402 { 403 pbroadcast4(b, b0, b1, b2, b3); 404 } 405 406 // EIGEN_STRONG_INLINE void broadcastRhs(const RhsScalar* b, RhsPacket& b0, RhsPacket& b1) 407 // { 408 // pbroadcast2(b, b0, b1); 409 // } 410 411 template<typename RhsPacketType> 412 EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, RhsPacketType& dest) const 413 { 414 dest = pset1<RhsPacketType>(*b); 415 } 416 417 EIGEN_STRONG_INLINE void loadRhsQuad(const RhsScalar* b, RhsPacket& dest) const 418 { 419 dest = ploadquad<RhsPacket>(b); 420 } 421 422 template<typename LhsPacketType> 423 EIGEN_STRONG_INLINE void loadLhs(const LhsScalar* a, LhsPacketType& dest) const 424 { 425 dest = pload<LhsPacketType>(a); 426 } 427 428 template<typename LhsPacketType> 429 EIGEN_STRONG_INLINE void loadLhsUnaligned(const LhsScalar* a, LhsPacketType& dest) const 430 { 431 dest = ploadu<LhsPacketType>(a); 432 } 433 434 template<typename LhsPacketType, typename RhsPacketType, typename AccPacketType> 435 EIGEN_STRONG_INLINE void madd(const LhsPacketType& a, const RhsPacketType& b, AccPacketType& c, AccPacketType& tmp) const 436 { 437 conj_helper<LhsPacketType,RhsPacketType,ConjLhs,ConjRhs> cj; 438 // It would be a lot cleaner to call pmadd all the time. Unfortunately if we 439 // let gcc allocate the register in which to store the result of the pmul 440 // (in the case where there is no FMA) gcc fails to figure out how to avoid 441 // spilling register. 442 #ifdef EIGEN_HAS_SINGLE_INSTRUCTION_MADD 443 EIGEN_UNUSED_VARIABLE(tmp); 444 c = cj.pmadd(a,b,c); 445 #else 446 tmp = b; tmp = cj.pmul(a,tmp); c = padd(c,tmp); 447 #endif 448 } 449 450 EIGEN_STRONG_INLINE void acc(const AccPacket& c, const ResPacket& alpha, ResPacket& r) const 451 { 452 r = pmadd(c,alpha,r); 453 } 454 455 template<typename ResPacketHalf> 456 EIGEN_STRONG_INLINE void acc(const ResPacketHalf& c, const ResPacketHalf& alpha, ResPacketHalf& r) const 457 { 458 r = pmadd(c,alpha,r); 459 } 460 461 }; 462 463 template<typename RealScalar, bool _ConjLhs> 464 class gebp_traits<std::complex<RealScalar>, RealScalar, _ConjLhs, false> 465 { 466 public: 467 typedef std::complex<RealScalar> LhsScalar; 468 typedef RealScalar RhsScalar; 469 typedef typename ScalarBinaryOpTraits<LhsScalar, RhsScalar>::ReturnType ResScalar; 470 471 enum { 472 ConjLhs = _ConjLhs, 473 ConjRhs = false, 474 Vectorizable = packet_traits<LhsScalar>::Vectorizable && packet_traits<RhsScalar>::Vectorizable, 475 LhsPacketSize = Vectorizable ? packet_traits<LhsScalar>::size : 1, 476 RhsPacketSize = Vectorizable ? packet_traits<RhsScalar>::size : 1, 477 ResPacketSize = Vectorizable ? packet_traits<ResScalar>::size : 1, 478 479 NumberOfRegisters = EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS, 480 nr = 4, 481 #if defined(EIGEN_HAS_SINGLE_INSTRUCTION_MADD) && !defined(EIGEN_VECTORIZE_ALTIVEC) && !defined(EIGEN_VECTORIZE_VSX) 482 // we assume 16 registers 483 mr = 3*LhsPacketSize, 484 #else 485 mr = (EIGEN_PLAIN_ENUM_MIN(16,NumberOfRegisters)/2/nr)*LhsPacketSize, 486 #endif 487 488 LhsProgress = LhsPacketSize, 489 RhsProgress = 1 490 }; 491 492 typedef typename packet_traits<LhsScalar>::type _LhsPacket; 493 typedef typename packet_traits<RhsScalar>::type _RhsPacket; 494 typedef typename packet_traits<ResScalar>::type _ResPacket; 495 496 typedef typename conditional<Vectorizable,_LhsPacket,LhsScalar>::type LhsPacket; 497 typedef typename conditional<Vectorizable,_RhsPacket,RhsScalar>::type RhsPacket; 498 typedef typename conditional<Vectorizable,_ResPacket,ResScalar>::type ResPacket; 499 500 typedef ResPacket AccPacket; 501 502 EIGEN_STRONG_INLINE void initAcc(AccPacket& p) 503 { 504 p = pset1<ResPacket>(ResScalar(0)); 505 } 506 507 EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, RhsPacket& dest) const 508 { 509 dest = pset1<RhsPacket>(*b); 510 } 511 512 EIGEN_STRONG_INLINE void loadRhsQuad(const RhsScalar* b, RhsPacket& dest) const 513 { 514 dest = pset1<RhsPacket>(*b); 515 } 516 517 EIGEN_STRONG_INLINE void loadLhs(const LhsScalar* a, LhsPacket& dest) const 518 { 519 dest = pload<LhsPacket>(a); 520 } 521 522 EIGEN_STRONG_INLINE void loadLhsUnaligned(const LhsScalar* a, LhsPacket& dest) const 523 { 524 dest = ploadu<LhsPacket>(a); 525 } 526 527 EIGEN_STRONG_INLINE void broadcastRhs(const RhsScalar* b, RhsPacket& b0, RhsPacket& b1, RhsPacket& b2, RhsPacket& b3) 528 { 529 pbroadcast4(b, b0, b1, b2, b3); 530 } 531 532 // EIGEN_STRONG_INLINE void broadcastRhs(const RhsScalar* b, RhsPacket& b0, RhsPacket& b1) 533 // { 534 // pbroadcast2(b, b0, b1); 535 // } 536 537 EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacket& b, AccPacket& c, RhsPacket& tmp) const 538 { 539 madd_impl(a, b, c, tmp, typename conditional<Vectorizable,true_type,false_type>::type()); 540 } 541 542 EIGEN_STRONG_INLINE void madd_impl(const LhsPacket& a, const RhsPacket& b, AccPacket& c, RhsPacket& tmp, const true_type&) const 543 { 544 #ifdef EIGEN_HAS_SINGLE_INSTRUCTION_MADD 545 EIGEN_UNUSED_VARIABLE(tmp); 546 c.v = pmadd(a.v,b,c.v); 547 #else 548 tmp = b; tmp = pmul(a.v,tmp); c.v = padd(c.v,tmp); 549 #endif 550 } 551 552 EIGEN_STRONG_INLINE void madd_impl(const LhsScalar& a, const RhsScalar& b, ResScalar& c, RhsScalar& /*tmp*/, const false_type&) const 553 { 554 c += a * b; 555 } 556 557 EIGEN_STRONG_INLINE void acc(const AccPacket& c, const ResPacket& alpha, ResPacket& r) const 558 { 559 r = cj.pmadd(c,alpha,r); 560 } 561 562 protected: 563 conj_helper<ResPacket,ResPacket,ConjLhs,false> cj; 564 }; 565 566 template<typename Packet> 567 struct DoublePacket 568 { 569 Packet first; 570 Packet second; 571 }; 572 573 template<typename Packet> 574 DoublePacket<Packet> padd(const DoublePacket<Packet> &a, const DoublePacket<Packet> &b) 575 { 576 DoublePacket<Packet> res; 577 res.first = padd(a.first, b.first); 578 res.second = padd(a.second,b.second); 579 return res; 580 } 581 582 template<typename Packet> 583 const DoublePacket<Packet>& predux_downto4(const DoublePacket<Packet> &a) 584 { 585 return a; 586 } 587 588 template<typename Packet> struct unpacket_traits<DoublePacket<Packet> > { typedef DoublePacket<Packet> half; }; 589 // template<typename Packet> 590 // DoublePacket<Packet> pmadd(const DoublePacket<Packet> &a, const DoublePacket<Packet> &b) 591 // { 592 // DoublePacket<Packet> res; 593 // res.first = padd(a.first, b.first); 594 // res.second = padd(a.second,b.second); 595 // return res; 596 // } 597 598 template<typename RealScalar, bool _ConjLhs, bool _ConjRhs> 599 class gebp_traits<std::complex<RealScalar>, std::complex<RealScalar>, _ConjLhs, _ConjRhs > 600 { 601 public: 602 typedef std::complex<RealScalar> Scalar; 603 typedef std::complex<RealScalar> LhsScalar; 604 typedef std::complex<RealScalar> RhsScalar; 605 typedef std::complex<RealScalar> ResScalar; 606 607 enum { 608 ConjLhs = _ConjLhs, 609 ConjRhs = _ConjRhs, 610 Vectorizable = packet_traits<RealScalar>::Vectorizable 611 && packet_traits<Scalar>::Vectorizable, 612 RealPacketSize = Vectorizable ? packet_traits<RealScalar>::size : 1, 613 ResPacketSize = Vectorizable ? packet_traits<ResScalar>::size : 1, 614 LhsPacketSize = Vectorizable ? packet_traits<LhsScalar>::size : 1, 615 RhsPacketSize = Vectorizable ? packet_traits<RhsScalar>::size : 1, 616 617 // FIXME: should depend on NumberOfRegisters 618 nr = 4, 619 mr = ResPacketSize, 620 621 LhsProgress = ResPacketSize, 622 RhsProgress = 1 623 }; 624 625 typedef typename packet_traits<RealScalar>::type RealPacket; 626 typedef typename packet_traits<Scalar>::type ScalarPacket; 627 typedef DoublePacket<RealPacket> DoublePacketType; 628 629 typedef typename conditional<Vectorizable,RealPacket, Scalar>::type LhsPacket; 630 typedef typename