Home | History | Annotate | Download | only in perlasm
      1 #! /usr/bin/env perl
      2 # Copyright 2005-2016 The OpenSSL Project Authors. All Rights Reserved.
      3 #
      4 # Licensed under the OpenSSL license (the "License").  You may not use
      5 # this file except in compliance with the License.  You can obtain a copy
      6 # in the file LICENSE in the source distribution or at
      7 # https://www.openssl.org/source/license.html
      8 
      9 
     10 # Ascetic x86_64 AT&T to MASM/NASM assembler translator by <appro>.
     11 #
     12 # Why AT&T to MASM and not vice versa? Several reasons. Because AT&T
     13 # format is way easier to parse. Because it's simpler to "gear" from
     14 # Unix ABI to Windows one [see cross-reference "card" at the end of
     15 # file]. Because Linux targets were available first...
     16 #
     17 # In addition the script also "distills" code suitable for GNU
     18 # assembler, so that it can be compiled with more rigid assemblers,
     19 # such as Solaris /usr/ccs/bin/as.
     20 #
     21 # This translator is not designed to convert *arbitrary* assembler
     22 # code from AT&T format to MASM one. It's designed to convert just
     23 # enough to provide for dual-ABI OpenSSL modules development...
     24 # There *are* limitations and you might have to modify your assembler
     25 # code or this script to achieve the desired result...
     26 #
     27 # Currently recognized limitations:
     28 #
     29 # - can't use multiple ops per line;
     30 #
     31 # Dual-ABI styling rules.
     32 #
     33 # 1. Adhere to Unix register and stack layout [see cross-reference
     34 #    ABI "card" at the end for explanation].
     35 # 2. Forget about "red zone," stick to more traditional blended
     36 #    stack frame allocation. If volatile storage is actually required
     37 #    that is. If not, just leave the stack as is.
     38 # 3. Functions tagged with ".type name,@function" get crafted with
     39 #    unified Win64 prologue and epilogue automatically. If you want
     40 #    to take care of ABI differences yourself, tag functions as
     41 #    ".type name,@abi-omnipotent" instead.
     42 # 4. To optimize the Win64 prologue you can specify number of input
     43 #    arguments as ".type name,@function,N." Keep in mind that if N is
     44 #    larger than 6, then you *have to* write "abi-omnipotent" code,
     45 #    because >6 cases can't be addressed with unified prologue.
     46 # 5. Name local labels as .L*, do *not* use dynamic labels such as 1:
     47 #    (sorry about latter).
     48 # 6. Don't use [or hand-code with .byte] "rep ret." "ret" mnemonic is
     49 #    required to identify the spots, where to inject Win64 epilogue!
     50 #    But on the pros, it's then prefixed with rep automatically:-)
     51 # 7. Stick to explicit ip-relative addressing. If you have to use
     52 #    GOTPCREL addressing, stick to mov symbol@GOTPCREL(%rip),%r??.
     53 #    Both are recognized and translated to proper Win64 addressing
     54 #    modes.
     55 #
     56 # 8. In order to provide for structured exception handling unified
     57 #    Win64 prologue copies %rsp value to %rax. For further details
     58 #    see SEH paragraph at the end.
     59 # 9. .init segment is allowed to contain calls to functions only.
     60 # a. If function accepts more than 4 arguments *and* >4th argument
     61 #    is declared as non 64-bit value, do clear its upper part.
     62 
     64 
     65 use strict;
     66 
     67 my $flavour = shift;
     68 my $output  = shift;
     69 if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
     70 
     71 open STDOUT,">$output" || die "can't open $output: $!"
     72 	if (defined($output));
     73 
     74 my $gas=1;	$gas=0 if ($output =~ /\.asm$/);
     75 my $elf=1;	$elf=0 if (!$gas);
     76 my $win64=0;
     77 my $prefix="";
     78 my $decor=".L";
     79 
     80 my $masmref=8 + 50727*2**-32;	# 8.00.50727 shipped with VS2005
     81 my $masm=0;
     82 my $PTR=" PTR";
     83 
     84 my $nasmref=2.03;
     85 my $nasm=0;
     86 
     87 if    ($flavour eq "mingw64")	{ $gas=1; $elf=0; $win64=1;
     88 				  # TODO(davidben): Before supporting the
     89 				  # mingw64 perlasm flavour, do away with this
     90 				  # environment variable check.
     91                                   die "mingw64 not supported";
     92 				  $prefix=`echo __USER_LABEL_PREFIX__ | $ENV{CC} -E -P -`;
     93 				  $prefix =~ s|\R$||; # Better chomp
     94 				}
     95 elsif ($flavour eq "macosx")	{ $gas=1; $elf=0; $prefix="_"; $decor="L\$"; }
     96 elsif ($flavour eq "masm")	{ $gas=0; $elf=0; $masm=$masmref; $win64=1; $decor="\$L\$"; }
     97 elsif ($flavour eq "nasm")	{ $gas=0; $elf=0; $nasm=$nasmref; $win64=1; $decor="\$L\$"; $PTR=""; }
     98 elsif (!$gas)			{ die "unknown flavour $flavour"; }
     99 
    100 my $current_segment;
    101 my $current_function;
    102 my %globals;
    103 
    104 { package opcode;	# pick up opcodes
    105     sub re {
    106 	my	($class, $line) = @_;
    107 	my	$self = {};
    108 	my	$ret;
    109 
    110 	if ($$line =~ /^([a-z][a-z0-9]*)/i) {
    111 	    bless $self,$class;
    112 	    $self->{op} = $1;
    113 	    $ret = $self;
    114 	    $$line = substr($$line,@+[0]); $$line =~ s/^\s+//;
    115 
    116 	    undef $self->{sz};
    117 	    if ($self->{op} =~ /^(movz)x?([bw]).*/) {	# movz is pain...
    118 		$self->{op} = $1;
    119 		$self->{sz} = $2;
    120 	    } elsif ($self->{op} =~ /call|jmp/) {
    121 		$self->{sz} = "";
    122 	    } elsif ($self->{op} =~ /^p/ && $' !~ /^(ush|op|insrw)/) { # SSEn
    123 		$self->{sz} = "";
    124 	    } elsif ($self->{op} =~ /^[vk]/) { # VEX or k* such as kmov
    125 		$self->{sz} = "";
    126 	    } elsif ($self->{op} =~ /mov[dq]/ && $$line =~ /%xmm/) {
    127 		$self->{sz} = "";
    128 	    } elsif ($self->{op} =~ /([a-z]{3,})([qlwb])$/) {
    129 		$self->{op} = $1;
    130 		$self->{sz} = $2;
    131 	    }
    132 	}
    133 	$ret;
    134     }
    135     sub size {
    136 	my ($self, $sz) = @_;
    137 	$self->{sz} = $sz if (defined($sz) && !defined($self->{sz}));
    138 	$self->{sz};
    139     }
    140     sub out {
    141 	my $self = shift;
    142 	if ($gas) {
    143 	    if ($self->{op} eq "movz") {	# movz is pain...
    144 		sprintf "%s%s%s",$self->{op},$self->{sz},shift;
    145 	    } elsif ($self->{op} =~ /^set/) {
    146 		"$self->{op}";
    147 	    } elsif ($self->{op} eq "ret") {
    148 		my $epilogue = "";
    149 		if ($win64 && $current_function->{abi} eq "svr4") {
    150 		    $epilogue = "movq	8(%rsp),%rdi\n\t" .
    151 				"movq	16(%rsp),%rsi\n\t";
    152 		}
    153 	    	$epilogue . ".byte	0xf3,0xc3";
    154 	    } elsif ($self->{op} eq "call" && !$elf && $current_segment eq ".init") {
    155 		".p2align\t3\n\t.quad";
    156 	    } else {
    157 		"$self->{op}$self->{sz}";
    158 	    }
    159 	} else {
    160 	    $self->{op} =~ s/^movz/movzx/;
    161 	    if ($self->{op} eq "ret") {
    162 		$self->{op} = "";
    163 		if ($win64 && $current_function->{abi} eq "svr4") {
    164 		    $self->{op} = "mov	rdi,QWORD$PTR\[8+rsp\]\t;WIN64 epilogue\n\t".