conditional<Vectorizable,DoublePacketType,Scalar>::type RhsPacket; 631 typedef typename conditional<Vectorizable,ScalarPacket,Scalar>::type ResPacket; 632 typedef typename conditional<Vectorizable,DoublePacketType,Scalar>::type AccPacket; 633 634 EIGEN_STRONG_INLINE void initAcc(Scalar& p) { p = Scalar(0); } 635 636 EIGEN_STRONG_INLINE void initAcc(DoublePacketType& p) 637 { 638 p.first = pset1<RealPacket>(RealScalar(0)); 639 p.second = pset1<RealPacket>(RealScalar(0)); 640 } 641 642 // Scalar path 643 EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, ResPacket& dest) const 644 { 645 dest = pset1<ResPacket>(*b); 646 } 647 648 // Vectorized path 649 EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, DoublePacketType& dest) const 650 { 651 dest.first = pset1<RealPacket>(real(*b)); 652 dest.second = pset1<RealPacket>(imag(*b)); 653 } 654 655 EIGEN_STRONG_INLINE void loadRhsQuad(const RhsScalar* b, ResPacket& dest) const 656 { 657 loadRhs(b,dest); 658 } 659 EIGEN_STRONG_INLINE void loadRhsQuad(const RhsScalar* b, DoublePacketType& dest) const 660 { 661 eigen_internal_assert(unpacket_traits<ScalarPacket>::size<=4); 662 loadRhs(b,dest); 663 } 664 665 EIGEN_STRONG_INLINE void broadcastRhs(const RhsScalar* b, RhsPacket& b0, RhsPacket& b1, RhsPacket& b2, RhsPacket& b3) 666 { 667 // FIXME not sure that's the best way to implement it! 668 loadRhs(b+0, b0); 669 loadRhs(b+1, b1); 670 loadRhs(b+2, b2); 671 loadRhs(b+3, b3); 672 } 673 674 // Vectorized path 675 EIGEN_STRONG_INLINE void broadcastRhs(const RhsScalar* b, DoublePacketType& b0, DoublePacketType& b1) 676 { 677 // FIXME not sure that's the best way to implement it! 678 loadRhs(b+0, b0); 679 loadRhs(b+1, b1); 680 } 681 682 // Scalar path 683 EIGEN_STRONG_INLINE void broadcastRhs(const RhsScalar* b, RhsScalar& b0, RhsScalar& b1) 684 { 685 // FIXME not sure that's the best way to implement it! 686 loadRhs(b+0, b0); 687 loadRhs(b+1, b1); 688 } 689 690 // nothing special here 691 EIGEN_STRONG_INLINE void loadLhs(const LhsScalar* a, LhsPacket& dest) const 692 { 693 dest = pload<LhsPacket>((const typename unpacket_traits<LhsPacket>::type*)(a)); 694 } 695 696 EIGEN_STRONG_INLINE void loadLhsUnaligned(const LhsScalar* a, LhsPacket& dest) const 697 { 698 dest = ploadu<LhsPacket>((const typename unpacket_traits<LhsPacket>::type*)(a)); 699 } 700 701 EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacket& b, DoublePacketType& c, RhsPacket& /*tmp*/) const 702 { 703 c.first = padd(pmul(a,b.first), c.first); 704 c.second = padd(pmul(a,b.second),c.second); 705 } 706 707 EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacket& b, ResPacket& c, RhsPacket& /*tmp*/) const 708 { 709 c = cj.pmadd(a,b,c); 710 } 711 712 EIGEN_STRONG_INLINE void acc(const Scalar& c, const Scalar& alpha, Scalar& r) const { r += alpha * c; } 713 714 EIGEN_STRONG_INLINE void acc(const DoublePacketType& c, const ResPacket& alpha, ResPacket& r) const 715 { 716 // assemble c 717 ResPacket tmp; 718 if((!ConjLhs)&&(!ConjRhs)) 719 { 720 tmp = pcplxflip(pconj(ResPacket(c.second))); 721 tmp = padd(ResPacket(c.first),tmp); 722 } 723 else if((!ConjLhs)&&(ConjRhs)) 724 { 725 tmp = pconj(pcplxflip(ResPacket(c.second))); 726 tmp = padd(ResPacket(c.first),tmp); 727 } 728 else if((ConjLhs)&&(!ConjRhs)) 729 { 730 tmp = pcplxflip(ResPacket(c.second)); 731 tmp = padd(pconj(ResPacket(c.first)),tmp); 732 } 733 else if((ConjLhs)&&(ConjRhs)) 734 { 735 tmp = pcplxflip(ResPacket(c.second)); 736 tmp = psub(pconj(ResPacket(c.first)),tmp); 737 } 738 739 r = pmadd(tmp,alpha,r); 740 } 741 742 protected: 743 conj_helper<LhsScalar,RhsScalar,ConjLhs,ConjRhs> cj; 744 }; 745 746 template<typename RealScalar, bool _ConjRhs> 747 class gebp_traits<RealScalar, std::complex<RealScalar>, false, _ConjRhs > 748 { 749 public: 750 typedef std::complex<RealScalar> Scalar; 751 typedef RealScalar LhsScalar; 752 typedef Scalar RhsScalar; 753 typedef Scalar ResScalar; 754 755 enum { 756 ConjLhs = false, 757 ConjRhs = _ConjRhs, 758 Vectorizable = packet_traits<RealScalar>::Vectorizable 759 && packet_traits<Scalar>::Vectorizable, 760 LhsPacketSize = Vectorizable ? packet_traits<LhsScalar>::size : 1, 761 RhsPacketSize = Vectorizable ? packet_traits<RhsScalar>::size : 1, 762 ResPacketSize = Vectorizable ? packet_traits<ResScalar>::size : 1, 763 764 NumberOfRegisters = EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS, 765 // FIXME: should depend on NumberOfRegisters 766 nr = 4, 767 mr = (EIGEN_PLAIN_ENUM_MIN(16,NumberOfRegisters)/2/nr)*ResPacketSize, 768 769 LhsProgress = ResPacketSize, 770 RhsProgress = 1 771 }; 772 773 typedef typename packet_traits<LhsScalar>::type _LhsPacket; 774 typedef typename packet_traits<RhsScalar>::type _RhsPacket; 775 typedef typename packet_traits<ResScalar>::type _ResPacket; 776 777 typedef typename conditional<Vectorizable,_LhsPacket,LhsScalar>::type LhsPacket; 778 typedef typename conditional<Vectorizable,_RhsPacket,RhsScalar>::type RhsPacket; 779 typedef typename conditional<Vectorizable,_ResPacket,ResScalar>::type ResPacket; 780 781 typedef ResPacket AccPacket; 782 783 EIGEN_STRONG_INLINE void initAcc(AccPacket& p) 784 { 785 p = pset1<ResPacket>(ResScalar(0)); 786 } 787 788 EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, RhsPacket& dest) const 789 { 790 dest = pset1<RhsPacket>(*b); 791 } 792 793 void broadcastRhs(const RhsScalar* b, RhsPacket& b0, RhsPacket& b1, RhsPacket& b2, RhsPacket& b3) 794 { 795 pbroadcast4(b, b0, b1, b2, b3); 796 } 797 798 // EIGEN_STRONG_INLINE void broadcastRhs(const RhsScalar* b, RhsPacket& b0, RhsPacket& b1) 799 // { 800 // // FIXME not sure that's the best way to implement it! 801 // b0 = pload1<RhsPacket>(b+0); 802 // b1 = pload1<RhsPacket>(b+1); 803 // } 804 805 EIGEN_STRONG_INLINE void loadLhs(const LhsScalar* a, LhsPacket& dest) const 806 { 807 dest = ploaddup<LhsPacket>(a); 808 } 809 810 EIGEN_STRONG_INLINE void loadRhsQuad(const RhsScalar* b, RhsPacket& dest) const 811 { 812 eigen_internal_assert(unpacket_traits<RhsPacket>::size<=4); 813 loadRhs(b,dest); 814 } 815 816 EIGEN_STRONG_INLINE void loadLhsUnaligned(const LhsScalar* a, LhsPacket& dest) const 817 { 818 dest = ploaddup<LhsPacket>(a); 819 } 820 821 EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacket& b, AccPacket& c, RhsPacket& tmp) const 822 { 823 madd_impl(a, b, c, tmp, typename conditional<Vectorizable,true_type,false_type>::type()); 824 } 825 826 EIGEN_STRONG_INLINE void madd_impl(const LhsPacket& a, const RhsPacket& b, AccPacket& c, RhsPacket& tmp, const true_type&) const 827 { 828 #ifdef EIGEN_HAS_SINGLE_INSTRUCTION_MADD 829 EIGEN_UNUSED_VARIABLE(tmp); 830 c.v = pmadd(a,b.v,c.v); 831 #else 832 tmp = b; tmp.v = pmul(a,tmp.v); c = padd(c,tmp); 833 #endif 834 835 } 836 837 EIGEN_STRONG_INLINE void madd_impl(const LhsScalar& a, const RhsScalar& b, ResScalar& c, RhsScalar& /*tmp*/, const false_type&) const 838 { 839 c += a * b; 840 } 841 842 EIGEN_STRONG_INLINE void acc(const AccPacket& c, const ResPacket& alpha, ResPacket& r) const 843 { 844 r = cj.pmadd(alpha,c,r); 845 } 846 847 protected: 848 conj_helper<ResPacket,ResPacket,false,ConjRhs> cj; 849 }; 850 851 /* optimized GEneral packed Block * packed Panel product kernel 852 * 853 * Mixing type logic: C += A * B 854 * | A | B | comments 855 * |real |cplx | no vectorization yet, would require to pack A with duplication 856 * |cplx |real | easy vectorization 857 */ 858 template<typename LhsScalar, typename RhsScalar, typename Index, typename DataMapper, int mr, int nr, bool ConjugateLhs, bool ConjugateRhs> 859 struct gebp_kernel 860 { 861 typedef gebp_traits<LhsScalar,RhsScalar,ConjugateLhs,ConjugateRhs> Traits; 862 typedef typename Traits::ResScalar