    165 				  "mov	rsi,QWORD$PTR\[16+rsp\]\n\t";
    166 	    	}
    167 		$self->{op} .= "DB\t0F3h,0C3h\t\t;repret";
    168 	    } elsif ($self->{op} =~ /^(pop|push)f/) {
    169 		$self->{op} .= $self->{sz};
    170 	    } elsif ($self->{op} eq "call" && $current_segment eq ".CRT\$XCU") {
    171 		$self->{op} = "\tDQ";
    172 	    }
    173 	    $self->{op};
    174 	}
    175     }
    176     sub mnemonic {
    177 	my ($self, $op) = @_;
    178 	$self->{op}=$op if (defined($op));
    179 	$self->{op};
    180     }
    181 }
    182 { package const;	# pick up constants, which start with $
    183     sub re {
    184 	my	($class, $line) = @_;
    185 	my	$self = {};
    186 	my	$ret;
    187 
    188 	if ($$line =~ /^\$([^,]+)/) {
    189 	    bless $self, $class;
    190 	    $self->{value} = $1;
    191 	    $ret = $self;
    192 	    $$line = substr($$line,@+[0]); $$line =~ s/^\s+//;
    193 	}
    194 	$ret;
    195     }
    196     sub out {
    197     	my $self = shift;
    198 
    199 	$self->{value} =~ s/\b(0b[0-1]+)/oct($1)/eig;
    200 	if ($gas) {
    201 	    # Solaris /usr/ccs/bin/as can't handle multiplications
    202 	    # in $self->{value}
    203 	    my $value = $self->{value};
    204 	    no warnings;    # oct might complain about overflow, ignore here...
    205 	    $value =~ s/(?<![\w\$\.])(0x?[0-9a-f]+)/oct($1)/egi;
    206 	    if ($value =~ s/([0-9]+\s*[\*\/\%]\s*[0-9]+)/eval($1)/eg) {
    207 		$self->{value} = $value;
    208 	    }
    209 	    sprintf "\$%s",$self->{value};
    210 	} else {
    211 	    $self->{value} =~ s/0x([0-9a-f]+)/0$1h/ig if ($masm);
    212 	    sprintf "%s",$self->{value};
    213 	}
    214     }
    215 }
    216 { package ea;		# pick up effective addresses: expr(%reg,%reg,scale)
    217 
    218     my %szmap = (	b=>"BYTE$PTR",    w=>"WORD$PTR",
    219 			l=>"DWORD$PTR",   d=>"DWORD$PTR",
    220 			q=>"QWORD$PTR",   o=>"OWORD$PTR",
    221 			x=>"XMMWORD$PTR", y=>"YMMWORD$PTR",
    222 			z=>"ZMMWORD$PTR" ) if (!$gas);
    223 
    224     sub re {
    225 	my	($class, $line, $opcode) = @_;
    226 	my	$self = {};
    227 	my	$ret;
    228 
    229 	# optional * ----vvv--- appears in indirect jmp/call
    230 	if ($$line =~ /^(\*?)([^\(,]*)\(([%\w,]+)\)((?:{[^}]+})*)/) {
    231 	    bless $self, $class;
    232 	    $self->{asterisk} = $1;
    233 	    $self->{label} = $2;
    234 	    ($self->{base},$self->{index},$self->{scale})=split(/,/,$3);
    235 	    $self->{scale} = 1 if (!defined($self->{scale}));
    236 	    $self->{opmask} = $4;
    237 	    $ret = $self;
    238 	    $$line = substr($$line,@+[0]); $$line =~ s/^\s+//;
    239 
    240 	    if ($win64 && $self->{label} =~ s/\@GOTPCREL//) {
    241 		die if ($opcode->mnemonic() ne "mov");
    242 		$opcode->mnemonic("lea");
    243 	    }
    244 	    $self->{base}  =~ s/^%//;
    245 	    $self->{index} =~ s/^%// if (defined($self->{index}));
    246 	    $self->{opcode} = $opcode;
    247 	}
    248 	$ret;
    249     }
    250     sub size {}
    251     sub out {
    252 	my ($self, $sz) = @_;
    253 
    254 	$self->{label} =~ s/([_a-z][_a-z0-9]*)/$globals{$1} or $1/gei;
    255 	$self->{label} =~ s/\.L/$decor/g;
    256 
    257 	# Silently convert all EAs to 64-bit. This is required for
    258 	# elder GNU assembler and results in more compact code,
    259 	# *but* most importantly AES module depends on this feature!
    260 	$self->{index} =~ s/^[er](.?[0-9xpi])[d]?$/r\1/;
    261 	$self->{base}  =~ s/^[er](.?[0-9xpi])[d]?$/r\1/;
    262 
    263 	# Solaris /usr/ccs/bin/as can't handle multiplications
    264 	# in $self->{label}...
    265 	use integer;
    266 	$self->{label} =~ s/(?<![\w\$\.])(0x?[0-9a-f]+)/oct($1)/egi;
    267 	$self->{label} =~ s/\b([0-9]+\s*[\*\/\%]\s*[0-9]+)\b/eval($1)/eg;
    268 
    269 	# Some assemblers insist on signed presentation of 32-bit
    270 	# offsets, but sign extension is a tricky business in perl...
    271 	if ((1<<31)<<1) {
    272 	    $self->{label} =~ s/\b([0-9]+)\b/$1<<32>>32/eg;
    273 	} else {
    274 	    $self->{label} =~ s/\b([0-9]+)\b/$1>>0/eg;
    275 	}
    276 
    277 	# if base register is %rbp or %r13, see if it's possible to
    278 	# flip base and index registers [for better performance]
    279 	if (!$self->{label} && $self->{index} && $self->{scale}==1 &&
    280 	    $self->{base} =~ /(rbp|r13)/) {
    281 		$self->{base} = $self->{index}; $self->{index} = $1;
    282 	}
    283 
    284 	if ($gas) {
    285 	    $self->{label} =~ s/^___imp_/__imp__/   if ($flavour eq "mingw64");
    286 
    287 	    if (defined($self->{index})) {
    288 		sprintf "%s%s(%s,%%%s,%d)%s",
    289 					$self->{asterisk},$self->{label},
    290 					$self->{base}?"%$self->{base}":"",
    291 					$self->{index},$self->{scale},
    292 					$self->{opmask};
    293 	    } else {
    294 		sprintf "%s%s(%%%s)%s",	$self->{asterisk},$self->{label},
    295 					$self->{base},$self->{opmask};
    296 	    }
    297 	} else {
    298 	    $self->{label} =~ s/\./\$/g;
    299 	    $self->{label} =~ s/(?<![\w\$\.])0x([0-9a-f]+)/0$1h/ig;
    300 	    $self->{label} = "($self->{label})" if ($self->{label} =~ /[\*\+\-\/]/);
    301 
    302 	    my $mnemonic = $self->{opcode}->mnemonic();
    303 	    ($self->{asterisk})				&& ($sz="q") ||
    304 	    ($mnemonic =~ /^v?mov([qd])$/)		&& ($sz=$1)  ||
    305 	    ($mnemonic =~ /^v?pinsr([qdwb])$/)		&& ($sz=$1)  ||
    306 	    ($mnemonic =~ /^vpbroadcast([qdwb])$/)	&& ($sz=$1)  ||
    307 	    ($mnemonic =~ /^v(?!perm)[a-z]+[fi]128$/)	&& ($sz="x");
    308 
    309 	    $self->{opmask}  =~ s/%(k[0-7])/$1/;
    310 
    311 	    if (defined($self->{index})) {
    312 		sprintf "%s[%s%s*%d%s]%s",$szmap{$sz},
    313 					$self->{label}?"$self->{label}+":"",
    314 					$self->{index},$self->{scale},
    315 					$self->{base}?"+$self->{base}":"",
    316 					$self->{opmask};
    317 	    } elsif ($self->{base} eq "rip") {
    318 		sprintf "%s[%s]",$szmap{$sz},$self->{label};
    319 	    } else {
    320 		sprintf "%s[%s%s]%s",	$szmap{$sz},
    321 					$self->{label}?"$self->{label}+":"",
    322 					$self->{base},$self->{opmask};
    323 	    }
    324 	}
    325     }
    326 }
    327 { package register;	# pick up registers, which start with %.