ResScalar; 863 typedef typename Traits::LhsPacket LhsPacket; 864 typedef typename Traits::RhsPacket RhsPacket; 865 typedef typename Traits::ResPacket ResPacket; 866 typedef typename Traits::AccPacket AccPacket; 867 868 typedef gebp_traits<RhsScalar,LhsScalar,ConjugateRhs,ConjugateLhs> SwappedTraits; 869 typedef typename SwappedTraits::ResScalar SResScalar; 870 typedef typename SwappedTraits::LhsPacket SLhsPacket; 871 typedef typename SwappedTraits::RhsPacket SRhsPacket; 872 typedef typename SwappedTraits::ResPacket SResPacket; 873 typedef typename SwappedTraits::AccPacket SAccPacket; 874 875 typedef typename DataMapper::LinearMapper LinearMapper; 876 877 enum { 878 Vectorizable = Traits::Vectorizable, 879 LhsProgress = Traits::LhsProgress, 880 RhsProgress = Traits::RhsProgress, 881 ResPacketSize = Traits::ResPacketSize 882 }; 883 884 EIGEN_DONT_INLINE 885 void operator()(const DataMapper& res, const LhsScalar* blockA, const RhsScalar* blockB, 886 Index rows, Index depth, Index cols, ResScalar alpha, 887 Index strideA=-1, Index strideB=-1, Index offsetA=0, Index offsetB=0); 888 }; 889 890 template<typename LhsScalar, typename RhsScalar, typename Index, typename DataMapper, int mr, int nr, bool ConjugateLhs, bool ConjugateRhs> 891 EIGEN_DONT_INLINE 892 void gebp_kernel<LhsScalar,RhsScalar,Index,DataMapper,mr,nr,ConjugateLhs,ConjugateRhs> 893 ::operator()(const DataMapper& res, const LhsScalar* blockA, const RhsScalar* blockB, 894 Index rows, Index depth, Index cols, ResScalar alpha, 895 Index strideA, Index strideB, Index offsetA, Index offsetB) 896 { 897 Traits traits; 898 SwappedTraits straits; 899 900 if(strideA==-1) strideA = depth; 901 if(strideB==-1) strideB = depth; 902 conj_helper<LhsScalar,RhsScalar,ConjugateLhs,ConjugateRhs> cj; 903 Index packet_cols4 = nr>=4 ? (cols/4) * 4 : 0; 904 const Index peeled_mc3 = mr>=3*Traits::LhsProgress ? (rows/(3*LhsProgress))*(3*LhsProgress) : 0; 905 const Index peeled_mc2 = mr>=2*Traits::LhsProgress ? peeled_mc3+((rows-peeled_mc3)/(2*LhsProgress))*(2*LhsProgress) : 0; 906 const Index peeled_mc1 = mr>=1*Traits::LhsProgress ? (rows/(1*LhsProgress))*(1*LhsProgress) : 0; 907 enum { pk = 8 }; // NOTE Such a large peeling factor is important for large matrices (~ +5% when >1000 on Haswell) 908 const Index peeled_kc = depth & ~(pk-1); 909 const Index prefetch_res_offset = 32/sizeof(ResScalar); 910 // const Index depth2 = depth & ~1; 911 912 //---------- Process 3 * LhsProgress rows at once ---------- 913 // This corresponds to 3*LhsProgress x nr register blocks. 914 // Usually, make sense only with FMA 915 if(mr>=3*Traits::LhsProgress) 916 { 917 // Here, the general idea is to loop on each largest micro horizontal panel of the lhs (3*Traits::LhsProgress x depth) 918 // and on each largest micro vertical panel of the rhs (depth * nr). 919 // Blocking sizes, i.e., 'depth' has been computed so that the micro horizontal panel of the lhs fit in L1. 920 // However, if depth is too small, we can extend the number of rows of these horizontal panels. 921 // This actual number of rows is computed as follow: 922 const Index l1 = defaultL1CacheSize; // in Bytes, TODO, l1 should be passed to this function. 923 // The max(1, ...) here is needed because we may be using blocking params larger than what our known l1 cache size 924 // suggests we should be using: either because our known l1 cache size is inaccurate (e.g. on Android, we can only guess), 925 // or because we are testing specific blocking sizes. 926 const Index actual_panel_rows = (3*LhsProgress) * std::max<Index>(1,( (l1 - sizeof(ResScalar)*mr*nr - depth*nr*sizeof(RhsScalar)) / (depth * sizeof(LhsScalar) * 3*LhsProgress) )); 927 for(Index i1=0; i1<peeled_mc3; i1+=actual_panel_rows) 928 { 929 const Index actual_panel_end = (std::min)(i1+actual_panel_rows, peeled_mc3); 930 for(Index j2=0; j2<packet_cols4; j2+=nr) 931 { 932 for(Index i=i1; i<actual_panel_end; i+=3*LhsProgress) 933 { 934 935 // We selected a 3*Traits::LhsProgress x nr micro block of res which is entirely 936 // stored into 3 x nr registers. 937 938 const LhsScalar* blA = &blockA[i*strideA+offsetA*(3*LhsProgress)]; 939 prefetch(&blA[0]); 940 941 // gets res block as register 942 AccPacket C0, C1, C2, C3, 943 C4, C5, C6, C7, 944 C8, C9, C10, C11; 945 traits.initAcc(C0); traits.initAcc(C1); traits.initAcc(C2); traits.initAcc(C3); 946 traits.initAcc(C4); traits.initAcc(C5); traits.initAcc(C6); traits.initAcc(C7); 947 traits.initAcc(C8); traits.initAcc(C9); traits.initAcc(C10); traits.initAcc(C11); 948 949 LinearMapper r0 = res.getLinearMapper(i, j2 + 0); 950 LinearMapper r1 = res.getLinearMapper(i, j2 + 1); 951 LinearMapper r2 = res.getLinearMapper(i, j2 + 2); 952 LinearMapper r3 = res.getLinearMapper(i, j2 + 3); 953 954 r0.prefetch(0); 955 r1.prefetch(0); 956 r2.prefetch(0); 957 r3.prefetch(0); 958 959 // performs "inner" products 960 const RhsScalar* blB = &blockB[j2*strideB+offsetB*nr]; 961 prefetch(&blB[0]); 962 LhsPacket A0, A1; 963 964 for(Index k=0; k<peeled_kc; k+=pk) 965 { 966 EIGEN_ASM_COMMENT("begin gebp micro kernel 3pX4"); 967 RhsPacket B_0, T0; 968 LhsPacket A2; 969 970 #define EIGEN_GEBP_ONESTEP(K) \ 971 do { \ 972 EIGEN_ASM_COMMENT("begin step of gebp micro kernel 3pX4"); \ 973 EIGEN_ASM_COMMENT("Note: these asm comments work around bug 935!"); \ 974 internal::prefetch(blA+(3*K+16)*LhsProgress); \ 975 if (EIGEN_ARCH_ARM) { internal::prefetch(blB+(4*K+16)*RhsProgress); } /* Bug 953 */ \ 976 traits.loadLhs(&blA[(0+3*K)*LhsProgress], A0); \ 977 traits.loadLhs(&blA[(1+3*K)*LhsProgress], A1); \ 978 traits.loadLhs(&blA[(2+3*K)*LhsProgress], A2); \ 979 traits.loadRhs(blB + (0+4*K)*Traits::RhsProgress, B_0); \ 980 traits.madd(A0, B_0, C0, T0); \ 981 traits.madd(A1, B_0, C4, T0); \ 982 traits.madd(A2, B_0, C8, B_0); \ 983 traits.loadRhs(blB + (1+4*K)*Traits::RhsProgress, B_0); \ 984 traits.madd(A0, B_0, C1, T0); \ 985 traits.madd(A1, B_0, C5, T0); \ 986 traits.madd(A2, B_0, C9, B_0); \ 987 traits.loadRhs(blB + (2+4*K)*Traits::RhsProgress, B_0); \ 988 traits.madd(A0, B_0, C2, T0); \ 989 traits.madd(A1, B_0, C6, T0); \ 990 traits.madd(A2, B_0, C10, B_0); \ 991 traits.loadRhs(blB + (3+4*K)*Traits::RhsProgress, B_0); \ 992 traits.madd(A0, B_0, C3 , T0); \ 993 traits.madd(A1, B_0, C7, T0); \ 994 traits.madd(A2, B_0, C11, B_0); \ 995 EIGEN_ASM_COMMENT("end step of gebp micro kernel 3pX4"); \ 996 } while(false) 997 998 internal::prefetch(blB); 999 EIGEN_GEBP_ONESTEP(0); 1000 EIGEN_GEBP_ONESTEP(1); 1001 EIGEN_GEBP_ONESTEP(2); 1002 EIGEN_GEBP_ONESTEP(3); 1003 EIGEN_GEBP_ONESTEP(4); 1004 EIGEN_GEBP_ONESTEP(5); 1005 EIGEN_GEBP_ONESTEP(6); 1006 EIGEN_GEBP_ONESTEP(7); 1007 1008 blB += pk*4*RhsProgress; 1009 blA += pk*3*Traits::LhsProgress; 1010 1011 EIGEN_ASM_COMMENT("end gebp micro kernel 3pX4"); 1012 } 1013 // process remaining peeled loop 1014 for(Index k=peeled_kc; k<depth; k++) 1015 { 1016 RhsPacket B_0, T0; 1017 LhsPacket A2; 1018 EIGEN_GEBP_ONESTEP(0); 1019 blB += 4*RhsProgress; 1020 blA += 3*Traits::LhsProgress; 1021 } 1022 1023 #undef EIGEN_GEBP_ONESTEP 1024 1025 ResPacket R0, R1, R2; 1026 ResPacket alphav = pset1<ResPacket>(alpha); 1027 1028 R0 = r0.loadPacket(0 * Traits::ResPacketSize); 1029 R1 = r0.loadPacket(1 * Traits::ResPacketSize); 1030 R2 = r0.loadPacket(2 * Traits::ResPacketSize); 1031 traits.acc(C0, alphav, R0); 1032 traits.acc(C4, alphav, R1); 1033 traits.acc(C8, alphav, R2); 1034 r0.storePacket(0 * Traits::ResPacketSize, R0); 1035 r0.storePacket(1 * Traits::ResPacketSize, R1); 1036 r0.storePacket(2 * Traits::ResPacketSize, R2); 1037 1038 R0 = r1.loadPacket(0 * Traits::ResPacketSize); 1039 R1 = r1.loadPacket(1 * Traits::ResPacketSize); 1040 