    328     sub re {
    329 	my	($class, $line, $opcode) = @_;
    330 	my	$self = {};
    331 	my	$ret;
    332 
    333 	# optional * ----vvv--- appears in indirect jmp/call
    334 	if ($$line =~ /^(\*?)%(\w+)((?:{[^}]+})*)/) {
    335 	    bless $self,$class;
    336 	    $self->{asterisk} = $1;
    337 	    $self->{value} = $2;
    338 	    $self->{opmask} = $3;
    339 	    $opcode->size($self->size());
    340 	    $ret = $self;
    341 	    $$line = substr($$line,@+[0]); $$line =~ s/^\s+//;
    342 	}
    343 	$ret;
    344     }
    345     sub size {
    346 	my	$self = shift;
    347 	my	$ret;
    348 
    349 	if    ($self->{value} =~ /^r[\d]+b$/i)	{ $ret="b"; }
    350 	elsif ($self->{value} =~ /^r[\d]+w$/i)	{ $ret="w"; }
    351 	elsif ($self->{value} =~ /^r[\d]+d$/i)	{ $ret="l"; }
    352 	elsif ($self->{value} =~ /^r[\w]+$/i)	{ $ret="q"; }
    353 	elsif ($self->{value} =~ /^[a-d][hl]$/i){ $ret="b"; }
    354 	elsif ($self->{value} =~ /^[\w]{2}l$/i)	{ $ret="b"; }
    355 	elsif ($self->{value} =~ /^[\w]{2}$/i)	{ $ret="w"; }
    356 	elsif ($self->{value} =~ /^e[a-z]{2}$/i){ $ret="l"; }
    357 
    358 	$ret;
    359     }
    360     sub out {
    361     	my $self = shift;
    362 	if ($gas)	{ sprintf "%s%%%s%s",	$self->{asterisk},
    363 						$self->{value},
    364 						$self->{opmask}; }
    365 	else		{ $self->{opmask} =~ s/%(k[0-7])/$1/;
    366 			  $self->{value}.$self->{opmask}; }
    367     }
    368 }
    369 { package label;	# pick up labels, which end with :
    370     sub re {
    371 	my	($class, $line) = @_;
    372 	my	$self = {};
    373 	my	$ret;
    374 
    375 	if ($$line =~ /(^[\.\w]+)\:/) {
    376 	    bless $self,$class;
    377 	    $self->{value} = $1;
    378 	    $ret = $self;
    379 	    $$line = substr($$line,@+[0]); $$line =~ s/^\s+//;
    380 
    381 	    $self->{value} =~ s/^\.L/$decor/;
    382 	}
    383 	$ret;
    384     }
    385     sub out {
    386 	my $self = shift;
    387 
    388 	if ($gas) {
    389 	    my $func = ($globals{$self->{value}} or $self->{value}) . ":";
    390 	    if ($win64	&& $current_function->{name} eq $self->{value}
    391 			&& $current_function->{abi} eq "svr4") {
    392 		$func .= "\n";
    393 		$func .= "	movq	%rdi,8(%rsp)\n";
    394 		$func .= "	movq	%rsi,16(%rsp)\n";
    395 		$func .= "	movq	%rsp,%rax\n";
    396 		$func .= "${decor}SEH_begin_$current_function->{name}:\n";
    397 		my $narg = $current_function->{narg};
    398 		$narg=6 if (!defined($narg));
    399 		$func .= "	movq	%rcx,%rdi\n" if ($narg>0);
    400 		$func .= "	movq	%rdx,%rsi\n" if ($narg>1);
    401 		$func .= "	movq	%r8,%rdx\n"  if ($narg>2);
    402 		$func .= "	movq	%r9,%rcx\n"  if ($narg>3);
    403 		$func .= "	movq	40(%rsp),%r8\n" if ($narg>4);
    404 		$func .= "	movq	48(%rsp),%r9\n" if ($narg>5);
    405 	    }
    406 	    $func;
    407 	} elsif ($self->{value} ne "$current_function->{name}") {
    408 	    # Make all labels in masm global.
    409 	    $self->{value} .= ":" if ($masm);
    410 	    $self->{value} . ":";
    411 	} elsif ($win64 && $current_function->{abi} eq "svr4") {
    412 	    my $func =	"$current_function->{name}" .
    413 			($nasm ? ":" : "\tPROC $current_function->{scope}") .
    414 			"\n";
    415 	    $func .= "	mov	QWORD$PTR\[8+rsp\],rdi\t;WIN64 prologue\n";
    416 	    $func .= "	mov	QWORD$PTR\[16+rsp\],rsi\n";
    417 	    $func .= "	mov	rax,rsp\n";
    418 	    $func .= "${decor}SEH_begin_$current_function->{name}:";
    419 	    $func .= ":" if ($masm);
    420 	    $func .= "\n";
    421 	    my $narg = $current_function->{narg};
    422 	    $narg=6 if (!defined($narg));
    423 	    $func .= "	mov	rdi,rcx\n" if ($narg>0);
    424 	    $func .= "	mov	rsi,rdx\n" if ($narg>1);
    425 	    $func .= "	mov	rdx,r8\n"  if ($narg>2);
    426 	    $func .= "	mov	rcx,r9\n"  if ($narg>3);
    427 	    $func .= "	mov	r8,QWORD$PTR\[40+rsp\]\n" if ($narg>4);
    428 	    $func .= "	mov	r9,QWORD$PTR\[48+rsp\]\n" if ($narg>5);
    429 	    $func .= "\n";
    430 	} else {
    431 	   "$current_function->{name}".
    432 			($nasm ? ":" : "\tPROC $current_function->{scope}");
    433 	}
    434     }
    435 }
    436 { package expr;		# pick up expressions
    437     sub re {
    438 	my	($class, $line, $opcode) = @_;
    439 	my	$self = {};
    440 	my	$ret;
    441 
    442 	if ($$line =~ /(^[^,]+)/) {
    443 	    bless $self,$class;
    444 	    $self->{value} = $1;
    445 	    $ret = $self;
    446 	    $$line = substr($$line,@+[0]); $$line =~ s/^\s+//;
    447 
    448 	    $self->{value} =~ s/\@PLT// if (!$elf);
    449 	    $self->{value} =~ s/([_a-z][_a-z0-9]*)/$globals{$1} or $1/gei;
    450 	    $self->{value} =~ s/\.L/$decor/g;
    451 	    $self->{opcode} = $opcode;
    452 	}
    453 	$ret;
    454     }
    455     sub out {
    456 	my $self = shift;
    457 	if ($nasm && $self->{opcode}->mnemonic()=~m/^j(?![re]cxz)/) {
    458 	    "NEAR ".$self->{value};
    459 	} else {
    460 	    $self->{value};
    461 	}
    462     }
    463 }
    464 { package cfi_directive;
    465     # CFI directives annotate instructions that are significant for
    466     # stack unwinding procedure compliant with DWARF specification,
    467     # see http://dwarfstd.org/. Besides naturally expected for this
    468     # script platform-specific filtering function, this module adds
    469     # three auxiliary synthetic directives not recognized by [GNU]
    470     # assembler:
    471     #
    472     # - .cfi_push to annotate push instructions in prologue, which
    473     #   translates to .cfi_adjust_cfa_offset (if needed) and
    474     #   .cfi_offset;
    475     # - .cfi_pop to annotate pop instructions in epilogue, which
    476     #   translates to .cfi_adjust_cfa_offset (if needed) and
    477     #   .cfi_restore;
    478     # - [and most notably] .cfi_cfa_expression which encodes
    479     #   DW_CFA_def_cfa_expression and passes it to .cfi_escape as
    480     #   byte vector;
    481     #
    482     # CFA expressions were introduced in DWARF specification version
    483     # 3 and describe how to deduce CFA, Canonical Frame Address. This
    484     # becomes handy if your stack frame is variable and you can't
    485     # spare register for [previous] frame pointer. Suggested directive
    486     # syntax is made-up mix of DWARF operator suffixes [subset of]
    487     # and references to registers with optional bias. Following example
    488     # describes offloaded *original* stack pointer at specific offset
    489     # from *current* stack pointer:
    490     #
    491     #   .cfi_cfa_expression     %rsp+40,deref,+8
    492     #
    493     # Final +8 has everything to do with the fact that CFA is defined
    494     # as reference to top of caller's stack, and on x86_64 call to
    495     # subroutine pushes 8-byte return address. In other words original
    496     # stack pointer upon entry to a subroutine is 8 bytes off from CFA.
    497 
    498     # Below constants are taken from "DWARF Expressions" section of the
    499     # DWARF specification, section is numbered 7.7 in versions 3 and 4.
    500     my %DW_OP_simple = (	# no-arg operators, mapped directly
    501 	deref	=> 0x06,	dup	=> 0x12,
    502 	drop	=> 0x13,	over	=> 0x14,
    503 	pick	=> 0x15,	swap	=> 0x16,
    504 	rot	=> 0x17,	xderef	=> 0x18,
    505 
    506 	abs	=> 0x19,	and	=> 0x1a,
    507 	div	=> 0x1b,	minus	=> 0x1c,
    508 	mod	=> 0x1d,	mul	=> 0x1e,
    509 	neg	=> 0x1f,	not	=> 0x20,
    510 	or	=> 0x21,	plus	=> 0x22,
    511 	shl	=> 0x24,	shr	=> 0x25,
    512 	shra	=> 0x26,	xor	=> 0x27,
    513 	);
    514 
    515     my %DW_OP_complex = (	# used in specific subroutines
    516 	constu		=> 0x10,	# uleb128
    517 	consts		=> 0x11,	# sleb128
    518 	plus_uconst	=> 0x23,	# uleb128
    519 	lit0 		=> 0x30,	# add 0-31 to opcode
    520 	reg0		=> 0x50,	# add 0-31 to opcode
    521 	breg0		=> 0x70,	# add 0-31 to opcole, sleb128
    522 	regx		=> 0x90,	# uleb28
    523 	fbreg		=> 0x91,	# sleb128
    524 	bregx		=> 0x92,	# uleb128, sleb128
    525 	piece		=> 0x93,	# uleb128
    526 	);
    527 
    528     # Following constants are defined in x86_64 ABI supplement, for
    529     # example avaiable at https://www.uclibc.org/docs/psABI-x86_64.pdf,
    530     # see section 3.7 "Stack Unwind Algorithm".