R2 = r1.loadPacket(2 * Traits::ResPacketSize); 1041 traits.acc(C1, alphav, R0); 1042 traits.acc(C5, alphav, R1); 1043 traits.acc(C9, alphav, R2); 1044 r1.storePacket(0 * Traits::ResPacketSize, R0); 1045 r1.storePacket(1 * Traits::ResPacketSize, R1); 1046 r1.storePacket(2 * Traits::ResPacketSize, R2); 1047 1048 R0 = r2.loadPacket(0 * Traits::ResPacketSize); 1049 R1 = r2.loadPacket(1 * Traits::ResPacketSize); 1050 R2 = r2.loadPacket(2 * Traits::ResPacketSize); 1051 traits.acc(C2, alphav, R0); 1052 traits.acc(C6, alphav, R1); 1053 traits.acc(C10, alphav, R2); 1054 r2.storePacket(0 * Traits::ResPacketSize, R0); 1055 r2.storePacket(1 * Traits::ResPacketSize, R1); 1056 r2.storePacket(2 * Traits::ResPacketSize, R2); 1057 1058 R0 = r3.loadPacket(0 * Traits::ResPacketSize); 1059 R1 = r3.loadPacket(1 * Traits::ResPacketSize); 1060 R2 = r3.loadPacket(2 * Traits::ResPacketSize); 1061 traits.acc(C3, alphav, R0); 1062 traits.acc(C7, alphav, R1); 1063 traits.acc(C11, alphav, R2); 1064 r3.storePacket(0 * Traits::ResPacketSize, R0); 1065 r3.storePacket(1 * Traits::ResPacketSize, R1); 1066 r3.storePacket(2 * Traits::ResPacketSize, R2); 1067 } 1068 } 1069 1070 // Deal with remaining columns of the rhs 1071 for(Index j2=packet_cols4; j2<cols; j2++) 1072 { 1073 for(Index i=i1; i<actual_panel_end; i+=3*LhsProgress) 1074 { 1075 // One column at a time 1076 const LhsScalar* blA = &blockA[i*strideA+offsetA*(3*Traits::LhsProgress)]; 1077 prefetch(&blA[0]); 1078 1079 // gets res block as register 1080 AccPacket C0, C4, C8; 1081 traits.initAcc(C0); 1082 traits.initAcc(C4); 1083 traits.initAcc(C8); 1084 1085 LinearMapper r0 = res.getLinearMapper(i, j2); 1086 r0.prefetch(0); 1087 1088 // performs "inner" products 1089 const RhsScalar* blB = &blockB[j2*strideB+offsetB]; 1090 LhsPacket A0, A1, A2; 1091 1092 for(Index k=0; k<peeled_kc; k+=pk) 1093 { 1094 EIGEN_ASM_COMMENT("begin gebp micro kernel 3pX1"); 1095 RhsPacket B_0; 1096 #define EIGEN_GEBGP_ONESTEP(K) \ 1097 do { \ 1098 EIGEN_ASM_COMMENT("begin step of gebp micro kernel 3pX1"); \ 1099 EIGEN_ASM_COMMENT("Note: these asm comments work around bug 935!"); \ 1100 traits.loadLhs(&blA[(0+3*K)*LhsProgress], A0); \ 1101 traits.loadLhs(&blA[(1+3*K)*LhsProgress], A1); \ 1102 traits.loadLhs(&blA[(2+3*K)*LhsProgress], A2); \ 1103 traits.loadRhs(&blB[(0+K)*RhsProgress], B_0); \ 1104 traits.madd(A0, B_0, C0, B_0); \ 1105 traits.madd(A1, B_0, C4, B_0); \ 1106 traits.madd(A2, B_0, C8, B_0); \ 1107 EIGEN_ASM_COMMENT("end step of gebp micro kernel 3pX1"); \ 1108 } while(false) 1109 1110 EIGEN_GEBGP_ONESTEP(0); 1111 EIGEN_GEBGP_ONESTEP(1); 1112 EIGEN_GEBGP_ONESTEP(2); 1113 EIGEN_GEBGP_ONESTEP(3); 1114 EIGEN_GEBGP_ONESTEP(4); 1115 EIGEN_GEBGP_ONESTEP(5); 1116 EIGEN_GEBGP_ONESTEP(6); 1117 EIGEN_GEBGP_ONESTEP(7); 1118 1119 blB += pk*RhsProgress; 1120 blA += pk*3*Traits::LhsProgress; 1121 1122 EIGEN_ASM_COMMENT("end gebp micro kernel 3pX1"); 1123 } 1124 1125 // process remaining peeled loop 1126 for(Index k=peeled_kc; k<depth; k++) 1127 { 1128 RhsPacket B_0; 1129 EIGEN_GEBGP_ONESTEP(0); 1130 blB += RhsProgress; 1131 blA += 3*Traits::LhsProgress; 1132 } 1133 #undef EIGEN_GEBGP_ONESTEP 1134 ResPacket R0, R1, R2; 1135 ResPacket alphav = pset1<ResPacket>(alpha); 1136 1137 R0 = r0.loadPacket(0 * Traits::ResPacketSize); 1138 R1 = r0.loadPacket(1 * Traits::ResPacketSize); 1139 R2 = r0.loadPacket(2 * Traits::ResPacketSize); 1140 traits.acc(C0, alphav, R0); 1141 traits.acc(C4, alphav, R1); 1142 traits.acc(C8, alphav, R2); 1143 r0.storePacket(0 * Traits::ResPacketSize, R0); 1144 r0.storePacket(1 * Traits::ResPacketSize, R1); 1145 r0.storePacket(2 * Traits::ResPacketSize, R2); 1146 } 1147 } 1148 } 1149 } 1150 1151 //---------- Process 2 * LhsProgress rows at once ---------- 1152 if(mr>=2*Traits::LhsProgress) 1153 { 1154 const Index l1 = defaultL1CacheSize; // in Bytes, TODO, l1 should be passed to this function. 1155 // The max(1, ...) here is needed because we may be using blocking params larger than what our known l1 cache size 1156 // suggests we should be using: either because our known l1 cache size is inaccurate (e.g. on Android, we can only guess), 1157 // or because we are testing specific blocking sizes. 1158 Index actual_panel_rows = (2*LhsProgress) * std::max<Index>(1,( (l1 - sizeof(ResScalar)*mr*nr - depth*nr*sizeof(RhsScalar)) / (depth * sizeof(LhsScalar) * 2*LhsProgress) )); 1159 1160 for(Index i1=peeled_mc3; i1<peeled_mc2; i1+=actual_panel_rows) 1161 { 1162 Index actual_panel_end = (std::min)(i1+actual_panel_rows, peeled_mc2); 1163 for(Index j2=0; j2<packet_cols4; j2+=nr) 1164 { 1165 for(Index i=i1; i<actual_panel_end; i+=2*LhsProgress) 1166 { 1167 1168 // We selected a 2*Traits::LhsProgress x nr micro block of res which is entirely 1169 // stored into 2 x nr registers. 1170 1171 const LhsScalar* blA = &blockA[i*strideA+offsetA*(2*Traits::LhsProgress)]; 1172 prefetch(&blA[0]); 1173 1174 // gets res block as register 1175 AccPacket C0, C1, C2, C3, 1176 C4, C5, C6, C7; 1177 traits.initAcc(C0); traits.initAcc(C1); traits.initAcc(C2); traits.initAcc(C3); 1178 traits.initAcc(C4); traits.initAcc(C5); traits.initAcc(C6); traits.initAcc(C7); 1179 1180 LinearMapper r0 = res.getLinearMapper(i, j2 + 0); 1181 LinearMapper r1 = res.getLinearMapper(i, j2 + 1); 1182 LinearMapper r2 = res.getLinearMapper(i, j2 + 2); 1183 LinearMapper r3 = res.getLinearMapper(i, j2 + 3); 1184 1185 r0.prefetch(prefetch_res_offset); 1186 r1.prefetch(prefetch_res_offset); 1187 r2.prefetch(prefetch_res_offset); 1188 r3.prefetch(prefetch_res_offset); 1189 1190 // performs "inner" products 1191 const RhsScalar* blB = &blockB[j2*strideB+offsetB*nr]; 1192 prefetch(&blB[0]); 1193 LhsPacket A0, A1; 1194 1195 for(Index k=0; k<peeled_kc; k+=pk) 1196 { 1197 EIGEN_ASM_COMMENT("begin gebp micro kernel 2pX4"); 1198 RhsPacket B_0, B1, B2, B3, T0; 1199 1200 #define EIGEN_GEBGP_ONESTEP(K) \ 1201 do { \ 1202 EIGEN_ASM_COMMENT("begin step of gebp micro kernel 2pX4"); \ 1203 EIGEN_ASM_COMMENT("Note: these asm comments work around bug 935!"); \ 1204 traits.loadLhs(&blA[(0+2*K)*LhsProgress], A0); \ 1205 traits.loadLhs(&blA[(1+2*K)*LhsProgress], A1); \ 1206 traits.broadcastRhs(&blB[(0+4*K)*RhsProgress], B_0, B1, B2, B3); \ 1207 traits.madd(A0, B_0, C0, T0); \ 1208 traits.madd(A1, B_0, C4, B_0); \ 1209 traits.madd(A0, B1, C1, T0); \ 1210 traits.madd(A1, B1, C5, B1); \ 1211 traits.madd(A0, B2, C2, T0); \ 1212 traits.madd(A1, B2, C6, B2); \ 1213 traits.madd(A0, B3, C3, T0); \ 1214 traits.madd(A1, B3, C7, B3); \ 1215 EIGEN_ASM_COMMENT("end step of gebp micro kernel 2pX4"); \ 1216 } while(false) 1217 1218 internal::prefetch(blB+(48+0)); 1219 EIGEN_GEBGP_ONESTEP(0); 1220 EIGEN_GEBGP_ONESTEP(1); 1221 EIGEN_GEBGP_ONESTEP(2); 1222 EIGEN_GEBGP_ONESTEP(3); 1223 internal::prefetch(blB+(48+16)); 1224 EIGEN_GEBGP_ONESTEP(4); 1225 EIGEN_GEBGP_ONESTEP(5); 1226 EIGEN_GEBGP_ONESTEP(6); 1227 EIGEN_GEBGP_ONESTEP(7); 1228 1229 blB += pk*4*RhsProgress; 1230 blA += pk*(2*Traits::LhsProgress); 1231 1232 EIGEN_ASM_COMMENT("end gebp micro kernel 2pX4"); 1233 } 1234 // process remaining peeled loop 1235 for(Index k=peeled_kc; k<depth; k++) 1236 { 1237 RhsPacket B_0, B1, B2, B3, T0; 1238 EIGEN_GEBGP_ONESTEP(0); 1239 blB += 4*RhsProgress; 1240 blA += 2*Traits::LhsProgress; 1241 } 1242 #undef EIGEN_GEBGP_ONESTEP 1243 1244 ResPacket R0, R1, R2, R3; 1245 ResPacket alphav = pset1<ResPacket>(alpha); 1246 1247 R0 = r0.loadPacket(0 * Traits::ResPacketSize); 1248 R1 = r0.loadPacket(1 * Traits::ResPacketSize); 1249 R2 = r1.loadPacket(0 * Traits::ResPacketSize); 1250 R3 = r1.loadPacket(1 * Traits::ResPacketSize); 1251 traits.acc(C0, alphav, R0); 1252 traits.acc(C4, alphav, R1); 1253 traits.acc(C1, alphav, R2); 1254 traits.acc(C5, alphav, R3); 1255 r0.storePacket(0 * Traits::ResPacketSize, R0); 1256 r0.storePacket(1 * Traits::ResPacketSize, R1); 1257 r1.storePacket(0 * Traits::ResPacketSize, R2); 1258 r1.storePacket(1 * Traits::ResPacketSize, R3); 1259 1260 R0 = r2.loadPacket(0 * Traits::ResPacketSize); 1261 R1 = r2.loadPacket(1 * Traits::ResPacketSize); 1262 R2 = r3.loadPacket(0 * Traits::ResPacketSize); 1263 R3 = r3.loadPacket(1 * Traits::ResPacketSize); 1264 traits.acc(C2, alphav, R0); 1265 traits.acc(C6, alphav, R1); 1266 traits.acc(C3, alphav, R2); 1267 traits.acc(C7, alphav, R3); 1268 r2.storePacket(0 * Traits::ResPacketSize, R0); 1269 r2.storePacket(1 * Traits::ResPacketSize, R1); 1270 r3.storePacket(0 * Traits::ResPacketSize, R2); 1271 r3.storePacket(1 * Traits::ResPacketSize, R3); 1272 } 1273 } 1274 1275 // Deal with remaining columns of the rhs 1276 for(Index j2=packet_cols4; j2<cols; j2++) 1277 { 1278 for(Index i=i1; i<actual_panel_end; i+=2*LhsProgress) 1279 { 1280 // One column at a time 1281 const LhsScalar* blA = &blockA[i*strideA+offsetA*(2*Traits::LhsProgress)]; 1282 prefetch(&blA[0]); 1283 1284 // gets res block as register 1285 AccPacket C0, C4; 1286 traits.initAcc(C0); 1287 traits.initAcc(C4); 1288 1289 LinearMapper r0 = res.getLinearMapper(i, j2); 1290 r0.prefetch(prefetch_res_offset); 1291 1292 // performs "inner" products 1293 const RhsScalar* blB = &blockB[j2*strideB+offsetB]; 1294 LhsPacket A0, A1; 1295 1296 for(Index k=0; k<peeled_kc; k+=pk) 1297 { 1298 EIGEN_ASM_COMMENT("begin gebp micro kernel 2pX1"); 1299 RhsPacket B_0, B1; 1300 1301 #define EIGEN_GEBGP_ONESTEP(K) \ 1302 do { \ 1303 EIGEN_ASM_COMMENT("begin step of gebp micro kernel 2pX1"); \ 1304 EIGEN_ASM_COMMENT("Note: these asm comments work around bug 935!"); \ 1305 traits.loadLhs(&blA[(0+2*K)*LhsProgress], A0); \ 1306 traits.loadLhs(&blA[(1+2*K)*LhsProgress], A1); \ 1307 traits.loadRhs(&blB[(0+K)*RhsProgress], B_0); \ 1308 traits.madd(A0, B_0, C0, B1); \ 1309 traits.madd(A1, B_0, C4, B_0); \ 1310 EIGEN_ASM_COMMENT("end step of gebp micro kernel 2pX1"); \ 1311 } while(false) 1312 1313 EIGEN_GEBGP_ONESTEP(0); 1314 EIGEN_GEBGP_ONESTEP(1); 1315 EIGEN_GEBGP_ONESTEP(2); 1316 EIGEN_GEBGP_ONESTEP(3); 1317 EIGEN_GEBGP_ONESTEP(4); 1318 EIGEN_GEBGP_ONESTEP(5); 1319 EIGEN_GEBGP_ONESTEP(6); 1320 EIGEN_GEBGP_ONESTEP(7); 1321 1322 blB += pk*RhsProgress; 1323 blA += pk*2*Traits::LhsProgress; 1324 1325 EIGEN_ASM_COMMENT("end gebp micro kernel 2pX1"); 1326 } 1327 1328 // process remaining peeled loop 1329 for(Index k=peeled_kc; k<depth; k++) 1330 { 1331 RhsPacket B_0, B1; 1332 EIGEN_GEBGP_ONESTEP(0); 1333 blB += RhsProgress; 1334 blA += 2*Traits::LhsProgress; 1335 } 1336 #undef EIGEN_GEBGP_ONESTEP 1337 ResPacket R0, R1; 1338 ResPacket alphav = pset1<ResPacket>(alpha); 1339 1340 R0 = r0.loadPacket(0 * Traits::ResPacketSize); 1341 R1 = r0.loadPacket(1 * Traits::ResPacketSize); 1342 traits.acc(C0, alphav, R0); 1343 traits.acc(C4, alphav, R1); 1344 r0.storePacket(0 * Traits::ResPacketSize, R0); 1345 r0.storePacket(1 * Traits::ResPacketSize, R1); 1346 } 1347 } 1348 } 1349 } 1350 //---------- Process 1 * LhsProgress rows at once ---------- 1351 if(mr>=1*Traits::LhsProgress) 1352 { 1353 // loops on each largest micro horizontal panel of lhs (1*LhsProgress x depth) 1354 for(Index i=peeled_mc2; i<peeled_mc1; i+=1*LhsProgress) 1355 { 1356 // loops on each largest micro vertical panel of rhs (depth * nr) 1357 for(Index j2=0; j2<packet_cols4; j2+=nr) 1358 { 1359 // We select a 1*Traits::LhsProgress x nr micro block of res which is entirely 1360 // stored into 1 x nr registers. 1361 1362 const LhsScalar* blA = &blockA[i*strideA+offsetA*(1*Traits::LhsProgress)]; 1363 prefetch(&blA[0]); 1364 1365 // gets res block as register 1366 AccPacket C0, C1, C2, C3; 1367 traits.initAcc(C0); 1368 traits.initAcc(C1); 1369 traits.initAcc(C2); 1370 traits.initAcc(C3); 1371 1372 LinearMapper r0 = res.getLinearMapper(i, j2 + 0); 1373 LinearMapper r1 = res.getLinearMapper(i, j2 + 1); 1374 LinearMapper r2 = res.getLinearMapper(i, j2 + 2); 1375 LinearMapper r3 = res.getLinearMapper(i, j2 + 3); 1376 1377 r0.prefetch(prefetch_res_offset); 1378 r1.prefetch(prefetch_res_offset); 1379 r2.prefetch(prefetch_res_offset); 1380 r3.prefetch(prefetch_res_offset); 1381 1382 // performs "inner" products 1383 const RhsScalar* blB = &blockB[j2*strideB+offsetB*nr]; 1384 prefetch(&blB[0]); 1385 LhsPacket A0; 1386 1387 for(Index k=0; k<peeled_kc; k+=pk) 1388 { 1389 EIGEN_ASM_COMMENT("begin gebp micro kernel 1pX4"); 1390 RhsPacket B_0, B1, B2, B3; 1391 1392 #define EIGEN_GEBGP_ONESTEP(K) \ 1393 do { \ 1394 EIGEN_ASM_COMMENT("begin step of gebp micro kernel 1pX4"); \ 1395 EIGEN_ASM_COMMENT("Note: these asm comments work around bug 935!"); \ 1396 traits.loadLhs(&blA[(0+1*K)*LhsProgress], A0); \ 1397 traits.broadcastRhs(&blB[(0+4*K)*RhsProgress], B_0, B1, B2, B3); \ 1398 traits.madd(A0, B_0, C0, B_0); \ 1399 traits.madd(A0, B1, C1, B1); \ 1400 traits.madd(A0, B2, C2, B2); \ 1401 traits.madd(A0, B3, C3, B3); \ 1402 EIGEN_ASM_COMMENT("end step of gebp micro kernel 1pX4"); \ 1403 } while(false) 1404 1405 internal::prefetch(blB+(48+0)); 1406 EIGEN_GEBGP_ONESTEP(0); 1407 EIGEN_GEBGP_ONESTEP(1); 1408 EIGEN_GEBGP_ONESTEP(2); 1409 EIGEN_GEBGP_ONESTEP(3); 1410 internal::prefetch(blB+(48+16)); 1411 EIGEN_GEBGP_ONESTEP(4); 1412 EIGEN_GEBGP_ONESTEP(5); 1413 EIGEN_GEBGP_ONESTEP(6); 1414 EIGEN_GEBGP_ONESTEP(7); 1415 1416 blB += pk*4*RhsProgress; 1417 blA += pk*1*LhsProgress; 1418 1419 EIGEN_ASM_COMMENT("end gebp micro kernel 1pX4"); 1420 } 1421 // process remaining peeled loop 1422 for(Index k=peeled_kc; k<depth; k++) 1423 { 1424 RhsPacket B_0, B1, B2, B3; 1425 EIGEN_GEBGP_ONESTEP(0); 1426 blB += 4*RhsProgress; 1427 blA += 1*LhsProgress; 1428 } 1429 #undef EIGEN_GEBGP_ONESTEP 1430 1431 ResPacket R0, R1; 1432 ResPacket alphav = pset1<ResPacket>(alpha); 1433 1434 R0 = r0.loadPacket(0 * Traits::ResPacketSize); 1435 R1 = r1.loadPacket(0 * Traits::ResPacketSize); 1436 traits.acc(C0, alphav, R0); 1437 traits.acc(C1, alphav, R1); 1438 r0.storePacket(0 * Traits::ResPacketSize, R0); 1439 r1.storePacket(0 * Traits::ResPacketSize, R1); 1440 1441 R0 = r2.loadPacket(0 * Traits::ResPacketSize); 1442 R1 = r3.loadPacket(0 * Traits::ResPacketSize); 1443 traits.acc(C2, alphav, R0); 1444 traits.acc(C3, alphav, R1); 1445 r2.storePacket(0 * Traits::ResPacketSize, R0); 1446 r3.storePacket(0 * Traits::ResPacketSize, R1); 1447 } 1448 1449 // Deal with remaining columns of the rhs 1450 for(Index j2=packet_cols4; j2<cols; j2++) 1451 { 1452 // One column at a time 1453 const LhsScalar* blA = &blockA[i*strideA+offsetA*(1*Traits::LhsProgress)]; 1454 prefetch(&blA[0]); 1455 1456 // gets res block as register 1457 AccPacket C0; 1458 traits.initAcc(C0); 1459 1460 LinearMapper r0 = res.getLinearMapper(i, j2); 1461 1462 // performs "inner" products 1463 const RhsScalar* blB = &blockB[j2*strideB+offsetB]; 1464 LhsPacket A0; 1465 1466 for(Index k=0; k<peeled_kc; k+=pk) 1467 { 1468 EIGEN_ASM_COMMENT("begin gebp micro kernel 1pX1"); 1469 RhsPacket B_0; 1470 1471 #define EIGEN_GEBGP_ONESTEP(K) \ 1472 do { \ 1473 EIGEN_ASM_COMMENT("begin step of gebp micro kernel 1pX1"); \ 1474 EIGEN_ASM_COMMENT("Note: these asm comments work around bug 935!"); \ 1475 traits.loadLhs(&blA[(0+1*K)*LhsProgress], A0); \ 1476 traits.loadRhs(&blB[(0+K)*RhsProgress], B_0); \ 1477 traits.madd(A0, B_0, C0, B_0); \ 1478 EIGEN_ASM_COMMENT("end step of gebp micro kernel 1pX1"); \ 1479 } while(false); 1480 1481 EIGEN_GEBGP_ONESTEP(0); 1482 EIGEN_GEBGP_ONESTEP(1); 1483 EIGEN_GEBGP_ONESTEP(2); 1484 EIGEN_GEBGP_ONESTEP(3); 1485 EIGEN_GEBGP_ONESTEP(4); 1486 