    531     my %DW_reg_idx = (
    532 	"%rax"=>0,  "%rdx"=>1,  "%rcx"=>2,  "%rbx"=>3,
    533 	"%rsi"=>4,  "%rdi"=>5,  "%rbp"=>6,  "%rsp"=>7,
    534 	"%r8" =>8,  "%r9" =>9,  "%r10"=>10, "%r11"=>11,
    535 	"%r12"=>12, "%r13"=>13, "%r14"=>14, "%r15"=>15
    536 	);
    537 
    538     my ($cfa_reg, $cfa_rsp);
    539 
    540     # [us]leb128 format is variable-length integer representation base
    541     # 2^128, with most significant bit of each byte being 0 denoting
    542     # *last* most significat digit. See "Variable Length Data" in the
    543     # DWARF specification, numbered 7.6 at least in versions 3 and 4.
    544     sub sleb128 {
    545 	use integer;	# get right shift extend sign
    546 
    547 	my $val = shift;
    548 	my $sign = ($val < 0) ? -1 : 0;
    549 	my @ret = ();
    550 
    551 	while(1) {
    552 	    push @ret, $val&0x7f;
    553 
    554 	    # see if remaining bits are same and equal to most
    555 	    # significant bit of the current digit, if so, it's
    556 	    # last digit...
    557 	    last if (($val>>6) == $sign);
    558 
    559 	    @ret[-1] |= 0x80;
    560 	    $val >>= 7;
    561 	}
    562 
    563 	return @ret;
    564     }
    565     sub uleb128 {
    566 	my $val = shift;
    567 	my @ret = ();
    568 
    569 	while(1) {
    570 	    push @ret, $val&0x7f;
    571 
    572 	    # see if it's last significant digit...
    573 	    last if (($val >>= 7) == 0);
    574 
    575 	    @ret[-1] |= 0x80;
    576 	}
    577 
    578 	return @ret;
    579     }
    580     sub const {
    581 	my $val = shift;
    582 
    583 	if ($val >= 0 && $val < 32) {
    584             return ($DW_OP_complex{lit0}+$val);
    585 	}
    586 	return ($DW_OP_complex{consts}, sleb128($val));
    587     }
    588     sub reg {
    589 	my $val = shift;
    590 
    591 	return if ($val !~ m/^(%r\w+)(?:([\+\-])((?:0x)?[0-9a-f]+))?/);
    592 
    593 	my $reg = $DW_reg_idx{$1};
    594 	my $off = eval ("0 $2 $3");
    595 
    596 	return (($DW_OP_complex{breg0} + $reg), sleb128($off));
    597 	# Yes, we use DW_OP_bregX+0 to push register value and not
    598 	# DW_OP_regX, because latter would require even DW_OP_piece,
    599 	# which would be a waste under the circumstances. If you have
    600 	# to use DWP_OP_reg, use "regx:N"...
    601     }
    602     sub cfa_expression {
    603 	my $line = shift;
    604 	my @ret;
    605 
    606 	foreach my $token (split(/,\s*/,$line)) {
    607 	    if ($token =~ /^%r/) {
    608 		push @ret,reg($token);
    609 	    } elsif ($token =~ /((?:0x)?[0-9a-f]+)\((%r\w+)\)/) {
    610 		push @ret,reg("$2+$1");
    611 	    } elsif ($token =~ /(\w+):(\-?(?:0x)?[0-9a-f]+)(U?)/i) {
    612 		my $i = 1*eval($2);
    613 		push @ret,$DW_OP_complex{$1}, ($3 ? uleb128($i) : sleb128($i));
    614 	    } elsif (my $i = 1*eval($token) or $token eq "0") {
    615 		if ($token =~ /^\+/) {
    616 		    push @ret,$DW_OP_complex{plus_uconst},uleb128($i);
    617 		} else {
    618 		    push @ret,const($i);
    619 		}
    620 	    } else {
    621 		push @ret,$DW_OP_simple{$token};
    622 	    }
    623 	}
    624 
    625 	# Finally we return DW_CFA_def_cfa_expression, 15, followed by
    626 	# length of the expression and of course the expression itself.
    627 	return (15,scalar(@ret),@ret);
    628     }
    629     sub re {
    630 	my	($class, $line) = @_;
    631 	my	$self = {};
    632 	my	$ret;
    633 
    634 	if ($$line =~ s/^\s*\.cfi_(\w+)\s*//) {
    635 	    bless $self,$class;
    636 	    $ret = $self;
    637 	    undef $self->{value};
    638 	    my $dir = $1;
    639 
    640 	    SWITCH: for ($dir) {
    641 	    # What is $cfa_rsp? Effectively it's difference between %rsp
    642 	    # value and current CFA, Canonical Frame Address, which is
    643 	    # why it starts with -8. Recall that CFA is top of caller's
    644 	    # stack...
    645 	    /startproc/	&& do {	($cfa_reg, $cfa_rsp) = ("%rsp", -8); last; };
    646 	    /endproc/	&& do {	($cfa_reg, $cfa_rsp) = ("%rsp",  0); last; };
    647 	    /def_cfa_register/
    648 			&& do {	$cfa_reg = $$line; last; };
    649 	    /def_cfa_offset/
    650 			&& do {	$cfa_rsp = -1*eval($$line) if ($cfa_reg eq "%rsp");
    651 				last;
    652 			      };
    653 	    /adjust_cfa_offset/
    654 			&& do {	$cfa_rsp -= 1*eval($$line) if ($cfa_reg eq "%rsp");
    655 				last;
    656 			      };
    657 	    /def_cfa/	&& do {	if ($$line =~ /(%r\w+)\s*,\s*(.+)/) {
    658 				    $cfa_reg = $1;
    659 				    $cfa_rsp = -1*eval($2) if ($cfa_reg eq "%rsp");
    660 				}
    661 				last;
    662 			      };
    663 	    /push/	&& do {	$dir = undef;
    664 				$cfa_rsp -= 8;
    665 				if ($cfa_reg eq "%rsp") {
    666 				    $self->{value} = ".cfi_adjust_cfa_offset\t8\n";
    667 				}
    668 				$self->{value} .= ".cfi_offset\t$$line,$cfa_rsp";
    669 				last;
    670 			      };
    671 	    /pop/	&& do {	$dir = undef;
    672 				$cfa_rsp += 8;
    673 				if ($cfa_reg eq "%rsp") {
    674 				    $self->{value} = ".cfi_adjust_cfa_offset\t-8\n";
    675 				}
    676 				$self->{value} .= ".cfi_restore\t$$line";
    677 				last;
    678 			      };
    679 	    /cfa_expression/
    680 			&& do {	$dir = undef;
    681 				$self->{value} = ".cfi_escape\t" .
    682 					join(",", map(sprintf("0x%02x", $_),
    683 						      cfa_expression($$line)));
    684 				last;
    685 			      };
    686 	    }
    687 
    688 	    $self->{value} = ".cfi_$dir\t$$line" if ($dir);
    689 
    690 	    $$line = "";
    691 	}
    692 
    693 	return $ret;
    694     }
    695     sub out {
    696 	my $self = shift;
    697 	return ($elf ? $self->{value} : undef);
    698     }
    699 }
    700 { package directive;	# pick up directives, which start with .
    701     sub re {
    702 	my	($class, $line) = @_;
    703 	my	$self = {};
    704 	my	$ret;
    705 	my	$dir;
    706 
    707 	# chain-call to cfi_directive
    708 	$ret = cfi_directive->re($line) and return $ret;
    709 
    710 	if ($$line =~ /^\s*(\.\w+)/) {
    711 	    bless $self,$class;
    712 	    $dir = $1;
    713 	    $ret = $self;
    714 	    undef $self->{value};
    715 	    $$line = substr($$line,@+[0]); $$line =~ s/^\s+//;
    716 
    717 	    SWITCH: for ($dir) {
    718 		/\.global|\.globl|\.extern/
    719 			    && do { $globals{$$line} = $prefix . $$line;
    720 				    $$line = $globals{$$line} if ($prefix);
    721 				    last;
    722 				  };
    723 		/\.type/    && do { my ($sym,$type,$narg) = split(',',$$line);
    724 				    if ($type eq "\@function") {
    725 					undef $current_function;
    726 					$current_function->{name} = $sym;
    727 					$current_function->{abi}  = "svr4";
    728 					$current_function->{narg} = $narg;
    729 					$current_function->{scope} = defined($globals{$sym})?"PUBLIC":"PRIVATE";
    730 				    } elsif ($type eq "\@abi-omnipotent") {
    731 					undef $current_function;
    732 					$current_function->{name} = $sym;
    733 					$current_function->{scope} = defined($globals{$sym})?"PUBLIC":"PRIVATE";
    734 				    }
    735 				    $$line =~ s/\@abi\-omnipotent/\@function/;
    736 				    $$line =~ s/\@function.*/\@function/;
    737 				    last;
    738 				  };
    739 		/\.asciz/   && do { if ($$line =~ /^"(.*)"$/) {
    740 					$dir  = ".byte";
    741 					$$line = join(",",unpack("C*",$1),0);
    742 				    }
    743 				    last;
    744 				  };
    745 		/\.rva|\.long|\.quad/
    746 			    && do { $$line =~ s/([_a-z][_a-z0-9]*)/$globals{$1} or $1/gei;
    747 				    $$line =~ s/\.L/$decor/g;
    748 				    last;
    749 				  };
    750 	    }
    751 
    752 	    if ($gas) {
    753 		$self->{value} = $dir . "\t" . $$line;
    754 
    755 		if ($dir =~ /\.extern/) {
    756 		    if ($flavour eq "elf") {
    757 			$self->{value} .= "\n.hidden $$line";
    758 		    } else {
    759 			$self->{value} = "";
    760 		    }
    761 		} elsif (!$elf && $dir =~ /\.type/) {
    762 		    $self->{value} = "";
    763 		    $self->{value} = ".def\t" . ($globals{$1} or $1) . ";\t" .
    764 				(defined($globals{$1})?".scl 2;":".scl 3;") .
    765 				"\t.type 32;\t.endef"
    766 				if ($win64 && $$line =~ /([^,]+),\@function/);
    767 		} elsif (!$elf && $dir =~ /\.size/) {
    768 		    $self->{value} = "";
    769 		    if (defined($current_function)) {
    770 			$self->{value} .= "${decor}SEH_end_$current_function->{name}:"
    771 				if ($win64 && $current_function->{abi} eq "svr4");
    772 			undef $current_function;
    773 		    }
    774 		} elsif (!$elf && $dir =~ /\.align/) {
    775 		    $self->{value} = ".p2align\t" . (log($$line)/log(2));
    776 		} elsif ($dir eq ".section") {
    777 		    $current_segment=$$line;
    778 		    if (!$elf && $current_segment eq ".init") {
    779 			if	($flavour eq "macosx")	{ $self->{value} = ".mod_init_func"; }
    780 			elsif	($flavour eq "mingw64")	{ $self->{value} = ".section\t.ctors"; }
    781 		    }
    782 		} elsif ($dir =~ /\.(text|data)/) {
    783 		    $current_segment=".$1";
    784 		} elsif ($dir =~ /\.global|\.globl|\.extern/) {
    785 		    if ($flavour eq "macosx") {
    786 		        $self->{value} .= "\n.private_extern $$line";
    787 		    } else {
    788 		        $self->{value} .= "\n.hidden $$line";
    789 		    }
    790 		} elsif ($dir =~ /\.hidden/) {
    791 		    if    ($flavour eq "macosx")  { $self->{value} = ".private_extern\t$prefix$$line"; }
    792 		    elsif ($flavour eq "mingw64") { $self->{value} = ""; }
    793 		} elsif ($dir =~ /\.comm/) {
    794 		    $self->{value} = "$dir\t$prefix$$line";
    795 		    $self->{value} =~ s|,([0-9]+),([0-9]+)$|",$1,".log($2)/log(2)|e if ($flavour eq "macosx");
    796 		}
    797 		$$line = "";
    798 		return $self;
    799 	    }
    800 
    801 	    # non-gas case or nasm/masm
    802 	    SWITCH: for ($dir) {
    803 		/\.text/    && do { my $v=undef;
    804 				    if ($nasm) {
    805 					$v="section	.text code align=64\n";
    806 				    } else {
    807 					$v="$current_segment\tENDS\n" if ($current_segment);
    808 					$current_segment = ".text\$";
    809 					$v.="$current_segment\tSEGMENT ";
    810 					$v.=$masm>=$masmref ? "ALIGN(256)" : "PAGE";
    811 					$v.=" 'CODE'";
    812 				    }
    813 				    $self->{value} = $v;
    814 				    last;
    815 				  };
    816 		/\.data/    && do { my $v=undef;
    817 				    if ($nasm) {
    818 					$v="section	.data data align=8\n";
    819 				    } else {
    820 					$v="$current_segment\tENDS\n" if ($current_segment);
    821 					$current_segment = "_DATA";
    822 					$v.="$current_segment\tSEGMENT";
    823 				    }
    824 				    $self->{value} = $v;
    825 				    last;
    826 				  };
    827 		/\.section/ && do { my $v=undef;
    828 				    $$line =~ s/([^,]*).*/$1/;
    829 				    $$line = ".CRT\$XCU" if ($$line eq ".init");
    830 				    if ($nasm) {
    831 					$v="section	$$line";
    832 					if ($$line=~/\.([px])data/) {
    833 					    $v.=" rdata align=";
    834 					    $v.=$1 eq "p"? 4 : 8;
    835 					} elsif ($$line=~/\.CRT\$/i) {
    836 					    $v.=" rdata align=8";
    837 					}
    838 				    } else {
    839 					$v="$current_segment\tENDS\n" if ($current_segment);
    840 					$v.="$$line\tSEGMENT";
    841 					if ($$line=~/\.([px])data/) {
    842 					    $v.=" READONLY";
    843 					    $v.=" ALIGN(".($1 eq "p" ? 4 : 8).")" if ($masm>=$masmref);
    844 					} elsif ($$line=~/\.CRT\$/i) {
    845 					    $v.=" READONLY ";
    846 					    $v.=$masm>=$masmref ? "ALIGN(8)" : "DWORD";
    847 					}
    848 				    }
    849 				    $current_segment = $$line;
    850 				    $self->{value} = $v;
    851 				    last;
    852 				  };
    853 		/\.extern/  && do { $self->{value}  = "EXTERN\t".$$line;
    854 				    $self->{value} .= ":NEAR" if ($masm);
    855 				    last;
    856 				  };
    857 		/\.globl|.global/
    858 			    && do { $self->{value}  = $masm?"PUBLIC":"global";
    859 				    $self->{value} .= "\t".$$line;
    860 				    last;
    861 				  };
    862 		/\.size/    && do { if (defined($current_function)) {
    863 					undef $self->{value};
    864 					if ($current_function->{abi} eq "svr4") {
    865 					    $self->{value}="${decor}SEH_end_$current_function->{name}:";
    866 					    $self->{value}.=":\n" if($masm);
    867 					}
    868 					$self->{value}.="$current_function->{name}\tENDP" if($masm && $current_function->{name});
    869 					undef $current_function;
    870 				    }
    871 				    last;
    872 				  };
    873 		/\.align/   && do { my $max = ($masm && $masm>=$masmref) ? 256 : 4096;
    874 				    $self->{value} = "ALIGN\t".($$line>$max?$max:$$line);
    875 				    last;
    876 				  };
    877 		/\.(value|long|rva|quad)/
    878 			    && do { my $sz  = substr($1,0,1);
    879 				    my @arr = split(/,\s*/,$$line);
    880 				    my $last = pop(@arr);
    881 				    my $conv = sub  {	my $var=shift;
    882 							$var=~s/^(0b[0-1]+)/oct($1)/eig;
    883 							$var=~s/^0x([0-9a-f]+)/0$1h/ig if ($masm);
    884 							if ($sz eq "D" && ($current_segment=~/.[px]data/ || $dir eq ".rva"))
    885 							{ $var=~s/([_a-z\$\@][_a-z0-9\$\@]*)/$nasm?"$1 wrt ..imagebase":"imagerel $1"/egi; }
    886 							$var;
    887 						    };
    888 
    889 				    $sz =~ tr/bvlrq/BWDDQ/;
    890 				    $self->{value} = "\tD$sz\t";
    891 				    for (@arr) { $self->{value} .= &$conv($_).","; }
    892 				    $self->{value} .= &$conv($last);
    893 				    last;
    894 				  };
    895 		/\.byte/    && do { my @str=split(/,\s*/,$$line);
    896 				    map(s/(0b[0-1]+)/oct($1)/eig,@str);
    897 				    map(s/0x([0-9a-f]+)/0$1h/ig,@str) if ($masm);
    898 				    while ($#str>15) {
    899 					$self->{value}.="DB\t"
    900 						.join(",",@str[0..15])."\n";
    901 					foreach (0..15) { shift @str; }
    902 				    }
    903 				    $self->{value}.="DB\t"
    904 						.join(",",@str) if (@str);
    905 				    last;
    906 				  };
    907 		/\.comm/    && do { my @str=split(/,\s*/,$$line);
    908 				    my $v=undef;
    909 				    if ($nasm) {
    910 					$v.="common	$prefix@str[0] @str[1]";
    911 				    } else {
    912 					$v="$current_segment\tENDS\n" if ($current_segment);
    913 					$current_segment = "_DATA";
    914 					$v.="$current_segment\tSEGMENT\n";
    915 					$v.="COMM	@str[0]:DWORD:".@str[1]/4;
    916 				    }
    917 				    $self->{value} = $v;
    918 				    last;
    919 				  };
    920 	    }
    921 	    $$line = "";
    922 	}
    923 
    924 	$ret;
    925     }
    926     sub out {
    927 	my $self = shift;
    928 	$self->{value};
    929     }
    930 }
    931 
    932 # Upon initial x86_64 introduction SSE>2 extensions were not introduced
    933 # yet. In order not to be bothered by tracing exact assembler versions,
    934 # but at the same time to provide a bare security minimum of AES-NI, we
    935 # hard-code some instructions. Extensions past AES-NI on the other hand
    936 # are traced by examining assembler version in individual perlasm
    937 # modules...