EIGEN_GEBGP_ONESTEP(5); 1487 EIGEN_GEBGP_ONESTEP(6); 1488 EIGEN_GEBGP_ONESTEP(7); 1489 1490 blB += pk*RhsProgress; 1491 blA += pk*1*Traits::LhsProgress; 1492 1493 EIGEN_ASM_COMMENT("end gebp micro kernel 1pX1"); 1494 } 1495 1496 // process remaining peeled loop 1497 for(Index k=peeled_kc; k<depth; k++) 1498 { 1499 RhsPacket B_0; 1500 EIGEN_GEBGP_ONESTEP(0); 1501 blB += RhsProgress; 1502 blA += 1*Traits::LhsProgress; 1503 } 1504 #undef EIGEN_GEBGP_ONESTEP 1505 ResPacket R0; 1506 ResPacket alphav = pset1<ResPacket>(alpha); 1507 R0 = r0.loadPacket(0 * Traits::ResPacketSize); 1508 traits.acc(C0, alphav, R0); 1509 r0.storePacket(0 * Traits::ResPacketSize, R0); 1510 } 1511 } 1512 } 1513 //---------- Process remaining rows, 1 at once ---------- 1514 if(peeled_mc1<rows) 1515 { 1516 // loop on each panel of the rhs 1517 for(Index j2=0; j2<packet_cols4; j2+=nr) 1518 { 1519 // loop on each row of the lhs (1*LhsProgress x depth) 1520 for(Index i=peeled_mc1; i<rows; i+=1) 1521 { 1522 const LhsScalar* blA = &blockA[i*strideA+offsetA]; 1523 prefetch(&blA[0]); 1524 const RhsScalar* blB = &blockB[j2*strideB+offsetB*nr]; 1525 1526 // The following piece of code wont work for 512 bit registers 1527 // Moreover, if LhsProgress==8 it assumes that there is a half packet of the same size 1528 // as nr (which is currently 4) for the return type. 1529 typedef typename unpacket_traits<SResPacket>::half SResPacketHalf; 1530 if ((SwappedTraits::LhsProgress % 4) == 0 && 1531 (SwappedTraits::LhsProgress <= 8) && 1532 (SwappedTraits::LhsProgress!=8 || unpacket_traits<SResPacketHalf>::size==nr)) 1533 { 1534 SAccPacket C0, C1, C2, C3; 1535 straits.initAcc(C0); 1536 straits.initAcc(C1); 1537 straits.initAcc(C2); 1538 straits.initAcc(C3); 1539 1540 const Index spk = (std::max)(1,SwappedTraits::LhsProgress/4); 1541 const Index endk = (depth/spk)*spk; 1542 const Index endk4 = (depth/(spk*4))*(spk*4); 1543 1544 Index k=0; 1545 for(; k<endk4; k+=4*spk) 1546 { 1547 SLhsPacket A0,A1; 1548 SRhsPacket B_0,B_1; 1549 1550 straits.loadLhsUnaligned(blB+0*SwappedTraits::LhsProgress, A0); 1551 straits.loadLhsUnaligned(blB+1*SwappedTraits::LhsProgress, A1); 1552 1553 straits.loadRhsQuad(blA+0*spk, B_0); 1554 straits.loadRhsQuad(blA+1*spk, B_1); 1555 straits.madd(A0,B_0,C0,B_0); 1556 straits.madd(A1,B_1,C1,B_1); 1557 1558 straits.loadLhsUnaligned(blB+2*SwappedTraits::LhsProgress, A0); 1559 straits.loadLhsUnaligned(blB+3*SwappedTraits::LhsProgress, A1); 1560 straits.loadRhsQuad(blA+2*spk, B_0); 1561 straits.loadRhsQuad(blA+3*spk, B_1); 1562 straits.madd(A0,B_0,C2,B_0); 1563 straits.madd(A1,B_1,C3,B_1); 1564 1565 blB += 4*SwappedTraits::LhsProgress; 1566 blA += 4*spk; 1567 } 1568 C0 = padd(padd(C0,C1),padd(C2,C3)); 1569 for(; k<endk; k+=spk) 1570 { 1571 SLhsPacket A0; 1572 SRhsPacket B_0; 1573 1574 straits.loadLhsUnaligned(blB, A0); 1575 straits.loadRhsQuad(blA, B_0); 1576 straits.madd(A0,B_0,C0,B_0); 1577 1578 blB += SwappedTraits::LhsProgress; 1579 blA += spk; 1580 } 1581 if(SwappedTraits::LhsProgress==8) 1582 { 1583 // Special case where we have to first reduce the accumulation register C0 1584 typedef typename conditional<SwappedTraits::LhsProgress>=8,typename unpacket_traits<SResPacket>::half,SResPacket>::type SResPacketHalf; 1585 typedef typename conditional<SwappedTraits::LhsProgress>=8,typename unpacket_traits<SLhsPacket>::half,SLhsPacket>::type SLhsPacketHalf; 1586 typedef typename conditional<SwappedTraits::LhsProgress>=8,typename unpacket_traits<SLhsPacket>::half,SRhsPacket>::type SRhsPacketHalf; 1587 typedef typename conditional<SwappedTraits::LhsProgress>=8,typename unpacket_traits<SAccPacket>::half,SAccPacket>::type SAccPacketHalf; 1588 1589 SResPacketHalf R = res.template gatherPacket<SResPacketHalf>(i, j2); 1590 SResPacketHalf alphav = pset1<SResPacketHalf>(alpha); 1591 1592 if(depth-endk>0) 1593 { 1594 // We have to handle the last row of the rhs which corresponds to a half-packet 1595 SLhsPacketHalf a0; 1596 SRhsPacketHalf b0; 1597 straits.loadLhsUnaligned(blB, a0); 1598 straits.loadRhs(blA, b0); 1599 SAccPacketHalf c0 = predux_downto4(C0); 1600 straits.madd(a0,b0,c0,b0); 1601 straits.acc(c0, alphav, R); 1602 } 1603 else 1604 { 1605 straits.acc(predux_downto4(C0), alphav, R); 1606 } 1607 res.scatterPacket(i, j2, R); 1608 } 1609 else 1610 { 1611 SResPacket R = res.template gatherPacket<SResPacket>(i, j2); 1612 SResPacket alphav = pset1<SResPacket>(alpha); 1613 straits.acc(C0, alphav, R); 1614 res.scatterPacket(i, j2, R); 1615 } 1616 } 1617 else // scalar path 1618 { 1619 // get a 1 x 4 res block as registers 1620 ResScalar C0(0), C1(0), C2(0), C3(0); 1621 1622 for(Index k=0; k<depth; k++) 1623 { 1624 LhsScalar A0; 1625 RhsScalar B_0, B_1; 1626 1627 A0 = blA[k]; 1628 1629 B_0 = blB[0]; 1630 B_1 = blB[1]; 1631 CJMADD(cj,A0,B_0,C0, B_0); 1632 CJMADD(cj,A0,B_1,C1, B_1); 1633 1634 B_0 = blB[2]; 1635 B_1 = blB[3]; 1636 CJMADD(cj,A0,B_0,C2, B_0); 1637 CJMADD(cj,A0,B_1,C3, B_1); 1638 1639 blB += 4; 1640 } 1641 res(i, j2 + 0) += alpha * C0; 1642 res(i, j2 + 1) += alpha * C1; 1643 res(i, j2 + 2) += alpha * C2; 1644 res(i, j2 + 3) += alpha * C3; 1645 } 1646 } 1647 } 1648 // remaining columns 1649 for(Index j2=packet_cols4; j2<cols; j2++) 1650 { 1651 // loop on each row of the lhs (1*LhsProgress x depth) 1652 for(Index i=peeled_mc1; i<rows; i+=1) 1653 { 1654 const LhsScalar* blA = &blockA[i*strideA+offsetA]; 1655 prefetch(&blA[0]); 1656 // gets a 1 x 1 res block as registers 1657 ResScalar C0(0); 1658 const RhsScalar* blB = &blockB[j2*strideB+offsetB]; 1659 for(Index k=0; k<depth; k++) 1660 { 1661 LhsScalar A0 = blA[k]; 1662 RhsScalar B_0 = blB[k]; 1663 CJMADD(cj, A0, B_0, C0, B_0); 1664 } 1665 res(i, j2) += alpha * C0; 1666 } 1667 } 1668 } 1669 } 1670 1671 1672 #undef CJMADD 1673 1674 // pack a block of the lhs 1675 // The traversal is as follow (mr==4): 1676 // 0 4 8 12 ... 1677 // 1 5 9 13 ... 1678 // 2 6 10 14 ... 1679 // 3 7 11 15 ... 1680 // 1681 // 16 20 24 28 ... 1682 // 17 21 25 29 ... 1683 // 18 22 26 30 ... 1684 // 19 23 27 31 ... 1685 // 1686 // 32 33 34 35 ... 1687 // 36 36 38 39 ... 1688 template<typename Scalar, typename Index, typename DataMapper, int Pack1, int Pack2, bool Conjugate, bool PanelMode> 1689 struct gemm_pack_lhs<Scalar, Index, DataMapper, Pack1, Pack2, ColMajor, Conjugate, PanelMode> 1690 { 1691 typedef typename DataMapper::LinearMapper LinearMapper; 1692 EIGEN_DONT_INLINE void operator()(Scalar* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride=0, Index offset=0); 1693 }; 1694 1695 template<typename Scalar, typename Index, typename DataMapper, int Pack1, int Pack2, bool Conjugate, bool PanelMode> 1696 EIGEN_DONT_INLINE void gemm_pack_lhs<Scalar, Index, DataMapper, Pack1, Pack2, ColMajor, Conjugate, PanelMode> 1697 ::operator()(Scalar* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride, Index offset) 1698 { 1699 typedef typename packet_traits<Scalar>::type Packet; 1700 enum { PacketSize = packet_traits<Scalar>::size }; 1701 1702 EIGEN_ASM_COMMENT("EIGEN PRODUCT PACK LHS"); 1703 EIGEN_UNUSED_VARIABLE(stride); 1704 EIGEN_UNUSED_VARIABLE(offset); 1705 eigen_assert(((!PanelMode) && stride==0 && offset==0) || (PanelMode && stride>=depth && offset<=stride)); 1706 eigen_assert( ((Pack1%PacketSize)==0 && Pack1<=4*PacketSize) || (Pack1<=4) ); 1707 conj_if<NumTraits<Scalar>::IsComplex && Conjugate> cj; 1708 Index count = 0; 1709 1710 const Index peeled_mc3 = Pack1>=3*PacketSize ? (rows/(3*PacketSize))*(3*PacketSize) : 0; 1711 const Index peeled_mc2 = Pack1>=2*PacketSize ? peeled_mc3+((rows-peeled_mc3)/(2*PacketSize))*(2*PacketSize) : 0; 1712 const Index peeled_mc1 = Pack1>=1*PacketSize ? (rows/(1*PacketSize))*(1*PacketSize) : 