    938 
    939 my %regrm = (	"%eax"=>0, "%ecx"=>1, "%edx"=>2, "%ebx"=>3,
    940 		"%esp"=>4, "%ebp"=>5, "%esi"=>6, "%edi"=>7	);
    941 
    942 sub rex {
    943  my $opcode=shift;
    944  my ($dst,$src,$rex)=@_;
    945 
    946    $rex|=0x04 if($dst>=8);
    947    $rex|=0x01 if($src>=8);
    948    push @$opcode,($rex|0x40) if ($rex);
    949 }
    950 
    951 my $movq = sub {	# elderly gas can't handle inter-register movq
    952   my $arg = shift;
    953   my @opcode=(0x66);
    954     if ($arg =~ /%xmm([0-9]+),\s*%r(\w+)/) {
    955 	my ($src,$dst)=($1,$2);
    956 	if ($dst !~ /[0-9]+/)	{ $dst = $regrm{"%e$dst"}; }
    957 	rex(\@opcode,$src,$dst,0x8);
    958 	push @opcode,0x0f,0x7e;
    959 	push @opcode,0xc0|(($src&7)<<3)|($dst&7);	# ModR/M
    960 	@opcode;
    961     } elsif ($arg =~ /%r(\w+),\s*%xmm([0-9]+)/) {
    962 	my ($src,$dst)=($2,$1);
    963 	if ($dst !~ /[0-9]+/)	{ $dst = $regrm{"%e$dst"}; }
    964 	rex(\@opcode,$src,$dst,0x8);
    965 	push @opcode,0x0f,0x6e;
    966 	push @opcode,0xc0|(($src&7)<<3)|($dst&7);	# ModR/M
    967 	@opcode;
    968     } else {
    969 	();
    970     }
    971 };
    972 
    973 my $pextrd = sub {
    974     if (shift =~ /\$([0-9]+),\s*%xmm([0-9]+),\s*(%\w+)/) {
    975       my @opcode=(0x66);
    976 	my $imm=$1;
    977 	my $src=$2;
    978 	my $dst=$3;
    979 	if ($dst =~ /%r([0-9]+)d/)	{ $dst = $1; }
    980 	elsif ($dst =~ /%e/)		{ $dst = $regrm{$dst}; }
    981 	rex(\@opcode,$src,$dst);
    982 	push @opcode,0x0f,0x3a,0x16;
    983 	push @opcode,0xc0|(($src&7)<<3)|($dst&7);	# ModR/M
    984 	push @opcode,$imm;
    985 	@opcode;
    986     } else {
    987 	();
    988     }
    989 };
    990 
    991 my $pinsrd = sub {
    992     if (shift =~ /\$([0-9]+),\s*(%\w+),\s*%xmm([0-9]+)/) {
    993       my @opcode=(0x66);
    994 	my $imm=$1;
    995 	my $src=$2;
    996 	my $dst=$3;
    997 	if ($src =~ /%r([0-9]+)/)	{ $src = $1; }
    998 	elsif ($src =~ /%e/)		{ $src = $regrm{$src}; }
    999 	rex(\@opcode,$dst,$src);
   1000 	push @opcode,0x0f,0x3a,0x22;
   1001 	push @opcode,0xc0|(($dst&7)<<3)|($src&7);	# ModR/M
   1002 	push @opcode,$imm;
   1003 	@opcode;
   1004     } else {
   1005 	();
   1006     }
   1007 };
   1008 
   1009 my $pshufb = sub {
   1010     if (shift =~ /%xmm([0-9]+),\s*%xmm([0-9]+)/) {
   1011       my @opcode=(0x66);
   1012 	rex(\@opcode,$2,$1);
   1013 	push @opcode,0x0f,0x38,0x00;
   1014 	push @opcode,0xc0|($1&7)|(($2&7)<<3);		# ModR/M
   1015 	@opcode;
   1016     } else {
   1017 	();
   1018     }
   1019 };
   1020 
   1021 my $palignr = sub {
   1022     if (shift =~ /\$([0-9]+),\s*%xmm([0-9]+),\s*%xmm([0-9]+)/) {
   1023       my @opcode=(0x66);
   1024 	rex(\@opcode,$3,$2);
   1025 	push @opcode,0x0f,0x3a,0x0f;
   1026 	push @opcode,0xc0|($2&7)|(($3&7)<<3);		# ModR/M
   1027 	push @opcode,$1;
   1028 	@opcode;
   1029     } else {
   1030 	();
   1031     }
   1032 };
   1033 
   1034 my $pclmulqdq = sub {
   1035     if (shift =~ /\$([x0-9a-f]+),\s*%xmm([0-9]+),\s*%xmm([0-9]+)/) {
   1036       my @opcode=(0x66);
   1037 	rex(\@opcode,$3,$2);
   1038 	push @opcode,0x0f,0x3a,0x44;
   1039 	push @opcode,0xc0|($2&7)|(($3&7)<<3);		# ModR/M
   1040 	my $c=$1;
   1041 	push @opcode,$c=~/^0/?oct($c):$c;
   1042 	@opcode;
   1043     } else {
   1044 	();
   1045     }
   1046 };
   1047 
   1048 my $rdrand = sub {
   1049     if (shift =~ /%[er](\w+)/) {
   1050       my @opcode=();
   1051       my $dst=$1;
   1052 	if ($dst !~ /[0-9]+/) { $dst = $regrm{"%e$dst"}; }
   1053 	rex(\@opcode,0,$dst,8);
   1054 	push @opcode,0x0f,0xc7,0xf0|($dst&7);
   1055 	@opcode;
   1056     } else {
   1057 	();
   1058     }
   1059 };
   1060 
   1061 my $rdseed = sub {
   1062     if (shift =~ /%[er](\w+)/) {
   1063       my @opcode=();
   1064       my $dst=$1;
   1065 	if ($dst !~ /[0-9]+/) { $dst = $regrm{"%e$dst"}; }
   1066 	rex(\@opcode,0,$dst,8);
   1067 	push @opcode,0x0f,0xc7,0xf8|($dst&7);
   1068 	@opcode;
   1069     } else {
   1070 	();
   1071     }
   1072 };
   1073 
   1074 # Not all AVX-capable assemblers recognize AMD XOP extension. Since we
   1075 # are using only two instructions hand-code them in order to be excused
   1076 # from chasing assembler versions...