0; 1713 const Index peeled_mc0 = Pack2>=1*PacketSize ? peeled_mc1 1714 : Pack2>1 ? (rows/Pack2)*Pack2 : 0; 1715 1716 Index i=0; 1717 1718 // Pack 3 packets 1719 if(Pack1>=3*PacketSize) 1720 { 1721 for(; i<peeled_mc3; i+=3*PacketSize) 1722 { 1723 if(PanelMode) count += (3*PacketSize) * offset; 1724 1725 for(Index k=0; k<depth; k++) 1726 { 1727 Packet A, B, C; 1728 A = lhs.loadPacket(i+0*PacketSize, k); 1729 B = lhs.loadPacket(i+1*PacketSize, k); 1730 C = lhs.loadPacket(i+2*PacketSize, k); 1731 pstore(blockA+count, cj.pconj(A)); count+=PacketSize; 1732 pstore(blockA+count, cj.pconj(B)); count+=PacketSize; 1733 pstore(blockA+count, cj.pconj(C)); count+=PacketSize; 1734 } 1735 if(PanelMode) count += (3*PacketSize) * (stride-offset-depth); 1736 } 1737 } 1738 // Pack 2 packets 1739 if(Pack1>=2*PacketSize) 1740 { 1741 for(; i<peeled_mc2; i+=2*PacketSize) 1742 { 1743 if(PanelMode) count += (2*PacketSize) * offset; 1744 1745 for(Index k=0; k<depth; k++) 1746 { 1747 Packet A, B; 1748 A = lhs.loadPacket(i+0*PacketSize, k); 1749 B = lhs.loadPacket(i+1*PacketSize, k); 1750 pstore(blockA+count, cj.pconj(A)); count+=PacketSize; 1751 pstore(blockA+count, cj.pconj(B)); count+=PacketSize; 1752 } 1753 if(PanelMode) count += (2*PacketSize) * (stride-offset-depth); 1754 } 1755 } 1756 // Pack 1 packets 1757 if(Pack1>=1*PacketSize) 1758 { 1759 for(; i<peeled_mc1; i+=1*PacketSize) 1760 { 1761 if(PanelMode) count += (1*PacketSize) * offset; 1762 1763 for(Index k=0; k<depth; k++) 1764 { 1765 Packet A; 1766 A = lhs.loadPacket(i+0*PacketSize, k); 1767 pstore(blockA+count, cj.pconj(A)); 1768 count+=PacketSize; 1769 } 1770 if(PanelMode) count += (1*PacketSize) * (stride-offset-depth); 1771 } 1772 } 1773 // Pack scalars 1774 if(Pack2<PacketSize && Pack2>1) 1775 { 1776 for(; i<peeled_mc0; i+=Pack2) 1777 { 1778 if(PanelMode) count += Pack2 * offset; 1779 1780 for(Index k=0; k<depth; k++) 1781 for(Index w=0; w<Pack2; w++) 1782 blockA[count++] = cj(lhs(i+w, k)); 1783 1784 if(PanelMode) count += Pack2 * (stride-offset-depth); 1785 } 1786 } 1787 for(; i<rows; i++) 1788 { 1789 if(PanelMode) count += offset; 1790 for(Index k=0; k<depth; k++) 1791 blockA[count++] = cj(lhs(i, k)); 1792 if(PanelMode) count += (stride-offset-depth); 1793 } 1794 } 1795 1796 template<typename Scalar, typename Index, typename DataMapper, int Pack1, int Pack2, bool Conjugate, bool PanelMode> 1797 struct gemm_pack_lhs<Scalar, Index, DataMapper, Pack1, Pack2, RowMajor, Conjugate, PanelMode> 1798 { 1799 typedef typename DataMapper::LinearMapper LinearMapper; 1800 EIGEN_DONT_INLINE void operator()(Scalar* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride=0, Index offset=0); 1801 }; 1802 1803 template<typename Scalar, typename Index, typename DataMapper, int Pack1, int Pack2, bool Conjugate, bool PanelMode> 1804 EIGEN_DONT_INLINE void gemm_pack_lhs<Scalar, Index, DataMapper, Pack1, Pack2, RowMajor, Conjugate, PanelMode> 1805 ::operator()(Scalar* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride, Index offset) 1806 { 1807 typedef typename packet_traits<Scalar>::type Packet; 1808 enum { PacketSize = packet_traits<Scalar>::size }; 1809 1810 EIGEN_ASM_COMMENT("EIGEN PRODUCT PACK LHS"); 1811 EIGEN_UNUSED_VARIABLE(stride); 1812 EIGEN_UNUSED_VARIABLE(offset); 1813 eigen_assert(((!PanelMode) && stride==0 && offset==0) || (PanelMode && stride>=depth && offset<=stride)); 1814 conj_if<NumTraits<Scalar>::IsComplex && Conjugate> cj; 1815 Index count = 0; 1816 1817 // const Index peeled_mc3 = Pack1>=3*PacketSize ? (rows/(3*PacketSize))*(3*PacketSize) : 0; 1818 // const Index peeled_mc2 = Pack1>=2*PacketSize ? peeled_mc3+((rows-peeled_mc3)/(2*PacketSize))*(2*PacketSize) : 0; 1819 // const Index peeled_mc1 = Pack1>=1*PacketSize ? (rows/(1*PacketSize))*(1*PacketSize) : 0; 1820 1821 int pack = Pack1; 1822 Index i = 0; 1823 while(pack>0) 1824 { 1825 Index remaining_rows = rows-i; 1826 Index peeled_mc = i+(remaining_rows/pack)*pack; 1827 for(; i<peeled_mc; i+=pack) 1828 { 1829 if(PanelMode) count += pack * offset; 1830 1831 const Index peeled_k = (depth/PacketSize)*PacketSize; 1832 Index k=0; 1833 if(pack>=PacketSize) 1834 { 1835 for(; k<peeled_k; k+=PacketSize) 1836 { 1837 for (Index m = 0; m < pack; m += PacketSize) 1838 { 1839 PacketBlock<Packet> kernel; 1840 for (int p = 0; p < PacketSize; ++p) kernel.packet[p] = lhs.loadPacket(i+p+m, k); 1841 ptranspose(kernel); 1842 for (int p = 0; p < PacketSize; ++p) pstore(blockA+count+m+(pack)*p, cj.pconj(kernel.packet[p])); 1843 } 1844 count += PacketSize*pack; 1845 } 1846 } 1847 for(; k<depth; k++) 1848 { 1849 Index w=0; 1850 for(; w<pack-3; w+=4) 1851 { 1852 Scalar a(cj(lhs(i+w+0, k))), 1853 b(cj(lhs(i+w+1, k))), 1854 c(cj(lhs(i+w+2, k))), 1855 d(cj(lhs(i+w+3, k))); 1856 blockA[count++] = a; 1857 blockA[count++] = b; 1858 blockA[count++] = c; 1859 blockA[count++] = d; 1860 } 1861 if(pack%4) 1862 for(;w<pack;++w) 1863 blockA[count++] = cj(lhs(i+w, k)); 1864 } 1865 1866 if(PanelMode) count += pack * (stride-offset-depth); 1867 } 1868 1869 pack -= PacketSize; 1870 if(pack<Pack2 && (pack+PacketSize)!=Pack2) 1871 pack = Pack2; 1872 } 1873 1874 for(; i<rows; i++) 1875 { 1876 if(PanelMode) count += offset; 1877 for(Index k=0; k<depth; k++) 1878 blockA[count++] = cj(lhs(i, k)); 1879 if(PanelMode) count += (stride-offset-depth); 1880 } 1881 } 1882 1883 // copy a complete panel of the rhs 1884 // this version is optimized for column major matrices 1885 // The traversal order is as follow: (nr==4): 1886 // 0 1 2 3 12 13 14 15 24 27 1887 // 4 5 6 7 16 17 18 19 25 28 1888 // 8 9 10 11 20 21 22 23 26 29 1889 // . . . . . . . . . . 1890 template<typename Scalar, typename Index, typename DataMapper, int nr, bool Conjugate, bool PanelMode> 1891 struct gemm_pack_rhs<Scalar, Index, DataMapper, nr, ColMajor, Conjugate, PanelMode> 1892 { 1893 typedef typename packet_traits<Scalar>::type Packet; 1894 typedef typename DataMapper::LinearMapper LinearMapper; 1895 enum { PacketSize = packet_traits<Scalar>::size }; 1896 EIGEN_DONT_INLINE void operator()(Scalar* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride=0, Index offset=0); 1897 }; 1898 1899 template<typename Scalar, typename Index, typename DataMapper, int nr, bool Conjugate, bool PanelMode> 1900 EIGEN_DONT_INLINE void gemm_pack_rhs<Scalar, Index, DataMapper, nr, ColMajor, Conjugate, PanelMode> 1901 ::operator()(Scalar* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride, Index offset) 1902 { 1903 EIGEN_ASM_COMMENT("EIGEN PRODUCT PACK RHS COLMAJOR"); 1904 EIGEN_UNUSED_VARIABLE(stride); 1905 EIGEN_UNUSED_VARIABLE(offset); 1906 eigen_assert(((!PanelMode) && stride==0 && offset==0) || (PanelMode && stride>=depth && offset<=stride)); 1907 conj_if<NumTraits<Scalar>::IsComplex && Conjugate> cj; 1908 Index packet_cols8 = nr>=8 ? (cols/8) * 8 : 0; 1909 Index packet_cols4 = nr>=4 ? (cols/4) * 4 : 0; 1910 Index count = 0; 1911 const Index peeled_k = (depth/PacketSize)*PacketSize; 1912 // if(nr>=8) 1913 // { 1914 // for(Index j2=0; j2<packet_cols8; j2+=8) 1915 // { 1916 // // skip what we have before 1917 // if(PanelMode) count += 8 * offset; 1918 // const Scalar* b0 = &rhs[(j2+0)*rhsStride]; 1919 // const Scalar* b1 = &rhs[(j2+1)*rhsStride]; 1920 // const Scalar* b2 = &rhs[(j2+2)*rhsStride]; 1921 // const Scalar* b3 = &rhs[(j2+3)*rhsStride]; 1922 // const Scalar* b4 = &rhs[(j2+4)*rhsStride]; 1923 // const Scalar* b5 = &rhs[(j2+5)*rhsStride]; 1924 // const Scalar* b6 = &rhs[(j2+6)*rhsStride]; 1925 // const Scalar* b7 = &rhs[(j2+7)*rhsStride]; 1926 // Index k=0; 1927 // if(PacketSize==8) // TODO enbale vectorized transposition for PacketSize==4 1928 // { 1929 // for(; k<peeled_k; k+=PacketSize) { 