   1077 
   1078 sub rxb {
   1079  my $opcode=shift;
   1080  my ($dst,$src1,$src2,$rxb)=@_;
   1081 
   1082    $rxb|=0x7<<5;
   1083    $rxb&=~(0x04<<5) if($dst>=8);
   1084    $rxb&=~(0x01<<5) if($src1>=8);
   1085    $rxb&=~(0x02<<5) if($src2>=8);
   1086    push @$opcode,$rxb;
   1087 }
   1088 
   1089 my $vprotd = sub {
   1090     if (shift =~ /\$([x0-9a-f]+),\s*%xmm([0-9]+),\s*%xmm([0-9]+)/) {
   1091       my @opcode=(0x8f);
   1092 	rxb(\@opcode,$3,$2,-1,0x08);
   1093 	push @opcode,0x78,0xc2;
   1094 	push @opcode,0xc0|($2&7)|(($3&7)<<3);		# ModR/M
   1095 	my $c=$1;
   1096 	push @opcode,$c=~/^0/?oct($c):$c;
   1097 	@opcode;
   1098     } else {
   1099 	();
   1100     }
   1101 };
   1102 
   1103 my $vprotq = sub {
   1104     if (shift =~ /\$([x0-9a-f]+),\s*%xmm([0-9]+),\s*%xmm([0-9]+)/) {
   1105       my @opcode=(0x8f);
   1106 	rxb(\@opcode,$3,$2,-1,0x08);
   1107 	push @opcode,0x78,0xc3;
   1108 	push @opcode,0xc0|($2&7)|(($3&7)<<3);		# ModR/M
   1109 	my $c=$1;
   1110 	push @opcode,$c=~/^0/?oct($c):$c;
   1111 	@opcode;
   1112     } else {
   1113 	();
   1114     }
   1115 };
   1116 
   1117 # Intel Control-flow Enforcement Technology extension. All functions and
   1118 # indirect branch targets will have to start with this instruction...
   1119 
   1120 my $endbranch = sub {
   1121     (0xf3,0x0f,0x1e,0xfa);
   1122 };
   1123 
   1124 ########################################################################
   1125 
   1126 if ($nasm) {
   1127     print <<___;
   1128 default	rel
   1129 %define XMMWORD
   1130 %define YMMWORD
   1131 %define ZMMWORD
   1132 ___
   1133 } elsif ($masm) {
   1134     print <<___;
   1135 OPTION	DOTNAME
   1136 ___
   1137 }
   1138 print STDOUT "#if defined(__x86_64__)\n" if ($gas);
   1139 
   1140 while(defined(my $line=<>)) {
   1141 
   1142     $line =~ s|\R$||;           # Better chomp
   1143 
   1144     $line =~ s|[#!].*$||;	# get rid of asm-style comments...
   1145     $line =~ s|/\*.*\*/||;	# ... and C-style comments...
   1146     $line =~ s|^\s+||;		# ... and skip white spaces in beginning
   1147     $line =~ s|\s+$||;		# ... and at the end
   1148 
   1149     if (my $label=label->re(\$line))	{ print $label->out(); }
   1150 
   1151     if (my $directive=directive->re(\$line)) {
   1152 	printf "%s",$directive->out();
   1153     } elsif (my $opcode=opcode->re(\$line)) {
   1154 	my $asm = eval("\$".$opcode->mnemonic());
   1155 
   1156 	if ((ref($asm) eq 'CODE') && scalar(my @bytes=&$asm($line))) {
   1157 	    print $gas?".byte\t":"DB\t",join(',',@bytes),"\n";
   1158 	    next;
   1159 	}
   1160 
   1161 	my @args;
   1162 	ARGUMENT: while (1) {
   1163 	    my $arg;
   1164 
   1165 	    ($arg=register->re(\$line, $opcode))||
   1166 	    ($arg=const->re(\$line))		||
   1167 	    ($arg=ea->re(\$line, $opcode))	||
   1168 	    ($arg=expr->re(\$line, $opcode))	||
   1169 	    last ARGUMENT;
   1170 
   1171 	    push @args,$arg;
   1172 
   1173 	    last ARGUMENT if ($line !~ /^,/);
   1174 
   1175 	    $line =~ s/^,\s*//;
   1176 	} # ARGUMENT:
   1177 
   1178 	if ($#args>=0) {
   1179 	    my $insn;
   1180 	    my $sz=$opcode->size();
   1181 
   1182 	    if ($gas) {
   1183 		$insn = $opcode->out($#args>=1?$args[$#args]->size():$sz);
   1184 		@args = map($_->out($sz),@args);
   1185 		printf "\t%s\t%s",$insn,join(",",@args);
   1186 	    } else {
   1187 		$insn = $opcode->out();
   1188 		foreach (@args) {
   1189 		    my $arg = $_->out();
   1190 		    # $insn.=$sz compensates for movq, pinsrw, ...
   1191 		    if ($arg =~ /^xmm[0-9]+$/) { $insn.=$sz; $sz="x" if(!$sz); last; }
   1192 		    if ($arg =~ /^ymm[0-9]+$/) { $insn.=$sz; $sz="y" if(!$sz); last; }
   1193 		    if ($arg =~ /^zmm[0-9]+$/) { $insn.=$sz; $sz="z" if(!$sz); last; }
   1194 		    if ($arg =~ /^mm[0-9]+$/)  { $insn.=$sz; $sz="q" if(!$sz); last; }
   1195 		}
   1196 		@args = reverse(@args);
   1197 		undef $sz if ($nasm && $opcode->mnemonic() eq "lea");
   1198 
   1199 		if ($insn eq "movq" && $#args == 1 && $args[0]->out($sz) eq "xmm0" && $args[1]->out($sz) eq "rax") {
   1200 		    # I have no clue why MASM can't parse this instruction.
   1201 		    printf "DB 66h, 48h, 0fh, 6eh, 0c0h";
   1202 		} else {
   1203 		    printf "\t%s\t%s",$insn,join(",",map($_->out($sz),@args));
   1204 		}
   1205 	    }
   1206 	} else {
   1207 	    printf "\t%s",$opcode->out();
   1208 	}
   1209     }
   1210 
   1211     print $line,"\n";
   1212 }
   1213 
   1214 print "\n$current_segment\tENDS\n"	if ($current_segment && $masm);
   1215 print "END\n"				if ($masm);
   1216 print "#endif\n"			if ($gas);
   1217 
   1218 
   1219 close STDOUT;
   1220 
   1221 #################################################
   1223 # Cross-reference x86_64 ABI "card"
   1224 #
   1225 # 		Unix		Win64
   1226 # %rax		*		*
   1227 # %rbx		-		-
   1228 # %rcx		#4		#1
   1229 # %rdx		#3		#2
   1230 # %rsi		#2		-
   1231 # %rdi		#1		-
   1232 # %rbp		-		-
   1233 # %rsp		-		-
   1234 # %r8		#5		#3
   1235 # %r9		#6		#4
   1236 # %r10		*		*
   1237 # %r11		*		*
   1238 # %r12		-		-
   1239 # %r13		-		-
   1240 # %r14		-		-
   1241 # %r15		-		-
   1242 #
   1243 # (*)	volatile register
   1244 # (-)	preserved by callee
   1245 # (#)	Nth argument, volatile
   1246 #
   1247 # In Unix terms top of stack is argument transfer area for arguments
   1248 # which could not be accommodated in registers. Or in other words 7th
   1249 # [integer] argument resides at 8(%rsp) upon function entry point.
   1250 # 128 bytes above %rsp constitute a "red zone" which is not touched
   1251 # by signal handlers and can be used as temporal storage without
   1252 # allocating a frame.
   1253 #
   1254 # In Win64 terms N*8 bytes on top of stack is argument transfer area,
   1255 # which belongs to/can be overwritten by callee. N is the number of
   1256 # arguments passed to callee, *but* not less than 4! This means that
   1257 # upon function entry point 5th argument resides at 40(%rsp), as well
   1258 # as that 32 bytes from 8(%rsp) can always be used as temporal
   1259 # storage [without allocating a frame]. One can actually argue that
   1260 # one can assume a "red zone" above stack pointer under Win64 as well.
   1261 # Point is that at apparently no occasion Windows kernel would alter
   1262 # the area above user stack pointer in true asynchronous manner...
   1263 #
   1264 # All the above means that if assembler programmer adheres to Unix
   1265 # register and stack layout, but disregards the "red zone" existence,
   1266 # it's possible to use following prologue and epilogue to "gear" from
   1267 # Unix to Win64 ABI in leaf functions with not more than 6 arguments.
   1268 #
   1269 # omnipotent_function:
   1270 # ifdef WIN64
   1271 #	movq	%rdi,8(%rsp)
   1272 #	movq	%rsi,16(%rsp)
   1273 #	movq	%rcx,%rdi	; if 1st argument is actually present
   1274 #	movq	%rdx,%rsi	; if 2nd argument is actually ...
   1275 #	movq	%r8,%rdx	; if 3rd argument is ...
   1276 #	movq	%r9,%rcx	; if 4th argument ...
   1277 #	movq	40(%rsp),%r8	; if 5th ...
   1278 #	movq	48(%rsp),%r9	; if 6th ...
   1279 # endif
   1280 #	...