1930 // PacketBlock<Packet> kernel; 1931 // for (int p = 0; p < PacketSize; ++p) { 1932 // kernel.packet[p] = ploadu<Packet>(&rhs[(j2+p)*rhsStride+k]); 1933 // } 1934 // ptranspose(kernel); 1935 // for (int p = 0; p < PacketSize; ++p) { 1936 // pstoreu(blockB+count, cj.pconj(kernel.packet[p])); 1937 // count+=PacketSize; 1938 // } 1939 // } 1940 // } 1941 // for(; k<depth; k++) 1942 // { 1943 // blockB[count+0] = cj(b0[k]); 1944 // blockB[count+1] = cj(b1[k]); 1945 // blockB[count+2] = cj(b2[k]); 1946 // blockB[count+3] = cj(b3[k]); 1947 // blockB[count+4] = cj(b4[k]); 1948 // blockB[count+5] = cj(b5[k]); 1949 // blockB[count+6] = cj(b6[k]); 1950 // blockB[count+7] = cj(b7[k]); 1951 // count += 8; 1952 // } 1953 // // skip what we have after 1954 // if(PanelMode) count += 8 * (stride-offset-depth); 1955 // } 1956 // } 1957 1958 if(nr>=4) 1959 { 1960 for(Index j2=packet_cols8; j2<packet_cols4; j2+=4) 1961 { 1962 // skip what we have before 1963 if(PanelMode) count += 4 * offset; 1964 const LinearMapper dm0 = rhs.getLinearMapper(0, j2 + 0); 1965 const LinearMapper dm1 = rhs.getLinearMapper(0, j2 + 1); 1966 const LinearMapper dm2 = rhs.getLinearMapper(0, j2 + 2); 1967 const LinearMapper dm3 = rhs.getLinearMapper(0, j2 + 3); 1968 1969 Index k=0; 1970 if((PacketSize%4)==0) // TODO enable vectorized transposition for PacketSize==2 ?? 1971 { 1972 for(; k<peeled_k; k+=PacketSize) { 1973 PacketBlock<Packet,(PacketSize%4)==0?4:PacketSize> kernel; 1974 kernel.packet[0] = dm0.loadPacket(k); 1975 kernel.packet[1%PacketSize] = dm1.loadPacket(k); 1976 kernel.packet[2%PacketSize] = dm2.loadPacket(k); 1977 kernel.packet[3%PacketSize] = dm3.loadPacket(k); 1978 ptranspose(kernel); 1979 pstoreu(blockB+count+0*PacketSize, cj.pconj(kernel.packet[0])); 1980 pstoreu(blockB+count+1*PacketSize, cj.pconj(kernel.packet[1%PacketSize])); 1981 pstoreu(blockB+count+2*PacketSize, cj.pconj(kernel.packet[2%PacketSize])); 1982 pstoreu(blockB+count+3*PacketSize, cj.pconj(kernel.packet[3%PacketSize])); 1983 count+=4*PacketSize; 1984 } 1985 } 1986 for(; k<depth; k++) 1987 { 1988 blockB[count+0] = cj(dm0(k)); 1989 blockB[count+1] = cj(dm1(k)); 1990 blockB[count+2] = cj(dm2(k)); 1991 blockB[count+3] = cj(dm3(k)); 1992 count += 4; 1993 } 1994 // skip what we have after 1995 if(PanelMode) count += 4 * (stride-offset-depth); 1996 } 1997 } 1998 1999 // copy the remaining columns one at a time (nr==1) 2000 for(Index j2=packet_cols4; j2<cols; ++j2) 2001 { 2002 if(PanelMode) count += offset; 2003 const LinearMapper dm0 = rhs.getLinearMapper(0, j2); 2004 for(Index k=0; k<depth; k++) 2005 { 2006 blockB[count] = cj(dm0(k)); 2007 count += 1; 2008 } 2009 if(PanelMode) count += (stride-offset-depth); 2010 } 2011 } 2012 2013 // this version is optimized for row major matrices 2014 template<typename Scalar, typename Index, typename DataMapper, int nr, bool Conjugate, bool PanelMode> 2015 struct gemm_pack_rhs<Scalar, Index, DataMapper, nr, RowMajor, Conjugate, PanelMode> 2016 { 2017 typedef typename packet_traits<Scalar>::type Packet; 2018 typedef typename DataMapper::LinearMapper LinearMapper; 2019 enum { PacketSize = packet_traits<Scalar>::size }; 2020 EIGEN_DONT_INLINE void operator()(Scalar* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride=0, Index offset=0); 2021 }; 2022 2023 template<typename Scalar, typename Index, typename DataMapper, int nr, bool Conjugate, bool PanelMode> 2024 EIGEN_DONT_INLINE void gemm_pack_rhs<Scalar, Index, DataMapper, nr, RowMajor, Conjugate, PanelMode> 2025 ::operator()(Scalar* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride, Index offset) 2026 { 2027 EIGEN_ASM_COMMENT("EIGEN PRODUCT PACK RHS ROWMAJOR"); 2028 EIGEN_UNUSED_VARIABLE(stride); 2029 EIGEN_UNUSED_VARIABLE(offset); 2030 eigen_assert(((!PanelMode) && stride==0 && offset==0) || (PanelMode && stride>=depth && offset<=stride)); 2031 conj_if<NumTraits<Scalar>::IsComplex && Conjugate> cj; 2032 Index packet_cols8 = nr>=8 ? (cols/8) * 8 : 0; 2033 Index packet_cols4 = nr>=4 ? (cols/4) * 4 : 0; 2034 Index count = 0; 2035 2036 // if(nr>=8) 2037 // { 2038 // for(Index j2=0; j2<packet_cols8; j2+=8) 2039 // { 2040 // // skip what we have before 2041 // if(PanelMode) count += 8 * offset; 2042 // for(Index k=0; k<depth; k++) 2043 // { 2044 // if (PacketSize==8) { 2045 // Packet A = ploadu<Packet>(&rhs[k*rhsStride + j2]); 2046 // pstoreu(blockB+count, cj.pconj(A)); 2047 // } else if (PacketSize==4) { 2048 // Packet A = ploadu<Packet>(&rhs[k*rhsStride + j2]); 2049 // Packet B = ploadu<Packet>(&rhs[k*rhsStride + j2 + PacketSize]); 2050 // pstoreu(blockB+count, cj.pconj(A)); 2051 // pstoreu(blockB+count+PacketSize, cj.pconj(B)); 2052 // } else { 2053 // const Scalar* b0 = &rhs[k*rhsStride + j2]; 2054 // blockB[count+0] = cj(b0[0]); 2055 // blockB[count+1] = cj(b0[1]); 2056 // blockB[count+2] = cj(b0[2]); 2057 // blockB[count+3] = cj(b0[3]); 2058 // blockB[count+4] = cj(b0[4]); 2059 // blockB[count+5] = cj(b0[5]); 2060 // blockB[count+6] = cj(b0[6]); 2061 // blockB[count+7] = cj(b0[7]); 2062 // } 2063 // count += 8; 2064 // } 2065 // // skip what we have after 2066 // if(PanelMode) count += 8 * (stride-offset-depth); 2067 // } 2068 // } 2069 if(nr>=4) 2070 { 2071 for(Index j2=packet_cols8; j2<packet_cols4; j2+=4) 2072 { 2073 // skip what we have before 2074 if(PanelMode) count += 4 * offset; 2075 for(Index k=0; k<depth; k++) 2076 { 2077 if (PacketSize==4) { 2078 Packet A = rhs.loadPacket(k, j2); 2079 pstoreu(blockB+count, cj.pconj(A)); 2080 count += PacketSize; 2081 } else { 2082 const LinearMapper dm0 = rhs.getLinearMapper(k, j2); 2083 blockB[count+0] = cj(dm0(0)); 2084 blockB[count+1] = cj(dm0(1)); 2085 blockB[count+2] = cj(dm0(2)); 2086 blockB[count+3] = cj(dm0(3)); 2087 count += 4; 2088 } 2089 } 2090 // skip what we have after 2091 if(PanelMode) count += 4 * (stride-offset-depth); 2092 } 2093 } 2094 // copy the remaining columns one at a time (nr==1) 2095 for(Index j2=packet_cols4; j2<cols; ++j2) 2096 { 2097 if(PanelMode) count += offset; 2098 for(Index k=0; k<depth; k++) 2099 { 2100 blockB[count] = cj(rhs(k, j2)); 2101 count += 1; 2102 } 2103 if(PanelMode) count += stride-offset-depth; 2104 } 2105 } 2106 2107 } // end namespace internal 2108 2109 /** \returns the currently set level 1 cpu cache size (in bytes) used to estimate the ideal blocking size parameters. 2110 * \sa setCpuCacheSize */ 2111 inline std::ptrdiff_t l1CacheSize() 2112 { 2113 std::ptrdiff_t l1, l2, l3; 2114 internal::manage_caching_sizes(GetAction, &l1, &l2, &l3); 2115 return l1; 2116 } 2117 2118 /** \returns the currently set level 2 cpu cache size (in bytes) used to estimate the ideal blocking size parameters. 2119 * \sa setCpuCacheSize */ 2120 inline std::ptrdiff_t l2CacheSize() 2121 { 2122 std::ptrdiff_t l1, l2, l3; 2123 internal::manage_caching_sizes(GetAction, &l1, &l2, &l3); 2124 return l2; 2125 } 2126 2127 /** \returns the currently set level 3 cpu cache size (in bytes) used to estimate the ideal blocking size paramete\ 2128 rs. 2129 * \sa setCpuCacheSize */ 2130 inline std::ptrdiff_t l3CacheSize() 2131 { 2132 std::ptrdiff_t l1, l2, l3; 2133 internal::manage_caching_sizes(GetAction, &l1, &l2, &l3); 2134 return l3; 2135 } 2136 2137 /** Set the cpu L1 and L2 cache sizes (in bytes). 2138 * These values are use to adjust the size of the blocks 2139 * for the algorithms working per blocks. 2140 * 2141 * \sa computeProductBlockingSizes */ 2142 inline void setCpuCacheSizes(std::ptrdiff_t l1, std::ptrdiff_t l2, std::ptrdiff_t l3) 2143 { 2144 internal::manage_caching_sizes(SetAction, &l1, &l2, &l3); 2145 } 2146 2147 } // end namespace Eigen 2148 2149 #endif // EIGEN_GENERAL_BLOCK_PANEL_H 2150