   1281 # ifdef WIN64
   1282 #	movq	8(%rsp),%rdi
   1283 #	movq	16(%rsp),%rsi
   1284 # endif
   1285 #	ret
   1286 #
   1287 #################################################
   1289 # Win64 SEH, Structured Exception Handling.
   1290 #
   1291 # Unlike on Unix systems(*) lack of Win64 stack unwinding information
   1292 # has undesired side-effect at run-time: if an exception is raised in
   1293 # assembler subroutine such as those in question (basically we're
   1294 # referring to segmentation violations caused by malformed input
   1295 # parameters), the application is briskly terminated without invoking
   1296 # any exception handlers, most notably without generating memory dump
   1297 # or any user notification whatsoever. This poses a problem. It's
   1298 # possible to address it by registering custom language-specific
   1299 # handler that would restore processor context to the state at
   1300 # subroutine entry point and return "exception is not handled, keep
   1301 # unwinding" code. Writing such handler can be a challenge... But it's
   1302 # doable, though requires certain coding convention. Consider following
   1303 # snippet:
   1304 #
   1305 # .type	function,@function
   1306 # function:
   1307 #	movq	%rsp,%rax	# copy rsp to volatile register
   1308 #	pushq	%r15		# save non-volatile registers
   1309 #	pushq	%rbx
   1310 #	pushq	%rbp
   1311 #	movq	%rsp,%r11
   1312 #	subq	%rdi,%r11	# prepare [variable] stack frame
   1313 #	andq	$-64,%r11
   1314 #	movq	%rax,0(%r11)	# check for exceptions
   1315 #	movq	%r11,%rsp	# allocate [variable] stack frame
   1316 #	movq	%rax,0(%rsp)	# save original rsp value
   1317 # magic_point:
   1318 #	...
   1319 #	movq	0(%rsp),%rcx	# pull original rsp value
   1320 #	movq	-24(%rcx),%rbp	# restore non-volatile registers
   1321 #	movq	-16(%rcx),%rbx
   1322 #	movq	-8(%rcx),%r15
   1323 #	movq	%rcx,%rsp	# restore original rsp
   1324 # magic_epilogue:
   1325 #	ret
   1326 # .size function,.-function
   1327 #
   1328 # The key is that up to magic_point copy of original rsp value remains
   1329 # in chosen volatile register and no non-volatile register, except for
   1330 # rsp, is modified. While past magic_point rsp remains constant till
   1331 # the very end of the function. In this case custom language-specific
   1332 # exception handler would look like this:
   1333 #
   1334 # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
   1335 #		CONTEXT *context,DISPATCHER_CONTEXT *disp)
   1336 # {	ULONG64 *rsp = (ULONG64 *)context->Rax;
   1337 #	ULONG64  rip = context->Rip;
   1338 #
   1339 #	if (rip >= magic_point)
   1340 #	{   rsp = (ULONG64 *)context->Rsp;
   1341 #	    if (rip < magic_epilogue)
   1342 #	    {	rsp = (ULONG64 *)rsp[0];
   1343 #		context->Rbp = rsp[-3];
   1344 #		context->Rbx = rsp[-2];
   1345 #		context->R15 = rsp[-1];
   1346 #	    }
   1347 #	}
   1348 #	context->Rsp = (ULONG64)rsp;
   1349 #	context->Rdi = rsp[1];
   1350 #	context->Rsi = rsp[2];
   1351 #
   1352 #	memcpy (disp->ContextRecord,context,sizeof(CONTEXT));
   1353 #	RtlVirtualUnwind(UNW_FLAG_NHANDLER,disp->ImageBase,
   1354 #		dips->ControlPc,disp->FunctionEntry,disp->ContextRecord,
   1355 #		&disp->HandlerData,&disp->EstablisherFrame,NULL);
   1356 #	return ExceptionContinueSearch;
   1357 # }
   1358 #
   1359 # It's appropriate to implement this handler in assembler, directly in
   1360 # function's module. In order to do that one has to know members'
   1361 # offsets in CONTEXT and DISPATCHER_CONTEXT structures and some constant
   1362 # values. Here they are:
   1363 #
   1364 #	CONTEXT.Rax				120
   1365 #	CONTEXT.Rcx				128
   1366 #	CONTEXT.Rdx				136
   1367 #	CONTEXT.Rbx				144
   1368 #	CONTEXT.Rsp				152
   1369 #	CONTEXT.Rbp				160
   1370 #	CONTEXT.Rsi				168
   1371 #	CONTEXT.Rdi				176
   1372 #	CONTEXT.R8				184
   1373 #	CONTEXT.R9				192
   1374 #	CONTEXT.R10				200
   1375 #	CONTEXT.R11				208
   1376 #	CONTEXT.R12				216
   1377 #	CONTEXT.R13				224
   1378 #	CONTEXT.R14				232
   1379 #	CONTEXT.R15				240
   1380 #	CONTEXT.Rip				248
   1381 #	CONTEXT.Xmm6				512
   1382 #	sizeof(CONTEXT)				1232
   1383 #	DISPATCHER_CONTEXT.ControlPc		0
   1384 #	DISPATCHER_CONTEXT.ImageBase		8
   1385 #	DISPATCHER_CONTEXT.FunctionEntry	16
   1386 #	DISPATCHER_CONTEXT.EstablisherFrame	24
   1387 #	DISPATCHER_CONTEXT.TargetIp		32
   1388 #	DISPATCHER_CONTEXT.ContextRecord	40
   1389 #	DISPATCHER_CONTEXT.LanguageHandler	48
   1390 #	DISPATCHER_CONTEXT.HandlerData		56
   1391 #	UNW_FLAG_NHANDLER			0
   1392 #	ExceptionContinueSearch			1
   1393 #
   1394 # In order to tie the handler to the function one has to compose
   1395 # couple of structures: one for .xdata segment and one for .pdata.
   1396 #
   1397 # UNWIND_INFO structure for .xdata segment would be
   1398 #
   1399 # function_unwind_info:
   1400 #	.byte	9,0,0,0
   1401 #	.rva	handler
   1402 #
   1403 # This structure designates exception handler for a function with
   1404 # zero-length prologue, no stack frame or frame register.
   1405 #
   1406 # To facilitate composing of .pdata structures, auto-generated "gear"
   1407 # prologue copies rsp value to rax and denotes next instruction with
   1408 # .LSEH_begin_{function_name} label. This essentially defines the SEH
   1409 # styling rule mentioned in the beginning. Position of this label is
   1410 # chosen in such manner that possible exceptions raised in the "gear"
   1411 # prologue would be accounted to caller and unwound from latter's frame.
   1412 # End of function is marked with respective .LSEH_end_{function_name}
   1413 # label. To summarize, .pdata segment would contain
   1414 #
   1415 #	.rva	.LSEH_begin_function
   1416 #	.rva	.LSEH_end_function
   1417 #	.rva	function_unwind_info
   1418 #
   1419 # Reference to function_unwind_info from .xdata segment is the anchor.
   1420 # In case you wonder why references are 32-bit .rvas and not 64-bit
   1421 # .quads. References put into these two segments are required to be
   1422 # *relative* to the base address of the current binary module, a.k.a.
   1423 # image base. No Win64 module, be it .exe or .dll, can be larger than
   1424 # 2GB and thus such relative references can be and are accommodated in
   1425 # 32 bits.
   1426 #
   1427 # Having reviewed the example function code, one can argue that "movq
   1428 # %rsp,%rax" above is redundant. It is not! Keep in mind that on Unix
   1429 # rax would contain an undefined value. If this "offends" you, use
   1430 # another register and refrain from modifying rax till magic_point is
   1431 # reached, i.e. as if it was a non-volatile register. If more registers
   1432 # are required prior [variable] frame setup is completed, note that
   1433 # nobody says that you can have only one "magic point." You can
   1434 # "liberate" non-volatile registers by denoting last stack off-load
   1435 # instruction and reflecting it in finer grade unwind logic in handler.
   1436 # After all, isn't it why it's called *language-specific* handler...
   1437 #
   1438 # SE handlers are also involved in unwinding stack when executable is
   1439 # profiled or debugged. Profiling implies additional limitations that
   1440 # are too subtle to discuss here. For now it's sufficient to say that
   1441 # in order to simplify handlers one should either a) offload original
   1442 # %rsp to stack (like discussed above); or b) if you have a register to
   1443 # spare for frame pointer, choose volatile one.
   1444 #
   1445 # (*)	Note that we're talking about run-time, not debug-time. Lack of
   1446 #	unwind information makes debugging hard on both Windows and
   1447 #	Unix. "Unlike" referes to the fact that on Unix signal handler
   1448 #	will always be invoked, core dumped and appropriate exit code
   1449 #	returned to parent (for user notification).
   1450